EP0257052A1 - Device for therapeutical irradiation of organic tissue by laser radiation - Google Patents

Device for therapeutical irradiation of organic tissue by laser radiation

Info

Publication number
EP0257052A1
EP0257052A1 EP87901050A EP87901050A EP0257052A1 EP 0257052 A1 EP0257052 A1 EP 0257052A1 EP 87901050 A EP87901050 A EP 87901050A EP 87901050 A EP87901050 A EP 87901050A EP 0257052 A1 EP0257052 A1 EP 0257052A1
Authority
EP
European Patent Office
Prior art keywords
laser
radiation
irradiation
wavelength
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP87901050A
Other languages
German (de)
French (fr)
Inventor
Gerhard Müller
Peter Greve
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss AG
Original Assignee
Carl Zeiss AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss AG filed Critical Carl Zeiss AG
Publication of EP0257052A1 publication Critical patent/EP0257052A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0616Skin treatment other than tanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0659Radiation therapy using light characterised by the wavelength of light used infrared
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/073Radiation therapy using light using polarised light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0614Tanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/067Radiation therapy using light using laser light

Definitions

  • the present invention relates to a device for the therapeutic irradiation of organic tissue according to the preamble of claim 1.
  • Such devices have become known as so-called mid or soft lasers. They are used for treatment in various fields, for example in rheumatology, dermatology, neurclogy or in dental medicine. Treatment with laser beams is painless and does not cause warming or a micro-chemical change in the tissue.
  • the laser radiation has a stimulating effect on cell activities and thus activates the body's own healing powers; Above all, it has an anti-inflammatory, anti-dreary and pain-relieving effect and is free of any side effects.
  • Mid lasers which contain a HeNe laser which emits radiation with a wavelength of 633 nm. This radiation is fed to the location of the radiation via flexible glass fibers. The originally polarized laser radiation is depolarized. Such lasers are preferably used for wound treatment.
  • Mid lasers are also known which additionally contain a second laser which emits radiation with a wavelength of 904 nm.
  • the beam is fed directly to the radiation site, i.e. without the interposition of optical elements. This makes such a device very difficult to handle.
  • the laser beam is guided over the radiation field in the form of a scanning grid.
  • This has the disadvantage that the power density is unevenly distributed over this field, since it is higher in and near the reversal points than in the areas in between.
  • this is pulsed, the pulse frequency being adjustable and reaching up to about 5 kHz in the upper range.
  • the semiconductor diodes used in this case only emit a low power on average over time, which is generally about 5 mW and below.
  • the laser working in the near infrared range emits radiation from the wavelength range 800-870 nm, preferably at 840 nm.
  • This radiation is emitted in continuous beam mode and expanded by an optical system to a desired diameter at the location of the radiation.
  • the laser which is advantageously designed as a GaAs semiconductor diode, emitting an average power of approximately 100 mW.
  • This enzyme absorbs photons from the incident laser radiation and these cause, among other things. a load carrier exchange.
  • Zeil membranes polarize and thus stimulate cell metabolism.
  • the continuous irradiation of the laser radiation has the effect that a certain number of photons per unit area and time is available at every point in the radiation field. With each occurrence of the abovementioned briefly existing absorption state of the enzyme, a sufficient number of photons are available in the wavelength range optimal for absorption, so that stimulation of the cell metabolism can take place. Since the power density of the radiation is evenly distributed over the irradiated field, the stimulating effects occur evenly distributed over this field.
  • the laser radiation is supplied to the radiation field via mirrors. This ensures that the polarized radiation emitted by the HeNe laser is not depolarized on its way to the radiation field, ie that it actually strikes it as polarized radiation. It has been found that by the closure of the wound is accelerated, so that 'acts, the apparatus highly stimulating to the Ephitelgewebe.
  • mirrors also allows the beam delivery to be designed very flexibly, so that it is easy to position the radiation field on the body to be treated.
  • the device according to the invention particularly advantageously contains an arrangement for internal power measurement.
  • This arrangement continuously displays the power of the emitted laser radiation and thus enables precise metering of the laser radiation striking the radiation field.
  • an LCD panel is advantageously arranged in the beam path in the device according to the invention.
  • the degree of alignment of the LCD crystals and thus the absorption of the polarized laser radiation can be controlled in a particularly simple manner by means of the voltage applied to the LCD plate.
  • Figure 1 shows the optical beam path in a schematic representation.
  • Fig. 2 is a perspective view of the device.
  • (1) denotes a HeNe laser emitting at ⁇ 33 nm.
  • the polarized radiation emitted by this passes through an LCD panel (2).
  • This plate consists of a thin liquid crystal layer which is arranged between two glass plates provided with transparent electrodes. A controllable voltage is applied between these electrodes via a control arrangement (3). The magnitude of this voltage regulates the intensity of the radiation passing through the plate (2).
  • a splitter mirror (4) is arranged behind the LCD plate (2), via which the radiation emitted by the laser diode (5) enters the beam path.
  • the laser diode (5) is designed as a GaAs diode, which emits at 840 nm and which operates in continuous wave (continuous wave) mode.
  • a condenser system (6) is used to generate a parallel beam path. Behind the mirror (4), the radiation emitted by the lasers (1 and 2) runs coaxially over the same radiation path and is influenced by the same components.
  • a partially reflecting mirror (7) is arranged in this beam path and directs a small percentage of the incident radiation onto a detector (8). This is followed by an amplifier (9) and a display instrument (10). This shows the power in the laser beam path.
  • the laser beam path is deflected via a mirror (11) which is arranged in a tubular housing (12) which can be rotated about an axis coinciding with the optical axis (13).
  • An optical system for beam expansion is arranged in the housing (12), which in the example shown is constructed as a Kepler system from the two collecting lenses (14, 15).
  • the lens (15) is in the direction of Arrow (l ⁇ ) can be moved.
  • a focus is formed in the beam path, is arranged in which a mode diaphragm (17) which is designed as an iris diaphragm 'and is also referred to as a spatial filter.
  • This diaphragm (17) serves to achieve a sharply defined boundary of the radiation field, the diameter of which is adjusted by moving the lens (15).
  • Another mirror (18) deflects the laser radiation out of the housing (12).
  • This mirror can be rotated about two mutually perpendicular axes with the help of only one actuating element.
  • the example of such a swivel mechanism is the subject of German utility model application G 85 35 100.8.
  • a filter (19) can also be swiveled in and out, as indicated by the double arrow. If the radiation is to be carried out with radiation from the laser (1), the filter (19) is pivoted out and the entire intensity of the radiation reaches the radiation field via the mirror (18). If the radiation is to be carried out with the radiation from the laser (5), the laser (1) remains switched on and the filter (19) is pivoted in. Only a portion of the radiation at 633 nm is transmitted through this filter. This enables precise positioning of the radiation field without triggering a therapeutic effect. Such a positioning option is important because the laser (5) emits in the near infrared and its radiation is therefore not visible. The observation field is thus illuminated by the visible radiation from the laser (1) with a sharp edge and it is precisely within this illuminated field that the therapeutically effective radiation from the laser (5) is uniformly distributed.
  • Fig. 2 shows an embodiment of the device according to the invention.
  • This tube can be pivoted in the direction of the double arrow (20). It has an operating ring (21) for axially displacing the lens (15), that is to say for adjusting the size of the radiation field, and an operating ring (22) for pivoting the mirror (18). All other components shown in Fig. 1 are housed in a housing (23) which has a control panel (24).
  • the display (10) of the radiation intensity is arranged in this field, furthermore control elements for pivoting the filter (19) in and out, for preselecting the duration of the radiation and for actuating the lasers (1) and (5).
  • the housing (23) is mounted on a table (24) which is arranged on a column (25). This column is mobile.
  • the therapeutic laser radiation can be directed in a simple manner onto a field to be treated in a standing, sitting or lying patient.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Radiation-Therapy Devices (AREA)
  • Laser Surgery Devices (AREA)

