EP0237868A2 - Radial- oder Axialkreiselpumpe - Google Patents

Radial- oder Axialkreiselpumpe Download PDF

Info

Publication number
EP0237868A2
EP0237868A2 EP87103057A EP87103057A EP0237868A2 EP 0237868 A2 EP0237868 A2 EP 0237868A2 EP 87103057 A EP87103057 A EP 87103057A EP 87103057 A EP87103057 A EP 87103057A EP 0237868 A2 EP0237868 A2 EP 0237868A2
Authority
EP
European Patent Office
Prior art keywords
impeller
pump
centrifugal pump
auxiliary
pump according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87103057A
Other languages
English (en)
French (fr)
Other versions
EP0237868B1 (de
EP0237868A3 (en
Inventor
Ernst Hauenstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT87103057T priority Critical patent/ATE60411T1/de
Publication of EP0237868A2 publication Critical patent/EP0237868A2/de
Publication of EP0237868A3 publication Critical patent/EP0237868A3/de
Application granted granted Critical
Publication of EP0237868B1 publication Critical patent/EP0237868B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/027Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • F04D29/0416Axial thrust balancing balancing pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/404Transmission of power through magnetic drive coupling
    • F05B2260/4041Transmission of power through magnetic drive coupling the driven magnets encircling the driver magnets

Definitions

  • the present invention relates to a radial centrifugal pump, the working side of which is completely tightly separated from the drive side by a canned pot, in which, in addition, the pump impeller, which is mounted on a shaft between two axial end stops, is driven via a magnetic coupling acting through the wall of the canned pot and is in operation the impeller act axial thrust, caused by different pressure ratios on the impeller front and impeller rear, means being provided to compensate for these thrust forces.
  • Centrifugal pumps of this type are generally known. Their field of application is very wide, but due to the lack of seals, it is mainly in the field of chemistry, where particularly toxic or otherwise aggressive liquids have to be pumped.
  • centrifugal pumps in the form of so-called canned motor pumps or magnetic coupling pumps was the collection and balancing of the hydraulic forces inside the pump, in particular the thrust forces acting on the pump wheel.
  • the previously known solutions were unsatisfactory in the sense that complex constructions were required, which were also associated with relatively high energy losses (friction losses, efficiency reductions). This is all the more regrettable, since today's materials have made it possible to build the actual drive system more compactly and thus to keep the outer dimensions small.
  • the purpose of the present invention was to find in radial or axial centrifugal pumps of the type described at the outset a structurally simple solution for compensating for the axial thrust acting on the impeller, which further simplifies the actual pump construction and helps to reduce the internal forces that previously occurred that in particular the canned tube can be made with a further reduced wall thickness, which in turn can improve the overall efficiency.
  • the solution to this problem is characterized according to the invention in that the actual pump impeller, on its front side, i.e. on the side facing the suction, the delivery channels are provided, an auxiliary delivery wheel is assigned, which serves to reduce the pressure in the room or the rooms on the rear of the impeller.
  • the spaces on the rear of the impeller usually consist of a so-called hub space and an inner and outer drive space.
  • the latter two spaces are separated from one another by the flange of the carrier of one magnetic coupling part, which flange-like protrudes from the rear of the impeller.
  • control means preferably in the form of control slots or channels, are preferably provided on the pump housing, specifically in relation to the periphery of the delivery channels of the auxiliary delivery wheel, so that the medium conveyed by the auxiliary delivery wheel from the space behind the impeller as a function of the to promote the pressure conditions prevailing on the front or rear of the impeller into the pressure chamber of the pump.
  • the auxiliary conveyor wheel is preferably arranged or formed on the rear side of the actual pump impeller, for example directly on the rear wall of the pump impeller.
  • the conveying channels of the auxiliary conveying wheel are preferably designed such that they communicate with one or more of the spaces on the rear of the impeller. For example, a number of separate conveying channels of the auxiliary conveying wheel can be assigned to each of the spaces to be relieved. Depending on the magnitude of the thrust forces that arise in each case, the output of the delivery channels of the auxiliary feed wheel is more or less covered by the control means, caused by an oscillating axial displacement of the pump impeller, which ensures permanent automatic thrust compensation.
  • thrust compensation enables impellers with open or closed blading to be used as desired.
