EP0260207A1 - Dispositif d'étude de fluides de trempe et de trempabilité de matériaux - Google Patents

Dispositif d'étude de fluides de trempe et de trempabilité de matériaux Download PDF

Info

Publication number
EP0260207A1
EP0260207A1 EP87420236A EP87420236A EP0260207A1 EP 0260207 A1 EP0260207 A1 EP 0260207A1 EP 87420236 A EP87420236 A EP 87420236A EP 87420236 A EP87420236 A EP 87420236A EP 0260207 A1 EP0260207 A1 EP 0260207A1
Authority
EP
European Patent Office
Prior art keywords
fluid
tank
quenching
test piece
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP87420236A
Other languages
German (de)
English (en)
Inventor
Patrice Schwegler
Jean-Jacques Debrie
Bernard Clement
François Moreaux
Jacques Olivier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Servimetal SA
Original Assignee
Servimetal SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Servimetal SA filed Critical Servimetal SA
Publication of EP0260207A1 publication Critical patent/EP0260207A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/55Hardenability tests, e.g. end-quench tests
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/63Quenching devices for bath quenching

Definitions

  • the invention relates to a device for studying cooling fluids and in particular quenching fluids and for optimizing the quenching conditions of materials and in particular ferrous or non-ferrous metal alloys, and for measuring their quenchability.
  • the quenching is generally carried out in a liquid medium which, depending on the desired cooling rates, can be of the aqueous, oily or igneous type (molten salt).
  • the first stage corresponds to "caléfaction".
  • the part is surrounded by a vapor sheath which isolates it from the quenching fluid and slows down cooling
  • - the second stage corresponds to nucleated boiling, that is to say the appearance of vapor bubbles on a large number of points of the part
  • the third stage corresponds to cooling by conduction and convection, thanks to direct contact between the quenching fluid and the part.
  • the quality of a given quenching medium can be assessed by a test consisting of taking a standard test piece of metal which is a good conductor of heat and / or does not exhibit any allotropic transformation in the temperature range considered (silver for example) at within which a temperature sensor has been placed, to bring it to high temperature in a regulated oven, to immerse it immediately at the outlet of the oven in the quenching medium and to record the evolution of its temperature as a function of time .
  • quenching media are mineral or vegetable oils, but the trend is to replace them with aqueous fluids, based on water-soluble polymers, such as polyvinyl alcohol, polyoxyalkylene glycols, alcohols polyacrylic, polyvinylpyrrolidone (French patents FR 2 507 209, 2 537 997, 2 537 998 and 2 538 002 (SERVIMETAL).
  • water-soluble polymers such as polyvinyl alcohol, polyoxyalkylene glycols, alcohols polyacrylic, polyvinylpyrrolidone
  • the object of the invention is a device for studying quenching fluids and their mixing, and for quenching materials, in the form of test pieces, comprising an oven for heating said test pieces, a means of introducing each test piece. in the quenching liquid and extracting the quenched specimen, a quenching tank containing the quenching fluid, and a means for circulating the quenching fluid.
  • the quenching tank comprises an upper tank and a lower tank connected by a means making it possible to organize the circulation and distribution of the fluid and to control the speed thereof, the upper tank being provided with a submerged injector , formed of at least one circular ramp comprising a plurality of radial nozzles directed towards the axis of the tank, and connected to a source of pressurized fluid, the upper part of the upper tank comprising a pipe for the return of the fluid to the means of pressurization, the lower tank comprising a separate inlet for pressurized fluid and means for controlling and regulating the temperature of the fluid.
  • This device thus makes it possible to determine the optimal mixing of a fluid with respect to a given part and of a material.
  • the device which is the subject of the invention essentially comprises four parts: the heating oven (above the line AA ⁇ ), the loading station (between the lines AA ⁇ and BB,), the quenching tank (and the heat exchanger) (between the lines BB ⁇ and CC ⁇ ) and the quenching fluid stirring system, as well as the safety tank (lower part of Figure 1, below the line CC ⁇ ).
  • the heating furnace (1) with electrical resistances allows temperatures from ambient to 1200 ° C to be obtained. In one embodiment of the invention, it has a power of 1400 watts, an internal diameter of 70 mm and a length of 200 mm, so as to allow the processing of the various test pieces in common use: silver test piece ⁇ 8 , L 24 and ⁇ 16, L 48 mm, "U” test piece, ⁇ 35, L 105 mm, or special test pieces such as the "corner" test piece 30 mm in diameter, 100 to 105 mm long , cut in a corner, with an angle at the top equal to 20 °, made of 38C2 steel, developed by the applicant.
  • the temperature is measured, displayed and regulated from the thermocouple (2).
  • a pipe (3) provided with a valve (4) makes it possible to inject an inert gas such as nitrogen or nitrogen-hydrogen mixture into the oven.
  • the test piece (5) is supported, during heating and then during quenching, by a rod (6) which crosses the upper plate (7) for closing the furnace by an orifice with little play, and the upward movement of which -descent is controlled by a hydraulic cylinder (8).
  • a second cylinder (9) allows the head (10) which supports the rod (6) to be subjected, during the quenching, to a vertical vibratory movement whose role will be explained below.
  • the lower part of the oven is further provided with a closing drawer (11) controlled by the jack (12).
  • the safety latches (13) allow the movement of the slide (11) to be controlled by the downward movement of the test piece (5).
  • the loading station consists of a bell (13) covering the quenching tank, which ensures protection of the fluid quenching with nitrogen, essential protection when the fluid is an oil brought to high temperature (up to 250 ° C); the bell (13) is connected to the furnace by a connecting tube (14) formed by two removable semi-cylinders or which open by rotation about a vertical hinge axis. The movement of opening the tube (14) is synchronized with that of the hatch (15) for isolating the bell, which allows the loading or removal of a test tube while maintaining the nitrogen atmosphere on the quench fluid.
  • the nitrogen arrives in the bell through the pipe (16); it is controlled by the valve (17).
  • the quench tank (20) is made up of two parts: the upper tank (21) and the lower tank (22).