Abstract

Le dispositif ci-décrit comporte un laser HeNe (1) qui émet sur une longueur d'onde de 633 nm, et un second laser (5) émettant dans la plage du proche infra-rouge. Ce second laser (5) fonctionne en régime continu et émet un rayonnement dans la plage de longueur d'onde 800-870 nm, de préférence sur une longueur d'onde de 840 nm. Un système optique (14, 15) sert à élargir les faisceaux des deux lasers (1, 5) qui partagent la même trajectoire. Ce système (14, 15) permet de régler en continu la grandeur du champ d'irradiation jusqu'à un diamètre maximal de l'ordre de 30 nm. Pour le coudage du faisceau entre les lasers (1, 5) et l'ouverture de sortie de faisceau du dispositif, est prévu un système de miroirs (11, 18) comportant un miroir de sortie rotatif autour de deux axes pour positionner le champ d'irridiation.The device described above comprises a HeNe laser (1) which emits on a wavelength of 633 nm, and a second laser (5) emitting in the near infrared range. This second laser (5) operates continuously and emits radiation in the wavelength range 800-870 nm, preferably over a wavelength of 840 nm. An optical system (14, 15) serves to widen the beams of two lasers (1, 5) which share the same path. This system (14, 15) makes it possible to continuously adjust the size of the irradiation field up to a maximum diameter of the order of 30 nm. For the bending of the beam between the lasers (1, 5) and the beam exit aperture of the device, a system of mirrors (11, 18) is provided comprising an exit mirror rotating around two axes to position the field d. irridiation.

