EP0233612B1 - Carburetter for an internal-combustion engine - Google Patents

Carburetter for an internal-combustion engine Download PDF

Info

Publication number
EP0233612B1
EP0233612B1 EP87102088A EP87102088A EP0233612B1 EP 0233612 B1 EP0233612 B1 EP 0233612B1 EP 87102088 A EP87102088 A EP 87102088A EP 87102088 A EP87102088 A EP 87102088A EP 0233612 B1 EP0233612 B1 EP 0233612B1
Authority
EP
European Patent Office
Prior art keywords
fuel
carburetor
duct
bore
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87102088A
Other languages
German (de)
French (fr)
Other versions
EP0233612A2 (en
EP0233612A3 (en
Inventor
Joseph Plannerer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VJA FOUNDATION
Original Assignee
VJA FOUNDATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VJA FOUNDATION filed Critical VJA FOUNDATION
Priority to AT87102088T priority Critical patent/ATE84119T1/en
Publication of EP0233612A2 publication Critical patent/EP0233612A2/en
Publication of EP0233612A3 publication Critical patent/EP0233612A3/en
Application granted granted Critical
Publication of EP0233612B1 publication Critical patent/EP0233612B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M3/00Idling devices for carburettors
    • F02M3/08Other details of idling devices
    • F02M3/12Passageway systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/78Sonic flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/81Percolation control

Definitions

  • the invention relates to a carburetor for internal combustion engines according to the preamble of claim 1.
  • a carburetor of this type is known from DE-A-2 053 991.
  • This known carburetor has at least one intake duct open at one end to the atmosphere and at the other end connected to an intake pipe of an intake system of the internal combustion engine, in which a throttle valve which at least largely closes the intake duct is arranged in its idle position.
  • an idle channel arrangement bypassing the throttle valve is provided, which has a fuel line (not shown in more detail) for supplying fuel and a device in the form of a tubular nozzle which serves for supplying combustion air to form the desired fuel-air mixture, the fuel being passed through Negative pressure that is conveyed at the outlet of the fuel in the form of a fuel-air emulsion from a combustion duct combustion air.
  • a cross-sectional constriction by means of which a supersonic flow is generated, is arranged upstream of the outlet mouth of the idling duct arrangement.
  • the fuel channel is designed as a fuel pipe lying in the combustion air flow with an end-side pipe nozzle, the mouth of which is arranged in the region of the cross-sectional constriction.
  • US-A-1 831 056 is a carburetor which has a throttle device for idle fuel, which is arranged upstream of an air opening.
  • a supersonic flow is generated by means of a cross-sectional constriction, which, however, is brought about here by means of an adjusting screw.
  • the invention has for its object to develop a carburetor according to the preamble of claim 1 such that continuous fuel delivery is guaranteed under all circumstances.
  • the measures according to the invention can furthermore be advantageously combined with a compact design by selecting the axis of the connecting piece so that it lies transversely to the axis of the fuel channel.
  • the carburetor illustrated in FIG. 1 has, in the usual way, an air filter 1, a carburetor housing 2 and, penetrating this, an intake duct 3 which draws ambient air through the air filter 1.
  • the Carburetor housing 2 has a base plate 4 for connection to an intake pipe 5 of an intake system 6, which supplies the cylinders of the internal combustion engine with fuel-air mixture in the usual way and on which the base plate 4 is fitted via a conventional seal 7.
  • a throttle valve 8 is arranged in the intake duct 3 and practically completely closes the intake duct 3 in the idle position.
  • the illustrated carburetor is designed as a register carburetor in the example and has an intake duct 9 of the second stage, the throttle valve 10 of which begins to open in the usual manner when higher speeds are reached.
  • the carburetor housing 2 is formed in the usual manner as a cast part and, in addition to the base plate 4, consists of two stacked housing parts 11 and 12, the section in the illustration according to FIG. 1 in the region of the base plate 4 along the axes of the intake ducts 3 and 9, in Area of the housing parts 11 and 12, however, is guided through a float chamber 14 in a plane lying in front of it.
  • Fuel is supplied to the float chamber 14 under the control of a float 13, from where the fuel is removed via a fuel line 15 in the form of a tube or hose freely arranged next to the carburetor housing 2.
  • Oil mist accumulating in the crankcase and in the entire engine block is supplied to the air filter 1 via a cylinder head ventilation line 16.
  • the cylinder head ventilation line 16 does not lead directly to the air filter 1, but into an air line 17 connected to the air filter 1.
  • the fuel line 15 and the air line 17 form part of an idle channel arrangement, generally designated 18, with which fuel and air form an idle system can be supplied, which opens downstream of the throttle valve 8 in the intake duct 3.
  • the throttle valve 8 in a carburetor according to the invention must be idling in a position in which it closes the intake duct 3 of the first stage practically completely, so that no noticeable air flow past the throttle valve 8 is possible, and also others channels that allow the supply of false air are missing or are closed.
  • transition openings 19 can be provided in the usual way, unless another transition system is used for the mixture supply in the transition area between idle and part load.
  • the exit region of the idle channel arrangement 18, designated 20, is illustrated in more detail in FIGS. 2 and 3.
  • the fuel line 15 ends in a connecting piece 21 and the air line 17 in a connecting piece 22, which are mounted on a housing 23.
  • the housing 23 consists essentially of a nozzle pipe 24 for forming a supply duct 25 for combustion air around a fuel pipe 26, which forms a fuel duct 27.
  • the housing 23 is connected to a bearing section 28 essentially formed by the nozzle tube 24 for receiving in the carburetor wall 2 from a rear housing body 29 in the area of the connecting pieces 21 and 22 with end faces 30 adjacent to the bearing section 28 and a connecting part 31 made of poorly heat-conducting Material, in the example plastic, while all other elements are made of metal.
  • the fuel pipe 26 has at its front end a pipe nozzle 32 with a cross-sectional constriction 33 with a cross-sectional area of 0.12 mm2 in the example, which at the same time forms an orifice 34 for the exit of fuel or emulsion.
  • the fuel tube 26 is provided on its top side with two round openings 35 with a diameter of 0.5 mm or 0.6 mm, ie a total cross-sectional area of approximately 0.45 mm 2, which are axially spaced from one another , which allow the air flowing around the fuel pipe 26 to access the fuel channel 27, so that a fuel emulsion is formed there.
  • a pre-throttle 36 is arranged upstream of the openings 35 and, in the example, has the shape of a cross-sectional constriction 37 with a cross-sectional area of 0.12 mm 2.
  • the fuel channel 27 opens with an inlet opening 38 into a catch chamber 39, through which the connecting piece 21 of the fuel line 15 protrudes, and which is made of plastic in the connecting part 31.
  • the outlet opening of the connection piece 21, designated 40 lies deeper than the lower edge of the inlet opening 38 of the fuel channel 27 and thus also below the catch chamber 39, so that when fuel is supplied from the outlet opening 40 of the connection piece 21 via the catch chamber 39 into the inlet opening 38 of the fuel channel 27 creates a siphon-like effect.
  • the pipe nozzle 32 with the cross-sectional constriction 33 of the fuel tube 26 lies in the region of a cross-sectional constriction 41 upstream of the outlet opening of the idle-channel arrangement 18, designated 42, into the intake duct 3.
  • the cross-sectional constriction 41 is designed in the manner of a converging-diverging Laval nozzle, so that when the critical pressure ratio is exceeded there is a supersonic flow between the levels A and B in the cross-sectional constriction 41 flow at the speed of sound and in the subsequent slightly divergent part of the nozzle tube 24 until separation and flow change take place. In the case of a supercritical pressure ratio, this is the case at the latest in level B, that is, in the level of the outlet orifice 42.
  • the cross-sectional constriction 41 preferably has a free cross-sectional area of approximately 16 mm 2.
  • the fuel pipe 26 and the nozzle pipe 24 are concentric about an axis 43 which intersects the transverse axis 44 of the connecting piece 21 of the fuel line 15.
  • the axis 45 of the connecting piece 22 of the air line 17 is transverse to the axis 43, but does not need to cut it.
  • the connecting part 31, together with the fuel pipe 26, is rotatably mounted in the housing body 29 with a corresponding pivoting of the connecting piece 21, for which purpose the connecting piece 21 is guided in a slot 46 in the housing body 29.
  • the axis 47 of the slot 46 is not perpendicular, but at an angle to the axis 43, so that the rotational movement of the connecting part 31 and the fuel tube 26 while pivoting the connecting piece 21 also leads to an axial movement of the fuel tube 26.
  • the exact position of the mouth 34 of the tubular nozzle 32 relative to the cross-sectional constriction 41 can be finely adjusted to the respective requirements.
  • the length of the slot 46 may allow an angle of rotation of the connecting part 31 of 30 ° and be inclined at an angle of 13 ° to the axis 43, so that there is an adjustment path of the order of one millimeter.
  • the entire nozzle tube 24 can be inserted into a corresponding bore in the carburetor housing 2 up to the stop on the front end faces 30 of the housing body 29.
  • the axis 43 can be inclined by an angle ⁇ with respect to the horizontal, wherein ⁇ can be between approximately 0 ° and 30 ° and, in the example, due to the design limitation due to the height of the base plate 4 at 10 ° may be.
  • the axis 43 does not need to intersect the central axis of the intake duct 3, but an inclination of the axis 43 away from the radial can take place in such a way that the mass flow exit from the outlet opening 42 is directed more tangentially into the interior of the intake pipe 3 is.
  • a flare angle from the radial can be between 15 ° and 40 °, and in the example may be 20 °, measured at the intersection of the axis 43 in FIG. 1 with the extension of the lateral surface of the intake duct 3.
  • the throttle valve 8 In idle operation, the throttle valve 8 is closed, so that the negative pressure which arises in the intake duct 3 downstream of the throttle valve 8, through the intake strokes of the cylinders, acts in full on the outlet mouth 42 and through it into the idle duct arrangement 18.
  • air is initially sucked through the air line 17, the oil mist present in the cylinder head ventilation line 16 also being sucked in, supplemented by air from the area of the air filter 1.
  • This air flow has only a slight pressure drop, so that in plane A approximately Atmospheric pressure is still present, while in the area of the intake duct 3 at the outlet mouth 42 there is a pressure of, for example, only 0.4 bar. This is the critical pressure ratio between levels A and B. significantly exceeded, so that in the plane of cross-sectional constriction 41 sound flow and then supersonic flow occurs.
  • the fuel is supplied via the fuel line 15 without any particular pressure losses, it can be expedient to increase the negative pressure in the fuel channel 27 in the region of the openings 35 in order to ensure the desired entry of primary air.
  • the pre-throttle 36 is used, the cross-sectional area of the cross-sectional constriction 37 there being adapted on the one hand to the pressure drop desired there and on the other hand to the total pressure loss as far as the mouth 34 in order to achieve a desired outflow velocity of the emulsion.
  • the cross-sectional area of the cross-sectional constriction is typically 37 depending on the displacement of the engine to be supplied between 0.03 mm2 and 0.3 mm2, with a view to the selected cross-sectional area of 0.12 mm2 of the cross-section constriction 33 through which the emulsion flows, in the example case a cross-sectional area of 0.12 mm2 for the individual cross-sectional constriction 37 through which fuel flows is selected.
  • the selected total cross-sectional area of the openings 35 of approximately 0.45 mm 2 under the action of the combustion air flowing through the cross-sectional constriction 41, which always flows at the speed of sound, the emulsion is optimally formed and conveyed through the tubular nozzle 23.
  • a cross-sectional dimensioning of the cross-sectional constriction 41 with approx. 16 mm 2 results in a combustion air supply to the fuel conveyed in such an amount, which results in a readily ignitable mixture in such an amount that, for a 2.81 engine, at an idling speed of around 600 to 700 U / min leads.
  • the throttling cross-sectional constrictions 33 and 37 cannot prevent fuel from being replenished from the float chamber 14 due to the lifter principle being interrupted, since upstream of the connecting piece 21 no air access into the fuel line 15 is possible. Therefore, the fuel line 15 is provided with a shut-off element 49 which, for example, automatically closes the fuel line 15 below a pressure of 4 cm of gasoline column.
  • a shut-off element 49 which, for example, automatically closes the fuel line 15 below a pressure of 4 cm of gasoline column.
  • the connecting part 31 made of poorly heat-conducting material prevents strong heat transfer between the hot peripheral wall of the housing body 29 and the connecting piece 21 and the fuel pipe 26, wherein it should be borne in mind that the connecting piece 21 is arranged in the slot 46 with lateral play.
  • the cooling of the fuel pipe 26 by the surrounding combustion air flow in the supply channel 25 and also by the primary air introduced through the openings 35 also remain effective in the rear region of the fuel pipe 26, so that this remains relatively cool in the region of the inlet opening 38.
  • the trapping chamber 39 prevents steam bubbles, which are nevertheless formed in the fuel pipe 26, from passing through, since steam bubbles striving in the direction of the fuel line 15 are retained on the ceiling of the trapping chamber 39 until, for example, after slight growth and greater protrusion from above into the fuel stream, conveyed back into the fuel pipe 26 and from there are discharged together with the fuel or the emulsion from the mouth 34, which gives no cause for interference.
  • the throttle valve 8 can be completely closed in this position - possibly except for small gaps caused by manufacturing tolerances.
  • This position of the throttle valve 8 in the idle position is also used as a basis for the specified dimensions of the openings of the idle system.
  • transition opening 19 which is usually designed as an axially parallel longitudinal slot, is also completely closed in this position by the edge of the throttle valve 8 from the negative pressure below the throttle valve 8, since then during the transition to the part-load range an unsteady phase with the Desired value due to this load reduced fuel supply can occur, that is, an "acceleration hole” occurs because the promotion of the transition opening 19 starts from the previous zero delivery only with a delay.
  • the edge of the throttle valve 8 to the wall of the intake duct 3 in the idle position has a small gap with a maximum gap width of, for example, 0.2 to 0.3 mm, the throttle valve 8 in the idle position, that is, it does not completely close off the flow in the intake duct 3, but only throttles it.
  • the throttle valve 8 in the idle position There is then also a certain basic delivery of fuel or emulsion from the transition opening 19 and a corresponding air supply from the intake duct 3 in the idling position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