  • the upper tank (21) consists of a cylinder provided, at its upper part, with an overflow ring (23), the external peripheral part (24) of which is connected in sealed relation to the bell (13). It further comprises a sight glass (25), located at the level of the test piece (5) during quenching, and a certain number of "tappings" (26) (three are shown) making it possible to implant, by a sealed junction, temperature and / or speed sensors of the quenching fluid.
  • the upper tank comprises the device (40) for direct injection of fluid by nozzles distributed around the test piece. It will be described later.
  • the lower tank (22) is separated from the upper tank (21) by a particular device for controlling the distribution and speed of the fluid, such as the grid (27), the role of which we will come back to a little later.
  • the lower tank further comprises electric heating pins (28) (immersion heaters) and temperature and / or fluid speed sensors such as (29) adjustable in position.
  • the stirring fluid stirring system ensures both overall agitation and submerged injection. It is made up of: a circulation pump (30), having a high hourly flow rate, for example of the order of 50 to 200 times the total fluid capacity (tanks + pipeline), - a plate heat exchanger (31). Given the amplitude of the temperatures of the quenching fluids (from ambient to 250 ° C), it is necessary to provide for mixed regulation by heating (resistances 28) and by cooling (exchanger 31).
  • This regulation, of the PID type ensures an accuracy of ⁇ 1 ° C on the temperature of the fluid, - a quick drain pan (32), provided for safety reasons, taking into account the fact that most quenching oils are flammable, especially when they are protected at 200 or 250 ° C.
  • This rapid emptying can be done manually (command called "point stroke"), or automatically by detection of a rise in temperature in the bell (sensor 33).
  • This rapid emptying can be accompanied by the injection, in the bell (13), of nitrogen or of a fluorocarbon extinguishing gas for example, by the tube (16) and the valve (17), -a set of control pipes and valves for injecting pressurized fluid: .only in the lower tank (22) by the pipe (34), valves (35) open, (36) closed, (37) closed, with flow measurement by the rotameter (38) and return by the pipe (39 ) at the pump (30) (so-called "global agitation" circuit) .
  • the means of circulating and agitating the quenching fluid with respect to the test piece is one of the essential points of the invention.
  • the simple grid has been replaced by a honeycomb separator (50) with square section 10 mm square honeycomb, surmounted by a closure plate (51) provided with an opening (52 ) whose diameter is adapted to that of the test piece: for example of the order of 30 to 60 millimeters for the most common test pieces.
  • the passage diameter of the fluid must be at least equal to the diameter of the test piece and preferably between 1 and 5 times this diameter.
  • the honeycomb passages promote the formation of parallel fluid currents which reach the test piece before having diverged significantly and thus ensure an almost laminar flow and a high circulation speed around the test piece, therefore very efficient cooling. .
  • the lower part of the separator (50) supports a converging cone (53) which increases the speed of circulation of the fluid by acting on the reduction of the sections.
  • Figure 3A which is a partial enlargement of the figure 3, the position of the propeller (54) of the rotameter (55) is shown relative to the test piece (5).
  • the rotameter (55) can be positioned or removed as desired during a test.
  • the honeycomb separator has been eliminated and exclusively a converging cone (56) is used which has the advantage of largely eliminating the dead zones (57), in which the fluid does not circulate. little or not in the vicinity of the test piece (5).
  • the shims (58) make it possible to adjust (after disassembly) the height of the cone (56) relative to the test piece.
  • the second means of circulating the fluid around the test piece is constituted by the submerged injector (40).
  • this injector comprises two superimposed ramps 60) and (61), each provided with three nozzles (62) offset by 120 °, possibly interchangeable to vary the flow rate or the shape of the stream of fluid injected.
  • the entire injector (40) is removable and interchangeable thanks to the removable connector (63) (fig.1).
  • the quenching effect can be modified by subjecting the support rod (6), therefore the test piece (5) itself, to a vibration of predetermined frequency and amplitude, under the action of the jack (9 ) generator of vibrations, for example in order to delay or destabilize the heating.
  • This mechanical vibration of the test piece can be supplemented or replaced by an ultrasonic generator of the conventional type, with piezoelectric effect or with magneto-necking, the emission of which is focused on the test piece.
  • thermocouples of small dimensions arranged in orifices drilled in the test piece at suitably chosen locations, and connected, through the rod -support (6) to a recorder (70) which directly traces the temperature-time curve and its derivative (cooling rate as a function of time) during the test.
  • the speed of circulation of the quenching fluid is measured at various points of the circuits and of the upper and lower tanks by means of propeller rotameters. This measurement is based on the variation of a current induced by the rotation of a two-blade propeller (54) in front of a detector. The measurement is relatively precise in the range of 0.1 to 7 m.s ⁇ 1.
  • the rotometers (38) and (42) are fixed. Others are removable and / or movable such as those which correspond to the reference (29) in FIG. 1 or those such as (55) which can be arranged, by the taps (26) between the means (27) and the test piece. (5), or at the nozzles (62).
  • the speed of circulation of the fluid was measured, by means of the rotameter (55) placed in the vicinity of the test piece (fig. 3A) and more precisely between the upper part (59) of the convergent (56) and the base of the test piece (5), the latter being of the AFP type (silver, flat bottom ⁇ 16 mm, L 48 mm) as well as at the level of the nozzles injection (62) by means of a rotameter set up by one of the nozzles (26).
  • the rotameter placed in the vicinity of the test piece (fig. 3A) and more precisely between the upper part (59) of the convergent (56) and the base of the test piece (5), the latter being of the AFP type (silver, flat bottom ⁇ 16 mm, L 48 mm) as well as at the level of the nozzles injection (62) by means of a rotameter set up by one of the nozzles (26).
  • the device, object of the invention therefore makes it possible to study both the behavior of quenching fluids of oily or aqueous type with respect to control samples, as well as the quenchability of materials such as metal alloys, and thus to establish the drasticity curves for a given quenching fluid and for given heat treatment conditions, in a precise and reproducible manner. It also makes it possible to study and determine a priori and optimize the quenching and mixing conditions of the fluid for a given material, known or new.