Description

Beschreibung:Description:
Vorrichtung zur therapeutischen Bestrahlung von organischem Gewebe mit LaserstrahlungDevice for the therapeutic irradiation of organic tissue with laser radiation
Die vorliegende Erfindung betrifft eine Vorrichtung zur therapeutischen Bestrahlung von organischem Gewebe nach dem Oberbegriff des Anspruchs 1.The present invention relates to a device for the therapeutic irradiation of organic tissue according to the preamble of claim 1.
Solche Vorrichtungen sind als sogenannte Mid- oder Soft-Laser bekannt geworden. Sie werden zur Behandlung auf verschiedenen Gebieten, beispielsweise in der Rheumatologie, der Dermatologie, der Neurclogie oder in der Dental-Medizin eingesetzt. Die Behandlung mit Laserstrahlen ist schmerzlos und verursacht weder Erwärmung noch eine mαkrochemische Veränderung des Gewebes. Die Laserstrahlung wirkt stimulierend auf die Zellaktivitäten und aktiviert damit körpereigene Heilkräfte; sie wirkt vor allem antiphlogistisch, antiöde atös und schmerzstillend und ist dabei frei von irgendwelchen Nebenwirkungen.Such devices have become known as so-called mid or soft lasers. They are used for treatment in various fields, for example in rheumatology, dermatology, neurclogy or in dental medicine. Treatment with laser beams is painless and does not cause warming or a micro-chemical change in the tissue. The laser radiation has a stimulating effect on cell activities and thus activates the body's own healing powers; Above all, it has an anti-inflammatory, anti-dreary and pain-relieving effect and is free of any side effects.
Es sind Mid-Laser bekannt, die einen HeNe-Laser enthalten, der Strahlung einer Wellenlänge von 633 nm emittiert. Diese Strahlung wird über flexible Glasfasern dem Ort der Bestrahlung zugeführt. Dabei wird die ursprünglich polarisierte Laserstrahlung depolarisiert. Solche Laser werden vorzugsweise zur Wundbehandlung eingesetzt.Mid lasers are known which contain a HeNe laser which emits radiation with a wavelength of 633 nm. This radiation is fed to the location of the radiation via flexible glass fibers. The originally polarized laser radiation is depolarized. Such lasers are preferably used for wound treatment.
Weiterhin sind Mid-Laser bekannt, die zusätzlich einen zweiten Laser enthalten, der Strahlung einer Wellenlänge von 904 nm emittiert. Hier erfolgt die Strahlzuführung zum Ort der Bestrahlung direkt, d.h. ohne Zwischenschaltung optischer Elemente. Dadurch ist eine solche Vorrichtung recht schwerfällig zu handhaben.Mid lasers are also known which additionally contain a second laser which emits radiation with a wavelength of 904 nm. Here the beam is fed directly to the radiation site, i.e. without the interposition of optical elements. This makes such a device very difficult to handle.
Bei diesen bekannten Mid-Lasern wird der Laserstrahl in Form eines Abtastrasters über das Bestrahlungsfeld geführt. Dies bringt den Nachteil mit sich, daß die Leistungsdichte über dieses Feld ungleich¬ mäßig verteilt ist, da sie in und nahe den Umkehrpunkten höher ist als in den dazwischenliegenden Bereichen. Bei den bekannten Mid-Lasern mit einem, bei 904 nm emittierenden Laser, wird dieser gepulst, wobei die Pulsfrequenz einstellbar ist und im oberen Bereich bis ca. 5 kHz reicht. Die verwendeten Halbleiterdioden -geben dabei im zeitlichen Mittelwert nur eine geringe Leistung ab, die im allgemeinen bei etwa 5 mW und darunter liegt.In these known mid-lasers, the laser beam is guided over the radiation field in the form of a scanning grid. This has the disadvantage that the power density is unevenly distributed over this field, since it is higher in and near the reversal points than in the areas in between. In the known mid-lasers with a laser emitting at 904 nm, this is pulsed, the pulse frequency being adjustable and reaching up to about 5 kHz in the upper range. The semiconductor diodes used in this case only emit a low power on average over time, which is generally about 5 mW and below.
Es ist die Aufgabe der vorliegenden Erfindung eine Vorrichtung zur therapeutischen Bestrahlung von organischem Gewebe nach dem Oberbegriff des Anspruchs 1 so auszugestalten, daß bei geringem Aufwand eine, gegenüber bekannten Vorrichtungen verbesserte therapeutische Wirksamkeit erreicht wird.It is the object of the present invention to design a device for the therapeutic irradiation of organic tissue according to the preamble of claim 1 in such a way that, with little effort, an improved therapeutic effectiveness compared to known devices is achieved.
Diese Aufgabe wird erfindungsgerrπß durch eine Vorrichtung gelöst, welche die im Kennzeichen des Anspruchs 1 angeführten Merkmale aufweist.This object is achieved according to the invention by a device which has the features stated in the characterizing part of claim 1.
Bei der Vorrichtung nach der Erfindung emittiert der im nahen Infrarotbereich arbeitende Laser Strahlung aus dem Wellenlängenbereich 800-870 nm, vorzugsweise bei 840 nm. Diese Strahlung wird im Dauer¬ strahlbetrieb abgegeben und durch ein optisches System auf einen gewünschten Durchmesser am Ort der Bestrahlung aufgeweitet.In the device according to the invention, the laser working in the near infrared range emits radiation from the wavelength range 800-870 nm, preferably at 840 nm. This radiation is emitted in continuous beam mode and expanded by an optical system to a desired diameter at the location of the radiation.
Damit ist einmal erreicht, daß ein Bestrahlungsfeld einstellbarer Größe mit gleichmäßig verteilter Leistungsdichte beaufschlagt wird, wobei der Laser, der vorteilhaft als GaAs-Halbleiterdiode ausgebildet ist im zeitlichen Mittelwert eine Leistung von etwa 100 mW abgibt.This once achieved that an irradiation field of adjustable size is subjected to a uniformly distributed power density, the laser, which is advantageously designed as a GaAs semiconductor diode, emitting an average power of approximately 100 mW.
Durch die Wahl der Wellenlänge und die kontinuierliche Einstrahlung der Laserstrahlung wird eine signifikante Verbesserung der therapeutischen Wirkung erreicht. Beim Zellstoffwechsel organischer Zellen entsteht einA significant improvement in the therapeutic effect is achieved through the choice of the wavelength and the continuous irradiation of the laser radiation. When cell metabolism occurs in organic cells
Enzym (aus der Gruppe der Flavoproteide) , dessen AbsorptionsfähigkeitEnzyme (from the group of flavoproteids), its absorption capacity
-3 kurzzeitig für eine Dauer <10 s bei etwa 840 nm am höchsten ist.-3 is briefly highest for a period of <10 s at about 840 nm.
Dieses Enzym absorbiert aus der auftreffenden Laserstrahlung Photonen und diese bewirken u.a. einen Ladungsträger-Austausch. Dabei werden dieThis enzyme absorbs photons from the incident laser radiation and these cause, among other things. a load carrier exchange. The
Zeil-Membranen polarisiert und damit der Zellstoffwechsel stimuliert.Zeil membranes polarize and thus stimulate cell metabolism.
