EP0229319A2 - Hot water heating installation with a heat consumption meter - Google Patents

Hot water heating installation with a heat consumption meter Download PDF

Info

Publication number
EP0229319A2
EP0229319A2 EP86117178A EP86117178A EP0229319A2 EP 0229319 A2 EP0229319 A2 EP 0229319A2 EP 86117178 A EP86117178 A EP 86117178A EP 86117178 A EP86117178 A EP 86117178A EP 0229319 A2 EP0229319 A2 EP 0229319A2
Authority
EP
European Patent Office
Prior art keywords
heat
burner
amount
output
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86117178A
Other languages
German (de)
French (fr)
Other versions
EP0229319B1 (en
EP0229319A3 (en
Inventor
Hendrikus Berkhof
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell BV
Original Assignee
Honeywell BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell BV filed Critical Honeywell BV
Publication of EP0229319A2 publication Critical patent/EP0229319A2/en
Publication of EP0229319A3 publication Critical patent/EP0229319A3/en
Application granted granted Critical
Publication of EP0229319B1 publication Critical patent/EP0229319B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1048Counting of energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/144Measuring or calculating energy consumption
    • F24H15/148Assessing the current energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/156Reducing the quantity of energy consumed; Increasing efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/254Room temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/305Control of valves
    • F24H15/31Control of valves of valves having only one inlet port and one outlet port, e.g. flow rate regulating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/345Control of fans, e.g. on-off control
    • F24H15/35Control of the speed of fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/486Control of fluid heaters characterised by the type of controllers using timers