A carburetor with an idling system is designed so that the full pressure differential or gradient available between approximately ambient pressure and the vacuum in the intake tube is employed for producing a critical pressure ratio of a supersonic flow in a laval nozzle. To make this possible, a fuel air emulsion formed with primary air is introduced from a mixing duct via a constricted orifice of a tubular nozzle at a bore constriction, at which there is always a sonic velocity when there is a critical and supercritical pressure ratio, into the secondary air flow where it is superfinely atomized in the secondary air flow, with a maximum velocity differential, aided by subsequent pressure surges. At least at a point far into the partial load range of operation, the idling system produces a homogeneous mixture which is homogeneously distributed in the intake tube with a practically molecular state of division so that it is even supplied to all cylinders of the engine and completely combusted with a minimum production of contaminants.

Description

Die Erfindung bezieht sich auf einen Vergaser für Verbrennungsmotoren gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a carburetor for internal combustion engines according to the preamble of claim 1.

Ein Vergaser dieser Art ist aus der DE-A-2 053 991 bekannt. Dieser bekannte Vergaser weist wenigstens einen einenends zur Atmosphäre offenen und anderenends mit einem Ansaugrohr eines Ansaugsystems des Verbrennungsmotors verbundenen Ansaugkanal auf, in dem eine in ihrer Leerlaufstellung den Ansaugkanal wenigstens weitgehend abschließende Drosselklappe angeordnet ist. Ferner ist eine die Drosselklappe umgehende Leerlaufkanalanordnung vorgesehen, die eine (nicht näher gezeigte) Brennstoffleitung zur Zufuhr von Brennstoff sowie eine Einrichtung in Form einer Rohrdüse aufweist, die zur Zufuhr von Verbrennungsluft zur Bildung des gewünschten Brennstoff-Luft-Gemisches dient, wobei der Brennstoff durch Unterdruck der am Austritt des Brennstoffes in Form einer Brennstoff-LuftEmulsion aus einem Brennstoffkanal vorliegenden Verbrennungsluft gefördert wird. Stromauf der Austrittsmündung der Leerlaufkanalanordnung ist innerhalb des Ansaugkanals eine Querschnittsverengung angeordnet, mittels der eine Überschallströmung erzeugt wird. Der Brennstoffkanal ist schließlich als im Verbrennungsluftstrom liegendes Brennstoffrohr mit endseitiger Rohrdüse ausgebildet, deren Mündung im Bereich der Querschnittsverengung angeordnet ist.A carburetor of this type is known from DE-A-2 053 991. This known carburetor has at least one intake duct open at one end to the atmosphere and at the other end connected to an intake pipe of an intake system of the internal combustion engine, in which a throttle valve which at least largely closes the intake duct is arranged in its idle position. Furthermore, an idle channel arrangement bypassing the throttle valve is provided, which has a fuel line (not shown in more detail) for supplying fuel and a device in the form of a tubular nozzle which serves for supplying combustion air to form the desired fuel-air mixture, the fuel being passed through Negative pressure that is conveyed at the outlet of the fuel in the form of a fuel-air emulsion from a combustion duct combustion air. A cross-sectional constriction, by means of which a supersonic flow is generated, is arranged upstream of the outlet mouth of the idling duct arrangement. Finally, the fuel channel is designed as a fuel pipe lying in the combustion air flow with an end-side pipe nozzle, the mouth of which is arranged in the region of the cross-sectional constriction.

Gegenstand der US-A-1 831 056 ist ein Vergaser, der eine Drosseleinrichtung für Leerlaufbrennstoff aufweist, die stromauf einer Luftöffnung angeordnet ist. Auch bei diesem bekannten Vergaser wird eine Überschallströmung mittels einer Querschnittsverengung erzeugt, die hier jedoch mittels einer Einstellschraube hervorgerufen wird.The subject of US-A-1 831 056 is a carburetor which has a throttle device for idle fuel, which is arranged upstream of an air opening. In this known carburetor, too, a supersonic flow is generated by means of a cross-sectional constriction, which, however, is brought about here by means of an adjusting screw.