Abstract

L'invention concerne un dispositif d'étude de fluides de trempe et de trempabilité de matériaux, sous forme d'éprouvettes (5), comportant un four de chauffage, un moyen d'introduction de chaque éprouvette dans le liquide de trempe et d'extraction de l'éprouvette trempée, un bac de trempe (20) contenant le fluide de trempe, et un moyen de mise en circulation du fluide de trempe. Selon l'invention, le bac de trempe (20) comporte un bac supérieur (21) et un bac inférieur (22) reliés par un moyen (27) d'organiser la circulation, le bac supérieur étant muni d'un injecteur immergé (40) formé d'au moins une rampe circulaire comportant une pluralité de buses radiales et relié à une source de fluide sous pression (30), la partie supérieure du bac supérieur comportant une canalisation (39) de retour du fluide vers le moyen (30) de mise en pression, le bac inférieur (32) comportant une arrivée distincte de fluide sous pression, un moyen de régulation de la température du fluide et des moyens de mesure de la vitesse du fluide.

Description

    DOMAINE TECHNIQUE DE L'INVENTION
  • L'invention concerne un dispositif d'étude de fluides de refroidissement et en particulier de fluides de trempe et d'optimisation des conditions de trempe de matériaux et notamment d'alliages métalliques ferreux ou non ferreux, et de mesure de leur trempabilité.
  • ETAT DE LA TECHNIQUE ANTERIEURE
  • Il est connu que la plupart des alliages métalliques présentent leurs propriétés mécaniques les plus élevées lorsqu'ils sont amenés dans un état structural particulier et homogène, état que l'on obtient par un traitement thermique, comportant un stade de trempe, depuis une température élevée, dans un fluide qui provoque un refroidissement à vitesse et dans des conditions prédéterminées.
  • Mais, si ces conditions ne sont pas respectées, il peut en résulter des déformations, des contraintes internes néfastes et même des tapures des pièces trempées. Il est donc important de connaître, et de mettre en oeuvre de façon très précise, les conditions de trempe.
  • La trempe est généralement effectuée dans un milieu liquide qui selon les vitesses de refroidissement désirées, peut être du type aqueux, huileux ou igné (sel fondu).
  • Lorsqu'une pièce préalablement portée à température élevée, est trempée dans un fluide vaporisable le refroidissement s'effectue en trois stades distincts, correspondant à des températures décroissantes:
    - Le premier stade, correspond à la "caléfaction". La pièce est entourée d'une gaine de vapeur qui l'isole du fluide de trempe et ralentit le refroidissement,
    - le second stade, correspond à l'ébullition nuclée, c'est-à-dire à l'apparition de bulles de vapeur sur un grand nombre de points de la pièce,
    - enfin, le troisième stade correspond à un refroidissement par conduction et convection, grâce au contact direct entre le fluide de trempe et la pièce.
  • La qualité d'un milieu de trempe donné peut être appréciée par un test consistant à prendre une éprouvette standard en métal bon conducteur de la chaleur et/ou ne présentant pas de transformation allotropique dans l'intervalle de température considéré (argent par exemple) au sein de laquelle on a disposé un capteur de température, à la porter à haute température dans un four régulé, à l'immerger immédiatement à la sortie du four dans le milieu de trempe et à enregistrer l'évolution de sa température en fonction du temps.
  • On peut ainsi tracer, pour chaque milieu de trempe, et à température initiale égale, des séries de courbes température en fonction dutemps et vitesse de refroidissement en fonction de la température (courbe dérivée) qui permettent d'évaluer, de façon objective, les qualités et défauts desdits milieux (courbes dites de "drasticité").
  • A l'heure actuelle, les milieux de trempe les plus utilisés sont des huiles minérales ou végétales, mais la tendance est de leur substituer des fluides aqueux, à base de polymères hydrosolubles, tels que l'alcool polyvinylique, les polyoxyalkylènes glycols, les alcools polyacryliques, la polyvinylpyrrolidone (brevets fançais FR 2 507 209, 2 537 997, 2 537 998 et 2 538 002 (SERVIMETAL).
  • Il est donc très utile, pour le spécialiste de trempe, de disposer d'un appareillage permettant de tester de façon précise et reproductible, aussi bien des alliages métalliques ou autres matériaux nouveaux, vis à vis de milieux de trempes connus, que des milieux de trempe nouveaux par rapport à des matériaux de référence, et ce, dans des conditions aussi proches que possible des utilisations industrielles.
  • OBJET DE L'INVENTION
  • L'objet de l'invention est un dispositif d'étude des fluides de trempe et de leur brassage, et de trempabilité de matériaux, sous forme d'éprouvettes, comportant un four de chauffage desdites éprouvettes, un moyen d'introduction de chaque éprouvette dans le liquide de trempe et d'extraction de l'éprouvette trempée, un bac de trempe contenant le fluide de trempe, et un moyen de mise en circulation du fluide de trempe.