Definitions

  • the invention relates to a hot water heating system with a heat meter according to the preamble of claim 1.
  • a heat meter is known, which is its output signal proportional to the instantaneously supplied amount of heat by measuring the heat transfer flow and the heat transfer temperature in the flow and return to the heat exchangers and determining the difference between these two temperatures.
  • the amount of heat supplied per unit time i.e. H. the heat output over a specified period of time
  • the total heat consumption is determined and displayed. This value is then used to determine or distribute heating costs.
  • a control device for the gas-fired boiler of a hot water heating system is known from EP-A1 62856, in which on the one hand the gas quantity corresponding to the measured heat requirement is supplied to the burner via a gas control valve and on the other hand the combustion air quantity supplied to the boiler is constantly adapted to the gas quantity supplied.
  • a heat demand characterizing measured variable for the regulating device is in eizwasservorlauf H and disposed in the heating water depending on a temperature sensor and both temperature sensors are connected to the input of a Master controller connected. If the temperature difference deviates from a specified setpoint, the heating gas supply is increased or reduced accordingly using a servo pressure regulator.
  • the object of the invention is to improve the temperature control in a hot water heating system of the type mentioned, in particular to avoid strong temperature fluctuations, and to make the best possible use of the fuel supplied, or in a hot water heating system of the latter type to generate a respective heat requirement to simplify characteristic signal.
  • This object is achieved by the invention characterized in claim 1. It essentially consists in simultaneously using the heat consumption meter or heat meter for heat consumption measurement to control the respective heat output, i. H. to utilize the burner capacity in such a way that the burner or another heat source is only operated with the power that is currently sufficient to cover the currently required heat. This leads to an optimal functioning of the burner and utilization of the fuel.
  • the radiators 1a, 1b, 1c are connected via a flow line 2 as well as a circulation pump 3 and a return line 4 to the heat exchanger 5 of a boiler 6, which is heated by a burner 7. Between the heat exchanger 5 and the flow and return lines 2 and 4 the heat consumption meter 8 is switched on, which constantly measures the total amount of heat supplied to the radiators 1 and provides an output signal corresponding to this heat output on its output lines 9.
  • the gas supply to the burner 7 is controlled by a gas control device 11, in which a safety valve 14 and a main gas valve 15 are connected in series between inlet 12 and outlet 13.
  • the safety valve 14 works together with a switch-on pushbutton 16 and a restart lock 17 of known construction.
  • the closing body 15 of the main gas valve is biased in the closing direction by a closing spring 18 and can be lifted off the valve seat 21 by means of a membrane 19 by the servo control pressure in the chamber 20 against the force of the closing spring 18.
  • the control pressure for the chamber 20 is supplied via the channel 22 by a servo pressure regulator 23, the setpoint of which can be adjusted by means of an electromagnetic drive 24.
  • a room thermostat 25 In a room to be heated by the hot water heating system there is a room thermostat 25, the contact of which closes as soon as the room temperature measured by its temperature sensor falls below the setpoint set on the room thermostat. A switching signal thus arrives at the electrical controller 26, which on the one hand switches on the gas control device 11 and on the other hand controls the amount of gas supplied to the burner 7 via its electromagnetic drive 24.
  • the structure and mode of operation of the gas control device 11 are known from EP-62 856 and are therefore not explained in detail.
  • a control pressure proportional to the heat requirement builds up, which lifts the closing body 15 from the seat 21.
  • gas flows via line 52 to injector nozzle 53, which faces gas inlet 54 of burner 7.
  • the gas flow sucks at the same time Primary air and also leads it to the burner 7.
  • the pilot burner 28 is connected to the gas control valve via an ignition line 27. Its flame heats the thermocouple 29, which keeps the safety valve 14 open via the magnet insert 30.
  • a second injector nozzle 55 is provided, which faces a secondary air inlet 31 of the boiler 6.
  • the second injector nozzle 55 is connected via a line 32 to the outlet 33 of an air control valve 34, to which compressed air is supplied by a blower 35.
  • the closing body 36 of the air control valve is biased in the closing direction by a spring 37 and can be lifted by a control pressure in the chamber 38 via the membrane 39 from the valve seat 40 as soon as the pressure in the drive chamber 38 is that of the closing spring 37 and the pressure in the outlet 33 exerted forces on the membrane 39 exceeds.
  • the structure and mode of operation of this air control valve 34 are also known from FIG.
  • the amount of air supplied to the second injector nozzle 55 is controlled with the aid of the electromagnetic drive 41 acting on a servo pressure regulator.
  • an oxygen or carbon dioxide sensor 43 is provided in the flue gas outlet 42, the output signal of which is fed to a second electrical controller 44. If the excess of oxygen (excess air) in the flue gas discharge 42 falls below a predetermined setpoint value, the controller 44 supplies an output signal to the magnetic drive 41 of the servo pressure regulator 45 placed on the air control valve 34, whereby the setpoint value of this pressure regulator is increased and at the same time the air control valve 36, 40 is opened further .
  • the room thermostat 25 is usually arranged in the most important of the rooms to be heated, for example in the living room.
  • radiator thermostats 47a and 47c known per se, can be assigned to the radiators 1a and 1c there in other rooms in order to maintain a desired temperature in these rooms.
  • the room thermostat can also be equipped with a timer and devices for lowering the temperature during the night. Room thermostats of this type, so-called clock thermostats, are also known.
  • the room thermostat usually provides a simple switching signal, which indicates that the supply of heat to the room in question is required. This signal can be triggered not only by a room thermostat, but also by any other sensor. However, it does not indicate how large the heat requirement of the room or even the entire heating system is.
  • the heat output required by the burner depends on this particular heat requirement. If only a little heat is required, a full load operation of the burner would lead to an overheating of the heat transfer medium and thus to an undesired excess temperature in the space mentioned and to a waste of fuel. On the other hand If the burner is operated with too little power, it will take a disproportionate time before the desired room temperature is reached. It is therefore important both for reasons of comfort and for economic reasons, in particular for reasons of energy saving, to adapt the performance of the burner to the respective heat requirement.
  • the output signal of the heat meter 8 is used, which, for example in the form known from EP-B1 24 778, generates a signal proportional to the amount of heat currently supplied to the heating system.
  • This signal is usually integrated over time and is therefore a measure of the heat consumption or energy consumption of the heating system.
  • this signal is simultaneously used to constantly adapt the heat output of the burner to the particular heat requirement of the heating system.
  • said output signal is fed to an integrator 48 equipped with a timer, which measures the amount of heat consumed during a predetermined period of time and stores a signal corresponding to this amount of heat.
  • a comparator 49 is connected to the integrator 48, which compares the amount of heat measured during the aforementioned time period with the amount of heat measured during a previous time period of the same duration, and from this generates a signal controlling the heat output and outputs it to the controller 26 via the line 50.
  • the output signal on line 50 of comparator 49 influences the control signal of controller 26 transmitted via line 51 to electromagnetic drive 24 of gas control valve 11 for the amount of gas to be supplied to the burner.
  • the amount of air required for complete and thus optimal combustion is automatically established by, as mentioned above, measuring the excess air by means of the sensor 43 and using the controller 44 and the electromagnet 41 to control the secondary air supply to the second injector nozzle 55.
  • a major advantage of adapting the burner output to the respective heat requirement and determining this heat requirement on the basis of the quantity of heat supplied to the heating system is that all external influencing variables which change the heat requirement are automatically recorded. You do not need a separate outside temperature sensor, nor further sensors for wind speed, humidity, sunshine or the like.
  • the burner output is set in such a way that the required amount of heat is made available within a predetermined time in order to avoid undesirable temperature fluctuations. Only as much heat is generated as is actually required. This means at the same time that the burner with lower power is in operation for longer periods, which reduces the exhaust gas temperature and thus the heat loss through the chimney. The burner always works with the best possible efficiency.
  • the integrator 48 and the comparator 49 can be formed by a microprocessor, which can also be part of the electrical controllers 44 and 26. The two controllers 44 and 26 together with the integrator 48 and the comparator 49 are advantageously combined to form a common electronic control device with a common power supply.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Fluid Mechanics (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

Bei einer durch einen Gasbrenner beheizten Warmwasser-Heizungsanlage wird das Ausgangssignal eines die zu den Heizkörpern fließende Wärmemenge ständig messenden Wärmeverbrauchsmessers (8) zugleich zur Steuerung der Wärmeleistung (Kapazität) des Brenners (7) benutzt. Das vom Wärmebedarf abhängige Signal gelangt zum Elektromagnetantrieb (24) eines servodruckgesteuerten Gasregelgeräts (11) während die zur optimalen Verbrennung erforderliche Luftmenge über ein Luftregelventil zur Verfügung gestellt wird, dessen Eingangssignal von einem CO2- oder Sauerstoffühler im Rauchgasabzug geliefert wird.In a hot water heating system heated by a gas burner, the output signal of a heat consumption meter (8) which constantly measures the amount of heat flowing to the radiators is used at the same time to control the heat output (capacity) of the burner (7). The signal, which is dependent on the heat requirement, is sent to the electromagnetic drive (24) of a servo-pressure-controlled gas control unit (11), while the air volume required for optimal combustion is made available via an air control valve, the input signal of which is supplied by a CO2 or oxygen sensor in the flue gas outlet.