Untersuchungen haben gezeigt, daß bei dem gattungsgemäßen Vergaser (siehe DE-A-2 053 991) Betriebsstörungen dadurch auftreten können, daß u.U. kleine Dampfblasen aus dem Brennstoffrohr zurückstreben, wobei sich deren Übertritt in die Brennstoffleitung unter Koagulation zu großen Dampfblasen störend auswirkt. Hierdurch kann die kontinuierliche Brennstofförderung empfindlich gestört werden, was schlimmstenfalls sogar zu einem Stillstand des Verbrennungsmotors führen könnte.Studies have shown that in the case of the generic carburetor (see DE-A-2 053 991), malfunctions can occur due to the fact that Small vapor bubbles strive back from the fuel pipe, their passage into the fuel line with coagulation to large vapor bubbles having a disruptive effect. As a result, the continuous fuel delivery can be disturbed, which in the worst case could even lead to the combustion engine coming to a standstill.

Der Erfindung liegt die Aufgabe zugrunde, einen Vergaser gemäß dem Oberbegriff des Anspruchs 1 derart weiterzubilden, daß unter allen Umständen eine kontinuierliche Brennstofförderung gewährleistet ist.The invention has for its object to develop a carburetor according to the preamble of claim 1 such that continuous fuel delivery is guaranteed under all circumstances.

Diese Aufgabe wird erfindungsgemäß mit den im Kennzeichnungsteil des Anspruchs 1 angegebenen Maßnahmen gelöst.This object is achieved with the measures specified in the characterizing part of claim 1.

Indem erfindungsgemaß die Austrittsöffnung eines Anschlußstutzens der Brennstoffleitung unterhalb der Eintrittsöffnung des Brennstoffkanales angeordnet wird und indem ferner zwischen der Austrittsöffung des Anschlußstutzens und der Eintrittsöffnung des Brennstoffkanales eine ringförmige Fangkammer für Dampfblasen angeordnet wird, wird erreicht, daß etwa aus dem Brennstofrohr zurückstrebende kleinere Dampfblasen in der Fangkammer gefangen und dadurch an einem Übertritt in die tiefer gelegene Austrittsöffnung des Anschlußstutzens gehindert werden. Hierdurch wird die kontinuierliche Brennstofförderung unter keinen Umständen gestört, so daß ein Stillstand des Verbrennungsmotors ebenfalls ausgeschlossen ist.By arranging the outlet opening of a connecting piece of the fuel line below the inlet opening of the fuel channel and, furthermore, by arranging an annular collecting chamber for vapor bubbles between the outlet opening of the connecting pipe and the inlet opening of the fuel channel, it is achieved that smaller vapor bubbles, for example, striving back from the fuel pipe in the collecting chamber caught and thereby at a transition into the lower-lying outlet opening of the connecting piece be prevented. As a result, the continuous fuel delivery is not disturbed under any circumstances, so that a standstill of the internal combustion engine is also excluded.

Die erfindungsgemäßen Maßnahmen lassen sich gemäß Anspruch 2 darüber hinaus in vorteilhafter Weise mit einer kompakten Bauweise in Einklang bringen, indem die Achse des Anschlußstutzens so gewählt wird, daß sie quer zur Achse des Brennstoffkanals liegt.The measures according to the invention can furthermore be advantageously combined with a compact design by selecting the axis of the connecting piece so that it lies transversely to the axis of the fuel channel.

Weitere vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der übrigen Unteransprüche.Further advantageous developments of the invention are the subject of the remaining subclaims.

Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung einer Ausführungsform anhand der Zeichnung.Further details, features and advantages of the invention result from the following description of an embodiment with reference to the drawing.

Es zeigt

Fig. 1
in schematisch vereinfachter Darstellung einen Schnitt durch einen erfindungsgemäßen Vergaser,
Fig. 2
einen Längsschnitt durch den Austrittsbereich der Leerlaufkanalanordnung des Vergasers gemäß Fig. 1 und
Fig. 3
eine teilweise im Schnitt gehaltene Draufsicht auf die Anordnung gemäß Fig. 2.
It shows
Fig. 1
in a schematically simplified representation, a section through a carburetor according to the invention,
Fig. 2
a longitudinal section through the outlet region of the idle channel arrangement of the carburetor according to FIG. 1 and
Fig. 3
3 shows a top view, partly in section, of the arrangement according to FIG. 2.

Der in Fig. 1 veranschaulichte Vergaser weist in der üblichen Weise einen Luftfilter 1, ein Vergasergehäuse 2 und dieses durchsetzend einen Ansaugkanal 3 auf, der Umgebungsluft durch den Luftfilter 1 hindurch ansaugt. Das Vergasergehäuse 2 weist eine Grundplatte 4 zur Verbindung mit einem Ansaugrohr 5 eines Ansaugsystemes 6 auf, welches in der üblichen Weise die Zylinder des Verbrennungsmotors mit Brennstoff-Luftgemisch versorgt und auf dem die Grundplatte 4 über eine übliche Dichtung 7 aufgesetzt ist.The carburetor illustrated in FIG. 1 has, in the usual way, an air filter 1, a carburetor housing 2 and, penetrating this, an intake duct 3 which draws ambient air through the air filter 1. The Carburetor housing 2 has a base plate 4 for connection to an intake pipe 5 of an intake system 6, which supplies the cylinders of the internal combustion engine with fuel-air mixture in the usual way and on which the base plate 4 is fitted via a conventional seal 7.

Im Ansaugkanal 3 ist eine Drosselklappe 8 angeordnet, welche in Leerlaufstellung den Ansaugkanal 3 praktisch vollständig abschließt.A throttle valve 8 is arranged in the intake duct 3 and practically completely closes the intake duct 3 in the idle position.

Der veranschaulichte Vergaser ist im Beispielsfall als Registervergaser ausgeführt und weist einen Ansaugkanal 9 der zweiten Stufe auf, dessen Drosselklappe 10 in der üblichen Weise bei Erreichen höherer Drehzahlen zu öffnen beginnt. Das Vergasergehäuse 2 ist in der üblichen Weise als Gußteil ausgebildet und besteht neben der Grundplatte 4 aus zwei übereinandergesetzten Gehäuseteilen 11 und 12, wobei der Schnitt in der Darstellung gemäß Fig. 1 im Bereich der Grundplatte 4 entlang den Achsen der Ansaugkanäle 3 und 9, im Bereich der Gehäuseteile 11 und 12 hingegen in einer davorliegenden Ebene durch eine Schwimmerkammer 14 geführt ist.The illustrated carburetor is designed as a register carburetor in the example and has an intake duct 9 of the second stage, the throttle valve 10 of which begins to open in the usual manner when higher speeds are reached. The carburetor housing 2 is formed in the usual manner as a cast part and, in addition to the base plate 4, consists of two stacked housing parts 11 and 12, the section in the illustration according to FIG. 1 in the region of the base plate 4 along the axes of the intake ducts 3 and 9, in Area of the housing parts 11 and 12, however, is guided through a float chamber 14 in a plane lying in front of it.

Brennstoff wird unter Steuerung durch einen Schwimmer 13 der Schwimmerkammer 14 zugeführt, von wo der Brennstoff über eine Brennstoffleitung 15 in Form eines frei neben dem Vergasergehäuse 2 angeordneten Rohres oder Schlauches entnommen wird. Im Kurbelgehäuse und im gesamten Motorblock anfallender Ölnebel wird über eine Zylinderkopf-Entlüftungsleitung 16 dem Luftfilter 1 zugeführt. Die Zylinderkopf-Entlüftungsleitung 16 führt im Beispielsfalle nicht unmittelbar zum Luftfilter 1, sondern in eine an das Luftfilter 1 angeschlossene Luftleitung 17. Die Brennstoffleitung 15 und die Luftleitung 17 bilden Teil einer insgesamt mit 18 bezeichneten Leerlaufkanalanordnung, mit der Brennstoff und Luft einem Leerlaufsystem zugeführt werden können, welches stromab der Drosselklappe 8 in den Ansaugkanal 3 mündet.Fuel is supplied to the float chamber 14 under the control of a float 13, from where the fuel is removed via a fuel line 15 in the form of a tube or hose freely arranged next to the carburetor housing 2. Oil mist accumulating in the crankcase and in the entire engine block is supplied to the air filter 1 via a cylinder head ventilation line 16. In the example, the cylinder head ventilation line 16 does not lead directly to the air filter 1, but into an air line 17 connected to the air filter 1. The fuel line 15 and the air line 17 form part of an idle channel arrangement, generally designated 18, with which fuel and air form an idle system can be supplied, which opens downstream of the throttle valve 8 in the intake duct 3.

Die übrigen Einrichtungen des Vergasers, wie etwa eine Beschleunigungspumpe usw., sind konventioneller Natur und bedürfen daher hier keiner näheren Erläuterung. Zu betonen ist jedoch, daß die Drosselklappe 8 bei einem erfindungsgemäßen Vergaser im Leerlauf in einer Stellung stehen muß, in der sie den Ansaugkanal 3 der ersten Stufe praktisch vollständig abschließt, so daß keine merkliche Luftströmung an der Drosselklappe 8 vorbei möglich ist, und auch sonstige eine Falschluftzufuhr ermöglichende Kanäle fehlen oder verschlossen sind. Im Bereich der Ränder der Drosselklappe 8 in ihrer Leerlaufstellung können in der üblichen Weise Übergangsöffnungen 19 vorgesehen sein, wenn nicht ein anderes Übergangssystem für die Gemischversorgung im Übergangsbereich zwischen Leerlauf und Teillast Verwendung findet.The other devices of the carburetor, such as an acceleration pump, etc., are conventional in nature and therefore do not require any further explanation here. It should be emphasized, however, that the throttle valve 8 in a carburetor according to the invention must be idling in a position in which it closes the intake duct 3 of the first stage practically completely, so that no noticeable air flow past the throttle valve 8 is possible, and also others channels that allow the supply of false air are missing or are closed. In the area of the edges of the throttle valve 8 in its idle position, transition openings 19 can be provided in the usual way, unless another transition system is used for the mixture supply in the transition area between idle and part load.