  • Selon l'invention, le bac de trempe comporte un bac supérieur et un bac inférieur reliés par un moyen permettant d'organiser la circulation et la répartition du fluide et d'en contrôler la vitesse, le bac supérieur étant muni d'un injecteur immergé, formé d'au moins une rampe circulaire comportant une pluralité de buses radiales dirigées vers l'axe du bac, et relié à une source de fluide sous pression, la partie supérieure du bac supérieur comportant une canalisation de retour du fluide vers le moyen de mise en pression, le bac inférieur comportant une arrivée distincte de fluide sous pression et un moyen de contrôle et de régulation de la température du fluide. Ce dispositif permet ainsi de déterminer le brassage optimal d'un fluide vis à vis d'une pièce et d'un matériau donnés.
  • DESCRIPTION DES FIGURES
    • . La figure 1 représente, en coupe verticale schématique, l'ensemble du dispositif.
    • . Les figures 2, 3, 3A, 4, 4A, 4B représentent, en coupe verticale, les détails du dispositif de contrôle de la répartition du fluide.
  • Le dispositif, objet de l'invention, comporte essentiellement quatre parties : le four de chauffage (au-dessus de la ligne AAʹ), le poste de chargement (entre les lignes AAʹ et BBʹ), le bac de trempe (et l'échangeur de température) (entre les lignes BBʹ et CCʹ) et le système de brassage du fluide de trempe, ainsi que le bac de sécurité (partie inférieure de la figure 1, au-dessous de la ligne CCʹ).
  • 1. Le four de chauffage (1) à résistances électriques, permet d'obtenir des températures allant de l'ambiante à 1200°C. Dans un mode de réalisation de l'invention, il a une puissance de 1400 watts, un diamètre intérieur de 70 mm et une longueur de 200 mm, de façon à permettre le traitement des différentes éprouvettes d'utilisation courante : éprouvette en argent ⌀ 8, L 24 et ⌀ 16, L 48 mm, éprouvette "U", ⌀ 35, L 105 mm, ou d'éprouvettes spéciales telle que l'éprouvette dite "coin" de 30 mm de diamètre, de 100 à 105 mm de long, taillée en coin, d'angle au sommet égal à 20°, en acier 38C2, mise au point par la demanderesse.
    La température est mesurée, affichée et régulée à partir du thermocouple (2). Une canalisation (3) munie d'une vanne (4) permet d'injecter dans le four un gaz inerte tel que azote ou mélange azotehydrogène.
    L'éprouvette à tester (5) est supportée, pendant le chauffage puis pendant la trempe par une tige (6) qui traverse la plaque supérieure (7) d'obturation du four par un orifice à faible jeu, et dont le mouvement de montée-descente est commandé par un vérin hydraulique (8).
    Un second vérin (9) permet de soummettre la tête (10) qui supporte la tige (6), au cours de la trempe, à un mouvement vibratoire vertical dont le rôle sera précisé plus loin.
    La partie inférieure du four est munie, en outre, d'un tiroir de fermeture (11) commandé par le vérin (12). Les verrous de sécurité (13) permettent d'asservir le mouvement du tiroir (11) au mouvement de descente de l'éprouvette (5).
  • 2. Le poste de chargement est constitué par une cloche (13) coiffant le bac de trempe, ce qui permet d'assurer la protection du fluide de trempe par de l'azote, protection indispensable lorsque le fluide est une huile portée à température élevée (jusqu'à 250°C); la cloche (13) est reliée au four par un tube de liaison (14) formé de deux hémi-cylindres amovibles ou s'ouvrant par rotation autour d'un axe-­charnière vertical. Le mouvement d'ouverture du tube (14) est synchronisé avec celui de la trappe (15) d'isolement de la cloche, ce qui permet le chargement ou l'enlèvement d'une éprouvette tout en maintenant l'atmosphère d'azote sur le fluide de trempe. L'arrivée de l'azote dans la cloche s'effectue par la canalisation (16); elle est contrôlée par la vanne (17).
  • 3. Le bac de trempe (20) est constitué en deux parties : le bac supérieur (21) et le bac inférieur (22). Le bac supérieur (21) est constitué d'un cylindre muni, à sa partie supérieure, d'un anneau de débordement (23) dont la partie périphérique externe (24) se raccorde en relation étanche à la cloche (13). Il comporte en outre un hublot de visée (25), situé au niveau de l'éprouvette (5) en cours de trempe, et un certain nombre de "piquages" (26)(trois sont représentés) permettant d'implanter, par une jonction étanche, des capteurs de températures et/ou de vitesse du fluide de trempe.
    Enfin, la bac supérieur comporte le dispositif (40) d'injection directe de fluide par des buses réparties autour de l'éprouvette. Il sera décrit un peu plus loin.
  • Le bac inférieur (22) est séparé du bac supérieur (21) par un dispositif particulier de contrôle de la répartition et de la vitesse du fluide, tel que la grille (27), sur le rôle duquel nous reviendrons un peu plus loin.