Description

Die Erfindung bezieht sich auf eine Warmwasser-Heizungsanlage mit Wärmeverbrauchsmesser gemäß Oberbegriff des Anspruchs 1. Aus EP-B1 24778 ist ein Wärmeverbrauchsmesser bekannt, welcher sein der augenblicklich zugeführten Wärmemenge proportionales Ausgangssignal durch Messung der Wärmeträgerströmung sowie der Wärmeträgertemperatur im Vorlauf sowie im Rücklauf zu den Wärmetauschern und Differenzbildung dieser beiden Temperaturen ermittelt. Durch Integrieren der pro Zeiteinheit zugeführten Wärmemenge, d. h. der Wärmeleistung über eine vorgegebene Zeitspanne wird der Gesamtwärmeverbrauch ermittelt und angezeigt. Dieser Wert dient dann der Ermittlung oder Verteilung der Heizkosten.The invention relates to a hot water heating system with a heat meter according to the preamble of claim 1. From EP-B1 24778, a heat meter is known, which is its output signal proportional to the instantaneously supplied amount of heat by measuring the heat transfer flow and the heat transfer temperature in the flow and return to the heat exchangers and determining the difference between these two temperatures. By integrating the amount of heat supplied per unit time, i.e. H. the heat output over a specified period of time, the total heat consumption is determined and displayed. This value is then used to determine or distribute heating costs.

Weiterhin ist aus EP-A1 62856 eine Regeleinrichtung für den gasbefeuerten Heizkessel einer Warmwasser-Heizungsanlage bekannt, bei der einerseits dem Brenner jeweils die dem gemessenen Wärmebedarf entsprechende Gasmenge über ein Gasregelventil zugeführt wird und andererseits die dem Heizkessel zugeführte Verbrennungsluftmenge ständig der zugeführten Gasmenge angepaßt ist. Zur Erzeugung einer den Wärmebedarf kennzeichnenden Meßgröße für die Regeleinrichtung ist im Heizwasservorlauf und im Heizwasserrücklauf je ein Temperaturfühler angeordnet und beide Temperaturfühler sind an den Eingang eines Führungsreglers angeschlossen. Weicht die Temperaturdifferenz von einem vorgegebenen Sollwert ab, so wird über einen Servodruckregler die Heizgaszufuhr dementsprechend erhöht bzw. gedrosselt.Furthermore, a control device for the gas-fired boiler of a hot water heating system is known from EP-A1 62856, in which on the one hand the gas quantity corresponding to the measured heat requirement is supplied to the burner via a gas control valve and on the other hand the combustion air quantity supplied to the boiler is constantly adapted to the gas quantity supplied. To produce a heat demand characterizing measured variable for the regulating device is in eizwasservorlauf H and disposed in the heating water depending on a temperature sensor and both temperature sensors are connected to the input of a Master controller connected. If the temperature difference deviates from a specified setpoint, the heating gas supply is increased or reduced accordingly using a servo pressure regulator.

Aufgabe der Erfindung ist es, bei einer Warmwasser-Heizungsanlage der eingangs genannten Art die Temperaturregelung zu verbessern, insbesondere starke Temperaturschwankungen zu vermeiden, und den zugeführten Brennstoff bestmöglich auszunutzen, bzw. bei einer Warmwasser-Heizungsanlage der zuletzt genannten Art die Erzeugung eines den jeweiligen Wärmebedarf kennzeichnenden Signals zu vereinfachen. Diese Aufgabe wird gelöst durch die im Anspruch 1 gekennzeichnete Erfindung. Sie besteht im wesentlichen darin, den zur Wärmeverbrauchsmessung vorhandenen Wärmeverbrauchsmesser bzw. Wärmezähler gleichzeitig zur Steuerung der jeweiligen Wärmeleistung, d. h. der Brennerkapazität auszunutzen derart, daß der Brenner oder eine andere Wärmequelle jeweils nur mit einer solchen Leistung betrieben wird, wie sie zur Deckung des gerade vorhandenen Wärmebedarfs gerade ausreicht. Dies führt zu einer optimalen Arbeitsweise des Brenners und Ausnutzung des Brennstoffs.The object of the invention is to improve the temperature control in a hot water heating system of the type mentioned, in particular to avoid strong temperature fluctuations, and to make the best possible use of the fuel supplied, or in a hot water heating system of the latter type to generate a respective heat requirement to simplify characteristic signal. This object is achieved by the invention characterized in claim 1. It essentially consists in simultaneously using the heat consumption meter or heat meter for heat consumption measurement to control the respective heat output, i. H. to utilize the burner capacity in such a way that the burner or another heat source is only operated with the power that is currently sufficient to cover the currently required heat. This leads to an optimal functioning of the burner and utilization of the fuel.

Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen. Sie wird nachfolgend anhand eines in der Zeichnung schematisch wiedergegebenen Ausführungsbeispiels einer solchen gasbefeuerten Warmwasser-Heizungsanlage erläutert.Advantageous embodiments of the invention result from the subclaims. It is explained below using an exemplary embodiment of such a gas-fired hot water heating system, which is shown schematically in the drawing.

Die Heizkörper 1a, 1b, 1c sind über eine Vorlaufleitung 2 sowie eine Umwälzpumpe 3 und eine Rücklaufleitung 4 an den Wärmetauscher 5 eines Boilers 6 angeschlossen, der von einem Brenner 7 beheizt wird. Zwischen den Wärmetauscher 5 und die Vor- und Rücklaufleitungen 2 und 4 ist der Wärmeverbrauchsmesser 8 eingeschaltet, welcher ständig die gesamte, den Heizkörpern 1 zugeführte Wärmemenge mißt und ein dieser Wärmeleistung entsprechendes Ausgangssignal auf seinen Ausgangsleitungen 9 zur Verfügung stellt.The radiators 1a, 1b, 1c are connected via a flow line 2 as well as a circulation pump 3 and a return line 4 to the heat exchanger 5 of a boiler 6, which is heated by a burner 7. Between the heat exchanger 5 and the flow and return lines 2 and 4 the heat consumption meter 8 is switched on, which constantly measures the total amount of heat supplied to the radiators 1 and provides an output signal corresponding to this heat output on its output lines 9.

Die Gaszufuhr zum Brenner 7 wird von einem Gasregelgerät 11 gesteuert, bei dem zwischen Einlaß 12 und Auslaß 13 ein Sicherheitsventil 14 und ein Hauptgasventil 15 in Reihe geschaltet sind. Das Sicherheitsventil 14 arbeitet mit einer Einschaltdrucktaste 16 und einer Wiedereinschaltsperre 17 bekannter Bauweise zusammen. Der Schließkörper 15 des Hauptgasventils ist durch eine Schließfeder 18 in Schließrichtung vorgespannt und kann über eine Membran 19 durch den Servosteuerdruck in der Kammer 20 gegen die Kraft der Schließfeder 18 vom Ventilsitz 21 abgehoben werden. Den Steuerdruck für die Kammer 20 liefert über den Kanal 22 ein Servodruckregler 23, dessen Sollwert mit Hilfe eines Elektromagnetantriebs 24 verstellbar ist. In einem durch die Warmwasser-Heizungsanlage zu beheizenden Raum befindet sich ein Raumthermostat 25, dessen Kontakt schließt, sobald die von seinem Temperaturfühler gemessene Raumtemperatur den am Raumthermostaten eingestellten Sollwert unterschreitet. Damit gelangt ein Schaltsignal zum elektrischen Regler 26, der einerseits das Gasregelgerät 11 einschaltet und andererseits über dessen Elektromagnetantrieb 24 die dem Brenner 7 zugeführte Gasmenge steuert. Aufbau und Wirkungsweise des Gasregelgeräts 11 sind aus EP-62 856 bekannt und werden deshalb nicht im einzelnen erläutert. In der Steuerkammer 20 des Membranantriebs für das Hauptgasventil 15, 21 baut sich ein dem Wärmebedarf proportionaler Steuerdruck auf, welcher den Schließkörper 15 vom Sitz 21 abhebt. Damit strömt Gas über die Leitung 52 zur Injektordüse 53, welche dem Gaseinlaß 54 des Brenners 7 gegenübersteht. Der Gasstrom saugt zugleich Primärluft an und führt sie ebenfalls dem Brenner 7 zu. Über eine Zündleitung 27 ist der Zündbrenner 28 an das Gasregelventil angeschlossen. Seine Flamme erwärmt das Thermoelement 29, welches über den Magneteinsatz 30 das Sicherheitsventil 14 offen hält.The gas supply to the burner 7 is controlled by a gas control device 11, in which a safety valve 14 and a main gas valve 15 are connected in series between inlet 12 and outlet 13. The safety valve 14 works together with a switch-on pushbutton 16 and a restart lock 17 of known construction. The closing body 15 of the main gas valve is biased in the closing direction by a closing spring 18 and can be lifted off the valve seat 21 by means of a membrane 19 by the servo control pressure in the chamber 20 against the force of the closing spring 18. The control pressure for the chamber 20 is supplied via the channel 22 by a servo pressure regulator 23, the setpoint of which can be adjusted by means of an electromagnetic drive 24. In a room to be heated by the hot water heating system there is a room thermostat 25, the contact of which closes as soon as the room temperature measured by its temperature sensor falls below the setpoint set on the room thermostat. A switching signal thus arrives at the electrical controller 26, which on the one hand switches on the gas control device 11 and on the other hand controls the amount of gas supplied to the burner 7 via its electromagnetic drive 24. The structure and mode of operation of the gas control device 11 are known from EP-62 856 and are therefore not explained in detail. In the control chamber 20 of the diaphragm drive for the main gas valve 15, 21, a control pressure proportional to the heat requirement builds up, which lifts the closing body 15 from the seat 21. Thus, gas flows via line 52 to injector nozzle 53, which faces gas inlet 54 of burner 7. The gas flow sucks at the same time Primary air and also leads it to the burner 7. The pilot burner 28 is connected to the gas control valve via an ignition line 27. Its flame heats the thermocouple 29, which keeps the safety valve 14 open via the magnet insert 30.

