EP0250741B1 - Multispektrale Tarnfolie - Google Patents

Multispektrale Tarnfolie Download PDF

Info

Publication number
EP0250741B1
EP0250741B1 EP87105583A EP87105583A EP0250741B1 EP 0250741 B1 EP0250741 B1 EP 0250741B1 EP 87105583 A EP87105583 A EP 87105583A EP 87105583 A EP87105583 A EP 87105583A EP 0250741 B1 EP0250741 B1 EP 0250741B1
Authority
EP
European Patent Office
Prior art keywords
reflection
camouflage
camouflaging
sheet
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP87105583A
Other languages
English (en)
French (fr)
Other versions
EP0250741A1 (de
Inventor
Werner Dr. Dipl.-Phys. Scherber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dornier GmbH
Original Assignee
Dornier GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dornier GmbH filed Critical Dornier GmbH
Publication of EP0250741A1 publication Critical patent/EP0250741A1/de
Application granted granted Critical
Publication of EP0250741B1 publication Critical patent/EP0250741B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H3/00Camouflage, i.e. means or methods for concealment or disguise

Definitions

  • the invention relates to a device for multispectral camouflage of objects against reconnaissance.
  • the camouflage of objects against reconnaissance by thermal imaging devices contains a special problem.
  • the recognizability of an object is not only dependent on its surface properties (such as color, degree of reflection, roughness), but is also determined by the temperature of the surface and the temperatures of the surroundings, the background and the sky.
  • Low emissive coatings are used for camouflage. This measure reduces in proportion to the level of emissivity s of the surface, the heat radiation emitted by this object; In this way, the detectability can be reduced, particularly in the case of objects that are warmed up more.
  • infrared camouflage agents with a similar effect are known: for example low-emitting textiles, laminated metal foils, infrared camouflage nets with metallic elements (layers, foils, threads), galvanic, low-emissive coatings and the like.
  • infrared-active camouflage agents A common feature of these infrared-active camouflage agents is that the low-emitting effect is achieved by incorporating metallic layers or particles. Low infrared emissivities below about 70% only occur on homogeneous materials if they have a metallic character and a certain metallic conductivity.
  • IR camouflage paints and IR camouflage agents have some typical disadvantages, which severely limit their possible uses and effectiveness:
  • the metal component has the effect that the layers are generally opaque to electromagnetic radiation and show a strong reflection effect. In the optical field, the undesired reflection is usually suppressed with the help of color pigments, but this is not possible in the microwave and radio wave range, so that these IR camouflaging agents have no camouflaging effect compared to radar reconnaissance or the detectability is rather increased if the object itself is radar-neutral is.
  • the present invention has for its object to provide a multispectral camouflage agent.
  • this object is achieved by the content of the characterizing part of claim 1, i.e. solved with the help of a coated plastic film, the coating consisting of non-metallic, infrared-transparent material.
  • the layer thickness can be adjusted in relation to the refractive index in such a way that the heat radiation in the 2nd and / or 3rd atmospheric window is reduced due to interference effects.
  • the arrangement has a high permeability to radiation in the microwave and radio wave range and, depending on the embodiment, also in other spectral ranges (visible light, near infrared), so that the multispectral camouflage effect is guaranteed or not impeded.
  • Figure 1 shows the simple structure of the camouflage film in three different settings.