    Le bac inférieur comporte en outre des épingles de chauffage électriques (28)(thermoplongeurs) et des capteurs de température et/ou de vitesse de fluide tels que (29) ajustables en position.
  • Le système de brassage du fluide de trempe permet d'assurer à la fois une agitation globale et une injection immergée. Il est constitué par:
    - une pompe de circulation (30), ayant un débit horaire élevé, par exemple de l'ordre de 50 à 200 fois la capacité totale en fluide (bacs + canalisation),
    - un échangeur à plaques (31).
    Compte tenu de l'amplitude des températures des fluides de trempe (de l'ambiante jusqu'à 250°C), il est nécessaire de prévoir une régulation mixte par chauffage (résistances 28) et par refroidissement (échangeur 31). Cette régulation, du type PID (proportionnelle/intégrale/dérivée) assure une précision de ± 1°C sur la température du fluide,
    - un bac de vidange rapide (32), prévu, par mesure de sécurité, compte tenu du fait que la plupart des huiles de trempe sont inflammables, surtout lorsqu'elles sont protées à 200 ou 250°C.
    Cette vidange rapide peut se faire manuellement (commande dite "coup de point"), ou automatiquement par détection d'une élévation de température dans la cloche (capteur 33). Cette vidange rapide peut être accompagnée de l'injection, dans la cloche (13), d'azote ou d'un gaz extincteur fluorocarboné par exemple, par le tube (16) et la vanne (17),
    -un ensemble de canalisations et de vannes de contrôle permettant d'injecter le fluide sous pression :
    .soit uniquement dans le bac inférieur (22) par la canalisation (34), vannes (35) ouverte, (36) fermée,(37) fermée, avec mesure de débit par le rotamètre (38) et retour par la canalisation (39) à la pompe (30)(circuit dit "d'agitation globale")
    . soit uniquement dans les injecteurs (40) par la canalisation (41) vannes (35)(36) fermées, vanne (37) ouverte, mesure de débit par le rotamètre (42), retour du fluide par débordement dans l'anneau (23) et reprise par la canalisation (39).(circuit dit : d'injection immergée)
    . soit dans les deux circuits simultanément, en ouvrant les vannes (35)(37) (la vanne 36 restant fermée).
  • Le moyen de mise en circulation et agitation du fluide de trempe par rapport à l'éprouvette est l'un des points essentiels de l'invention.
  • Il importait en effet que cette circulation-agitation soit non seulement d'une efficacité maximale, mais que ses effets soient contrôlés, mesurables et reproductibles, quel que soit le fluide utilisé et quelle que soit la nature de l'éprouvette.
  • Cette mise en circulation fait donc appel à deux moyens qui apparaissent sur les figures 2, 3, 3A, 4, 4A et 4B.
  • 1. Une circulation de fluide, autour de l'éprouvette (5) en provenance du bac inférieur (22). Le simple système de grille (27), fig. 1, quelle que soit sa position (en hauteur), par rapport à l'éprouvette, n'assure pas une véritable convergence des courants de circulation de fluide autour de l'éprouvette. Ce système ne convient que dans un nombre de cas limité.
  • Sur la figure 2, on a remplacé la simple grille par un séparateur (50) en nid d'abeilles à alvéoles à section carrée de 10 mm de côté, surmonté par une plaque d'obturation (51) munie d'une ouverture (52) dont le diamètre est adapté à celui de l'éprouvette : par exemple de l'ordre de 30 à 60 millimètres pour les éprouvettes les plus courantes. En pratique, le diamètre de passage du fluide doit être au moins égal au diamètre de l'éprouvette et de préférence compris entre 1 et 5 fois ce diamètre.
    Les passages en nid d'abeille favorisent la formation de courants de fuides parallèles qui atteignent l'éprouvette avant d'avoir notablement divergés et assurent ainsi un écoulement quasi laminaire et une vitesse de circulation élevée autour de l'éprouvette, donc un refroidissement très efficace.
  • Sur la figure 3, la partie inférieure du séparateur (50) supporte un cône convergent (53) qui augmente la vitesse de circulation du fluide en jouant sur la diminution des sections.
  • Sur la figure 3A, qui est un agrandissement partiel de la figure 3, on a représenté la position de l'hélice (54) du rotamètre (55) par rapport à l'éprouvette (5). Le rotamètre (55) peut être, à volonté, mis en place ou retiré au cours d'un essai.
  • Enfin, sur la figure 4, on a supprimé le séparateur en nid d'abeilles et utilisé exclusivement un cone convergent (56) qui présente l'avantage d'éliminer en grande partie les zones mortes (57), dans lesquelles le fluide ne circule que peu, ou pas, au voisinage de l'éprouvette (5).
    Les cales (58) permettent de régler (après démontage) la hauteur du cône (56) par rapport à l'éprouvette.
  • 2. Le deuxième moyen de mise en circulation du fluide autour de l'éprouvette est constitué par l'injecteur immergé (40). Dans le cas particulier représenté, cet injecteur comporte deux rampes superposées 60) et (61), munies chacune de trois buses (62) décalées de 120°, éventuellement interchangeables pour varier le débit ou la forme du courant de fluide injecté.