Der mit 20 bezeichnete Austrittsbereich der Leerlaufkanalanordnung 18 ist in den Fig. 2 und 3 näher veranschaulicht. Wie daraus ersichtlich ist, endet die Brennstoffleitung 15 in einem Anschlußstutzen 21 und die Luftleitung 17 in einem Anschlußstutzen 22, welche an einem Gehäuse 23 gelagert sind. Das Gehäuse 23 besteht im wesentlichen aus einem Düsenrohr 24 zur Bildung eines Zufuhrkanales 25 für Verbrennungsluft um ein Brennstoffrohr 26 herum, welches einen Brennstoffkanal 27 bildet. Weiter besteht das Gehäuse 23 im Anschluß an einen im wesentlichen durch das Düsenrohr 24 gebildeten Lagerabschnitt 28 zur Aufnahme in der Vergaserwand 2 aus einem rückwärtigen Gehäusekörper 29 im Bereich der Anschlußstutzen 21 und 22 mit Stirnflächen 30 benachbart zum Lagerabschnitt 28 sowie einem Anschlußteil 31 aus schlecht wärmeleitendem Material, im Beispielsfalle Kunststoff, während alle anderen Elemente aus Metall gefertigt sind.The exit region of the idle channel arrangement 18, designated 20, is illustrated in more detail in FIGS. 2 and 3. As can be seen from this, the fuel line 15 ends in a connecting piece 21 and the air line 17 in a connecting piece 22, which are mounted on a housing 23. The housing 23 consists essentially of a nozzle pipe 24 for forming a supply duct 25 for combustion air around a fuel pipe 26, which forms a fuel duct 27. Furthermore, the housing 23 is connected to a bearing section 28 essentially formed by the nozzle tube 24 for receiving in the carburetor wall 2 from a rear housing body 29 in the area of the connecting pieces 21 and 22 with end faces 30 adjacent to the bearing section 28 and a connecting part 31 made of poorly heat-conducting Material, in the example plastic, while all other elements are made of metal.

Das Brennstoffrohr 26 weist an seinem vorderen Ende eine Rohrdüse 32 mit einer Querschnittsverengung 33 mit einer Querschnittsfläche von im Beispielsfalle 0,12 mm² auf, welche zugleich eine Mündung 34 für den Austritt von Brennstoff bzw. Emulsion bildet. In seinem rückwärtigen Bereich ist das Brennstoffrohr 26 an seiner Oberseite mit im Beispielsfalle zwei im axialen Abstand voneinander liegenden runden Öffnungen 35 mit einem Durchmesser von 0,5 mm bzw. 0,6 mm, also einer Gesamtquerschnittsfläche von ca. 0,45 mm², versehen, welche der das Brennstoffrohr 26 umströmenden Luft einen Zutritt zum Brennstoffkanal 27 gestatten, so daß dort eine Brennstoffemulsion gebildet wird. Stromauf der Öffnungen 35 ist eine Vordrossel 36 angeordnet, die im Beispielsfalle die Form einer Querschnittsverengung 37 mit einer Querschnittsfläche von 0,12 mm² aufweist.The fuel pipe 26 has at its front end a pipe nozzle 32 with a cross-sectional constriction 33 with a cross-sectional area of 0.12 mm² in the example, which at the same time forms an orifice 34 for the exit of fuel or emulsion. In its rear area, the fuel tube 26 is provided on its top side with two round openings 35 with a diameter of 0.5 mm or 0.6 mm, ie a total cross-sectional area of approximately 0.45 mm 2, which are axially spaced from one another , which allow the air flowing around the fuel pipe 26 to access the fuel channel 27, so that a fuel emulsion is formed there. A pre-throttle 36 is arranged upstream of the openings 35 and, in the example, has the shape of a cross-sectional constriction 37 with a cross-sectional area of 0.12 mm 2.

Der Brennstoffkanal 27 mündet mit einer Eintrittsöffnung 38 in eine Fangkammer 39, durch welche hindurch der Anschlußstutzen 21 der Brennstoffleitung 15 ragt, und die in dem Anschlußteil 31 aus Kunststoff herausgearbeitet ist. Die mit 40 bezeichnete Austrittsöffnung des Anschlußstutzens 21 liegt dabei tiefer als die Unterkante der Eintrittscffnung 38 des Brennstoffkanales 27 und damit auch unterhalb der Fangkammer 39, so daß bei der Zufuhr von Brennstoff aus der Austrittsöffnung 40 des Anschlußstutzens 21 über die Fangkammer 39 in die Eintrittsöffnung 38 des Brennstoffkanales 27 hinein ein siphonartiger Effekt entsteht.The fuel channel 27 opens with an inlet opening 38 into a catch chamber 39, through which the connecting piece 21 of the fuel line 15 protrudes, and which is made of plastic in the connecting part 31. The outlet opening of the connection piece 21, designated 40, lies deeper than the lower edge of the inlet opening 38 of the fuel channel 27 and thus also below the catch chamber 39, so that when fuel is supplied from the outlet opening 40 of the connection piece 21 via the catch chamber 39 into the inlet opening 38 of the fuel channel 27 creates a siphon-like effect.

Die Rohrdüse 32 mit der Querschnittsverengung 33 des Brennstoffrohxes 26 liegt im Bereich einer Querschnittsverengung 41 stromauf der mit 42 bezeichneten Austrittsmündung der Leerlaufkanalanordnung 18 in den Ansaugkanal 3 hinein. Die Querschnittsverengung 41 ist dabei nach Art einer konvergierenden-divergierenden Lavaldüse ausgebildet, so daß bei Überschreiten des kritischen Druckverhältnisses zwischen den Ebenen A und B in der Querschnittsverengung 41 Strömung mit Schallgeschwindigkeit und im anschließenden leicht divergierenden Teil des Düsenrohres 24 Überschallströmung vorliegt, bis eine Ablösung und Strömungsumschlag erfolgen. Dies ist bei überkritischem Druckverhältnis spätestens in Ebene B der Fall, also in der Ebene der Austrittsmündung 42. Die Querschnittsverengung 41 weist bei Verwendung für einen Motor mit einem Hubraum von 2,81 vorzugsweise eine freie Querschnittsfläche von ca. 16 mm² auf.The pipe nozzle 32 with the cross-sectional constriction 33 of the fuel tube 26 lies in the region of a cross-sectional constriction 41 upstream of the outlet opening of the idle-channel arrangement 18, designated 42, into the intake duct 3. The cross-sectional constriction 41 is designed in the manner of a converging-diverging Laval nozzle, so that when the critical pressure ratio is exceeded there is a supersonic flow between the levels A and B in the cross-sectional constriction 41 flow at the speed of sound and in the subsequent slightly divergent part of the nozzle tube 24 until separation and flow change take place. In the case of a supercritical pressure ratio, this is the case at the latest in level B, that is, in the level of the outlet orifice 42. When used for an engine with a displacement of 2.81, the cross-sectional constriction 41 preferably has a free cross-sectional area of approximately 16 mm 2.

Das Brennstoffrohr 26 und das Düsenrohr 24 liegen konzentrisch um eine Achse 43, welche die quer dazu liegende Achse 44 des Anschlußstutzens 21 der Brennstoffleitung 15 schneidet. Auch die Achse 45 des Anschlußstutzens 22 der Luftleitung 17 liegt quer zur Achse 43, braucht diese jedoch nicht zu schneiden.The fuel pipe 26 and the nozzle pipe 24 are concentric about an axis 43 which intersects the transverse axis 44 of the connecting piece 21 of the fuel line 15. The axis 45 of the connecting piece 22 of the air line 17 is transverse to the axis 43, but does not need to cut it.

Wie aus Fig. 3 ersichtlich ist, ist das Anschlußteil 31 zusammen mit dem Brennstoffrohr 26 unter entsprechender Schwenkung des Anschlußstutzens 21 im Gehäusekörper 29 drehbeweglich gelagert, wozu der Anschlußstutzen 21 in einem Schlitz 46 des Gehäusekörpers 29 geführt ist. Die Achse 47 des Schlitzes 46 liegt nicht senkrecht, sondern schräg zur Achse 43, so daß die Drehbewegung des Anschlußteiles 31 und des Brennstoffrohres 26 unter Schwenkung des Anschlußstutzens 21 auch zu einer Axialbewegung des Brennstoffrohres 26 führt. Hierdurch kann die exakte Lage der Mündung 34 der Rohrdüse 32 relativ zur Querschnittsverengung 41 fein den jeweiligen Bedürfnissen entsprechend eingestellt werden. Im Beispielsfalle möge die Länge des Schlitzes 46 einen Verdrehwinkel des Anschlußteiles 31 von 30° zulassen und in einem Winkel von 13° schräg zur Achse 43 gestellt sein, so daß sich ein Verstellweg in der Größenordnung eines Millimeters ergibt.As can be seen from FIG. 3, the connecting part 31, together with the fuel pipe 26, is rotatably mounted in the housing body 29 with a corresponding pivoting of the connecting piece 21, for which purpose the connecting piece 21 is guided in a slot 46 in the housing body 29. The axis 47 of the slot 46 is not perpendicular, but at an angle to the axis 43, so that the rotational movement of the connecting part 31 and the fuel tube 26 while pivoting the connecting piece 21 also leads to an axial movement of the fuel tube 26. As a result, the exact position of the mouth 34 of the tubular nozzle 32 relative to the cross-sectional constriction 41 can be finely adjusted to the respective requirements. In the example, the length of the slot 46 may allow an angle of rotation of the connecting part 31 of 30 ° and be inclined at an angle of 13 ° to the axis 43, so that there is an adjustment path of the order of one millimeter.