  • An infrared-transparent, dielectric interference layer 4 is located on a preferably infrared-transparent carrier film 2 (for example made of polyethylene).
  • the film covers the object 6 to be camouflaged against an observer.
  • a protective layer 8 can optionally be used; in any case, it must be transparent in the IR frequency range of the application.
  • the area 10 represents the air space between the film and the object.
  • the layer thickness d of the interference layer determines the amount of heat radiation, the emissivity, the overall arrangement of the film and object for a given layer material.
  • X is related to the center of the atmospheric window (approx. 4 ⁇ m and 10 11m). This results in low IR transmission and low heat radiation from the object to be camouflaged and the camouflage film.
  • the opposite extreme case high emission, high surface temperature
  • FIG. 2 shows the spectral course of the reflectance of the three arrangements outlined in FIG. 1. It can be seen how the reflection maxima are shifted in relation to the atmospheric windows and how the described effect arises.
  • a larger number of substances can be considered as possible layer material.
  • the selection is based on the required transmission range in the infrared and optical spectrum, as well as on practical and technical aspects such as manufacturability, durability and costs.
  • the group of semiconductors such as silicon, germanium, graphite, as well as metal sulfides, metal selenides and metal tellurides, which are also used as raw materials for compact IR windows, offers broadband camouflage and good stability.
  • oxidic materials such as Si0 2 , Ai 2 0 3 , Sn0 2 , In 2 O 3 , Ti0 2 , Ce0 2 , MgO, fluorides such as MgF 2 , PbF 2 , BaF 2 and others are Compounds with similar properties can be used.
  • the refractive index of the layer and its dispersion i.e. its spectral course.
  • High refractive indices are generally advantageous since the required layer thickness decreases with increasing n and the camouflage effect is still present even at increasingly oblique viewing angles.
  • FIG. 3 shows, instead of a compact inference layer, the use of a multilayer system in which two thinner films 4 with a high refractive index are separated by the layer 12 with a low refractive index at a distance d.
  • a transparent plastic film can be used as layer 12, which e.g. is identical to the carrier film 2.
  • the layers 4 can be made much thinner than the above ⁇ / 4 layers, so that the arrangement is given greater flexibility, which has a very advantageous effect for many applications.
  • the optical effect of this arrangement corresponds to the one-layer interference.
  • the air gap 10 is located between the carrier film 2 and the object 6 to be camouflaged.
  • the camouflage film according to the invention can be used very advantageously for cladding radomes (radomes).
  • radomes cladding radomes
  • the current construction of radomes has proven to be extremely unfavorable in terms of detectability in the IR range. Due to the low thermal conductivity and thermal capacity of the radome outer skin (plastic foam material or foils), the surface temperature is subject to strong weather-related fluctuations, which gives these objects an unusually well-defined thermal image signature. Countermeasures with conventional camouflage means without impairing the radar transmission are not known.
  • FIG. 4a shows a typical signature of a radome in the sun.
  • the upper half of the sphere is warmed up and stands out against the much darker background.
  • the light-dark conditions are just the other way around due to the low sky temperature, but just as easily recognizable.