  • the bearing journal or the support shaft for the impeller can e.g. be integrated into the end face of the containment shell, or, in the case of larger embodiments, be supported in a suitable manner in the intake manifold.
  • pumps of any desired type can be built without complex control channels.
  • the rooms on the rear of the impeller can also be rinsed with cleaning fluid with little effort.
  • only a supply line for cleaning fluid into the rear hub space is required, from which certain delivery channels of the auxiliary feed wheel lead the rinsing fluid into the outer drive space.
  • the flushing liquid could also be supplied directly to the outer drive compartment.
  • the construction according to the invention is particularly suitable for pumps in which the driven part is designed as an external rotor, since on the one hand modern materials allow the construction of rotors with a low mass and on the other hand practically no friction losses occur. Nevertheless, the inevitable gaps can be made very narrow, since the risk of clogging is greatly reduced in the construction according to the invention.
  • Fig. L of the drawing shows purely schematically a radial centrifugal pump with magnetic coupling in section, wherein in the lower half of the picture a variant of the upper half of the picture is shown both with respect to the canned pot and the impeller. However, the variants have no influence on the basic structure of the pump.
  • the pump essentially consists of a housing 1 with intake port 2, a bearing pin 3 arranged in the example shown in the intake port 2 (which in the lower variant is also formed in one piece with the canned pot bottom) for a pump impeller 4 and one for the working side (pump side) completely sealed from the drive side (motor side) separating canned pot 5. Also shown is internal magnetic rotor 6 of a drive motor, not shown, the housing of which is flanged to the pump housing 1.
  • the bearing journal 3 for the pump impeller 4 is seated in a hub cover 3 ⁇ , which is supported and fastened in the intake flange 2 via supports 7, 8.
  • the medium to be conveyed reaches the pressure chamber 8 via the suction port 2 and the pump impeller 4 (in the example shown a closed impeller) and from there into the pressure line (not shown).
  • the impeller 4 with closed blades 4 ⁇ is overhung on the bearing journal 3, it being able to move freely between the stops 9 and 10 under the axial thrust forces that occur. As will be shown, the impeller does not come to rest against the stops 9, 10, which essentially serve to position the wheel.
  • This ring flange l2 divides the pump-side drive space l3, which is located on the rear side of the impeller 4, into an outer and an inner space A or B. Also on the impeller rear side is a so-called hub space C.
  • the core of the present invention now lies in this pressure or thrust compensation:
  • the pressure acting on the impeller from rooms A, B and C is greater than the pressure on the suction or front side of the impeller 4, so that the impeller would be pressed in the suction direction without special precautions. However, this should be avoided.
  • auxiliary conveyor wheel 4 which usually consists of one piece with the actual pump impeller 4, the pressure on the back of the impeller is now reduced and the axial movement of the impeller 4 in the direction of the intake is thereby stopped. So that there is no opposite movement of the impeller 4, i.e. a shift in the direction of the drive side, the delivery rate of the auxiliary conveyor wheel 4 ⁇ is controlled:
  • one or more bores 17 are preferably provided between the pressure space 8 of the pump and the drive space A.
  • the auxiliary conveyor wheel 4 ⁇ can be designed such that from the different rooms A, B and C inlet openings 18, l9 and 20, respectively, to the individual delivery channels l6 of the auxiliary conveyor wheel 4 ⁇ are provided, with a different design that for each room A, B and C a number of separate delivery channels (e.g. 2l for room C in the lower variant) are provided.
  • a mixed construction is also conceivable.
  • a rinsing liquid can be conveyed into the space C via a line 22 and a bore 23 in the journal 3 in order to from there to be promoted via the delivery channels 2l of the auxiliary feed wheel 4 ⁇ not in the pressure chamber 8 of the pump, but in room A (and from here in room B). Excellent cleaning of the pump can thus be carried out in a simple manner.
  • a rinsing or cleaning liquid could, however, also be introduced directly into space A, for example via an inlet 24.
  • FIGS. 2 and 3 show purely schematically how the control of the delivery rate of the auxiliary feed wheel 4 ⁇ via control slots on the housing, relative to the feed channels of the auxiliary feed wheel.
  • the delivery channels are covered and the pressure in room A will increase
  • Fig. 3 shows the situation with delivery channels open via the control slots, in which the pressure in room A decreases.
  • Fig. 4 finally shows a purely schematic plan view of the rear of the impeller, i.e. on the auxiliary feed wheel, with different inlet openings in the feed channels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Cyclones (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