    De même, l'ensemble de l'injecteur (40) est démontable et interchangeable grâce au raccord démontable (63)(fig.1).
  • Enfin, l'effet de trempe peut être modifié en soumettant la tige-­support (6), donc l'éprouvette (5) elle-même, à une vibration de fréquence et d'amplitude prédéterminées, sous l'action du vérin (9) générateur de vibrations, par exemple en vue de retarder ou de déstabiliser la caléfaction.
    Cette vibration mécanique de l'éprouvette peut être complétée ou remplacée par un générateur d'ultrasons de type classique, à effet piezoélectrique ou à magnéto-striction dont l'émission est focalisée sur l'éprouvette.
  • L'ensemble de l'installation est complété par des moyens de mesure. La mesure et la régulation des diverses températures (four, fluide) ont déjà été évoquées.
  • Une mesure particulièrement importante est celle de la température de l'éprouvette, réalisée en deux points (centre et surface) pour mesure du gradient thermique, par des thermocouples de petites dimensions, disposés dans des orifices forés dans l'éprouvette à des emplacements convenablement choisis, et reliés, au travers de la tige-support (6) à un enregistreur (70) qui trace directement la courbe température-temps et sa dérivée (vitesse de refroidissement en fonction du temps) au cours de l'essai.
  • La vitesse de circulation du fluide de trempe est mesurée en divers points des circuits et des bacs supérieur et inférieur au moyen de rotamètres à hélice. Cette mesure est basée sur la variation d'un courant induit par la rotation d'une hélice à deux pales (54) devant un détecteur. La mesure est relativement précise dans la gamme de 0,1 à 7 m.s⁻¹. Les rotomètres (38) et (42) sont fixes. D'autres sont amovibles et/ou déplaçables tels que ceux qui correspondent au repère (29) figure 1 ou ceux tels que (55) qu'on peut disposer, par les piquages (26) entre le moyen (27) et l'éprouvette (5), ou au niveau des buses (62).
  • MISE EN OEUVRE DE L'INVENTION
  • On a construit un dispositif d'essai conforme à la description qui vient d'être faite, et à la figure 1, avec circulation du fluide du bac inférieur vers l'éprouvette selon la variante de la figure 4. Le bac de trempe a une contenance totale de 50 litres, plus 20 litres pour l'ensemble des circuits extérieurs. La pompe de circulation a un débit maximum de 10 m³/h. La mise en place de l'éprouvette (5) à l'extrémité de la tige (6), au niveau du cylindre (14) (poste de chargement) est manuelle. Tout le reste du cycle est automatique. Le transfert et le positionnement de l'éprouvette sont réalisés par le vérin (8), réglable en vitesse et en position et asservi à deux minuteries, l'une donnant le temps de chauffage (montée puis palier de température), l'autre le temps d'immersion dans le fluide selon le cycle suivant :
    • - A : poste de chargement (point de départ)
    • - B : transfert dans le four et montée en température
    • - C : transfert dans le bac de trempe (à vitesse contrôlée et réglable)
    • - D : retour au poste de déchargement et reprise d'un nouveau cycle.
  • De façon à évaluer l'efficacité du brassage du fluide autour de l'éprouvette, on a mesuré la vitesse de circulation du fluide, au moyen du rotamètre (55) placé au voisinage de l'éprouvette (fig. 3A) et plus précisément entre la partie supérieure (59) du convergent (56) et la base de l'éprouvette (5), cette dernière étant du type AFP (argent, fond plat ⌀ 16 mm, L 48 mm) ainsi qu'au niveau des buses d'injection (62) au moyen d'un rotamètre mis en place par l'un des piquages (26).
    Ces mesures ont été effectuées dans les différents cas suivants :
    - huile "TRATHER" (de la Sté MILLOIL) à 50, 80 et 150°C
    - huile "T010" (de la Sté MOTUL) à 50 et 80°C
    - eau pure à 20°C
    - eau additionnée de 1,25 % en poids de polyvinylpyrrolidone (PVP) à 20°C.
  • On a obtenu les résultats suivants :
    Figure imgb0001
  • Ces vitesses élevées sont sensiblement supérieures à ce que l'on peut pratiquer dans les conditions industrielles habituelles.
  • En outre, il faut noter qu'elles augmentent de 3 à 17 % lorsqu'on supprime l'éprouvette (5) et dépassent donc largement le mètre par seconde pour des huiles à 80°C au niveau du rotamètre (55).
    Dans les canalisations de liaison, les vitesses mesurées sont de l'ordre de 3,3 à 3,5 m.s⁻¹ (rotamètres (42) et (38)).
  • Le dispositif, objet de l'invention permet donc d'étudier aussi bien le comportement des fluides de trempe de type huileux ou aqueux vis à vis d'éprouvettes témoins, que la trempabilité de matériaux tels que les alliages métalliques, et d'établir ainsi les courbes de drasticité pour un fluide de trempe donné et pour des conditions de traitement thermique données, de façon précise et reproductible. Il permet également d'étudier et de déterminer a priori et d'optimiser les conditions de trempe et de brassage du fluide pour un matériau donné, connu ou nouveau.