  • an effective contour decomposition is brought about by typical structures of the environment, such as e.g. rectangular areas in agricultural fields ( Figure 4b, without background) or settlements, building structures ( Figure 4c) or other landscape formations (horizon lines, ridges, forest areas, river courses) can be simulated.
  • camouflage film according to the invention does not have to be present at all times — like a coat of paint — since, if necessary, it can be spread out and removed again very quickly.
  • roads and airfield systems are the only conceivable solution.
  • FIG. 5 shows a cross section through this arrangement.
  • the IR-active camouflage film with plastic carrier 2 and interference layer 4 is connected directly to the radar absorber material 14.
  • the above-mentioned variants for contour decomposition and signature simulation can of course also be used advantageously here.
  • An additional camouflage effect in the visible or near infrared is possible by using colored plastic films. If foils with good optical transparency are used, then the visual camouflage effect can be achieved by means of deposited and thus easily changed paint coats, or it is already given by the existing camouflage of the object.
  • camouflage film according to the invention In the conceivable application of the camouflage film according to the invention to vehicles, ships, airplanes, steel bridges, steel masts and the like, there is a special aspect. Due to their predominantly metal structure, these objects have a clear and characteristic radar signature. This problem can basically be solved by using radar absorbers and multispectral camouflage film, as described above. However, if radar absorbers are not desired or not possible for any reason (weight, cost, availability), then a combined IR-radar camouflage effect can be achieved with the camouflage film according to the invention by metallizing the film over the whole or part of the object. In this way, certain characteristic radar signatures of the object can be canceled or falsified.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Details Of Aerials (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zur multispektralen Tarnung von Objekten gegen eine Aufklärung.
  • Die Tarnung von Objekten gegen Aufklärung durch Wärmebildgeräte enthält eine besondere Problematik. Anders als im Sichtbaren ist im thermischen Infrarot-Bereich die Erkennbarkeit eines Objektes nicht nur von dessen Oberflächeneigenschaften (wie Farbe, Reflexionsgrad, Rauhigkeit) abhängig, sondern wird zusätzlich durch die Temperatur der Oberfläche und die Temperaturen der Umgebung,des Hintergrundes und des Himmels bestimmt.
  • Zur Tarnung werden niedrigemittierende Anstriche eingesetzt. Diese Maßnahme verringert proportional zur Höhe des Emissionsgrades s der Oberfläche, die von diesem Objekt ausgehende Wärmestrahlung; besonders bei stärker erwärmten Objekten kann auf diese Weise eine Minderung der Entdeckbarkeit erreicht werden.
  • Neben den Anstrichen sind andere Infrarot-Tarnmittel mit ähnlicher Wirkung bekannt: beispielsweise niedrigemittierende Textilien, kaschierte Metallfolien, Infrarot-Tarnnetze mit metallischen Elementen (Schichten, Folien, Fäden), galvanische,niedrigemittierende Beschichtungen und Ähnliches.
  • Gemeinsames Merkmal dieser infrarotaktiven Tarnmittel ist, dass die niedrigemittierende Wirkung durch Einlagerung von metallischen Schichten oder Partikeln erreicht wird. Niedrige Infrarot-Emissionsgrade unter etwa 70 % treten an homogenen Materialien nur auf, wenn diese metallischen Charakter und eine gewisse metallische Leitfähigkeit besitzen.
  • Herkömmliche metallhaltige IR-Tarnanstriche und IR-Tarnmittel besitzen einige typische Nachteile, welche ihre Verwendungsmöglichkeiten und Wirksamkeit stark einschränken: Die Metallkomponente bewirkt, dass die Schichten für elektromagnetische Strahlung allgemein undurchlässig sind und starke Reflexionswirkung zeigen. Im sichtoptischen Bereich wird die unerwünschte Reflexion üblicherweise mit Hilfe von Farbpigmenten unterdrückt, dies ist jedoch im Mikrowellen- und Radiowellenbereich nicht möglich, so dass diese IR-Tarnmittel gegenüber Radaraufklärung keine tarnende Wirkung zeigen oder die Entdeckbarkeit eher noch erhöht wird, wenn das Objekt selbst radarneutral ist.