Damit werden körpereigene Heilkräfte aktiviert. Die kontinuierliche Einstrahlung der Laserstrahlung bewirkt, daß an jeder Stelle des Bestrahlungsfeldes eine bestimmte Photonenzahl pro Flächen- und Zeiteinheit zur Verfügung steht. Damit stehen bei jedem Auftreten des erwähnten kurzzeitig existenten Absorptionszustandes des Enzyms eine ausreichende Anzahl von Photonen in dem für die Absorption optimalen Wellenlängenbereich zur Verfügung, so daß eine Stimulation des Zellstoffwechsels erfolgen kann. Da die Leistungsdichte der Bestrahlung über das bestrahlte Feld gleichmäßig verteilt ist, treten die stimulierenden Effekte gleichmäßig verteilt über dieses Feld auf.This activates the body's own healing powers. The continuous irradiation of the laser radiation has the effect that a certain number of photons per unit area and time is available at every point in the radiation field. With each occurrence of the abovementioned briefly existing absorption state of the enzyme, a sufficient number of photons are available in the wavelength range optimal for absorption, so that stimulation of the cell metabolism can take place. Since the power density of the radiation is evenly distributed over the irradiated field, the stimulating effects occur evenly distributed over this field.
Bei der Vorrichtung nach der Erfindung erfolgt die Zuführung der Laserstrahlung zum Bestrahlungsfeld über Spiegel. Damit ist gewähr¬ leistet, daß die vom HeNe-Laser emittierte polarisierte Strahlung auf ihrem Weg zum Bestrahlungsfeld nicht depolarisiert wird, d.h., daß sie dort tatsächlich als polarisierte Strahlung auftrifft. Es hat sich gezeigt, daß dadurch der Wundverschluß beschleunigt wird, so daß' die Vorrichtung in hohem Maße stimulierend auf das Ephitelgewebe einwirkt.In the device according to the invention, the laser radiation is supplied to the radiation field via mirrors. This ensures that the polarized radiation emitted by the HeNe laser is not depolarized on its way to the radiation field, ie that it actually strikes it as polarized radiation. It has been found that by the closure of the wound is accelerated, so that 'acts, the apparatus highly stimulating to the Ephitelgewebe.
Die Verwendung von Spiegeln erlaubt es auch die Strahlzuführung sehr flexibel zu gestalten, so daß es einfach ist das Bestrahlungsfeld auf dem zu behandelnden Körper zu positionieren.The use of mirrors also allows the beam delivery to be designed very flexibly, so that it is easy to position the radiation field on the body to be treated.
Die Vorrichtung nach der Erfindung enthält besonders vorteilhaft eine Anordnung zur internen Leistungsmessung. Diese Anordnung zeigt die Leistung der emittierten Laserstrahlung kontinuierlich an und ermöglicht damit eine genaue Dosierung der auf das Bestrahlungsfeld auftreffenden Laserstrahlung.The device according to the invention particularly advantageously contains an arrangement for internal power measurement. This arrangement continuously displays the power of the emitted laser radiation and thus enables precise metering of the laser radiation striking the radiation field.
Bei der Therapie mittels des HeNe-Lasers ist es notwendig dessen Intensität zu steuern. Dazu ist bei der Vorrichtung nach der Erfindung im Strahlengang vorteilhaft eine LCD-Platte angeordnet. Der Grad der Ausrichtung der LCD-Kristalle und damit die Absorption der polarisierten Laserstrahlung läßt sich in besonders einfacher Weise mittels der an die LCD-Platte angelegten Spannung steuern. Die Erfindung wird im folgenden anhand eines in den Fig. 1 und 2 der beigefügten Zeichnungen dargestellten Ausführungsbeispiels näher erläutert. Dabei zeigt:With therapy using the HeNe laser, it is necessary to control its intensity. For this purpose, an LCD panel is advantageously arranged in the beam path in the device according to the invention. The degree of alignment of the LCD crystals and thus the absorption of the polarized laser radiation can be controlled in a particularly simple manner by means of the voltage applied to the LCD plate. The invention is explained below with reference to an embodiment shown in FIGS. 1 and 2 of the accompanying drawings. It shows:
Fig. 1 den optischen Strahlengang in schematischer Darstellung;Figure 1 shows the optical beam path in a schematic representation.
Fig. 2 ein perspektivische Ansicht der Vorrichtung.Fig. 2 is a perspective view of the device.
In Fig. 1 ist mit (1) ein bei ό33 nm emittierender HeNe-Laser bezeichnet. Die von diesem emittierte polarisierte Strahlung tritt durch eine LCD-Platte (2). Diese Platte besteht-aus einer dünnen Flüssig¬ kristall-Schicht, die zwischen zwei, mit durchsichtigen Elektroden versehenen Glasplatten angeordnet ist. Zwischen diesen Elektroden wird über eine Steuer-Anordnung (3) eine regelbare Spannung angelegt. Die Größe dieser Spannung regelt die Intensität der durch die Platte (2) tretenden Strahlung.In Fig. 1, (1) denotes a HeNe laser emitting at ό33 nm. The polarized radiation emitted by this passes through an LCD panel (2). This plate consists of a thin liquid crystal layer which is arranged between two glass plates provided with transparent electrodes. A controllable voltage is applied between these electrodes via a control arrangement (3). The magnitude of this voltage regulates the intensity of the radiation passing through the plate (2).
Hinter der LCD-Platte (2) ist ein Teilerspiegel (4) angeordnet, über den die von der Laserdiode (5) emittierte Strahlung in den Strahlengang gelangt. Die Laserdiode (5) ist als GaAs-Diode ausgebildet, die bei 840 nm emittiert und die im Dauerstrahl- (Dauerstrich-) Betrieb arbeitet. Ein Kondensor-System (6) dient zur Erzeugung eines Parallelstrahlen- ganges. Hinter dem Spiegel (4) verläuft die von den Lasern (1 und 2) emittierte Strahlung koaxial über denselben Strahlungsweg und wird von denselben Bauelementen beeinflußt. In diesem Strahlengang ist ein teilreflektierender Spiegel (7) angeordnet, der einen kleinen Prozentsatz der auftreffenden Strahlung auf einen Detektor (8) lenkt. Diesem ist ein Verstärker (9) und ein Anzeigeinstrument (10) nachgeordnet. Dieses zeigt die Leistung im Laserstrahlengang an.A splitter mirror (4) is arranged behind the LCD plate (2), via which the radiation emitted by the laser diode (5) enters the beam path. The laser diode (5) is designed as a GaAs diode, which emits at 840 nm and which operates in continuous wave (continuous wave) mode. A condenser system (6) is used to generate a parallel beam path. Behind the mirror (4), the radiation emitted by the lasers (1 and 2) runs coaxially over the same radiation path and is influenced by the same components. A partially reflecting mirror (7) is arranged in this beam path and directs a small percentage of the incident radiation onto a detector (8). This is followed by an amplifier (9) and a display instrument (10). This shows the power in the laser beam path.