Die Radialkreiselpumpe in Form einer Magnetkupplungspumpe, bei welcher die Pumpenseite von der Antriebsseite durch einen Spaltrohrtopf getrennt ist, weist neben einem üblichen Pumpenlaufrad (4) ein Hilfsförderrad (4") auf. Damit kann der Druck in den Räumen (A,B,C) auf der Laufradrückseite abgebaut werden und somit ein Schubausgleich erzielt werden. Durch Steuermittel (l5) im Gehäuse (l) am äusseren Ende (l4) der Förderkanäle des Hilfsförderrades (4") kann dieser Vorgang gesteuert werden. Damit wird eine Pumpe einfacher Bauart realisiert, bei welcher z.B. der Spaltrohrtopf sehr dünnwandig ausgebildet werden kann und bei welcher ohne Schubprobleme das Pumpenrad in offener oder geschlossener Form einfach gelagert werden kann.

Description

  • Die vorliegende Erfindung betrifft eine Radialkreiselpumpe, deren Arbeitsseite von der Antriebs­seite durch einen Spaltrohrtopf vollständig dicht getrennt ist, bei welcher zudem der Antrieb des zwischen zwei axialen Endanschlägen fliegend auf einer Welle gelagerten Pumpenlaufrades über eine durch die Wand des Spaltrohr­topfes wirkende Magnetkupplung erfolgt und im Betrieb auf das Laufrad axiale Schubkräfte einwirken, hervorgeru­fen durch unterschiedliche Druckverhältnisse auf der Laufradvorderseite und Laufradrückseite, wobei Mittel vorgesehen sind, um diese Schubkräfte auszugleichen.
  • Derartige Kreiselpumpen sind allgemein bekannt. Ihr Anwendungsgebiet ist sehr breit, liegt jedoch wegen des Fehlens von Dichtungen hauptsächlich auf dem Gebiet der Chemie, wo besonders giftige bzw. anderweitig ag­gressive Flüssigkeit zu fördern sind.
  • Das Problem bei den bekannten Kreiselpumpen in Form von sog. Spaltrohrmotor-Pumpen oder Magnetkupp­lungspumpen bestand im Auffangen und Ausgleichen der hydraulischen Kräfte im Pumpeninnern, insbesondere der auf das Pumpenrad wirkenden Schubkräfte. Die bisher bekannten Lösungen waren in dem Sinne unbefriedigend, als aufwendige Konstruktionen erforderlich waren, welche zudem mit relativ hohen Energieverlusten behaftet waren (Reibungsverluste, Wirkungsgradminderungen). Dies ist umso bedauerlicher, als es mit den heutigen Materialien möglich geworden ist, das eigentliche Antriebssystem immer gedrungener zu bauen und damit die äusseren Abmessun­gen gering zu halten.
  • Zweck der vorliegenden Erfindung war es nun, bei Radial- oder Axialkreiselpumpen der eingangs be­schriebenen Art eine konstruktiv einfache Lösung für den Ausgleich des auf das Laufrad einwirkenden Axialschubes zu finden, welche eine weitere Vereinfachung der eigent­lichen Pumpenkonstruktion ermöglicht und die früher auftretenden inneren Kräfte soweit verringern hilft, dass insbesondere das Spaltrohr mit noch weiter reduzierter Wandstärke ausgeführt werden kann, womit wiederum der Gesamtwirkungsgrad verbessert werden kann.
  • Die Lösung dieser Aufgabe zeichnet sich erfin­dungsgemäss dadurch aus, dass dem eigentlichen Pumpenlauf­rad, auf dessen Vorderseite, d.h. der dem Ansaug zuge­wandten Seite die Förderkanäle vorgesehen sind, ein Hilfsförderrad zugeordnet ist, welches dem Druckabbau im Raum bzw. den Räumen auf der Laufradrückseite dient.
  • Die laufradrückseitigen Räume bestehen üblicher­weise aus einem sog. Nabenraum und einem inneren und äusseren Antriebsraum. Die letztgenannten beiden Räume werden von dem von der Laufradrückseite flanschförmig wegragenden Träger des einen Magnetkupplungsteils vonein­ander getrennt. Zwischen dem Spalttopf und den rotierenden Teilen des Laufrades sind Spalte vorhanden, über welche die genannten Räume miteinander in Verbindung stehen.
  • Damit der Schubausgleich optimal erfolgen kann, sind vorzugsweise am Pumpengehäuse, und zwar gegenüber der Peripherie der Förderkanäle des Hilfsförder­rades Steuermittel, vorzugsweise in Form von Steuer­schlitzen bzw. -kanälen vorgesehen, um das vom Hilfsförder­rad aus dem Raum hinter dem Laufrad geförderten Medium in Abhängigkeit der auf der Laufradvorderseite bzw. -rückseite herrschenden Druckverhältnisse in den Druckraum der Pumpe zu fördern.
  • Vorzugsweise ist das Hilfsförderrad auf der Rückseite des eigentlichen Pumpenlaufrades, und zwar beispielsweise direkt auf der Rückwand des Pumpenlaufrades angeordnet bzw. ausgebildet.