  • Aus dem gleichen Grund können herkömmliche niedrigemittierende Schichten nicht zur Tarnung von Kommunikationsanlagen wie Sende- und Empfangsantennen, Radarkuppeln und anderen entsprechenden Einrichtungen verwendet werden.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein multispektral wirksames Tarnmittel zu schaffen.
  • Diese Aufgabe wird erfindungsgemäss durch den Inhalt des kennzeichnenden Teils des Anspruches 1 d.h. mit Hilfe eirer beschichteten Kunststoff-Folie gelöst, wobei die Beschichtung aus nichtmetallischem, infrarottransparentem Material besteht. Die Schichtdicke kann im Verhältnis zum Brechnungsindex so eingestellt werden, dass aufgrund von Interferenzeffekten die Wärmeabstrahlung im 2. und/oder 3. atmosphärischen Fenster reduziert wird. Die Anordnung besitzt eine hohe Durchlässigkeit für Strahlung im Mikrowellen- und Radiowellenbereich und je nach Ausführungsform auch in anderen Spektralbereichen (sichtbares Licht, nahes Infrarot), so dass die multispektrale Tarnwirkung gewährleistet bzw. nicht behindert wird.
  • Durch Aneinanderreihung von mehreren Foliensegmenten mit unterschiedlicher Abstrahlung (Emissionsgraden) und geeigneter geometrischer Form können auf einfache Weise weitere Tarneffekte durch Konturenzerlegung oder Erzeugung beliebiger Infrarotsignaturen erzielt werden.
  • Die Erfindung wird anhand von Figuren nachfolgend näher beschrieben.
  • Es zeigen:
    • Figur 1 Schnitte durch den Aufbau der Folien in drei Ausführungsformen,
    • Figur 2 den Spektralverlauf des Reflexionsgrades der drei Ausführungen in Figur 1,
    • Figur 3 den Einsatz eines Mehrschichtensystems als Folienaufbau,
    • Figur 4 die Darstellung einer Kuppel und die Möglichkeit der Simulation nichtvorhandener Strukturen auf der Kuppel,
    • Figur 5 einen Schnitt durch den Aufbau einer Radarabsorbereinrichtung.
  • Die Figur 1 zeigt den einfachen Aufbau der Tarnfolie in drei verschiedenen Einstellungen. Auf einer vorzugsweise infrarottransparenten Trägerfolie 2 (beispielsweise aus Polyethylen) befindet sich eine infrarottransparente, dielektrische Interferenzschicht 4. Die Folie deckt das zu tarnende Objekt 6 gegen einen Beobachter ab. Eine Schutzschicht 8 kann wahlweise eingesetzt werden, sie muss in jedem Fall im IR-Frequenzbereich der Anwendung transparent sein. Der Bereich 10 stellt den Luftraum zwischen Folie und Objekt dar. Die Schichtdicke d der Interferenzschicht bestimmt bei vorgegebenem Schichtmaterial die Höhe der Wärmeabstrahlung, den Emissionsgrad, der Gesamtanordnung Folie und Objekt. Soll eine besonders niedrige Abstrahlung, also eine kalte Oberfläche simuliert werden, so ist die Dicke etwa auf dem Wert d = λ/(4 n) (Figur 1a) einzustellen, wobei n Brechungsindex der Schicht und x Wellenlänge der Abstrahlung bedeutet. In der Regel wird X auf das Zentrum der atmosphärischen Fenster (etwa 4 µm und 10 11m) bezogen. Damit ist eine niedrige IR-Durchlässigkeit und eine niedrige Wärmeabstrahlung von zu tarnendem Objekt und Tarnfolie erzielt. Der entgegengesetzte Extremfall (hohe Emission, hohe Oberflächentemperatur) wird durch die Anordnung gemäss Figur 1 und ein mittlerer Zustand gemäss Figur 1 b eingestellt. In Figur 1 b berechnet sich die Dicke d zu d = 3 •λ /(8 - n) und in Figur 1 c erhält d den Wert d = X /(2 n). Alle weiteren Zwischenzustände sind auf diese Weise ohne Weiteres realisierbar.
  • Figur 2 zeigt zur Verdeutlichung den Spektralverlauf des Reflexionsgrades der drei in Figur 1 skizzierten Anordnungen. Erkennbar ist, wie die Reflexionsmaxima im Verhältnis zu den atmosphärischen Fenstern verschoben werden und dadurch die beschriebene Wirkung entsteht.