Zur Montage in der in Fig. 1 veranschaulichten Stellung kann das gesamte Düsenrohr 24 in eine entsprechende Bohrung des Vergasergehäuses 2 bis zum Anschlag an die vorderen Stirnflächen 30 des Gehäusekörpers 29 eingesetzt werden. Wie bereits in Fig. 1 angedeutet ist, kann die Achse 43 dabei um einen Winkel α gegenüber der Horizontalen geneigt sein, wobei α zwischen etwa 0° und 30° liegen kann und im Beispielsfalle infolge der konstruktiven Beschränkung durch die Bauhöhe der Grundplatte 4 bei 10° liegen möge. Ähnlich, jedoch zeichnerisch nicht veranschaulicht, braucht die Achse 43 die Mittelachse des Ansaugkanales 3 nicht zu schneiden, sondern kann eine Schrägstellung der Achse 43 weg von der Radialen derart erfolgen, daß der Massenstromaustritt aus der Austrittsmündung 42 mehr tangential in den Innenraum des Ansaugrohres 3 gerichtet ist. Ein solcher Ausstellwinkel von der Radialen kann zwischen 15° und 40° liegen, und möge im Beispielsfalle bei 20° liegen, gemessen an dem in Fig. 1 mit 48 bezeichneten Schnittpunkt der Achse 43 mit der Verlängerung der Mantelfläche des Ansaugkanals 3.For assembly in the position illustrated in FIG. 1, the entire nozzle tube 24 can be inserted into a corresponding bore in the carburetor housing 2 up to the stop on the front end faces 30 of the housing body 29. As already indicated in FIG. 1, the axis 43 can be inclined by an angle α with respect to the horizontal, wherein α can be between approximately 0 ° and 30 ° and, in the example, due to the design limitation due to the height of the base plate 4 at 10 ° may be. Similarly, but not illustrated in the drawing, the axis 43 does not need to intersect the central axis of the intake duct 3, but an inclination of the axis 43 away from the radial can take place in such a way that the mass flow exit from the outlet opening 42 is directed more tangentially into the interior of the intake pipe 3 is. Such a flare angle from the radial can be between 15 ° and 40 °, and in the example may be 20 °, measured at the intersection of the axis 43 in FIG. 1 with the extension of the lateral surface of the intake duct 3.

Im Leerlaufbetrieb ist die Drosselklappe 8 geschlossen, so daß der sich im Ansaugkanal 3 stromab der Drosselklappe 8 einstellende Unterdruck durch die Ansaughübe der Zylinder in vollem Umfange auf die Austrittsmündung 42 und durch diese hindurch in die Leerlaufkanalanordnung 18 hinein wirkt. Hierdurch wird zunächst einmal Luft durch die Luftleitung 17 hindurch gesaugt, wobei der in der Zylinderkopf-Entlüftungsleitung 16 vorliegende Ölnebel mit angesaugt wird, ergänzt durch Luft aus dem Bereich des Luftfilters 1. Diese Luftströmung hat nur geringen Druckabfall, so daß in der Ebene A annähernd noch Atmosphärendruck vorliegt, während im Bereich des Ansaugkanales 3 an der Austrittsmündung 42 ein Druck von beispielsweise lediglich 0,4 bar vorliegt. Hierdurch ist das kritische Druckverhältnis zwischen den Ebenen A und B deutlich überschritten, so daß sich in der Ebene der Querschnittsverengung 41 Schallströmung und im Anschluß daran Überschallströmung einstellt.In idle operation, the throttle valve 8 is closed, so that the negative pressure which arises in the intake duct 3 downstream of the throttle valve 8, through the intake strokes of the cylinders, acts in full on the outlet mouth 42 and through it into the idle duct arrangement 18. As a result, air is initially sucked through the air line 17, the oil mist present in the cylinder head ventilation line 16 also being sucked in, supplemented by air from the area of the air filter 1. This air flow has only a slight pressure drop, so that in plane A approximately Atmospheric pressure is still present, while in the area of the intake duct 3 at the outlet mouth 42 there is a pressure of, for example, only 0.4 bar. This is the critical pressure ratio between levels A and B. significantly exceeded, so that in the plane of cross-sectional constriction 41 sound flow and then supersonic flow occurs.

Durch den starken Druckabfall im Eintrittsbereich der Querschnittsverengung 41 durch Umwandlung von statischem Druck in dynamischen Druck der Luftströmung erfolgt über die Mündung 34 der Rohrdüse 32 hindurch eine entsprechend starke Saugwirkung auf dort anstehenden Brennstoff. Dieser wird daher durch die Querschnittsverengung 33 hindurch dosiert der Luftströmung zugeführt. Zugleich aber wird aus dem im Anschlußstutzen 22 vorliegenden Luftstrom über die Öffnungen 35 Primärluft stromauf der Rohrdüse 32 in das Brennstoffrohr 26 eingesaugt, und bildet mit dem im Brennstoffrohr vorliegenden Brennstoff eine Brennstoff-Luftemulsion. Daher tritt der Brennstoff bei der Mündung 34 in Form einer solchen Emulsion in den im Zufuhrkanal 25 strömenden Verbrennungsluftstrom ein, und zwar an einer Stelle, an der infolge Schallgeschwindigkeit des Verbrennungsluftstromes ein extrem großer Geschwindigkeitsunterschied vorliegt. Hierdurch wird der mit viel geringerer Geschwindigkeit austretende Brennstoff in feinste Tröpfchen zerfetzt und zerstäubt, so daß stromab der Querschnittsverengung 41 ein Brennstoff-Luftgemisch des gewünschten Lambda-Wertes in zumindest an der Austrittsmündung 42 sehr homogener Verteilung vorliegt. Spätestens an der Austrittsmündung 42 erfolgt eine weitere desintegrierende Einwirkung auf etwa noch vorhandene größere Tröpfchen durch den dortigen Druckstoß beim Strömungsumschlag auf Unterschall. In der aus Fig. 1 ersichtlichen Weise tritt daher mit nach unten und zur Seite weisender Richtung ein Massestrom aus der Austrittsmündung 42 in das Ansaugrohr 3 ein, der mit hoher Geschwindigkeit durch das Ansaugrohr 3 wirbelt und dieses sehr schnell homogen mit feinstverteiltem Brennstoff von annähernd molekularer Partikelgröße anfüllt.Due to the strong pressure drop in the inlet area of the cross-sectional constriction 41 by converting static pressure into dynamic pressure of the air flow, a correspondingly strong suction effect on the fuel present there takes place via the mouth 34 of the tubular nozzle 32. This is therefore metered through the cross-sectional constriction 33 to the air flow. At the same time, however, primary air is drawn into the fuel pipe 26 upstream of the pipe nozzle 32 from the air flow present in the connecting piece 22 and forms a fuel-air emulsion with the fuel present in the fuel pipe. Therefore, the fuel at the mouth 34 in the form of such an emulsion enters the combustion air flow flowing in the supply duct 25, at a point where there is an extremely large speed difference due to the speed of sound of the combustion air flow. As a result, the fuel escaping at a much slower speed is shredded and atomized into very fine droplets, so that a fuel-air mixture of the desired lambda value is present downstream of the cross-sectional constriction 41 in a very homogeneous distribution at least at the outlet orifice 42. At the latest at the outlet mouth 42 there is a further disintegrating action on any larger droplets that may still be present due to the pressure surge there when the flow changes to subsonic. In the manner shown in FIG. 1, a mass flow from the outlet mouth 42 enters the intake pipe 3 with the direction pointing downward and to the side, which swirls through the intake pipe 3 at high speed and this very quickly homogeneously with finely divided fuel of approximately molecular weight Filled particle size.