  • Die Förderkanäle des Hilfsförderrades sind vorzugsweise derart ausgebildet, dass diese mit einem oder mehreren der Räume auf der Laufradrückseite kommuni­zieren. Beispielsweise können jedem der zu entlastenden Räume eine Anzahl eigene Förderkanäle des Hilfsförderrades zugeordnet sein. Je nach Grösse der sich jeweils einstel­lenden Schubkräfte ist der Ausgang der Förderkanäle des Hilfsförderrades durch die Steuermittel mehr oder weniger abgedeckt, hervorgerufen durch eine pendelnde axiale Verschiebung des Pumpenlaufrades, was einen dauernden automatischen Schubausgleich gewährleistet.
  • Die erfindungsgemässe Ausgestaltung des sog. Schubausgleiches ermöglicht nach Wahl Laufräder mit offener oder geschlossener Beschaufelung einzusetzen.
  • Der Lagerzapfen bzw. die Tragwelle für das Laufrad kann z.B. in die Stirnseite des Spalttopfes integriert sein, oder bei grösseren Ausführungsformen, im Ansaugstutzen auf geeignete Weise abgestützt sein.
  • Mit der erfindungsgemässen Lösung können Pumpen jeder gewünschten Bauart ohne aufwendige Steuerka­näle gebaut werden. Mit geringem Aufwand können zudem die Räume auf der Laufradrückseite mit Reinigungsflüssig­keit gespült werden. Zu diesem Zweck ist lediglich eine Zuleitung für Reinigungsflüssigkeit in den rückseiti­gen Nabenraum erforderlich, aus welchem gewisse Förder­kanäle des Hilfsförderrades die Spülflüssigkeit in den äusseren Antriebsraum leiten. Selbstverständlich könnte die Spülflüssigkeit auch direkt dem äusseren Antriebsraum zugeführt werden.
  • Die erfindungsgemässe Konstruktion eignet sich besonders für Pumpen, bei denen der getriebene Teil als Aussenrotor ausgebildet ist, da einerseits moderne Materialien den Bau von Rotoren mit geringer Masse zulassen und andererseits praktisch keine Reibver­luste auftreten. Trotzdem können die unvermeidlichen Spalten sehr eng gestaltet werden, da bei der erfindungs­gemässen Konstruktion die Verstopfungsgefahr stark reduziert ist.
  • Die Erfindung wird nachstehend anhand von in der Zeichnung dargestellten Ausführungsbeispielen noch etwas näher erläutert. Es zeigt:
    • Fig. l einen rein schematischen Schnitt durch eine Radialkreiselpumpe nach der Erfindung, wobei oberhalb und unterhalb der Längsachse zwei verschiedene Varianten gezeigt sind;
    • Fig. 2 und 3 rein schematisch die Steuerung der Fördermenge des Hilfsförderrades, und
    • Fig. 4 eine schematische Draufsicht auf das Hilfsförderrad.
  • Fig. l der Zeichnung zeigt rein schematisch eine Radialkreiselpumpe mit Magnetkupplung im Schnitt, wobei in der unteren Bildhälfte eine Variante zur oberen Bildhälfte sowohl bezüglich des Spaltrohrtopfes wie auch des Laufrades gezeigt ist. Die Varianten haben jedoch keinen Einfluss auf den grundsätzlichen Aufbau der Pumpe.
  • Die Pumpe besteht im wesentlichen aus einem Gehäuse l mit Ansaugstutzen 2, einem beim gezeigten Beispiel im Ansaugstutzen 2 angeordneten Lagerzapfen 3 (welcher bei der unteren Variante zudem mit dem Spalt­rohrtopfboden einstückig ausgebildet ist) für ein Pumpen­laufrad 4 und einem die Arbeitsseite (Pumpenseite) vollständig dicht von der Antriebsseite (Motorseite) trennenden Spaltrohrtopf 5. Gezeigt ist ferner der innenliegende Magnetrotor 6 eines nicht dargestellten Antriebsmotors, dessen Gehäuse an das Pumpengehäuse l angeflanscht wird.
  • Der Lagerzapfen 3 für das Pumpenlaufrad 4 sitzt in einer Nabenverkleidung 3ʹ, welche über Träger 7,8 im Ansaugflansch 2 abgestützt und befestigt ist. Das zu fördernde Medium gelangt über den Ansaugstutzen 2 und das Pumpenlaufrad 4 (beim gezeigten Beispiel ein geschlossenes Laufrad) in den Druckraum 8 und von dort in die Druckleitung (nicht dargestellt).
  • Das Laufrad 4 mit geschlossener Beschaufelung 4ʹ ist fliegend auf dem Lagerzapfen 3 gelagert, wobei es sich unter den auftretenden Axialschubkräften axial zwischen den Anschlägen 9 und l0 frei bewegen kann. Wie noch gezeigt wird, kommt das Laufrad allerdings nicht zur Anlage an den Anschlägen 9,l0, welche im wesentlichen der Positionierung des Rades dienen.
  • Ein hier aussenliegender Magnetrotor ll, welcher Teil der Magnetkupplung bildet und unter dem Einfluss des motorisch angetriebenen inneren Rotors 6 ebenfalls in Drehung versetzt wird und dem Antrieb des Pumpenrades 4 dient, ist in einem auf der Rückseite des Laufrades angeordneten, axial abstehenden Ringflansch l2 untergebracht.
  • Dieser Ringflansch l2 unterteilt dabei den pumpenseitigen Antriebsraum l3, welcher auf der Rückseite des Laufrades 4 liegt, in einen äusseren und einen inneren Raum A bzw. B. Ebenfalls auf der Laufradrückseite befindet sich noch ein sog. Nabenraum C.