  • Die Figuren 1 und 2 beschreiben die Situation für Interferenzen an einer Schicht. Reflexmindernde und reflexerhöhende Wirkungen können durch Einsatz von Systemen mit zwei und mehr interferierenden Schichten noch weiter gesteigert werden. Die Praxis der Infrarot-Tarnung zeigt jedoch, dass in den meisten Fällen nicht die Extremwerte, sondern mittlere Emissionsgrade von e = 30 - 70% vorteilhaft sind, die mit der Einschicht-Interferenz erzeugt werden können.
  • Als mögliches Schichtmaterial kommt eine grössere Anzahl von Substanzen in Betracht. Die Auswahl richtet sich nach dem geforderten Transmissionsbereich im infraroten und im sichtoptischen Spektrum, sowie nach praktischen und technischen Gesichtspunkten wie Herstellbarkeit, Haltbarkeit und Kosten. Breitbandige Tarnwirkung und gute Stabilität bietet die Gruppe der Halbleiter wie Silizium, Germanium, Graphit, sowie Metallsulfide, Metallselenide und Metalltelluride, die auch als Rohstoff für kompakte IR-Fenster herangezogen werden. Wird zusätzlich die Transparenz im sichtoptischen Bereich gewünscht, sind oxidische Materialien wie beispielsweise Si02, Ai203, Sn02, In2O3, Ti02, Ce02, MgO, Fluoride wie MgF2, PbF2, BaF2 und andere Verbindungen mit ähnlichen Eigenschaften einsetzbar.
  • Ein weiteres wichtiges Kriterium für die Stoffauswahl ist der Brechungsindex der Schicht und seine Dispersion, das heisst sein Spektralverlauf. Hohe Brechungsindizes sind generell vorteilhaft, da mit steigendem n die erforderliche Schichtdicke abnimmt und die Tarnwirkung auch bei zunehmend schrägen Blickwinkeln noch vorhanden ist. Die Dispersion muss berücksichtigt werden, wenn eine simultane Wirkung in beiden atmosphärischen Fenstern optimiert werden soll. Wird z.B. eine Schicht auf maximale Reflexion (geringe Emission) bei A3 = 10 µm eingestellt (d = λ3/(4 • n3); n3 = mittlerer Brechungsindex im 3. atmosphärischen Fenster)), so hat diese Schicht auch ein Reflexionsmaximum im 2. atmosphärischen Fenster, dessen genaue Lage vom Brechungsindex n2 (bei 3 - 5 µm) abhängt:
    Figure imgb0001
    Ist der Brechungsindex nicht frequenzabhängig (n2 = n3), so liegt das Maximum bei λ2 = 5 jlm. Eine leichte Erhöhung des Abstandes der beiden Maxima (2,2 - 13), der in der Regel erwünscht sein wird, erfordert, daß n2 etwas grösser als n2 ist.
  • Figur 3 zeigt statt einer kompakten Inferferenzschicht den Einsatz eines Mehrschichtensystems, bei dem zwei dünnere Filme 4 mit hohem Brechungsindex im Abstand d durch die Schicht 12 mit niedrigem Brechungsindex getrennt sind. Der besondere Vorteil dieser Ausführungsform liegt darin, dass als Schicht 12 eine transparente Kunststoff-Folie verwendet werden kann, die z.B. identisch mit der Trägerfolie 2 ist. Die Schichten 4 können in diesem Fall sehr viel dünner als die obigen λ/4-Schichten ausgeführt werden, so dass die Anordnung eine höhere Flexibilität erhält, was sich für viele Anwendungen sehr vorteilhaft auswirkt. Die optische Wirkung dieser Anordnung entspricht jedoch der Einschicht-Interferenz. Zwischen Trägerfolie 2 und zu tarnendem Objekt 6 befindet sich der Luftzwischenraum 10.
  • Weitere Merkmale und Vorzüge der Erfindung sollen anhand typischer Anwendungen beschrieben werden.
  • Die erfindungsgemässe Tarnfolie kann sehr vorteilhaft zur Verkleidung von Radarkuppeln (Radome) eingesetzt werden. Die heutige Bauweise von Radomen hat sich im Hinblick auf die Detektierbarkeit im IR-Bereich als ausgesprochen ungünstig erwiesen. Aufgrund der geringen Wärmeleitfähigkeit und Wärmekapazität der Radomaussenhaut (Kunststoff-Schaummaterial oder -Folien) ist die Oberflächentemperatur starken witterungsbedingten Schwankungen unterworfen, was diesen Objekten eine ungewöhnlich gut ausgeprägte Wärmebildsignatur verleiht. Gegenmaßnahmen mit herkömmlichen Tarnmitteln ohne Beeinträchtigung der Radartransmission sind nicht bekannt.