Claims (16)

1. Dispositif d'étude de fluides de trempe et de leur brassage et de trempabilité de matériaux, sous forme d'éprouvettes (5) comportant un four de chauffage (1) desdites éprouvettes, un moyen d'introduction de chaque éprouvette dans le liquide de trempe et d'extraction de l'éprouvette trempée, un bac de trempe (20) contenant le fluide de trempe, et un moyen de mise en circulation du fluide de trempe, par une pompe et des canalisations associées, caractérisé en ce que le bac de trempe (20) comporte un bac supérieur (21) et un bac inférieur (22) reliés par un moyen (27) d'organiser la circulation et la répartition du fluide, et d'en contrôler la vitesse, le bac supérieur étant muni d'un injecteur immergé (40) formé d'au moins une rampe circulaire comportant une pluralité de buses radiales (62) dirigées vers l'axe du bac, et relié à une source de fluide sous pression (30), la partie supérieure du bac supérieur comportant une canalisation (39) de retour de fluide vers le moyen (30) de mise en pression, le bac inférieur (32) comportant une arrivée distincte de fluide sous pression, un moyen de contrôle et de régulation de la température du fluide et des moyens de mesure de la vitesse de circulation du fluide.
2. Dispositif, selon revendication 1, caractérisé en ce qu'il comporte, en outre, un dispositif programmable assurant la montée en température de l'éprouvette (5) dans le four (1), le palier thermique à la température choisie, la descente de l'éprouvette (5) dans le fluide de trempe et son positionnement dans le bac supérieur (21) et la remontée de l'éprouvette en fin de trempe.
3. Dispositif selon revendication 1 ou 2, caractérisé en ce que l'éprouvette (5) est fixée à l'extrémité inférieure d'une tige (6) dont la partie supérieure est reliée par une tête (10) d'une part à un vérin linéaire (10) et d'autre part à un vérin vibrant (9).
4. Dispositif selon revendication 1, 2 ou 3, caractérisé en ce qu'il comporte en outre un générateur d'ultrasons pour la mise en vibration de l'éprouvette (5).
5. Dispositif, selon revendications 1,2 ou 3, caractérisé en ce que l'éprouvette (5) est constituée par un cylindre en acier de 38C2, de 30 mm de diamètre, d'une longueur comprise entre 100 et 105 mm, taillée en coin, avec un angle au sommet de 20°.
6. Dispositif, selon revendication 1, caractérisé en ce que le moyen (27) est constitué par une grille perforée.
7. Dispositif, selon revendication 1, caractérisé en ce que le moyen (27) est constitué par un grille en nid d'abeille (50) muni à sa partie supérieure d'un diaphragme (51) ayant un orifice axial dont le diamètre est au moins égal au diamètre de l'éprouvette, et, de préférence compris entre 1 et 5 fois ce diamètre.
8. Dispositif selon revendication 6 ou 7 caractérisé en ce que le moyen de contrôle (27) comporte, en outre, un cône convergent (53).
9. Dispositif selon revendication 1, caractérisé en ce que le moyen (27) est constitué par un cône convergent (53) dont l'ouverture supérieure (59) a un diamètre au moins égal à celui de l'éprouvette et de préférence compris entre 1 et 5 fois ce diamètre.
10. Dispositif selon l'une quelconque des revendications 6 à 9, caractérisé en ce que le moyen (27) comporte des cales (58) pour régler sa position par rapport à l'éprouvette (5).
11. Dispositif selon revendication 1, caractérisé en ce que le bac supérieur (21) est surmonté d'une cloche étanche (13) comportant une arrivée de gaz inerte (16,19) et relié à sa partie supérieure, en relation étanche, à la partie inférieure du four (1), par un poste de chargement (14).
12. Dispositif, selon revendication 1 ou 11, caractérisé en ce que la partie supérieure du bac supérieur (21) comporte un anneau de débordement périphérique (23) dont la partie externe (24) est reliée en relation étanche à la partie inférieure de la cloche (13) et en ce que l'anneau de débordement est connecté à la canalisation de retour (39).
13. Dispositif selon revendication 1, caractérisé en ce que le moyen de contrôle et de régulation de la température du fluide comprend des résistances de chauffage (28) disposées dans le bac inférieur, commandées par un thermostat (22) et un échangeur externe à plaques (31).
14. Dispositif, selon revendication 1, caractérisé en ce qu'il comporte, dans les canalisations de liaison des rotamètres à hélice (38)(42).
15. Dispositif selon revendication 1, caractérisé en ce qu'il comporte des rotamètres déplaçables et/ou amovibles, dans le bac supérieur (21) et/ou dans le bac inférieur (22), l'un au moins de ces rotamètres (55) étant placé entre l'orifice du moyen (27) et l'éprouvette (5).
16. Dispositif selon revendication 1, caractérisé en ce qu'il comporte un moyen (36,32) de vidange rapide du fluide de trempe connecté au détecteur (33) d'élévation anormale de température dans la cloche (13).
EP87420236A 1986-09-11 1987-09-09 Dispositif d'étude de fluides de trempe et de trempabilité de matériaux Withdrawn EP0260207A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8612895A FR2603901B1 (fr) 1986-09-11 1986-09-11 Dispositif d'etude de fluides de trempe et de trempabilite de materiaux
FR8612895 1986-09-11

Publications (1)

Publication Number Publication Date
EP0260207A1 true EP0260207A1 (fr) 1988-03-16

Family

ID=9338962

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87420236A Withdrawn EP0260207A1 (fr) 1986-09-11 1987-09-09 Dispositif d'étude de fluides de trempe et de trempabilité de matériaux

Country Status (4)

Country Link
US (1) US4840353A (fr)
EP (1) EP0260207A1 (fr)
JP (1) JPS63125613A (fr)
FR (1) FR2603901B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0967292A1 (fr) * 1998-06-24 1999-12-29 Durferrit SARL Procédé et dispositif pour le contrÔle de pouvoir refroidissant d'un fluide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5574142B2 (ja) * 2009-01-26 2014-08-20 高周波熱錬株式会社 冷却液管理装置及び方法並びに測温素子

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2246675A (en) * 1940-08-09 1941-06-24 Sheffield Steel Corp Quenching apparatus
DE745860C (de) * 1942-04-15 1944-05-05 Habil Heinrich Arend Dr Ing Vorrichtung zur Bestimmung der Vielhaertungs- und Vielerwaermungszahl von Staehlen
GB702378A (en) * 1951-09-20 1954-01-13 Riv Officine Di Villar Perosa Apparatus for determining the cooling power of quenching baths
US2920988A (en) * 1956-07-02 1960-01-12 Bendix Aviat Corp Process for ultrasonic quenching of steel articles
US3589696A (en) * 1968-03-04 1971-06-29 Hayes Inc C I High vacuum electric furnace with liquid quench apparatus
EP0049339A1 (fr) * 1980-10-04 1982-04-14 Joachim Dr.-Ing. Wünning Procédé et dispositif de trempe de pièces en acier dans un bain de liquide, notamment dans un bain d'huile