  • Da derartige Radialkkreiselpumpen nach Möglich­keit ohne Reibungsverluste erzeugende Dichtungen ausge­führt werden, gelangt automatisch ein Teil der geförderten Flüssigkeit über die vorhandenen Spalten in die Räume A, B und C auf der Rückseite des Laufrades 4, wobei ein Druck aufgebaut wird. Dieser Druck soll nun so gering wie möglich gehalten werden, damit einerseits die Wandstärke des Spaltrohrtopfes 5 so gering wie möglich gehalten werden kann (Verbesserung des Wirkungs­grades der Magnetkupplung) und andererseits die in Richtung der Ansaugöffnung auf das Laufrad 4 wirkende Schubkraft klein bzw. ausgeglichen gehalten werden kann.
  • In diesem Druck- bzw. Schubausgleich liegt nun der Kern der vorliegenden Erfindung:
  • Es wurde gefunden, dass durch die Anordnung eines sog. Hilfsförderrades 4ʺ auf der Rückseite des eientlichen Pumpenlaufrades 4 der Druck in den Räumen A, B und C abgebaut werden kann, wobei dies durch An­bringen von Steuermitteln direkt ausserhalb der Peripherie l4 dieses Hilfsförderrades 4ʺ in gesteuerter Weise erfolgen kann.
  • Ueblicherweise ist der aus den Räumen A, B und C auf das Laufrad wirkende Druck grösser als der Druck auf der Ansaug- bzw. Vorderseite des Laufrades 4, so dass ohne besondere Vorkehren das Laufrad in Ansaugrichtung gedrückt würde. Dies sollte aber vermieden werden.
  • Durch das Hilfsförderrad 4ʺ, welches üblicher­weise mit dem eigentlichen Pumpenlaufrad 4 aus einem Stück besteht, wird nun aber der Druck auf der Laufradrück­seite abgebaut und dadurch die Axialbewegung des Laufrades 4 in Richtung Ansaug aufgehalten. Damit nun aber keine entgegengesetzte Bewegung des Laufrades 4 erfolgt, d.h. eine Verschiebung in Richtung der Antriebsseite, wird die Fördermenge des Hilfsförderrades 4ʺ gesteuert:
  • Dies kann in einfacher Weise über Steuerschlitz l5 im Gehäuse l direkt gegenüber den Auslassöffnungen der Förderkanäle l6 des Hilfsförderrades 4ʺ erfolgen, indem diese Schlitze l5 die Auslassöffnungen offen lassen (mehr oder weniger stark), was z.B. bei nach links, d.h. zur Ansaugseite verschobenem Laufrad 4 der Fall ist, bzw. geschlossen halten (mehr oder weniger stark), was z.B. bis nach rechts, d.h. zur Antriebsseite verschobenem Laufrad 4 der Fall ist. Damit wird durch den sich in den Räumen A, B und C ab- bzw. aufbauenden Druck das Laufrad zwischen den Endanschlägen 9,l0 zum Pendeln gebracht (ohne die Anschläge zu berühren).
  • Damit ein Druckaufbau in den Räumen auf der Laufradrückseite gewährleistet ist, sind zwischen dem Druckraum 8 der Pumpe und dem Antriebsraum A vorzugsweise eine oder mehrere Bohrungen l7 vorgesehen.
  • Das Hilfsförderrad 4ʺ kann so ausgebildet sein, dass aus den verschiedenen Räumen A, B und C jeweils Einlassöffnungen l8, l9 bzw. 20 zu den einzelnen Förderkanälen l6 des Hilfsförderrades 4ʺ vorgesehen werden, ober bei einer anderen Bauweise, dass für jeden Raum A, B und C eine Anzahl eigene Förderkanäle (z.B. 2l für Raum C bei der unteren Variante) vorgesehen werden. Es ist auch eine gemischte Bauweise denkbar.
  • Bei der Bauweise nach der unteren Variante von Fig. l, d.h. wenn z.B. der innere, d.h. der Nabenraum C eigene Förderkanäle 2l aufweist, kann z.B. eine Spül­flüssigkeit über eine Leitung 22 und eine Bohrung 23 im Lagerzapfen 3 in den Raum C gefördert werden, um von dort über die Förderkanäle 2l des Hilfsförderrades 4ʺ nicht in den Druckraum 8 der Pumpe, sondern in den Raum A (und von hier in den Raum B) gefördert zu werden. Damit kann auf einfache Weise eine ausgezeichnete Reini­gung der Pumpe erfolgen. Eine Spül- oder Reinigungsflüssig­keit könnte allerdings auch direkt, z.B. über einen Einlass 24, in den Raum A eingebracht werden.
  • Die Fig. 2 und 3 zeigen rein schematisch, wie die Steuerung der Förderleistung des Hilfsförderrades 4ʺ über Steuerschlitze am Gehäuse, gegenüber den Förder­kanälen des Hilfsförderrades erfolgt. In Fig. 2 sind die Förderkanäle abgedeckt und der Druck im Raum A wird ansteigen, während Fig. 3 die Situation bei über die Steuerschlitze offenen Förderkanälen zeigt, in welcher der Druck im Raum A sinkt.
  • Fig. 4 schliesslich zeigt rein schematisch eine Draufsicht auf die Laufradrückseite, d.h. auf das Hilfsförderrad, mit verschiedenen Einlassöffnungen in die Förderkanäle.