  • Die Figur 4 zeigt symbolisiert diesen Anwendungsfall. In Figur 4a ist eine typische Signatur eines Radoms bei Sonneneinstrahlung gezeigt. Die obere Hälfte der Kugel ist stark erwärmt und hebt sich charakteristisch gegen den viel dunkleren Hintergrund ab. Bei Nacht sind die Hell-Dunkel-Verhältnisse wegen der niedrigen Himmelstemperatur gerade umgekehrt, aber ebenso gut erkennbar. Mit Hilfe der erfindungsgemässen, an der Aussenfläche des Radoms angebrachten Folie, wird eine wirkungsvolle Konturenzerlegung hervorgerufen, indem typische Strukturen der Umgebung wie z.B. rechteckige Flächen bei landwirtschaftlichen Feldern (Figur 4b, ohne Hintergrund) oder Siedlungen, Gebäudestrukturen (Figur 4c) oder sonstige Landschaftsformationen (Horizontlinien, Hügelketten, Waldflächen, Flußläufe) simuliert werden.
  • Eine ähnliche Situation liegt vor bei der Tarnung von anderen Anlagen und Komponenten der Übertragungstechnik, also Rundfunksendern, Fernmeldestationen, Satellitenempfangsantennen, Funkleitsystemen oder Peil- und Aufklärungssystemen). Alle diese im Verteidigungsfall unentbehrlichen Anlagen, die bisher als leicht erkennbar und verwundbar gelten, können mit Hilfe der Erfindung wirksam gegen Wärmebildaufklärung getarnt werden, ohne jede Beeinträchtigung ihrer Funktion.
  • Weitere Anwendungen liegen bei der IR-Tarnung von Gebäuden, Strassen, Brücken und ähnlichen Einrichtungen; ebenfalls strategisch sehr wichtige Objekte, die bisher gegenüber der Wärmebildbeobachtung nicht oder nur auf Kosten erhöhter Radarerkennbarkeit zu schützen sind. Vorteilhaft hierbei ist auch, dass die erfindungsgemässe Tarnfolie nicht ständig - wie ein Anstrich - vorhanden sein muss, da sie im Bedarfsfall sehr schnell ausgebreitet und wieder entfernt werden kann. Für manche Objekte, wie beispielsweise Strassen und Flugplatzanlagen, stellt dies die einzig denkbare Lösung dar.
  • Eine Anwendung, bei der die Durchlässigkeit im Mikrowellenbereich ebenfalls als entscheidende Voraussetzung eingeht, sind radarabsorbierende Materialien und Strukturen. Diese heute bekannten Tarnmittel gegen Radaraufklärung sind ausnahmslos gute IR-Emitter und deshalb im Wärmebild leicht detektierbar, andererseits aber mit niedrigemittierenden Anstrichen auf Metallbasis nicht zu behandeln, da dann die Radarabsorberwirkung verlorengeht.
  • Die Figur 5 zeigt einen Querschnitt durch diese Anordnung. Die IR-aktive Tarnfolie mit Kunststoffträger 2 und Interferenzschicht 4 ist direkt mit dem Radarabsorbermaterial 14 verbunden. Die oben erwähnten Varianten zur Konturenzerlegung und Signatursimulation können natürlich auch hier vorteilhaft eingesetzt werden. Eine zusätzliche Tarnwirkung im Sichtbaren oder nahen Infrarot ist durch Verwendung eingefärbter Kunststoff-Folien möglich. Werden Folien mit guter optischer Transparenz eingesetzt, dann kann die visuelle Tarnwirkung durch hinterlegte und damit leicht veränderbare Farbanstriche erreicht werden, oder sie ist durch den vorhandenen Tarnanstrich des Objekts bereits gegeben.
  • Bei der denkbaren Anwendung der erfindungsgemässen Tarnfolie auf Fahrzeuge, Schiffe, Flugzeuge, Stahlbrücken, Stahlmaste und Ähnlichem, kommt ein besonderer Aspekt dazu. Diese Objekte weisen aufgrund ihrer vorwiegend aus Metall bestehenden Struktur eine deutliche und charakteristische Radarsignatur auf. Dieses Problem kann grundsätzlich durch Anwendung von Radarabsorbern und multispektraler Tarnfolie, wie oben beschrieben, gelöst werden. Sind jedoch Radarabsorber aus irgendweichen Gründen (Gewicht, Kosten, Verfügbarkeit) nicht erwünscht oder nicht möglich, dann kann mit Hilfe der erfindungsgemässsen Tarnfolie ein kombinierter IR-Radar-Tarneffekt dadurch erzielt werden, dass die Folie objektseitig ganzflächig oder teilweise metallisiert wird. Bestimmte charakteristische Radarsignaturen des Objektes können auf diese Weise aufgehoben oder verfälscht werden.

