EP0247672B1 - Verfahren zur Abstandsbestimmung zwischen angrenzenden Bohrlöchern - Google Patents

Verfahren zur Abstandsbestimmung zwischen angrenzenden Bohrlöchern Download PDF

Info

Publication number
EP0247672B1
EP0247672B1 EP87200905A EP87200905A EP0247672B1 EP 0247672 B1 EP0247672 B1 EP 0247672B1 EP 87200905 A EP87200905 A EP 87200905A EP 87200905 A EP87200905 A EP 87200905A EP 0247672 B1 EP0247672 B1 EP 0247672B1
Authority
EP
European Patent Office
Prior art keywords
well
wavenumber
distance
magnetic field
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87200905A
Other languages
English (en)
French (fr)
Other versions
EP0247672A3 (en
EP0247672A2 (de
Inventor
Paul Austin Barnett
Paulus Hofstra
Bernd Christian Lehr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of EP0247672A2 publication Critical patent/EP0247672A2/de
Publication of EP0247672A3 publication Critical patent/EP0247672A3/en
Application granted granted Critical
Publication of EP0247672B1 publication Critical patent/EP0247672B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/14Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/26Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with magnetic or electric fields produced or modified either by the surrounding earth formation or by the detecting device

Definitions

  • the invention relates to a method for determining the distance between adjacent wells. More particularly it relates to a method for determining the distance between a first well in which a casing, drill string, or other ferromagnetic parts are present and a second well being drilled into subsurface earth formations adjacent said first well.
  • a well being drilled it is at times desirable to know the distance between a well being drilled and a previously drilled well. For example it may be desired to drill a directional relief-well to intercept a previously drilled well in which a blow-out has occurred. On the other hand, it may also be desired that a well being drilled must avoid collision with previously drilled wells.
  • US patent 3,745,446 discloses a logging method whereby the distance between a cased well and a second well is determined on the basis of magnetic logs taken in said second well.
  • the logs are taken by a magnetometer assembly which is able to detect disturbances of the earth magnetic field caused by the magnetic field around the magnetic pole of a casing end in the cased well.
  • a common problem is that a well may include various ferromagnetic parts which may each have separate magnetic poles. The magnetic fields of said poles may interfere at the locations where measurements are taken in the second well. In this situation it is often not possible to accurately derive the distance between the wells from magnetic logs taken in the relief well using the known techniques.
  • the invention provides a reliable method for determining the distance between a first well in which ferromagnetic parts are present and a second well on the basis of magnetic logs taken in said second well, by providing an accurate indication of the distance between said wells even if said ferromagnetic parts form a complex pattern of magnetic poles, i.e. a method for determining the distance between a first well containing ferromagnetic parts and a second well having a central axis.
  • This method according to the invention as set out in claim 1, comprises:
  • Fig. 1 shows a sketch of a relief well passing a casing shoe in a target-well
  • Fig. 2 shows the calculated axial and radial magnetic field components B z and B xy and the total field B when passing a magnetic monopole at closest distance d
  • Fig. 3 shows the calculated axial and radial magnetic field components B z and B xy when passing a magnetic dipole at closest distance d
  • Fig. 4 shows the magnetic disturbance B z measured in a relief-well when approaching a casing string in a target well
  • Fig. 5 shows the wavenumber spectrum of the signal from Fig.
  • Fig. 6A shows the theoretical wavenumber spectrum of B z (z) for a monopole with a closest distance of 3 m from a relief well
  • Fig. 6B shows the theoretical wavenumber spectrum of B z (z) for a dipole with a closest distance of 3 m from a relief well.
  • the method of the invention involves matching wavenumber spectra of the idealised theoretical magnetic field of a monopole or dipole with wave number spectra of features observed by means of the magnetometers located in a relief well.
  • This function for the axial component B z is shown in Figure 2 together with the corresponding function for the radial component B xy and the total field
  • Equivalent rules can be derived to calculate the target distance from e.g. the radial field component B xy .
  • the method according to the invention for distance determination (“overlay method”), described below is less sensitive to interference and can give more accurate estimates. If interference is minimal, then this method forms an alternative to the approach described above.
  • the resulting field component B z can be expressed as a convolution of the expression of one monopole or dipole and a function H(z) related to the geometry of the drillstring i.e. positions of tool joints.
  • This function can be expressed as where z i is the projection of the i th pole on the relief-well track and K i is the strength of the i th pole.
  • Equation (8) for a dipole is,
  • the axial field component of a monopole or dipole field may be expressed as a Fourier Series of the form, "n” is called the harmonic number and "k” is a wavenumber or the reciprocal of the wavelength.
  • the next step is to derive the distance to the target. This is done using an overlay technique. This technique involves attempting to find, in the amplitude/wavenumber spectrum of the field component B z , the underlying amplitude/wavenumber spectrum of a single monopole or dipole. Plotting the amplitude/wavenumber spectrum of the axial field component of a single monopole or dipole at a distance d o from a point in the relief-well, results in such signatures as seen in Figures 6A and 6B, respectively.
  • a peak wavenumber k o can be determined.
  • a match can be found between the single pole spectrum and the envelope of the signal spectrum which determines the peak wavenumber, k m , of the actual signal as indicated by the dashed line in Fig. 5.
  • the distance from relief-well to target-well can then be found from, If the two wells are parallel to each other, the distance derived in equation (18) is a constant. However, if the wells are converging, the distance calculated represents a mean distance for the interval where the magnetic disturbance occurs.
  • the contribution of the earth magnetic field to the measured data obtained by magnetometer measurements taken in the relief well can be eliminated in several ways. In some situations this contribution is only of minor importance and can be ignored. If desired, the contribution of the earth magnetic field to the measured data can be eliminated by known filtering techniques in the wavenumber domain or by subtracting said contribution from the data obtained by said magnetometer measurements before carrying out the Fourier Transform described hereinbefore. Since these correction techniques are known per se to those skilled in the art no detailed description thereof is necessary.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Electromagnetism (AREA)
  • Geophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Gas Burners (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Claims (5)