Da die vom Gasstrom durch die Injektordüse 53 angesaugte Primärluft für eine vollständige Verbrennung des Gases nicht ausreicht, ist eine zweite Injektordüse 55 vorgesehen, welche einem Sekundärlufteinlaß 31 des Boilers 6 gegenübersteht. Die zweite Injektordüse 55 steht über eine Leitung 32 mit dem Ausgang 33 eines Luftregelventils 34 in Verbindung, dem von einem-Gebläse 35 Druckluft zugeführt wird. Der Schließkörper 36 des Luftregelventils ist durch eine Feder 37 in Schließrichtung vorgespannt und kann durch einen Steuerdruck in der Kammer 38 über die Membran 39 vom Ventilsitz 40 abgehoben werden, sobald der Druck in der Antriebskammer 38 die von der Schließfeder 37 und vom Druck im Ausgang 33 ausgeübten Kräfte auf die Membran 39 übersteigt. Aufbau und Wirkungsweise dieses Luftregelventils 34 sind ebenfalls aus Fig. 2 der EP-A1 62 856 bekannt. Die der zweiten Injektordüse 55 zugeführte Luftmenge wird mit Hilfe des auf einen Servodruckregler einwirkenden Elektromagnetantriebs.41 gesteuert. Hierzu ist im Rauchgasabzug 42 ein Sauerstoff-oder Kohlendioxydfühler 43 vorgesehen, dessen Ausgangssignal einem zweiten elektrischen Regler 44 zugeführt ist. Unterschreitet der Sauerstoffüberschuß (Luftüberschuß) im Rauchgasabzug 42 einen vorgegebenen Sollwert, so liefert der Regler 44 ein Ausgangssignal an den Magnetantrieb 41 des auf das Luftregelventil 34 aufgesetzten Servodruckreglers 45, wodurch der Sollwert dieses Druckreglers erhöht und damit zugleich das Luftregelventil 36, 40 weiter geöffnet wird. Damit fließt mehr Sekundärluft zur Injektordüse 55 und damit in den Innenraum des Boilers 6, so daß der vom Fühler 43 gemessene Luftüberschuß zunimmt. Ein zu hoher Luftüberschuß führt umgekehrt zu einer Drosselung der über das Luftregelventil 34 zugeführten Sekundärluftmenge. Anstelle der Zwischenschaltung eines Luftregelventils 34 zwischen Gebläse 35 und Sekundärluftdüse 55 kann auch das Gebläse selbst regelbar sein. In diesem Fall wird die Ausgangsleitung 46 des Reglers 44 unmittelbar an eine hier nicht dargestellte Gebläsesteuerschaltung angeschlossen, welche die Drehzahl des Gebläses 35 regelt.Since the primary air sucked in by the gas flow through the injector nozzle 53 is not sufficient for complete combustion of the gas, a second injector nozzle 55 is provided, which faces a secondary air inlet 31 of the boiler 6. The second injector nozzle 55 is connected via a line 32 to the outlet 33 of an air control valve 34, to which compressed air is supplied by a blower 35. The closing body 36 of the air control valve is biased in the closing direction by a spring 37 and can be lifted by a control pressure in the chamber 38 via the membrane 39 from the valve seat 40 as soon as the pressure in the drive chamber 38 is that of the closing spring 37 and the pressure in the outlet 33 exerted forces on the membrane 39 exceeds. The structure and mode of operation of this air control valve 34 are also known from FIG. 2 of EP-A1 62 856. The amount of air supplied to the second injector nozzle 55 is controlled with the aid of the electromagnetic drive 41 acting on a servo pressure regulator. For this purpose, an oxygen or carbon dioxide sensor 43 is provided in the flue gas outlet 42, the output signal of which is fed to a second electrical controller 44. If the excess of oxygen (excess air) in the flue gas discharge 42 falls below a predetermined setpoint value, the controller 44 supplies an output signal to the magnetic drive 41 of the servo pressure regulator 45 placed on the air control valve 34, whereby the setpoint value of this pressure regulator is increased and at the same time the air control valve 36, 40 is opened further . So that more secondary air flows to the injector nozzle 55 and thus into the interior of the boiler 6, so that the excess air measured by sensor 43 increases. If the excess air is too high, conversely, the amount of secondary air supplied via the air control valve 34 is throttled. Instead of the interposition of an air control valve 34 between the fan 35 and the secondary air nozzle 55, the fan itself can also be controllable. In this case, the output line 46 of the controller 44 is connected directly to a blower control circuit, not shown here, which regulates the speed of the blower 35.