Claims (8)

1. Vorrichtung zur multispektralen Tarnung von Objekten gegen eine Aufklärung, dadurch gekennzeichnet, dass eine Kunststoff-Folie (2) mit nichtmetallischer, eine erniedrigte Wärmemission vermittelnder, infrarottransparenter Beschichtung (4) eingesetzt ist, die niedrigemittierende Wirkung im Temperaturstrahlungsbereich durch einen Interferenzeffekt in der Beschichtung (4) oder in einer Mehrschichtstruktur zustande kommt und die beschichtete Folie eine hohe Durchlässigkeit in anderen, dem thermischen Infrarot benachbarten Spektralbereichen aufweist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Schichtdicke(n) im Verhältnis zum Brechungsindex der interferierenden Schicht(en) so eingestellt ist (sind), dass das Reflexionsmaximum niedrigster Ordnung je nach Anwendung im Zentrum des 3. oder 2. atmosphärischen Fensters liegt.
3. Vorrichtung nach Ansprüchen 1 und 2, dadurch gekennzeichnet, dass das Reflexionsmaximum niedrigster Ordnung des Interferenzschichtsystems im 3. atmosphärischen Fenster liegt und ein Simultaneffekt im 2. atmosphärischen Fenster durch das Reflexionsmaximum der nächsthöheren Ordnung entsteht.
4. Vorrichtung nach Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass geringere Reflexionswerte der Folie, gleichbedeutend mit höherer Emission der Gesamtanordnung, einstellbar sind, in dem die Reflexionsmaxima mehr oder weniger vom Zentrum der atmosphärischen Fenster entfernt werden.
5. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das zu tarnende Objekt (6) mit mehreren aneinandergereihten Foliensegmenten mit unterschiedlichem Emissionsgrad überzogen oder abgedeckt ist, so dass eine IR-Konturenzerreißung und Anpassung an den Hintergrund erreicht wird und diese Segmente in beliebiger geometrischer Form gestaltet sind.
6. Vorrichtung nach Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass sie zur Wärmebildtarnung von Radomen und anderen Antennenanlagen und Übertragungsstationen einsetzbar ist.
7. Vorrichtung nach Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass sie zur Wärmebildtarnung von Gebäuden, Brücken, Strassen, Flugplätzen und anderen Einrichtungen einsetzbar ist.
8. Vorrichtung nach Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass die Folie (2) objektseitig ganz oder fleckenweise metallisiert ist und zur multispektralen Tarnung von vorwiegend metallischen Objekten wie Fahrzeugen, Schiffen, Flugzeugen, Brücken, Masten und anderen entsprechenden Gegenständen einsetzbar ist.
EP87105583A 1986-04-25 1987-04-15 Multispektrale Tarnfolie Expired EP0250741B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863614017 DE3614017A1 (de) 1986-04-25 1986-04-25 Multispektrale tarnfolie
DE3614017 1986-04-25