Der Laserstrahlengang wird über einen Spiegel (11) umgelenkt, der in einem rohrförmigen Gehäuse (12) angeordnet ist, das um eine, mit der optischen Achse (13) zusammenfallende Achse drehbar ist. Im Gehäuse (12) ist ein optisches System zur Strahlaufweitung angeordnet, das im dargestellten Beispiel als Kepler-System aus den beiden sammelnden Linsen (14, 15) aufgebaut ist. Die Linse (15) ist in Richtung des Pfeiles (lό) verschiebbar. Zwischen den Linsen (14) und (15) entsteht ein Fokus im Strahlengang, in dem eine Modenblende (17) angeordnet ist, die als Irisblende 'ausgebildet ist und auch als Raumfilter bezeichnet wird. Diese Blende (17) dient dazu eine randscharfe Begrenzung des - Bestrahlungsfeldes zu erreichen, dessen Durchmesser durch Verschieben der Linse (15) eingestellt wird.The laser beam path is deflected via a mirror (11) which is arranged in a tubular housing (12) which can be rotated about an axis coinciding with the optical axis (13). An optical system for beam expansion is arranged in the housing (12), which in the example shown is constructed as a Kepler system from the two collecting lenses (14, 15). The lens (15) is in the direction of Arrow (lό) can be moved. Between the lenses (14) and (15), a focus is formed in the beam path, is arranged in which a mode diaphragm (17) which is designed as an iris diaphragm 'and is also referred to as a spatial filter. This diaphragm (17) serves to achieve a sharply defined boundary of the radiation field, the diameter of which is adjusted by moving the lens (15).
Ein weiterer Spiegel (18) lenkt die Laserstrahlung aus dem Gehäuse (12) aus. Dieser Spiegel ist um zwei zueinander senkrechte Achsen drehbar und zwar mit Hilfe nur eines Betätigungselementes. Die beispielsweise Ausbildung eines solchen Schwenkmechanismus ist Gegenstand der deutschen Gebrauchsmusteranmeldung G 85 35 100.8.Another mirror (18) deflects the laser radiation out of the housing (12). This mirror can be rotated about two mutually perpendicular axes with the help of only one actuating element. The example of such a swivel mechanism is the subject of German utility model application G 85 35 100.8.
Im Strahlengang (13) ist weiterhin ein Filter (19) ein- und ausschwenk¬ bar angeordnet, wie dies durch den Doppelpfeil angedeutet ist. Soll die Bestrahlung mit Strahlung des Lasers (1) durchgeführt werden, so ist das Filter (19) ausgeschwenkt und die gesamte Intensität der Strahlung gelangt über den Spiegel (18) zum Bestrahlungsfeld. Soll die Bestrahlung mit der Strahlung des Lasers (5) durchgeführt werden, so bleibt der Laser (1) eingeschaltet und das Filter (19) wird eingeschwenkt. Durch dieses Filter wird nur ein Teil der Strahlung bei 633 nm durchgelassen. Diese ermöglicht ein genaues Positionieren des Bestrahlungsfeldes ohne eine therapeutische Wirkung auszulösen. Eine solche Möglichkeit der Positionierung ist wichtig, da der Laser (5) im nahen Infrarot emittiert und seine Strahlung deshalb nicht sichtbar ist. Das Beobachtungsfeld wird also von der sichtbaren Strahlung des Lasers (1) randscharf beleuchtet und genau innerhalb dieses beleuchteten Feldes trifft gleichmäßig verteilt die therapeutisch wirksame Strahlung des Lasers (5) kontinuierlich auf.In the beam path (13), a filter (19) can also be swiveled in and out, as indicated by the double arrow. If the radiation is to be carried out with radiation from the laser (1), the filter (19) is pivoted out and the entire intensity of the radiation reaches the radiation field via the mirror (18). If the radiation is to be carried out with the radiation from the laser (5), the laser (1) remains switched on and the filter (19) is pivoted in. Only a portion of the radiation at 633 nm is transmitted through this filter. This enables precise positioning of the radiation field without triggering a therapeutic effect. Such a positioning option is important because the laser (5) emits in the near infrared and its radiation is therefore not visible. The observation field is thus illuminated by the visible radiation from the laser (1) with a sharp edge and it is precisely within this illuminated field that the therapeutically effective radiation from the laser (5) is uniformly distributed.
Die Zeitdauer des therapeutischen Einsatzes wird durch eine Zeitschal¬ tung gesteuert, die direkt auf den Bewegungsmechanismus für das Filter (19) und auf den Laser (5) einwirkt und die beim Einschalten des Lasers (5) das Filter (19) einschwenkt und umgekehrt. Fig. 2 zeigt ein Ausführungsbeispiel der Vorrichtung nach der Erfindung. Man erkennt das rohrförmige Gehäuse (12), das die aus Fig. 1 ersicht¬ lichen Bauelemente enthält. Dieses Rohr ist in Richtung des Doppelpfeils (20) schwenkbar. Es weist einen Bedienungsring (21) zur Axialverschie¬ bung der Linse (15), d.h. also zur Einstellung der Größe des Bestrahlungsfeldes und einen Bedienungsring (22) zur Verschwenkung des Spiegels (18) auf. Alle übrigen aus Fig. 1 ersichtlichen Bauelemente sind in einem Gehäuse (23) untergebracht, das ein Bedienfeld (24) aufweist. In diesem Feld ist die Anzeige (10) der Strahlungsintensität angeordnet, ferner Bedienelemente zum Ein- und Ausschwenken des Filters (19), zur Vorwahl der Bestrahlungsdauer und zur Betätigung der Laser (1) und (5).The duration of the therapeutic use is controlled by a timer which acts directly on the movement mechanism for the filter (19) and on the laser (5) and which pivots in the filter (19) when the laser (5) is switched on and vice versa. Fig. 2 shows an embodiment of the device according to the invention. One recognizes the tubular housing (12) which contains the components shown in FIG. 1. This tube can be pivoted in the direction of the double arrow (20). It has an operating ring (21) for axially displacing the lens (15), that is to say for adjusting the size of the radiation field, and an operating ring (22) for pivoting the mirror (18). All other components shown in Fig. 1 are housed in a housing (23) which has a control panel (24). The display (10) of the radiation intensity is arranged in this field, furthermore control elements for pivoting the filter (19) in and out, for preselecting the duration of the radiation and for actuating the lasers (1) and (5).
Das Gehäuse (23) ist auf einem Tisch (24) gelagert, der auf einer Säule (25) angeordnet ist. Diese Säule ist fahrbar.The housing (23) is mounted on a table (24) which is arranged on a column (25). This column is mobile.
Durch Positionieren der Säule (25) und durch Verschwenken des Rohres (12) sowie des Austrittsspiegels (18) läßt sich in einfacher Weise die therapeutische Laserstrahlung auf ein zu behandelndes Feld eines stehenden, sitzenden oder liegenden Patienten richten.By positioning the column (25) and pivoting the tube (12) and the exit mirror (18), the therapeutic laser radiation can be directed in a simple manner onto a field to be treated in a standing, sitting or lying patient.
Es kann vorteilhaft sein die Säule (25) so auszubilden, daß der Tisch (24) in der Höhe verstellbar ist. It can be advantageous to design the column (25) so that the height of the table (24) can be adjusted.