Der Raumthermostat 25 ist üblicherweise in dem wichtigsten der zu beheizenden Räume, also beispielsweise im Wohnzimmer angeordnet. Zusätzlich können in anderen Räumen an sich bekannte Heizkörperthermostate 47a bzw. 47c den dortigen Heizkörpern 1a bzw. 1c zugeordnet sein, um in diesen Räumen eine gewünschte Temperatur aufrechtzuerhalten. Der Raumthermostat kann zusätzlich mit einer Schaltuhr sowie Vorrichtungen zur Absenkung der Temperatur während der Nachtstunden ausgerüstet sein. Raum- .thermostate dieser Art, sogenannte Uhrenthermostate sind ebenfalls bekannt. Der Raumthermostat liefert üblicherweise ein einfaches Schaltsignal, welches anzeigt, daß die Zufuhr von Wärme zu betreffenden Raum erforderlich ist. Dieses Signal kann nicht nur von einem Raumthermostaten, sondern auch von einem beliebigen anderen Fühler ausgelöst werden. Es zeigt jedoch nicht an, wie groß der Wärmebedarf des betreffenden Raums oder gar der gesamten Heizungsanlage ist. Nach diesem jeweiligen Wärmebedarf richtet sich aber die vom Brenner geforderte Wärmeleistung. Wird nur wenig Wärme benötigt, so würde ein Vollastbetrieb des Brenners zu einer Uberhitzung des Wärmeübertragungsmediums und damit zu einer ungewünschten Temperaturüberschreitung im genannten Raum und zu einer Verschwendung von Brennstoff führen. Wird andererseits der Brenner mit zu geringer Leistung betrieben, so dauert es unverhältnismäßig lange ehe die gewünschte Raumtemperatur erreicht wird. Es ist also sowohl aus Gründen des Komforts als auch aus wirtschaftlichen Gründen, insbesondere aus Gründen der Energieeinsparung wichtig, die Leistung des Brenners dem jeweiligen Wärmebedarf anzupassen. Hierzu dient das Ausgangssignal des Wärmemengenmessers 8, der beispielsweise in der aus EP-B1 24 778 bekannten Form ein der augenblicklich der Heizungsanlage zugeführten Wärmemenge proportionales Signal erzeugt. Dieses Signal wird üblicherweise über die Zeit integriert und ist damit ein Maß für den Wärmeverbrauch oder Energieverbrauch der Heizungsanlage. Der Erfindung entsprechend wird dieses Signal gleichzeitig dazu ausgenutzt, die Wärmeleistung des Brenners an den jeweiligen Wärmebedarf der Heizungsanlage ständig anzupassen. Hierzu wird das genannte Ausgangssignal einem mit einem Zeitgeber ausgestatteten Integrator 48 zugeführt, der die während einer vorgegebenen Zeitspanne verbrauchte Wärmemenge mißt und ein dieser Wärmemenge entsprechendes Signal speichert. An den Integrator 48 ist ein Vergleicher 49 angeschlossen, der die während der genannten Zeitspanne -gemessene Wärmemenge mit der während einer vorausgegangenen Zeitspanne gleicher Dauer gemessenen Wärmemenge vergleicht und hieraus ein die Wärmeleistung steuerndes Signal erzeugt und über die Leitung 50 an den Regler 26 abgibt.The room thermostat 25 is usually arranged in the most important of the rooms to be heated, for example in the living room. In addition, radiator thermostats 47a and 47c, known per se, can be assigned to the radiators 1a and 1c there in other rooms in order to maintain a desired temperature in these rooms. The room thermostat can also be equipped with a timer and devices for lowering the temperature during the night. Room thermostats of this type, so-called clock thermostats, are also known. The room thermostat usually provides a simple switching signal, which indicates that the supply of heat to the room in question is required. This signal can be triggered not only by a room thermostat, but also by any other sensor. However, it does not indicate how large the heat requirement of the room or even the entire heating system is. The heat output required by the burner depends on this particular heat requirement. If only a little heat is required, a full load operation of the burner would lead to an overheating of the heat transfer medium and thus to an undesired excess temperature in the space mentioned and to a waste of fuel. On the other hand If the burner is operated with too little power, it will take a disproportionate time before the desired room temperature is reached. It is therefore important both for reasons of comfort and for economic reasons, in particular for reasons of energy saving, to adapt the performance of the burner to the respective heat requirement. For this purpose, the output signal of the heat meter 8 is used, which, for example in the form known from EP-B1 24 778, generates a signal proportional to the amount of heat currently supplied to the heating system. This signal is usually integrated over time and is therefore a measure of the heat consumption or energy consumption of the heating system. According to the invention, this signal is simultaneously used to constantly adapt the heat output of the burner to the particular heat requirement of the heating system. For this purpose, said output signal is fed to an integrator 48 equipped with a timer, which measures the amount of heat consumed during a predetermined period of time and stores a signal corresponding to this amount of heat. A comparator 49 is connected to the integrator 48, which compares the amount of heat measured during the aforementioned time period with the amount of heat measured during a previous time period of the same duration, and from this generates a signal controlling the heat output and outputs it to the controller 26 via the line 50.