Publications (2)

Publication Number Publication Date
EP0250741A1 EP0250741A1 (de) 1988-01-07
EP0250741B1 true EP0250741B1 (de) 1989-12-13

Family

ID=6299516

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87105583A Expired EP0250741B1 (de) 1986-04-25 1987-04-15 Multispektrale Tarnfolie

Country Status (2)

Country Link
EP (1) EP0250741B1 (de)
DE (2) DE3614017A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4012782A1 (de) * 1990-04-21 1991-10-24 Telefunken Systemtechnik Absorber
DE4330224C2 (de) * 1993-09-07 1996-04-18 Daimler Benz Aerospace Ag Radom für Radaranlagen
DE4341806C1 (de) * 1993-12-08 1995-06-08 Daimler Benz Aerospace Ag Verfahren zur Herstellung eines selbsttragenden Radoms
DE9408490U1 (de) * 1994-05-25 1995-09-28 Ernst Fehr technische Vertretungen und Beratung, Goldach Strahlenschirmschutzauflage
EP0737840A3 (de) * 1995-04-07 1996-11-13 Daimler-Benz Aerospace Aktiengesellschaft Tarneintichtung und -verfahren für Objekte
DK0912875T3 (da) * 1997-02-12 2001-05-07 Schweizerische Eidgenossenschaft Eidgenoessisches Militaer Departement Gruppe Ruestung Camouflagestruktur
FR2857458A1 (fr) * 2003-07-09 2005-01-14 Centre Nat Rech Scient Antenne thermique.
CN111435065B (zh) * 2019-08-15 2023-06-27 宁波曙翔新材料股份有限公司 一种用于变换伪装器材伪装模式的装置及其应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL273666A (de) * 1961-02-02
DE3043381C2 (de) * 1980-11-18 1982-11-11 Dornier System Gmbh, 7990 Friedrichshafen Verwendung von spektralselektiv beschichteten Oberflächen sowie Verfahren zu ihrer Herstellung
DE3217977A1 (de) * 1982-05-13 1983-11-17 Bundesrepublik Deutschland, vertreten durch den Bundesminister der Verteidigung, dieser vertreten durch den Präsidenten des Bundesamtes für Wehrtechnik und Beschaffung, 5400 Koblenz Vorrichtung zur tarnung von objekten gegen eine aufklaerung durch waermebildgeraete
US4529633A (en) * 1983-01-14 1985-07-16 Diab-Barracuda Ab Thermal camouflage

Also Published As

Publication number Publication date
DE3614017A1 (de) 1987-10-29
EP0250741A1 (de) 1988-01-07
DE3761171D1 (de) 1990-01-18

Similar Documents

Publication Publication Date Title
EP0250742B1 (de) Radartransparente Folie mit steuerbarer Infrarotreflexion für Tarnzwecke
EP0468173B1 (de) Tarnnetz
DE69706243T2 (de) Persönliche Schutzauskleidung für die Infanterie
EP0250741B1 (de) Multispektrale Tarnfolie
DE60111889T2 (de) Silizium-Wärmeisolierungsdecke
DE3918383A1 (de) Fassadenaufbau von hochbauten
DE3720451C2 (de) Infrarotdurchlässiges optisches Bauteil
DE69619153T2 (de) Verbundwerkstoffstruktur, fähig zur Absorption und Dissipation von auffallender elektromagnetischer Strahlungsenergie, insbesondere für Luft-, See- und Landfahrzeuge und für feste Bodeneinrichtungen
DE3135586C2 (de)
EP0912875B1 (de) Tarnstruktur
DE4400512C2 (de) Starre Isolierhülle für einen Waffenlauf
DE19710692C2 (de) Multispektrales Tarnelement
EP0058210B1 (de) Tarnbeschichtung mit Breitbandwirkung
EP1102027A2 (de) Infrarot-Tarnvorrichtung
EP1990600A2 (de) Sicherheitssystem gegen schädliche Druckwellen bei militärischen Einrichtungen wie Radarabdeckungen und Panzerungen
WO2020260372A1 (de) Verfahren und vorrichtung zur erfassung eines raumbereichs mittels radarwellen
DE102009019635B4 (de) Optisches Bauelement sowie dessen Verwendung
DE4216837C2 (de) Radartarnung für langsamfliegende rollstabilisierte Flugkörper
DE69606843T2 (de) Funkwellendurchlässige Sonnenschutzfolie und geschützte Gegenstände
Ali et al. Camouflage textile
DE2103077A1 (de) Wärmetarnung
DE4012782A1 (de) Absorber
DE202019100479U1 (de) Einseitig spiegelndes Bauelement
DE1285350B (de) Panzerplatte, insbesondere fuer Schiffe
Prussing DSIAC TECHNICAL INQUIRY (TI) RESPONSE REPORT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19880202

17Q First examination report despatched

Effective date: 19880929

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DORNIER GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19891213

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3761171

Country of ref document: DE

Date of ref document: 19900118

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19900430

Ref country code: CH

Effective date: 19900430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ITTA It: last paid annual fee
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030326

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030331

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030408

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041103

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050415