Dieser Zustand bleibt solange unverändert aufrechterhalten, als zwischen den Ebenen A und B das kritische oder ein überkritisches Druckverhältnis vorliegen, wobei auch stark überkritische Druckverhältnisse an den Zerteilungsbedingungen im Bereich der Querschnittsverengung 41 kaum etwas ändern, da dort immer Schallgeschwindigkeit vorliegt. Für den Fall, daß etwa bei Vollast oder in instationären Phasen wie bei Beschleunigung das kritische Druckverhältnis unterschritten wird, arbeitet der Bereich des Düsenrohres 24 zwischen den Ebenen A und B als Venturirohr, wobei jedoch wiederum die Zufuhr des Brennstoffes an der Stelle der maximalen Geschwindigkeitsdifferenz zwischen dem Verbrennungsluftstrom und dem Brennstoff erfolgt und somit auch unter diesen Bedingungen noch optimale Zerstäubung erfolgt, obwohl diese bei solchen Lastzuständen von geringerer Bedeutung ist. Wesentlich aber ist, daß unter stationären Bedingungen jedenfalls bis weit in den Teillastbereich hinein ein kritisches Druckverhältnis vorliegt und so unter gleichbleibenden stabilen Bedingungen das Leerlaufgemisch zugeführt wird. Diesem ist auch, in der veranschaulichten Weise direkt oder über das Luftfilter 1, der Ölnebel aus der Zylinderkopf-Entlüftungsleitung 16 beigegeben, so daß dieser auf energiesparende und schadstoffarme Weise mit entsorgt wird.This state remains unchanged as long as there is a critical or a supercritical pressure ratio between levels A and B, with even highly supercritical pressure conditions hardly changing anything at the division conditions in the area of the cross-sectional constriction 41, since there is always the speed of sound. In the event that the critical pressure ratio is undershot, for example at full load or in unsteady phases such as acceleration, the area of the nozzle tube 24 between levels A and B functions as a Venturi tube, but again the supply of fuel at the point of the maximum speed difference between the combustion air flow and the fuel take place and thus optimal atomization takes place even under these conditions, although this is of lesser importance in such load conditions. It is essential, however, that under steady-state conditions there is in any case a critical pressure ratio well into the partial load range, and so the idling mixture is supplied under constant stable conditions. This is also, in the manner illustrated, directly or via the air filter 1, the oil mist from the cylinder head ventilation line 16 is added so that it is disposed of in an energy-saving and low-pollutant manner.

Da der Brennstoff über die Brennstoffleitung 15 ohne besondere Druckverluste herangeführt wird, kann es zweckmäßig sein, den Unterdruck im Brennstoffkanal 27 im Bereich der Öffnungen 35 zu erhöhen, um den gewünschten Eintrag von Primärluft zu gewährleisten. Hierzu dient die Vordrossel 36, wobei die Querschnittsfläche der dortigen Querschnittsverengung 37 einerseits dem dort gewünschten Druckabfall und andererseits dem Gesamtdruckverlust bis zur Mündung 34 zur Erzielung einer gewünschten Ausströmgeschwindigkeit der Emulsion angepaßt ist. Typischerweise beträgt die Querschnittsfläche der Querschnittsverengung 37 je nach Hubraum des zu versorgenden Motors zwischen 0,03 mm² und 0,3 mm², wobei im Hinblick auch auf die gewählte Querschnittsfläche von 0,12 mm² der von Emulsion durchströmten Querschnittsverengung 33 im Beispielsfalle eine Querschnittsfläche von 0,12 mm² für die alleine von Brennstoff durchströmte Querschnittsverengung 37 gewählt ist. Bei der gewählten Gesamtquerschnittsfläche der Öffnungen 35 von ca. 0,45 mm² ergibt sich unter der Einwirkung der durch die Querschnittsverengung 41 stets mit Schallgeschwindigkeit strömenden Verbrennungsluft eine optimale Bildung und Förderung der Emulsion durch die Rohrdüse 23 hindurch. Eine Querschnittsbemessung der Querschnittsverengung 41 mit ca. 16 mm² ergibt dabei eine Verbrennungsluftzufuhr zum geförderten Brennstoff in einer solchen Menge, welche ein gut zündfähiges Gemisch in einer solchen Menge ergibt, welche bei einem 2,81 Motor zu einer Leerlaufdrehzahl von um 600 bis 700 U/min führt.Since the fuel is supplied via the fuel line 15 without any particular pressure losses, it can be expedient to increase the negative pressure in the fuel channel 27 in the region of the openings 35 in order to ensure the desired entry of primary air. For this purpose, the pre-throttle 36 is used, the cross-sectional area of the cross-sectional constriction 37 there being adapted on the one hand to the pressure drop desired there and on the other hand to the total pressure loss as far as the mouth 34 in order to achieve a desired outflow velocity of the emulsion. The cross-sectional area of the cross-sectional constriction is typically 37 depending on the displacement of the engine to be supplied between 0.03 mm² and 0.3 mm², with a view to the selected cross-sectional area of 0.12 mm² of the cross-section constriction 33 through which the emulsion flows, in the example case a cross-sectional area of 0.12 mm² for the individual cross-sectional constriction 37 through which fuel flows is selected. With the selected total cross-sectional area of the openings 35 of approximately 0.45 mm 2, under the action of the combustion air flowing through the cross-sectional constriction 41, which always flows at the speed of sound, the emulsion is optimally formed and conveyed through the tubular nozzle 23. A cross-sectional dimensioning of the cross-sectional constriction 41 with approx. 16 mm 2 results in a combustion air supply to the fuel conveyed in such an amount, which results in a readily ignitable mixture in such an amount that, for a 2.81 engine, at an idling speed of around 600 to 700 U / min leads.

Die drosselnden Querschnittsverengungen 33 und 37 können nicht verhindern, daß bei Betriebsunterbrechung durch das Heberprinzip Brennstoff aus der Schwimmerkammer 14 nachgefördert würde, da stromauf des Anschlußstutzens 21 keinerlei Luftzutritt in die Brennstoffleitung 15 möglich ist. Daher ist die Brennstoffleitung 15 mit einem Absperrorgan 49 versehen, welches beispielsweise unterhalb eines Druckes von 4 cm Benzinsäule in der Brennstoffleitung 15 letztere automatisch abschließt. Somit kann allenfalls der stromab des Absperrorgans 49 stehende Brennstoff nachtropfen, dessen Volumen minimiert werden kann und der durch den vollständigen Abschluß in Höhe des Absperrorgans 49 überdies allenfalls schwer und langsam abfließt; auf diese Weise kann die nachtropfende Brennstoffmenge bei der veranschaulichten Ausführungsform gegebenenfalls auf den Inhalt des Brennstoffrohres 26 stromab der Öffnungen 35 begrenzt werden.The throttling cross-sectional constrictions 33 and 37 cannot prevent fuel from being replenished from the float chamber 14 due to the lifter principle being interrupted, since upstream of the connecting piece 21 no air access into the fuel line 15 is possible. Therefore, the fuel line 15 is provided with a shut-off element 49 which, for example, automatically closes the fuel line 15 below a pressure of 4 cm of gasoline column. Thus, at most the fuel standing downstream of the shut-off device 49 can drip, the volume of which can be minimized and which, due to the complete closure at the level of the shut-off device 49, moreover flows slowly and with difficulty at most; in this way, the amount of fuel dripping in the illustrated embodiment may be limited to the content of the fuel pipe 26 downstream of the openings 35.

Das Anschlußteil 31 aus schlecht wärmeleitendem Material verhindert starken Wärmeübergang zwischen der heißen Umfangswand des Gehäusekörpers 29 und dem Anschlußstutzen 21 sowie dem Brennstoffrohr 26, wobei zu bedenken ist, daß der Anschlußstutzen 21 mit seitlichem Spiel im Schlitz 46 angeordnet ist. Hierdurch kann die Kühlung des Brennstoffrohres 26 durch den umgebenden Verbrennungsluftstrom im Zufuhrkanal 25 und auch durch die durch die Öffnungen 35 hindurch eingetragene Primärluft auch im hinteren Bereich des Brennstoffrohres 26 wirksam bleiben, so daß dieses auch im Bereich der Eintrittsöffnung 38 relativ kühl bleibt.The connecting part 31 made of poorly heat-conducting material prevents strong heat transfer between the hot peripheral wall of the housing body 29 and the connecting piece 21 and the fuel pipe 26, wherein it should be borne in mind that the connecting piece 21 is arranged in the slot 46 with lateral play. As a result, the cooling of the fuel pipe 26 by the surrounding combustion air flow in the supply channel 25 and also by the primary air introduced through the openings 35 also remain effective in the rear region of the fuel pipe 26, so that this remains relatively cool in the region of the inlet opening 38.

Ein Übertritt von etwa dennoch im Brennstoffrohr 26 gebildeten Dampfblasen in die Brennstoffleitung 15 wird durch die Fangkammer 39 verhindert, da in Richtung der Brennstoffleitung 15 zurückstrebende Dampfbläschen an der Decke der Fangkammer 39 zurückgehalten werden, bis sie, etwa nach geringfügigem Anwachsen und stärkerem Hereinragen von oben in den Brennstoffstrom, wieder in das Brennstoffrohr 26 hineinbefördert und von dort zusammen mit dem Brennstoff bzw. die Emulsion aus der Mündung 34 mit ausgetragen werden, was zu keinerlei Störungen Anlaß gibt. Dadurch, daß die Strömungsquerschnitte der Brennstoffleitung 15, des Anschlußstutzens 21, der ringförmigen Fangkammer 39 und des Übertritts zwischen der Austrittsöffnung 40 und der Fangkammer 39 im wesentlichen gleich groß gehalten sind, ergibt sich eine störungsunempfindliche gleichförmige Strömung des Brennstoffs zwischen der Schwimmerkammer 14 und der Eintrittsöffnung 38 des Brennstoffrohres 26, die insbesondere bei relativ hoher Strömungsgeschwindigkeit durch einen kleinen Querschnitt hindurch ebenfalls einen nicht unwesentlichen Beitrag zur Vermeidung von Dampfblasenbildung auch unter ungünstigsten Verhältnissen leistet.The trapping chamber 39 prevents steam bubbles, which are nevertheless formed in the fuel pipe 26, from passing through, since steam bubbles striving in the direction of the fuel line 15 are retained on the ceiling of the trapping chamber 39 until, for example, after slight growth and greater protrusion from above into the fuel stream, conveyed back into the fuel pipe 26 and from there are discharged together with the fuel or the emulsion from the mouth 34, which gives no cause for interference. The fact that the flow cross-sections of the fuel line 15, the connecting piece 21, the annular catch chamber 39 and the transition between the outlet opening 40 and the catch chamber 39 are kept essentially the same, results in a trouble-free, uniform flow of fuel between the float chamber 14 and the inlet opening 38 of the fuel tube 26, which also makes a not insignificant contribution to avoiding the formation of vapor bubbles even under the most unfavorable conditions, in particular at a relatively high flow velocity through a small cross section.