  1. Verfahren zum Bestimmen des Abstandes zwischen einem ersten Loch (2), das ferromagnetische Teile enthält, und einem zweiten Loch (1) mit einer zentralen Achse, wobei das Verfahren vorsieht eine
    - Messung einer charakteristischen Größe des magnetischen Feldes in der Umgebung der genannten ferromagnetischen Teile und zwar in unterschiedlichen Tiefen des genannten zweiten Loches, gekennzeichnet durch:
    - Umwandeln des Meßergebnisses in ein Signal und Auftragen der Amplitude der Frequenzkomponenten des Signals über deren Wellenzahlen in einem ersten Diagramm, wobei die Wellenzahlen logarithmisch dargestellt sind;
    - Berechnen einer zur genannten gemessenen charakteristischen Größe korrespondierenden charakteristischen Größe eines theoretischen Magnetfeldes um einen einzigen Monopol oder Dipol an einem ausgewählten Abstand d₀ von der zentralen Achse des genannten zweiten Loches;
    - Auftragen der Amplitude der Freguenzkomponenten der genannten berechneten charakteristischen Größe über der zugehörigen Wellenzahl in einem zweiten Diagramm, wobei die Wellenzahl auf einem logarithmischen Maßstab dargestellt ist, und Bestimmen einer Spitzen-Wellenzahl ko im berechneten Amplituden-Wellenzahl-Spektrum im genannten zweiten Diagramm;
    - Überlagern der genannten ersten und zweiten Diagramme und Auffinden einer Anpassung, welche eine Spitzen-Wellenzahl km im genannten ersten Diagramm bestimmt und
    - Bestimmen der Distanz dm zwischen den Löchern gemäß der Gleichung
    Figure imgb0023
  2. Verfahren nach Anspruch 1, wobei die genannten berechneten und gemessenen charakteristischen Größen die Komponenten des genannten theoretischen bzw. des gemessenen Magnetfeldes parallel zur genannten zentralen Achse sind.
  3. Verfahren nach Anspruch 1, wobei die genannten berechneten und gemessenen charakteristischen Größen die Komponenten des genannten theoretischen bzw. des gemessenen Magnetfeldes senkrecht zur genannten zentralen Achse sind.
  4. Verfahren nach Anspruch 1, wobei die axialen und zwei aufeinander senkrecht stehende radiale Komponenten der genannten Magnetfelder berechnet und gemessen werden und wobei die genannten berechneten und gemessenen charakteristischen Größen die Größe des gesamten theoretischen bzw. gemessenen Magnetfeldes sind.
  5. Verfahren nach Anspruch 1, wobei die genannten berechneten und gemessenen charakteristischen Größen die axialen Gradienten des theoretischen bzw. gemessenen Magnetfeldes oder einer ihrer Komponenten sind.
EP87200905A 1986-05-29 1987-05-14 Verfahren zur Abstandsbestimmung zwischen angrenzenden Bohrlöchern Expired - Lifetime EP0247672B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB868613027A GB8613027D0 (en) 1986-05-29 1986-05-29 Determining distance between adjacent wells
GB8613027 1986-05-29

Publications (3)

Publication Number Publication Date
EP0247672A2 EP0247672A2 (de) 1987-12-02
EP0247672A3 EP0247672A3 (en) 1988-12-14
EP0247672B1 true EP0247672B1 (de) 1991-05-08

Family

ID=10598609

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87200905A Expired - Lifetime EP0247672B1 (de) 1986-05-29 1987-05-14 Verfahren zur Abstandsbestimmung zwischen angrenzenden Bohrlöchern

Country Status (10)