Nimmt man an, daß die gemessene Wärmemenge während der gerade abgeschlossenen Zeitspanne T den Wert a hat und in der vorausgehenden Zeitspanne T2 gleicher Dauer eine Wärmemenge b verbraucht wurde, so ergeben sich aus dem Vergleich-dieser beiden Wärmemengen bzw. der ihnen entsprechenden Signale a und b folgende Fälle: Ist a kleiner als b, so hat der Wärmebedarf abgenommen und folglich kann die Brennerleistung reduziert werden. Ist a = b, so entspricht die gerade eingestellte Brennerleistung dem tatsächlich vorhandenen Wärmebedarf. Ist a größer als b, so hat der Wärmebedarf zugenommen und die Brennerleistung sollte erhöht werden. Das Ausgangssignal auf der Leitung 50 des Vergleichers 49 beeinflußt das über die Leitung 51 zum Elektromagnetantrieb 24 des Gasregelventils 11 übertragene Steuersignal des Reglers 26 für die dem Brenner zuzuführende Gasmenge. Die zu einer vollständigen und damit optimalen Verbrennung erforderliche Luftmenge stellt sich automatisch ein indem, wie oben erwähnt, mittels des Fühlers 43 der Luftüberschuß gemessen und über den Regler 44 und den Elektromagnet 41 zur Steuerung der Sekundärluftzufuhr zur zweiten Injektordüse 55 benutzt wird. Ein wesentlicher Vorteil der Brennerleistungsanpassung an den jeweiligen Wärmebedarf und der Ermittlung dieses Wärmebedarfs anhand der der Heizungsanlage jeweils zugeführten Wärmemenge liegt darin, daß hierbei alle äußeren Einflußgrößen, welche den Wärmebedarf verändert, selbsttätig mit erfaßt werden. Man braucht weder einen gesonderten Außentemperaturfühler, noch weitere Fühler für Windgeschwindigkeit, Luftfeuchtigkeit, Sonneneinstrahlung oder dergleichen. Selbst Einflüsse, welche durch den Betrieb oder die Nutzung des Gebäudes bedingt sind, beispielsweise durch das öffnen von Fenstern, die Einschaltung von Elektrogeräten und Beleuchtung, die Wärmeentwicklung, die durch den Aufenthalt zahlreicher Personen in einem Raum bedingt ist oder auch die Änderung der Temperatureinstellung an einzelnen Heizkörpern mit Hilfe dortiger Heizkörperthermostate werden automatisch durch die Wärmeverbrauchsmessung mit erfaßt. Die Brennerleistung wird jeweils derart eingestellt, daß die geforderte Wärmemenge innerhalb einer vorgegebenen Zeit zur Verfügung gestellt wird, um unerwünschte Temperaturschwankungen zu vermeiden. Dabei wird jeweils nur soviel Wärme erzeugt, wie tatsächlich benötigt wird. Dies bedeutet gleichzeitig, daß der Brenner mit geringerer Leistung aber über längere Zeiten in Betrieb ist, wodurch die Abgastemperatur und damit der Wärmeverlust durch den Schornstein verringert wird. Der Brenner arbeitet stets mit dem bestmöglichen Wirkungsgrad. Der Integrator 48 und der Vergleicher 49 können durch einen Mikroprozessor gebildet sein, welcher zugleich Bestandteil der elektrischen Regler 44 und 26 sein kann. Die beiden Regler 44 und 26 zusammen mit dem Integrator 48 und dem Vergleicher 49 werden zweckmäßig zu einem gemeinsamen elektronischen Regelgerät mit gemeinsamer Stromversorgung zusammengefaßt.If one assumes that the measured quantity of heat has the value a during the period T just completed and a quantity b of heat has been consumed in the preceding period T 2 of the same duration, then the comparison shows these two quantities of heat or the signals corresponding to them and b the following cases: If a is less than b, the heat requirement has decreased and consequently the burner output can be reduced. If a = b, the burner output just set corresponds to the actual heat demand. If a is greater than b, the heat requirement has increased and the burner output should be increased. The output signal on line 50 of comparator 49 influences the control signal of controller 26 transmitted via line 51 to electromagnetic drive 24 of gas control valve 11 for the amount of gas to be supplied to the burner. The amount of air required for complete and thus optimal combustion is automatically established by, as mentioned above, measuring the excess air by means of the sensor 43 and using the controller 44 and the electromagnet 41 to control the secondary air supply to the second injector nozzle 55. A major advantage of adapting the burner output to the respective heat requirement and determining this heat requirement on the basis of the quantity of heat supplied to the heating system is that all external influencing variables which change the heat requirement are automatically recorded. You do not need a separate outside temperature sensor, nor further sensors for wind speed, humidity, sunshine or the like. Even influences that are caused by the operation or use of the building, for example by opening windows, switching on electrical equipment and lighting, the heat development that is caused by the presence of numerous people in a room or the change in temperature setting individual radiators with the help of radiator thermostats there are automatically recorded by the heat consumption measurement. The burner output is set in such a way that the required amount of heat is made available within a predetermined time in order to avoid undesirable temperature fluctuations. Only as much heat is generated as is actually required. This means at the same time that the burner with lower power is in operation for longer periods, which reduces the exhaust gas temperature and thus the heat loss through the chimney. The burner always works with the best possible efficiency. The integrator 48 and the comparator 49 can be formed by a microprocessor, which can also be part of the electrical controllers 44 and 26. The two controllers 44 and 26 together with the integrator 48 and the comparator 49 are advantageously combined to form a common electronic control device with a common power supply.