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3517676A (en) * 1967-10-25 1970-06-30 Caterpillar Tractor Co Quench apparatus for providing pulsating and sweeping flow of quench fluid
US4720310A (en) * 1981-11-26 1988-01-19 Union Siderurgique Du Nord Et De L'est De La France (Usinor) Process for effecting the controlled cooling of metal sheets

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2246675A (en) * 1940-08-09 1941-06-24 Sheffield Steel Corp Quenching apparatus
DE745860C (de) * 1942-04-15 1944-05-05 Habil Heinrich Arend Dr Ing Vorrichtung zur Bestimmung der Vielhaertungs- und Vielerwaermungszahl von Staehlen
GB702378A (en) * 1951-09-20 1954-01-13 Riv Officine Di Villar Perosa Apparatus for determining the cooling power of quenching baths
US2920988A (en) * 1956-07-02 1960-01-12 Bendix Aviat Corp Process for ultrasonic quenching of steel articles
US3589696A (en) * 1968-03-04 1971-06-29 Hayes Inc C I High vacuum electric furnace with liquid quench apparatus
EP0049339A1 (fr) * 1980-10-04 1982-04-14 Joachim Dr.-Ing. Wünning Procédé et dispositif de trempe de pièces en acier dans un bain de liquide, notamment dans un bain d'huile

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ULTRASONICS, vol. 3, juillet-septembre 1965, pages 149-151, Guildford, GB; R.F. HARVEY: "Ultrasonic quenching" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0967292A1 (fr) * 1998-06-24 1999-12-29 Durferrit SARL Procédé et dispositif pour le contrÔle de pouvoir refroidissant d'un fluide
FR2780508A1 (fr) * 1998-06-24 1999-12-31 Durferrit Sarl Procede et dispositif pour le controle du pouvoir refroidissant d'un fluide

Also Published As

Publication number Publication date
FR2603901A1 (fr) 1988-03-18
JPH0325485B2 (fr) 1991-04-08
US4840353A (en) 1989-06-20
FR2603901B1 (fr) 1988-11-18
JPS63125613A (ja) 1988-05-28

Similar Documents

Publication Publication Date Title
US5625154A (en) Method and apparatus for testing ceramic specimens by simultaneous application of mechanical and thermal stresses
US3717034A (en) Apparatus for immersing and withdrawing bath examination means into and from a molten bath
FR2705044A1 (fr) Procédé de coulée pilotée sous basse pression d'un moule sous vide pour alliages d'aluminium ou de magnésium et dispositif pour sa mise en Óoeuvre.
FR2570496A1 (fr) Appareil et procede de test automatique de porosite et de permeabilite d'echantillons carottes multiples
CN108733959B (zh) 一种基于数值模拟的铸锭质量评价方法
EP0260207A1 (fr) Dispositif d'étude de fluides de trempe et de trempabilité de matériaux
CN101960304B (zh) 铸造棒的超声波探伤检查方法和超声波探伤检查装置
Jech et al. Rapid solidification via melt spinning: equipment and techniques
CN106769594A (zh) 一种热疲劳实验方法
EP0033709B1 (fr) Appareil autonome de prélèvement isobarométrique pour prise d'échantillons sur boissons gazeuses
Shyam et al. Small fatigue crack propagation from micronotches in the cast aluminum alloy W319
EP1194772B1 (fr) Procede et dispositif de comptage des inclusions dans un bain de metal liquide par ultrasons
JPH10170421A (ja) 熱衝撃試験方法およびその装置
FR2720016A1 (fr) Matériau allié destiné au thixomoulage, procédé pour préparer un matériau allié semi-fondu destiné au thixomoulage, et procédé de thixomoulage.
EP0030060B1 (fr) Procédé et dispositif d'automatisation d'un cycle de dégazage sous vide d'alliages d'aluminium
FR2662255A1 (fr) Procede pour l'identification, l'evaluation et l'elimination des micro-retassures.
CN110819775A (zh) 一种可测连续温度场的端淬试验机及其测量方法
FR2675581A1 (fr) Dispositif et methode d'evaluation de l'aptitude qu'a un corps a expulser un produit et du maintien de produit genere lors de la maturation artificielle du corps.
JPH03165961A (ja) 加圧付加鋳造方法および装置
FR2647903A1 (fr) Procede et appareillage de determination rapide du seuil de floculation de particules dans une charge petroliere, une sequence d'analyses et son utilisation
CN113865984B (zh) 适用于放射性管状样品的真空/惰性气体保护试验装置
Idodo et al. Reducing casting defects in pure copper casting.: A Look at the Gating Design of High-Performance Blast Furnace Tuyeres.
CN2896281Y (zh) 石油产品倾点的精确测试装置
Ferreira et al. Continuous casting tundish inertization: a comparative study
Braswell et al. Scattered light photoelastic thermal stress analysis of a solid-propellant rocket motor.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19880321

17Q First examination report despatched

Effective date: 19890306

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19890717

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CLEMENT, BERNARD

Inventor name: DEBRIE, JEAN-JACQUES

Inventor name: MOREAUX, FRANCOIS

Inventor name: SCHWEGLER, PATRICE

Inventor name: OLIVIER, JACQUES