Country Link
EP (1) EP0247672B1 (de)
JP (1) JPH0715235B2 (de)
CA (1) CA1269710A (de)
DE (1) DE3769848D1 (de)
DK (1) DK173097B1 (de)
ES (1) ES2022301B3 (de)
GB (1) GB8613027D0 (de)
MY (1) MY100939A (de)
NO (1) NO168438C (de)
SG (1) SG69492G (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512830A (en) * 1993-11-09 1996-04-30 Vector Magnetics, Inc. Measurement of vector components of static field perturbations for borehole location
MY112792A (en) * 1994-01-13 2001-09-29 Shell Int Research Method of creating a borehole in an earth formation
JP3863501B2 (ja) 2003-05-19 2006-12-27 株式会社コナミデジタルエンタテインメント 形態変形玩具
CN104919136B (zh) * 2012-12-21 2018-07-10 哈利伯顿能源服务公司 使用第三井参照来执行距离测量的***和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3725777A (en) * 1971-06-07 1973-04-03 Shell Oil Co Method for determining distance and direction to a cased borehole using measurements made in an adjacent borehole
US4072200A (en) * 1976-05-12 1978-02-07 Morris Fred J Surveying of subterranean magnetic bodies from an adjacent off-vertical borehole
US4372398A (en) * 1980-11-04 1983-02-08 Cornell Research Foundation, Inc. Method of determining the location of a deep-well casing by magnetic field sensing

Also Published As

Publication number Publication date
ES2022301B3 (es) 1991-12-01
EP0247672A3 (en) 1988-12-14
DK173097B1 (da) 2000-01-17
NO168438C (no) 1992-02-19
DE3769848D1 (de) 1991-06-13
DK270687A (da) 1987-11-30
MY100939A (en) 1991-05-31
NO872238L (no) 1987-11-30
SG69492G (en) 1992-09-04
EP0247672A2 (de) 1987-12-02
NO872238D0 (no) 1987-05-27
JPS6322987A (ja) 1988-01-30
GB8613027D0 (en) 1986-07-02
DK270687D0 (da) 1987-05-27
NO168438B (no) 1991-11-11
JPH0715235B2 (ja) 1995-02-22
CA1269710A (en) 1990-05-29

Similar Documents

Publication Publication Date Title
US5512830A (en) Measurement of vector components of static field perturbations for borehole location
EP0384537B1 (de) Verfahren zur Verbesserung der Messgenauigkeit bei der Abweichungsmessung
EP0490716B1 (de) Verfahren und Gerät zum Korrigieren des Neigungseffekts in Bohrlochinduktionsmessungen und Herstellung einer, die Korrektion wiedergebende, Aufzeichnung
CA2187487C (en) Rotating magnet for distance and direction measurements
EP1546980B1 (de) Gleichzeitige auflösungsverbesserung und dip-korrektur von protokollierungen des spezifischen widerstands durch nichtlineare iterative entfaltung
US5041975A (en) Borehole correction system for an array induction well-logging apparatus
US7814036B2 (en) Processing well logging data with neural network
US7049821B2 (en) Determination of borehole geometry inside cased wells with crosswell electromagnetics
US5389881A (en) Well logging method and apparatus involving electromagnetic wave propagation providing variable depth of investigation by combining phase angle and amplitude attenuation
EP2438474B1 (de) Magnetische bohrlochmessung während der rotation und anwendungsverfahren
EP1328832B1 (de) Verfahren zur bestimmung der scheinbaren spezifischen widerstände anisotropischer reservoirs
US4278941A (en) High frequency induction log for determining resistivity and dielectric constant of the earth
US20050156602A1 (en) System, apparatus, and method for conducting electromagnetic induction surveys
EP0654686A2 (de) Verfahren zur Korrektur von axialen Fehlerkomponenten in Magnetometermessungen während Rohrlochmessoperationen
US7269514B2 (en) System and method for correcting induction logging device measurements by alternately estimating geometry and conductivity parameters
US6891777B2 (en) Subsurface borehole evaluation and downhole tool position determination methods
KR890004722B1 (ko) 유도 탐사방법 및 장치
US6833706B2 (en) Hole displacement measuring system and method using a magnetic field
US5852363A (en) Methods and apparatus for measuring characteristics of a formation around a borehole using computed focusing
EP0247672B1 (de) Verfahren zur Abstandsbestimmung zwischen angrenzenden Bohrlöchern
US10955579B2 (en) Measurement and control apparatus, systems, and methods
AU2002241657B2 (en) Processing well logging data with neural network
US10677955B2 (en) Two part magnetic field gradient sensor calibration
US2928071A (en) Interpretation of geophysical data
US3209134A (en) Interpretation of geophysical data

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT NL

17P Request for examination filed

Effective date: 19890516

17Q First examination report despatched

Effective date: 19900831

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT NL

REF Corresponds to:

Ref document number: 3769848

Country of ref document: DE

Date of ref document: 19910613

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040309

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040405

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040518

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040519

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040602

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050514

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051201

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20051201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060131

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050516