Durch die geschilderte Ausführungsform ergeben sich die eingangs näher erläuterten Vorteile. Insbesondere ist von Bedeutung, daß durch den relativ hohen Druck im Bereich der Ebene A das kritische Druckverhältnis bis weit in den Teillastbereich hinein aufrechterhalten werden kann, mit der Folge konstanter Betriebsbedingungen des Leerlaufsystemes auch im Teillastbereich. Da auch im Teillastbereich eine entsprechende Förderung durch das Leerlaufsystem hindurch erfolgt, die einen durchaus merklichen Teil des insgesamt in den Zylindern zur Verfügung gestellten Brennstoff-Luftgemisches ausmachen kann, ergibt die optimale Aufbereitung jedenfalls dieses Teiles eine deutliche Absenkung des Verbrauchs und der Schadstoffe auch im Teillastbereich.Due to the described embodiment, the result advantages explained in more detail at the beginning. It is particularly important that the relatively high pressure in the area of level A enables the critical pressure ratio to be maintained well into the partial load range, with the consequence of constant operating conditions of the idling system even in the partial load range. Since the idling system also supports the part-load system, which can make up a noticeable part of the total fuel-air mixture available in the cylinders, the optimal preparation of this part results in a significant reduction in consumption and pollutants even in the part-load range .

Zur Erzielung maximalen Unterdrucks in der Leerlaufstellung kann die Drosselklappe 8 in dieser Stellung - ggf. bis auf durch Fertigungstoleranzen bedingte kleine Spalte - vollständig geschlossen sein. Diese Stellung der Drosselklappe 8 in der Leerlaufstellung wird auch bei den angegebenen Bemessungen der Öffnungen des Leerlaufsystems zugrundegelegt.In order to achieve maximum negative pressure in the idle position, the throttle valve 8 can be completely closed in this position - possibly except for small gaps caused by manufacturing tolerances. This position of the throttle valve 8 in the idle position is also used as a basis for the specified dimensions of the openings of the idle system.

Ein gewisses Problem kann sich jedoch dann ergeben, wenn die üblicherweise als achsparalleler Längsschlitz ausgebildete Übergangsöffnung 19 in dieser Stellung ebenfalls vollständig durch den Rand der Drosselklappe 8 vom Unterdruck unterhalb der Drosselklappe 8 abgeschlossen ist, da dann beim Übergang zum Teillastbereich eine instationäre Phase mit gegenüber dem Sollwert durch diese Last verminderte Brennstoffzufuhr auftreten kann, also ein "Beschleunigungsloch" auftritt, da die Förderung der Übergangsöffnung 19 ausgehend von der vorherigen Nullförderung erst verzögert einsetzt.A certain problem can arise, however, if the transition opening 19, which is usually designed as an axially parallel longitudinal slot, is also completely closed in this position by the edge of the throttle valve 8 from the negative pressure below the throttle valve 8, since then during the transition to the part-load range an unsteady phase with the Desired value due to this load reduced fuel supply can occur, that is, an "acceleration hole" occurs because the promotion of the transition opening 19 starts from the previous zero delivery only with a delay.

Zur Vermeidung derartiger instationärer Betriebszustände kann auch vorgesehen sein, daß der Rand der Drosselklappe 8 zur Wand des Ansaugkanales 3 in der Leerlaufstellung einen kleinen Spalt mit einer maximalen Spaltbreite von beispielsweise 0,2 bis 0,3 mm aufweist, die Drosselklappe 8 in der Leerlaufstellung also die Strömung im Ansaugkanal 3 nicht vollständig abschließt, sondern nur drosselt. Es erfolgt dann auch in der Leerlaufstellung eine gewisse Grundförderung vom Brennstoff bzw. Emulsion aus der Übergangsöffnung 19 und eine entsprechende Luftzufuhr aus dem Ansaugkanal 3. Bei entsprechender Kompensation dieser zusätzlichen Brennstoff- und Luftzufuhr durch entsprechende verminderte Brennstoff- und Luftzufuhr aus der Leerlaufkanalanordnung 18 ergeben sich somit dieselben Betriebsbedingungen in der Leerlaufstellung wie im oben erwähnten Beispielsfall.To avoid such transient operating states, it can also be provided that the edge of the throttle valve 8 to the wall of the intake duct 3 in the idle position has a small gap with a maximum gap width of, for example, 0.2 to 0.3 mm, the throttle valve 8 in the idle position, that is, it does not completely close off the flow in the intake duct 3, but only throttles it. There is then also a certain basic delivery of fuel or emulsion from the transition opening 19 and a corresponding air supply from the intake duct 3 in the idling position. With corresponding compensation of this additional fuel and air supply by a correspondingly reduced fuel and air supply from the idling duct arrangement 18 thus the same operating conditions in the idle position as in the example mentioned above.

Claims (17)

  1. A carburetor for an IC engine comprising
    - at least one intake duct (3) opening at one end into the atmosphere and connected at the other end with an intake pipe (5) of a manifold (6), and a throttle valve (8) located in said intake duct (3) so as to at least essentially shut off said intake duct (3) in an idling position, and
    - idling duct means (18) bypassing said throttle valve (8) and comprising a nozzle tube (24) with an outlet port which joins into said intake duct (3), a fuel line (15) and a fuel duct (27) connected therewith for fuel supply, and an air line (17) which is connected to said nozzle tube for the supply of combustion air and formation of a desired fuel/air mixture, wherein the fuel, which at said outlet port (34) from said fuel duct (27) has the form of a fuel/air emulsion, is transported by means of a low pressure of the combustion air present at said outlet port (34), and
    - a bore constriction (41) which is located upstream from the outlet orifice (42) inside said nozzle tube (24) for the production of a supersonic flow,
    - with said fuel duct (27) being in the form of a fuel tube (26) which is disposed within the combustion air flow and comprises a tubular nozzle (32) at its end, the outlet orifice (34) of which is positioned in the area of said bore constriction (41),
    characterized in that
    the primary air supply necessary for formation of the fuel/air emulsion joins into said fuel duct (27), that an annular trap chamber (39) for trapping vapor bubbles is provided between said fuel line (15) and said fuel duct (27), and that the outlet port (40) of a connector (21) of said fuel line (15) joins into said annular trap chamber (39) below the inlet port (38) of said fuel duct (27) which is provided inside said trap chamber (39).
  2. The carburetor as claimed in claim 1, characterized in that the axis of the connector (21) is arranged to be transverse relative to the axis (43) of the fuel duct (27).
  3. The carburetor as claimed in claim 1 or 2, characterized by a valve (49) in the fuel line (15) upstream from the fuel tube (26) for shutting off the fuel line (15) when operation of the carburetor is interrupted.
  4. The carburetor as claimed in one claims 1 to 3, characterized in that the air line (17) and/or the fuel line (15) are in the form of lines standing free of the side the carburetor housing (2).
  5. The carburetor as claimed in one of claims 1 to 4, characterized in that the connector (21) inside a connecting part (31) is made of a material which has low heat conductivity, particularly of a synthetic material.
  6. The carburetor as claimed in one of claims 1 to 5, characterized in that the cross sectional bore areas of the fuel line (15), of the associated connector (21), of its outlet orifice (40), of the trap chamber (39) and of the connection between the outlet orifice (40) and the trap chamber (39) are at least approximately equal in size.
  7. The carburetor as claimed in one of claims 1 to 6, characterized in that the nozzle tube (24) is in the form of a separate housing part which extends through the housing of the carburetor housing (2) and of the air intake duct (3).
  8. The carburetor as claimed in one of claims 1 to 7, characterized by having means for adjusting the exact position of the orifice (34) of the fuel duct (27) in relation to the bore constriction (41) of the nozzle tube (24).
  9. The carburetor as claimed in one of claims 1 to 8, characterized in that the part forming the bore constriction (41) of the nozzle tube (24) is in the form of a converging-diverging laval nozzle.
  10. The carburetor as claimed in one of claims 1 to 9, characterized in that the axis (43) of the nozzle tube (24) is inclined downwards in relation to the center axis of the intake duct (3) at an angle (α) between 0° and 30°, in particular of at least about 10°.
  11. The carburetor as claimed in one of claims 1 to 10, characterized in that the axis (43) of the nozzle tube (24) forms an angle in a horizontal plane of between 15° and 40°, in particular of at least about 20°, in relation to a line radial to the center axis of the intake duct (3) which passes through the point of intersection (48) of said axis (43) of said nozzle tube (24) with the extension of the peripheral surface of the intake duct (3).
  12. The carburetor as claimed in one of claims 1 to 11, characterized in that the primary air supply is formed by at least one peripheral port (35) of the fuel tube (26).
  13. The carburetor as claimed in one of claims 1 to 12, characterized in that the tubular nozzle (32) has a terminal bore constriction (33) down to a bore cross sectional area of between 0.03 sq mm and 0.3 sq mm, in particular of approximately 0.12 sq mm.
  14. The carburetor as claimed in one of claims 1 to 13, characterized in that the bore constriction (41) of the nozzle tube (24) has a free sectional area of between 4 sq mm and 40 sq mm, in particular of approximately 16 sq mm.
  15. The carburetor as claimed in one of claims 12 to 14, characterized by a pre-choke in the form of a bore constriction (37) of the fuel duct (27) is provided upstream of the port (35) forming the primary air supply conduit for ensuring a degree of vacuum inside said fuel duct (27) sufficient to cause the entry of primary air.
  16. The carburetor as claimed in claim 15, characterized in that the pre-choke (36) has a bore sectional area of 0.03 sq mm to 0.3 sq mm, in particular of approximately 0.12 sq mm.
  17. The carburetor as claimed in one of claims 12 to 16, characterized in that the bore sectional area of the port (35) forming the primary air supply, or the sum of bore sectional areas of a plurality of such ports (35), is between 0.1 sq mm and 1.0 sq mm, in particular approximately 0.45 sq mm.
EP87102088A 1986-02-14 1987-02-13 Carburetter for an internal-combustion engine Expired - Lifetime EP0233612B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87102088T ATE84119T1 (en) 1986-02-14 1987-02-13 CARBURETTORS FOR COMBUSTION ENGINES.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3604715 1986-02-14
DE19863604715 DE3604715A1 (en) 1986-02-14 1986-02-14 CARBURETOR FOR COMBUSTION ENGINES AND IDLE INSTALLATION COMPONENT HERE