Claims (12)

1. Radial- oder Axialkreiselpumpe, deren Arbeitsseite durch einen Spaltrohrtopf vollständig dicht getrennt ist, bei welcher Pumpe der Antrieb des zwischen zwei axialen Endanschlägen fliegend auf einer Welle gelagerten Pumpenlaufrades über eine durch die Wand des Spaltrohrtopfes wirkende Magnetkupplung erfolgt und im Betrieb auf das Laufrad axiale Schubkräfte ein­wirken, hervorgerufen durch unterschiedliche Druck­verhältnisse auf der Laufradvorderseite und Laufrad­rückseite, wobei Mittel vorgesehen sind, um diese Schub­kräfte auszugleichen, dadurch gekennzeichnet, dass dem eigentlichen Pumpenlaufrad, auf dessen Vorderseite die Förderkanäle vorgesehen sind, ein Hilfsförderrad zugeordnet ist, welches dem Druckabbau im Raum bzw. den Räumen auf der Laufradrückseite dient.
2. Kreiselpumpe nach Anspruch l, dadurch gekennzeichnet, dass am Pumpengehäuse, radial gegenüber dem äusseren Ende der Förderkanäle des Hilfsförderrades Steuermittel vorgesehen sind, um das vom Hilfsförderrad aus dem Raum hinter dem Laufrad geförderte Medium in Abhängigkeit der auf der Laufradvorder- bzw. -rückseite herrschenden Druckverhältnisse in den Druckraum der Pumpe zu fördern.
3. Kreiselpumpe nach einem der Ansprüche l oder 2, dadurch gekennzeichnet, dass das Hilfsförderrad auf der Rückseite des eigentlichen Pumpenlaufrades angeordnet ist.
4. Kreiselpumpe nach einem der Ansprüche l bis 3, dadurch gekennzeichnet, dass das Hilfsförderrad direkt auf der Rückwand des Pumpenlaufrades angeordnet bzw. ausgebildet ist.
5. Kreiselpumpe, bei welcher auf der Laufradrück­seite bzw. der Antriebsseite mehrere in verschiedenen radialen Abständen liegende, vom Druck zu entlastende Räume vorhanden sind, dadurch gekennzeichnet, dass jeder dieser Räume mit wenigstens einem Teil der Förder­kanäle des Hilfsförderrades kommuniziert.
6. Kreiselpumpe nach Anspruch 5, dadurch gekennzeichnet, dass jedem der zu entlastenden Räume eine Anzahl eigene Förderkanäle des Hilfsförderrades zugeordnet sind.
7. Kreiselpumpe nach Anspruch 2, dadurch gekennzeichnet, dass die Steuermittel den Ausgang der Förderkanäle des Hilfsförderrades je nach Grösse der sich einstellenden Schubkräfte mehr oder weniger abdecken.
8. Kreiselpumpe nach Anspruch 2 oder 7, dadurch gekennzeichnet, dass die Steuermittel im Gehäuse vorge­sehene Steuerschlitze mit entsprechend ausgebildeten Steuerkanten sind.
9. Kreiselpumpe nach einem der Ansprüche l-8, dadurch gekennzeichnet, dass zwischen dem Druckraum und dem Antriebsraum der Pumpe wenigstens ein die beiden Räume verbindender Durchgang vorgesehen ist.
l0. Kreiselpumpe nach Anspruch 6, dadurch gekennzeichnet, dass wenigstens einige der vom rückseiti­gen Nabenraum nach aussen führenden Förderkanäle in gewissen Betriebsstellungen des Pumpenlaufrades in den äusseren Antriebsraum münden und dass der Nabenraum an eine Flüssigkeitszuleitung angeschlossen ist.
11. Kreiselpumpe nach einem der Ansprüche l-l0, dadurch gekennzeichnet, dass der Lagerzapfen des Pumpenlaufrades und Hilfsförderrades am Spaltrohrtopf angeordnet ist, z.B. mit letzterem einstückig ausgebildet.
12. Kreiselpumpe nach einem der Ansprüche l-ll, dadurch gekennzeichnet, dass eine Zuleitung für Spülflüssigkeit in den Nabenraum durch den Lagerzapfen geführt ist.
EP87103057A 1986-03-21 1987-03-04 Radial- oder Axialkreiselpumpe Expired - Lifetime EP0237868B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87103057T ATE60411T1 (de) 1986-03-21 1987-03-04 Radial- oder axialkreiselpumpe.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1160/86 1986-03-21
CH1160/86A CH672820A5 (de) 1986-03-21 1986-03-21

Publications (3)

Publication Number Publication Date
EP0237868A2 true EP0237868A2 (de) 1987-09-23
EP0237868A3 EP0237868A3 (en) 1988-01-20
EP0237868B1 EP0237868B1 (de) 1991-01-23

Family

ID=4203879

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87103057A Expired - Lifetime EP0237868B1 (de) 1986-03-21 1987-03-04 Radial- oder Axialkreiselpumpe

Country Status (7)

Country Link
US (1) US4793777A (de)
EP (1) EP0237868B1 (de)
JP (1) JP2535004B2 (de)
AT (1) ATE60411T1 (de)
CH (1) CH672820A5 (de)
DE (1) DE3767517D1 (de)
ES (1) ES2020520B3 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812108A (en) * 1986-09-25 1989-03-14 Seikow Chemical Engineering & Machinery Ltd. Magnet pump
WO1996032592A1 (fr) * 1995-04-14 1996-10-17 Ceramiques & Composites S.A. Pompe centrifuge a entrainement magnetique
EP0982499A1 (de) * 1998-08-21 2000-03-01 CP Pumpen AG Magnetgekuppelte Kreiselpumpe
DE202016105312U1 (de) * 2016-09-23 2018-01-09 Speck Pumpen Verkaufsgesellschaft Gmbh Förderpumpe