Claims

Patentansprüche: Claims:
1. Vorrichtung zur therapeutischen Bestrahlung von organischem Gewebe mit Laserstrahlung, enthaltend einen HeNe-Laser und einen im nahen Infrarotbereich arbeitenden zweiten Laser, sowie Mittel zur Zuführung der Laserstrahlung zum Ort der Bestrahlung, dadurch gekennzeichnet, daß der zweite Laser (5) im Dauerstrahl-Betrieb arbeitet und Strahlung aus dem Wellenlängenbereich 800-870 nm emittiert, daß ein optisches System (14, 15) zur Aufweitung des Laserstrahls auf einen gewünschten Durchmesser am Ort der Bestrahlung vorgesehen ist, und daß ι:ur Strahlumlenkung zwischen Laser (1, 5) und der Strahlaustrittsöffnung der Vorrichtung Spiegel (11, 18) dienen.1. Device for the therapeutic irradiation of organic tissue with laser radiation, comprising a HeNe laser and a second laser working in the near infrared range, and means for supplying the laser radiation to the site of the radiation, characterized in that the second laser (5) in the continuous beam Operation works and radiation from the wavelength range 800-870 nm is emitted, that an optical system (14, 15) is provided for expanding the laser beam to a desired diameter at the site of the irradiation, and that ι: ur beam deflection between the laser (1, 5) and the beam outlet opening of the device mirrors (11, 18) are used.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der zweite Laser (5) Strahlung einer Wellenlänge von 840 nm emittiert.2. Device according to claim 1, characterized in that the second laser (5) emits radiation of a wavelength of 840 nm.
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß der zweite Laser (5) als Halbleiterdiode ausgebildet ist.3. Apparatus according to claim 2, characterized in that the second laser (5) is designed as a semiconductor diode.
4. Vorrichtung nach Anspruch 1 und 2, dadurch gekennzeichnet, daß eine Anordnung (7, 8, 9, 10) zur internen Leistungsmessung vorgesehen ist.4. Apparatus according to claim 1 and 2, characterized in that an arrangement (7, 8, 9, 10) is provided for internal power measurement.
5. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß im Strahlengang des HeNe-Lasers (1) eine, der Intensitätssteuerung dienende LCD-Platte (2) angeordnet ist. 5. The device according to claim 1, characterized in that in the beam path of the HeNe laser (1), an intensity control LCD panel (2) is arranged.
EP87901050A 1986-02-03 1987-02-03 Device for therapeutical irradiation of organic tissue by laser radiation Withdrawn EP0257052A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19863603156 DE3603156A1 (en) 1986-02-03 1986-02-03 DEVICE FOR THERAPEUTIC RADIATION OF ORGANIC TISSUE WITH LASER RADIATION
DE3603156 1986-02-03
DE19873731841 DE3731841A1 (en) 1986-02-03 1987-09-22 Irradiation unit for improvement of the immune system
DE19873734852 DE3734852A1 (en) 1986-02-03 1987-10-14 Irradiation unit for forming (endogenous) cancer-inhibiting matter

Publications (1)

Publication Number Publication Date
EP0257052A1 true EP0257052A1 (en) 1988-03-02

Family

ID=37907082

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87901050A Withdrawn EP0257052A1 (en) 1986-02-03 1987-02-03 Device for therapeutical irradiation of organic tissue by laser radiation

Country Status (5)