Publications (3)

Publication Number Publication Date
EP0233612A2 EP0233612A2 (en) 1987-08-26
EP0233612A3 EP0233612A3 (en) 1988-10-05
EP0233612B1 true EP0233612B1 (en) 1992-12-30

Family

ID=6294112

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87102088A Expired - Lifetime EP0233612B1 (en) 1986-02-14 1987-02-13 Carburetter for an internal-combustion engine

Country Status (4)

Country Link
US (1) US4708828A (en)
EP (1) EP0233612B1 (en)
AT (1) ATE84119T1 (en)
DE (2) DE3604715A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4787404A (en) * 1987-06-12 1988-11-29 International Business Machines Corporation Low flow rate-low pressure atomizer device
EP0741241A1 (en) * 1995-05-05 1996-11-06 Société Anonyme dite: REGIE NATIONALE DES USINES RENAULT Internal combustion engine provided with an improved vacuum boost device of the intake system
FR2733794B1 (en) * 1995-05-05 1997-07-04 Renault INTERNAL COMBUSTION ENGINE OF MOTOR VEHICLE PROVIDED WITH A PARALLEL DEVICE FOR AMPLIFYING THE PRESSURE OF THE INTAKE CIRCUIT
FR2733793B1 (en) * 1995-05-05 1997-07-04 Renault INTERNAL COMBUSTION ENGINE FOR MOTOR VEHICLE PROVIDED WITH AN IMPROVED DEVICE FOR AMPLIFYING THE PRESSURE OF THE INTAKE CIRCUIT
DE19549628B4 (en) * 1995-05-26 2006-08-17 Ryoden Semiconductor System Engineering Corp., Itami Washing appts. for cleaning of semiconductor substrate surface - has jet nozzle with mixer to mix fluid and gas before guiding droplets toward substrate surface
DE10150931A1 (en) * 2001-10-11 2003-04-30 Lueder Gerking Improved mixture formation in internal combustion engines
US9656229B2 (en) * 2012-08-21 2017-05-23 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor
US10160697B2 (en) * 2012-08-21 2018-12-25 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor
US10029957B2 (en) * 2012-08-21 2018-07-24 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor
US9689615B2 (en) * 2012-08-21 2017-06-27 Uop Llc Steady state high temperature reactor
US9707530B2 (en) * 2012-08-21 2017-07-18 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1831056A (en) * 1925-12-17 1931-11-10 Carter Carburetor Corp Carburetor
US1736239A (en) * 1926-06-24 1929-11-19 Sidney A Wilson Multiple carburetor
US1809387A (en) * 1926-08-18 1931-06-09 Thelma Carburator Company Sa Carburetor
US2042770A (en) * 1932-05-07 1936-06-02 Bendix Aviat Corp Carburetor
US2418011A (en) * 1944-06-16 1947-03-25 Carter Carburetor Corp Antipercolator structure for carburetors
US2726073A (en) * 1953-01-14 1955-12-06 Firm Metallbau Semler G M B H Carburetor for internal combustion engines
US2807449A (en) * 1954-09-07 1957-09-24 Holley Carburetor Co Carburetor construction
FR1335659A (en) * 1962-07-13 1963-08-23 Sibe Improvements made to fuel systems for internal combustion engines
US3235236A (en) * 1963-02-25 1966-02-15 Acf Ind Inc Carburetor
US3235237A (en) * 1965-02-15 1966-02-15 Holley Carburetor Co De-popper valve
DE2053991C3 (en) * 1970-11-03 1975-11-27 Joseph 8000 Muenchen Plannerer Carburetors for internal combustion engines
DE2202699B2 (en) * 1972-01-20 1974-07-25 Inpaco Trust Reg., Vaduz Idle system on carburettors for internal combustion engines
US3944634A (en) * 1973-05-29 1976-03-16 John M. Anderson Carburetor idling system
GB1451100A (en) * 1973-11-16 1976-09-29 Ford Motor Co Carburettor idle system
GB1446469A (en) * 1973-11-27 1976-08-18 Ford Motor Co Carburettor idle system
JPS6027822B2 (en) * 1977-05-13 1985-07-01 自動車機器技術研究組合 carburetor starting device
BR8008766A (en) * 1979-07-26 1981-05-26 A Gaget PROCESS AND SPRAYER FOR THE REHABILIZATION OF A CARBURETED MIXING OF IDLE IN AN EXPLOSION ENGINE
JPS56126654A (en) * 1980-03-11 1981-10-03 Nissan Motor Co Ltd Electronic controlled carburetor
GB2115872A (en) * 1982-03-01 1983-09-14 Colt Ind Operating Corp IC engine fuel injection carburettor

Also Published As

Publication number Publication date
ATE84119T1 (en) 1993-01-15
EP0233612A2 (en) 1987-08-26
US4708828A (en) 1987-11-24
DE3783241D1 (en) 1993-02-11
DE3604715A1 (en) 1987-08-20
EP0233612A3 (en) 1988-10-05

Similar Documents

Publication Publication Date Title
DE60035073T2 (en) Two-stroke internal combustion engine
DE4137179C2 (en) Device for producing a water-in-oil emulsion and use of the device on a diesel engine
DE3732415C2 (en)
DE3619550C2 (en)
DE2319034A1 (en) FUEL INJECTION DEVICE FOR COMBUSTION MACHINES
EP0233612B1 (en) Carburetter for an internal-combustion engine
DE60106341T2 (en) Control valve for controlling the batch movement
DE2951788A1 (en) FEEDING DEVICE FOR THE AIR FUEL MIXTURE IN AN INTERNAL COMBUSTION ENGINE
DE2911357C2 (en) Two-stroke diesel internal combustion engine
DE3046507C2 (en) Internal combustion engine
DE19939898A1 (en) Fuel-air supply device for an internal combustion engine
DE4416693A1 (en) Carburetor
DE2819474A1 (en) FUEL SUPPLY DEVICE FOR COMBUSTION ENGINES
DE1923604B2 (en) Carburetors for internal combustion engines
DE3024181A1 (en) ROTOR CARBURETOR DEVICE WITH IDLE MIXING FOR INTERNAL COMBUSTION ENGINES
DE3808672A1 (en) COMBUSTION ENGINE
DE3339714A1 (en) CARBURETTOR
DE3643882A1 (en) FUEL-AIR MIX TREATMENT DEVICE FOR COMBUSTION ENGINES
DE2358477A1 (en) CARBURETOR FOR A COMBUSTION ENGINE
DE3818099A1 (en) SUCTION DEVICE FOR A MULTI-CYLINDER V-ENGINE
DE19833540C2 (en) Membrane carburetor
DE69724180T2 (en) Exhaust gas recirculation device
DE60034549T2 (en) Internal combustion engine with carburettor with idling channel arrangement
DE2743124A1 (en) FUEL SUPPLY DEVICE FOR SUPER SOUND FLOW IN THE INTAKE PIPE OF A COMBUSTION ENGINE
DE3918366C2 (en) Additional air supply device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

DIN1 Information on inventor provided before grant (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VJA FOUNDATION

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PLANNERER, JOSEPH

17P Request for examination filed

Effective date: 19890330

17Q First examination report despatched

Effective date: 19891016

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19921230

Ref country code: SE

Effective date: 19921230

Ref country code: BE

Effective date: 19921230

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19921230

Ref country code: GB

Effective date: 19921230

Ref country code: NL

Effective date: 19921230

REF Corresponds to:

Ref document number: 84119

Country of ref document: AT

Date of ref document: 19930115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3783241

Country of ref document: DE

Date of ref document: 19930211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19930213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19930410

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930521

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19921230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19931103

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940829

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19950228

Ref country code: LI

Effective date: 19950228