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2519466Y2 (ja) * 1990-10-12 1996-12-04 株式会社帝国電機製作所 ガスシール型モータポンプ
FR2698667B1 (fr) * 1992-11-30 1995-02-17 Europ Propulsion Pompe centrifuge à rouet ouvert.
FR2715442B1 (fr) * 1994-01-26 1996-03-01 Lorraine Carbone Pompe centrifuge à entraînement magnétique.
US6135728A (en) * 1998-10-29 2000-10-24 Innovative Mag-Drive, L.L.C. Centrifugal pump having an axial thrust balancing system
US6293772B1 (en) 1998-10-29 2001-09-25 Innovative Mag-Drive, Llc Containment member for a magnetic-drive centrifugal pump
US6234748B1 (en) 1998-10-29 2001-05-22 Innovative Mag-Drive, L.L.C. Wear ring assembly for a centrifugal pump
US6123507A (en) * 1998-11-30 2000-09-26 Smith & Loveless, Inc. Single port impeller
KR20030023720A (ko) * 2001-06-05 2003-03-19 가부시키가이샤 이와키 마그넷 펌프
US7101158B2 (en) 2003-12-30 2006-09-05 Wanner Engineering, Inc. Hydraulic balancing magnetically driven centrifugal pump
JP4959424B2 (ja) * 2007-05-31 2012-06-20 勇 青谷 ポンプ装置
US8506259B2 (en) 2009-12-23 2013-08-13 Solar Turbines Inc. Fluid compression system
US8905729B2 (en) 2011-12-30 2014-12-09 Peopleflo Manufacturing, Inc. Rotodynamic pump with electro-magnet coupling inside the impeller
US8905728B2 (en) 2011-12-30 2014-12-09 Peopleflo Manufacturing, Inc. Rotodynamic pump with permanent magnet coupling inside the impeller
US9488184B2 (en) 2012-05-02 2016-11-08 King Abdulaziz City For Science And Technology Method and system of increasing wear resistance of a part of a rotating mechanism exposed to fluid flow therethrough
DE102014006568A1 (de) * 2013-05-08 2014-11-13 Ksb Aktiengesellschaft Pumpenanordnung und Verfahren zum Herstellen eines Spalttopfes der Pumpenanordnung
DE102013007849A1 (de) * 2013-05-08 2014-11-13 Ksb Aktiengesellschaft Pumpenanordnung
US9771938B2 (en) * 2014-03-11 2017-09-26 Peopleflo Manufacturing, Inc. Rotary device having a radial magnetic coupling
JP6671048B2 (ja) * 2015-11-12 2020-03-25 パナソニックIpマネジメント株式会社 ポンプ
CN108496010B (zh) * 2015-12-07 2021-04-02 流体处理有限责任公司 用于抵消多级泵中产生的轴向推力的对置式叶轮耐磨环底切
US10746196B2 (en) * 2017-04-09 2020-08-18 Technology Commercialization Corp. Methods and devices for reducing circumferential pressure imbalances in an impeller side cavity of rotary machines

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT242520B (de) * 1963-04-09 1965-09-27 Philip Pensabene Elektrisch angetriebene Pumpe
AT262774B (de) * 1963-12-14 1968-06-25 Richard Halm Flüssigkeitspumpe
US3881840A (en) * 1973-09-05 1975-05-06 Neratoom Centrifugal pump for processing liquids containing abrasive constituents, more particularly, a sand pump or a waste-water pumper
DE2620502A1 (de) * 1975-05-12 1976-11-25 Siebec Filtres Magnetlaeuferpumpe
EP0163126A1 (de) * 1984-05-02 1985-12-04 Pompe Ing. Calella S.p.A. Elektrische Pumpeinrichtung
EP0171515A1 (de) * 1984-07-16 1986-02-19 CP Pumpen AG Kreiselpumpe mit Spaltrohrtopf