Country Link
US (1) US4836203A (en)
EP (1) EP0257052A1 (en)
JP (1) JPS63503204A (en)
DE (3) DE3603156A1 (en)
WO (1) WO1987004632A1 (en)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8717812U1 (en) * 1987-09-02 1990-04-19 Schmidt, Rudolf, 8904 Friedberg, De
US4957481A (en) * 1987-10-01 1990-09-18 U.S. Bioscience Photodynamic therapeutic technique
US4930504A (en) * 1987-11-13 1990-06-05 Diamantopoulos Costas A Device for biostimulation of tissue and method for treatment of tissue
DE3800555A1 (en) * 1988-01-12 1989-07-27 Ulrich Dardenne Stiftung Ev DEVICE FOR THE ABLATIVE PHOTODECOMPOSITION OF DENTAL RESIN SUBSTANCES BY MEANS OF A WAVELENGTH OF 193 NM ARGON / FLUORID EXCIMER LASERS AND AN APPLICATION DEVICE FOR THIS LASER LIGHTING DEVICE
US5324200A (en) * 1988-08-25 1994-06-28 American Dental Technologies, Inc. Method for enlarging and shaping a root canal
US5180304A (en) * 1988-08-25 1993-01-19 American Dental Laser, Inc. Method for apical fusion of the foramina
US5207576A (en) * 1989-04-07 1993-05-04 American Dental Laser, Inc. Dental laser assembly with dual lasers
US5192279A (en) * 1989-08-08 1993-03-09 Samuels Mark A Dental tissue cutting, drilling and fusing system
WO1991013653A1 (en) * 1990-03-14 1991-09-19 Candela Laser Corporation Apparatus and method of treating pigmented lesions using pulsed irradiation
US6162213A (en) * 1990-04-25 2000-12-19 Cincinnati Sub-Zero Products, Inc. Multiple wavelength metal vapor laser system for medical applications
US5066291A (en) * 1990-04-25 1991-11-19 Cincinnati Sub-Zero Products, Inc. Solid-state laser frequency conversion system
AT403101B (en) * 1990-06-29 1997-11-25 Walter Helmut Dipl Ing Dr Miniature laser for human and veterinary medical use
DE4026022A1 (en) * 1990-08-17 1992-02-20 Mutzhas Maximilian F UV irradiating appts. for photo-therapy of neuro-dermatitis - has spectral characteristic such that portion between 250 and 350 nm is below 1 per cent of that between 250 and 400
DE9013602U1 (en) * 1990-09-28 1991-01-24 Graubner, Goetz, Dr., 3000 Hannover, De
DE4038809C1 (en) * 1990-12-05 1992-04-02 Kaltenbach & Voigt Gmbh & Co, 7950 Biberach, De Dental instrument for treatment by laser beam - has slidable lens and exchangeable light conductor sections of various diameters
US5282842A (en) * 1991-03-27 1994-02-01 Changaris David G Method of inducing tanning by pulsed light and apparatus to effect same
US5511563A (en) * 1991-06-21 1996-04-30 Diamond; Donald A. Apparatus and method for treating rheumatoid and psoriatic arthritis
US5640978A (en) * 1991-11-06 1997-06-24 Diolase Corporation Method for pain relief using low power laser light
US5441531A (en) * 1993-10-18 1995-08-15 Dusa Pharmaceuticals Inc. Illuminator and methods for photodynamic therapy
US5464436A (en) * 1994-04-28 1995-11-07 Lasermedics, Inc. Method of performing laser therapy
US5586981A (en) * 1994-08-25 1996-12-24 Xin-Hua Hu Treatment of cutaneous vascular and pigmented lesions
RU2096051C1 (en) * 1995-02-24 1997-11-20 Григорий Борисович Альтшулер Apparatus for laser treatment of biological tissues (alternative embodiments)
US5868731A (en) * 1996-03-04 1999-02-09 Innotech Usa, Inc. Laser surgical device and method of its use
US5657754A (en) * 1995-07-10 1997-08-19 Rosencwaig; Allan Apparatus for non-invasive analyses of biological compounds
US5658323A (en) * 1995-07-12 1997-08-19 Miller; Iain D. Method and apparatus for dermatology treatment
US5879376A (en) * 1995-07-12 1999-03-09 Luxar Corporation Method and apparatus for dermatology treatment
CN1059130C (en) * 1995-09-07 2000-12-06 黄益富 Semiconductor green laser irradiate therapeutic apparatus in blood vessel
GB9611170D0 (en) 1996-05-29 1996-07-31 Sls Wales Ltd Reduction of vascular blemishes by selective thermolysis
GB9611180D0 (en) 1996-05-29 1996-07-31 Sls Wales Ltd Treatment of vascular lesions
US6936044B2 (en) * 1998-11-30 2005-08-30 Light Bioscience, Llc Method and apparatus for the stimulation of hair growth
US6676655B2 (en) 1998-11-30 2004-01-13 Light Bioscience L.L.C. Low intensity light therapy for the manipulation of fibroblast, and fibroblast-derived mammalian cells and collagen
US9192780B2 (en) 1998-11-30 2015-11-24 L'oreal Low intensity light therapy for treatment of retinal, macular, and visual pathway disorders
US6663659B2 (en) 2000-01-13 2003-12-16 Mcdaniel David H. Method and apparatus for the photomodulation of living cells
US20060212025A1 (en) * 1998-11-30 2006-09-21 Light Bioscience, Llc Method and apparatus for acne treatment
US6283956B1 (en) * 1998-11-30 2001-09-04 David H. McDaniels Reduction, elimination, or stimulation of hair growth
US6887260B1 (en) * 1998-11-30 2005-05-03 Light Bioscience, Llc Method and apparatus for acne treatment
WO2002032336A1 (en) 2000-10-20 2002-04-25 Innovationsagentur Gesellschaft M.B.H. Method and device for controlling light sources for irradiating a body
DE10055677A1 (en) * 2000-11-05 2002-05-16 Clyxon Laser Gmbh Method and device for cleaning wounds by laser
EP1384235A4 (en) 2001-05-03 2011-03-02 Advanced Light Technology Llc Differential photochemical & photomechanical processing
DE10150204A1 (en) 2001-10-12 2003-04-30 Matthias Becker Device and method for improving the well-being of a living being
US7303578B2 (en) * 2001-11-01 2007-12-04 Photothera, Inc. Device and method for providing phototherapy to the brain
US7534255B1 (en) * 2003-01-24 2009-05-19 Photothera, Inc Low level light therapy for enhancement of neurologic function
GB0128898D0 (en) * 2001-12-03 2002-01-23 Biotech Res Ventures Pte Ltd Materials and methods relating to the stabilization and activation of a tumour suppressor protein
US10695577B2 (en) * 2001-12-21 2020-06-30 Photothera, Inc. Device and method for providing phototherapy to the heart
US20080177359A1 (en) * 2002-05-03 2008-07-24 Advanced Light Technology, Llc. Differential photochemical and photomechanical processing
US20110040295A1 (en) * 2003-02-28 2011-02-17 Photometics, Inc. Cancer treatment using selective photo-apoptosis
US7354433B2 (en) * 2003-02-28 2008-04-08 Advanced Light Technologies, Llc Disinfection, destruction of neoplastic growth, and sterilization by differential absorption of electromagnetic energy
KR20060041161A (en) * 2003-04-10 2006-05-11 라이트 바이오사이언스, 엘엘씨 Photomodulation methods and devices for regulating cell proliferation and gene expression
ES2572976T3 (en) * 2003-07-31 2016-06-03 Gentlewaves Llc System and method for photodynamic skin treatment
JP4268856B2 (en) * 2003-10-31 2009-05-27 株式会社ニデック Laser therapy device
US7914523B2 (en) * 2004-02-06 2011-03-29 Clinique Dr Daniel Barolet Inc. Method for the treatment of mammalian tissues
US20070248930A1 (en) 2005-02-17 2007-10-25 Biolux Research Ltd. Light therapy apparatus and methods
US7575589B2 (en) * 2006-01-30 2009-08-18 Photothera, Inc. Light-emitting device and method for providing phototherapy to the brain
EP1849497A1 (en) * 2006-04-26 2007-10-31 Koninklijke Philips Electronics N.V. Tanning apparatus
US20080033412A1 (en) * 2006-08-01 2008-02-07 Harry Thomas Whelan System and method for convergent light therapy having controllable dosimetry
KR100820164B1 (en) * 2007-03-31 2008-04-08 한국전기연구원 Laser apparatus for medical treatment of skin disease
BRPI0705804A2 (en) * 2007-05-25 2009-04-22 Fundacao Universidade De Caxia equipment and process for retarding muscle fatigue or increasing muscle resistance to fatigue
KR100944895B1 (en) * 2007-10-09 2010-03-03 한국전기연구원 Light source system for phototherapy of skin disease
US7848035B2 (en) 2008-09-18 2010-12-07 Photothera, Inc. Single-use lens assembly
WO2010142013A1 (en) * 2009-06-08 2010-12-16 Biolux Research Limited Method and device for accelerating orthodontic tooth movement
US9259594B2 (en) 2010-10-18 2016-02-16 Bwt Property, Inc. Apparatus and methods for deep tissue laser therapy
WO2015058284A1 (en) 2013-10-22 2015-04-30 Biolux Research Ltd. Intra-oral light-therapy apparatuses and methods for their use
US11369802B2 (en) 2020-02-12 2022-06-28 Michael Barbour Methods and systems for the therapeutic application of laser and cannabidiol to the skin