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2209109A (en) * 1935-11-30 1940-07-23 Firm A W Mackensen Centrifugal pump with axial movement of the shaft
US2361521A (en) * 1943-11-01 1944-10-31 W S Darley & Company Centrifugal pump
US2942555A (en) * 1957-04-15 1960-06-28 Rinaldo F Pezzillo Combination pump and motor
US3589827A (en) * 1969-08-12 1971-06-29 Sergei Stepanovich Gerasimenko Centrifugal leakproof fluid pump
JPS5055902A (de) * 1973-09-20 1975-05-16
JPS527002A (en) * 1975-07-07 1977-01-19 Mitsubishi Heavy Ind Ltd Method of removing thrust of impeller in high pressure multistage pump
EP0145738B1 (de) * 1983-06-08 1989-01-11 Sundstrand Corporation Centrifugalpumpe
ATE32931T1 (de) * 1984-07-16 1988-03-15 Cp Pumpen Ag Kreiselpumpe mit einem spaltrohrtopf.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT242520B (de) * 1963-04-09 1965-09-27 Philip Pensabene Elektrisch angetriebene Pumpe
AT262774B (de) * 1963-12-14 1968-06-25 Richard Halm Flüssigkeitspumpe
US3881840A (en) * 1973-09-05 1975-05-06 Neratoom Centrifugal pump for processing liquids containing abrasive constituents, more particularly, a sand pump or a waste-water pumper
DE2620502A1 (de) * 1975-05-12 1976-11-25 Siebec Filtres Magnetlaeuferpumpe
EP0163126A1 (de) * 1984-05-02 1985-12-04 Pompe Ing. Calella S.p.A. Elektrische Pumpeinrichtung
EP0171515A1 (de) * 1984-07-16 1986-02-19 CP Pumpen AG Kreiselpumpe mit Spaltrohrtopf

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KSB-Kreiselpumpenlexikon, 02/1980 *
SOVIET INVENTIONS ILLUSTRATED, Sektion P,Q, Woche 8343, 7 Dezember 1983 DERWENT PUBLICATIONS LTD. London, Q5 * SU 981 690 (A) (BYKO/) * *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812108A (en) * 1986-09-25 1989-03-14 Seikow Chemical Engineering & Machinery Ltd. Magnet pump
WO1996032592A1 (fr) * 1995-04-14 1996-10-17 Ceramiques & Composites S.A. Pompe centrifuge a entrainement magnetique
FR2733010A1 (fr) * 1995-04-14 1996-10-18 Ceramiques Et Composites Sa Pompe centrifuge a entrainement magnetique
EP0982499A1 (de) * 1998-08-21 2000-03-01 CP Pumpen AG Magnetgekuppelte Kreiselpumpe
DE202016105312U1 (de) * 2016-09-23 2018-01-09 Speck Pumpen Verkaufsgesellschaft Gmbh Förderpumpe

Also Published As

Publication number Publication date
JP2535004B2 (ja) 1996-09-18
JPS62233493A (ja) 1987-10-13
EP0237868B1 (de) 1991-01-23
EP0237868A3 (en) 1988-01-20
ES2020520B3 (es) 1991-08-16
US4793777A (en) 1988-12-27
ATE60411T1 (de) 1991-02-15
CH672820A5 (de) 1989-12-29
DE3767517D1 (de) 1991-02-28

Similar Documents

Publication Publication Date Title
EP0237868B1 (de) Radial- oder Axialkreiselpumpe
DE69023699T2 (de) Selbstansaugende Kreiselpumpe.
DE2223087C2 (de) Flügelzellenverdichter
DE69106631T2 (de) Drehpumpe.
DE3212363A1 (de) Selbstanlaufende fluegelkolbenpumpe
DE69119183T3 (de) Kreiselpumpe mit Abdichtungsmitteln
DE2249510C2 (de) Flüssigkeitspumpenaggregat
DE4011671C2 (de) Regelbare Flügelzellenpumpe
DE4030295C2 (de) Pumpeneinheit mit Steuerventil
DE3722530C2 (de) Turbinentriebwerk
DE3128374A1 (de) Radialschaufelunterstuetzte seitenkanalpumpe
DE4338931C2 (de) Verstopfungsfreie Kreiselpumpe
DE19513962B4 (de) Radiale Kreiselpumpe
DE69415269T2 (de) Zusammenbau einer Brennstoffpumpe
DE69106779T2 (de) Einstufige Kreiselpumpe mit einem peripherisch-axialen Diffusor.
EP0204170B1 (de) Abwasserfördereinrichtung
WO2002048551A1 (de) Förderpumpe
DE2857227C2 (de) Mehrflutige Flüssigkeitsringgaspumpe
DE4205542A1 (de) Selbstansaugende seitenkanalpumpe
EP0601220A1 (de) Flüssigkeitspumpenaggregat, insbesondere Laugenpumpe
DE614292C (de) Gehaeuse, insbesondere fuer Taumelkolbenmaschinen
DE69312629T2 (de) Pumpe mit axialem Förderstrom
DE4103848C2 (de) Rotationskolbenpumpe
DE19825521C2 (de) Flüssigkeitsringpumpe
CH394811A (de) Umwälzpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RHK1 Main classification (correction)

Ipc: F04D 13/06

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19880713

17Q First examination report despatched

Effective date: 19890529

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 60411

Country of ref document: AT

Date of ref document: 19910215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3767517

Country of ref document: DE

Date of ref document: 19910228

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 87103057.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19950316

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950419

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950523

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960331

Ref country code: CH

Effective date: 19960331

Ref country code: BE

Effective date: 19960331

BERE Be: lapsed

Owner name: HAUENSTEIN ERNST

Effective date: 19960331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970324

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970327

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19970328

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980331

EUG Se: european patent has lapsed

Ref document number: 87103057.3

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990222

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990331

Year of fee payment: 13

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000304

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20001001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060302

Year of fee payment: 20