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1142973B (en) * 1960-10-03 1963-01-31 Felix Schreiber Dipl Ing Ultraviolet irradiation device with adjustable adjustment of the proportions of the ultraviolet radiation of the different spectral subranges
DE2559610C2 (en) * 1975-08-26 1985-04-11 Wolff System Service Gmbh, 6000 Frankfurt Tanning device for extensive UV irradiation
DE2609273A1 (en) * 1976-03-05 1977-09-08 Mutzhas Maximilian F IRRADIATION DEVICE WITH ULTRAVIOLET RADIATION SOURCE
DE2609194A1 (en) * 1976-03-05 1977-09-15 Mutzhas Maximilian F RADIATION PROTECTION FILTER FOR DIRECT PIGMENTATION IN SUN RADIATION
DE2616892A1 (en) * 1976-04-15 1977-10-20 Patra Patent Treuhand RADIATION DEVICE FOR TREATMENT OF SKIN DISEASES
FR2442622A1 (en) * 1978-06-08 1980-06-27 Aron Rosa Daniele OPHTHALMOLOGICAL SURGERY APPARATUS
DE2930458A1 (en) * 1979-07-27 1981-02-12 Friedrich Wolff MEDICAL RADIATION DEVICE
US4290433A (en) * 1979-08-20 1981-09-22 Alfano Robert R Method and apparatus for detecting the presence of caries in teeth using visible luminescence
US4499403A (en) * 1979-09-06 1985-02-12 General Electric Company Skin tanning fluorescent lamp construction utilizing a phosphor combination
US4336809A (en) * 1980-03-17 1982-06-29 Burleigh Instruments, Inc. Human and animal tissue photoradiation system and method
DE3044184A1 (en) * 1980-11-24 1982-06-16 Mutzhas Maximilian F DEVICE FOR PHOTOTHERAPEUTIC TREATMENT OF HYPERBILIRUBINAEMIA
EP0075860A3 (en) * 1981-09-24 1984-12-27 James Robert Morris Microsurgical laser
DE3326513A1 (en) * 1983-07-22 1985-01-31 Maximilian Friedrich Prof. Dr.-Ing. 8000 München Mutzhas RADIATION DEVICE FOR PHOTOBIOLOGICAL AND PHOTOCHEMICAL PURPOSES
DE3331586A1 (en) * 1983-09-01 1985-03-28 Fa. Carl Zeiss, 7920 Heidenheim OPHTHALMOLOGICAL COMBINATION DEVICE FOR DIAGNOSIS AND THERAPY
DE3532780A1 (en) * 1985-09-13 1987-03-26 Maximilian F Prof Dr I Mutzhas RADIATION PROTECTION FILTER
DE3544800A1 (en) * 1985-12-18 1987-06-25 Philips Patentverwaltung UVA LOW-PRESSURE MERCURY STEAM DISCHARGE LAMP FOR BROWNING PURPOSES

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8704632A1 *

Also Published As

Publication number Publication date
US4836203A (en) 1989-06-06
JPS63503204A (en) 1988-11-24
DE3734852A1 (en) 1989-04-27
WO1987004632A1 (en) 1987-08-13
DE3603156A1 (en) 1987-08-06
DE3731841A1 (en) 1989-03-30

Similar Documents

Publication Publication Date Title
EP0257052A1 (en) Device for therapeutical irradiation of organic tissue by laser radiation
EP0568666B1 (en) Photodynamic stimulation device
EP0143185B1 (en) Dual-purpose apparatus for the diagnosis and therapy of the eye
EP1790383B1 (en) Method and device for machining of a workpiece
DE60207202T2 (en) DEVICE FOR PHOTODYNAMIC STIMULATION
DE4141890C2 (en) Device and method for material removal from the surface of an object, in particular from the cornea of an eye
EP0435825B1 (en) Apparatus for homogenizing the inhomogeneous light distribution of a laser light beam
DE2350893A1 (en) LASER BEAM MANIPULATOR
DE3830378A1 (en) OPHTHALMOLOGICAL DEVICE
EP0276232A1 (en) Device for laser treatment of the eye
DD204850A5 (en) DEVICE FOR STIMULATING BIOLOGICAL PROCESSES
DE3800555C2 (en)
DE4004423C2 (en) Device for the surgical treatment of ametropia
DE2619930C3 (en) Laser therapy apparatus
DE102004049669B4 (en) Laser treatment device with an indirect binocular ophthalmoscope
DE102012113136A1 (en) Optical scanning device
DE3439005A1 (en) LASER ARRANGEMENT FOR EYE SURGERY
EP1356848B1 (en) Device for treating the skin with ultraviolet light
DE10349297B4 (en) Adapter for laser processing and laser processing device for such an adapter
DE3643153A1 (en) SOLAR ENERGY RADIATION DEVICE FOR MEDICAL APPLICATIONS
EP3603745B1 (en) Therapy device for irradiating a surface of a tissue
DE1541165A1 (en) Working methods using laser beams and arrangements for them
WO1992016154A1 (en) Material-paring device by means of laser light
DE2744536C3 (en) Laser ophthalmic equipment
WO2002032336A1 (en) Method and device for controlling light sources for irradiating a body

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19871106

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GREVE, PETER

Inventor name: MUELLER, GERHARD