Claims (6)

1. Warmwasser-Heizungsanlage mit einem Wärmeverbrauchsmesser (8), der ständig ein elektrisches Ausgangssignal liefert, welches der der Heizungsanlage augenblicklich zugeführten Wärmemenge proportional ist, dadurch gekennzeichnet, daß dieses Ausgangssignal einem Eingang eines elektronischen Reglers (26) zugeführt wird, welcher die vom Wärmeerzeuger, z. B. einem Gasbrenner (7) erzeugte Wärmeleistung steuert.1. Hot water heating system with a heat consumption meter (8) which constantly provides an electrical output signal which is proportional to the amount of heat currently supplied to the heating system, characterized in that this output signal is supplied to an input of an electronic controller (26), which is the one from the heat generator , e.g. B. controls a gas burner (7) generated heat output. 2. Anlage nach Anspruch 1, gekennzeichnet durch einen an den Ausgang des Wärmeverbrauchsmessers (8) angeschlossenen, mit einem Zeitgeber ausgestatteten Integrator (48), der die während einer vorgegebenen Zeitspanne verbrauchte Wärmemenge mißt und ein ihr entsprechendes Signal speichert; sowie durch einen an den Integrator (48) angeschlossenen Vergleicher (49), der die gemessene Wärmemenge mit der während einer vorausgegangenen Zeitspanne gleicher Dauer gemessenen Wärmemenge vergleicht und hieraus ein die Wärmeleistung des Brenners steuerndes Signal erzeugt.2. System according to claim 1, characterized by an integrator (48) connected to the output of the heat consumption meter (8) and equipped with a timer, which integrates the amount of heat consumed during a predetermined period of time and stores a signal corresponding thereto; and by a comparator (49) connected to the integrator (48), which compares the measured amount of heat with the amount of heat measured during a previous period of the same duration and generates a signal controlling the thermal output of the burner. 3. Anlage nach Anspruch 2, dadurch gekennzeichnet , daß Integrator (48) und Vergleicher (49) durch einen Mikroprozessor gebildet sind.3. Plant according to claim 2, characterized in that the integrator (48) and comparator (49) are formed by a microprocessor. 4. Anlage nach Anspruch 3, dadurch gekennzeichnet , daß der Mikroprozessor Teil eines die Brennstoffmenge zu einem Brenner steuernden Reglers (26) ist, dem an einem weiteren Eingang das Ausgangssignal eines Raumthermostaten (25) zugeführt ist.4. Plant according to claim 3, characterized in that the microprocessor is part of a controller controlling the fuel quantity to a burner (26), to which the output signal of a room thermostat (25) is fed at a further input. 5. Anlage nach Anspruch 4, gekennzeichnet durch einen weiteren elektrischen Regler (44) zur gleichzeitigen Regelung der dem Brenner (7) zugeführten Verbrennungsluftmenge, wobei der Eingang des weiteren Reglers an einen im Rauchgasabzug (42) angeordneten 02- oder CO2-Fühler (43) angeschlossen ist und das Ausgangssignal des weiteren Reglers einem Luftmengenstellglied (34,35) zugeführt wird.5. Plant according to claim 4, characterized by a further electrical controller (44) for simultaneous control of the amount of combustion air supplied to the burner (7), the input of the further controller to a 0 2 - or CO 2 sensor arranged in the flue gas outlet (42) (43) is connected and the output signal of the further controller is fed to an air quantity actuator (34, 35). 6. Anlage nach Anspruch 4 und 5, dadurch gekennzeichnet , daß beide Regler (26,44) zu einem gemeinsamen elektronischen, mit einem Mikroprozessor ausgestatteten Regler zusammengefaßt sind.6. Plant according to claim 4 and 5, characterized in that the two controllers (26, 44) are combined to form a common electronic controller equipped with a microprocessor.
EP86117178A 1985-12-16 1986-12-10 Hot water heating installation with a heat consumption meter Expired - Lifetime EP0229319B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853544411 DE3544411A1 (en) 1985-12-16 1985-12-16 HOT WATER HEATING SYSTEM WITH HEAT CONSUMER
DE3544411 1985-12-16

Publications (3)

Publication Number Publication Date
EP0229319A2 true EP0229319A2 (en) 1987-07-22
EP0229319A3 EP0229319A3 (en) 1988-02-10
EP0229319B1 EP0229319B1 (en) 1990-10-31

Family

ID=6288540

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86117178A Expired - Lifetime EP0229319B1 (en) 1985-12-16 1986-12-10 Hot water heating installation with a heat consumption meter

Country Status (4)

Country Link
US (1) US4695052A (en)
EP (1) EP0229319B1 (en)
DE (2) DE3544411A1 (en)
DK (1) DK607186A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413986B1 (en) 1991-09-25 2002-07-02 Aventis Pharmaceuticals Inc. [1-indanon-2-yl]methylpiperidines
CN111771083A (en) * 2018-02-27 2020-10-13 莫蒂克马克斯特罗尔有限及两合公司 Device for status display of gas burner

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3802928A1 (en) * 1988-02-02 1989-08-10 Oscar Dipl Ing Francsiskovits Automatic heating and ventilation, controlled by the actual "nominal" heating energy utilisation coefficient, for constant, predetermined, desired interior temperatures
US8866634B2 (en) 2006-05-04 2014-10-21 Capstone Metering Llc System and method for remotely monitoring and controlling a water meter
EP2085715A1 (en) * 2008-01-29 2009-08-05 Societe Des Produits Nestle S.A. System for changing fluid temperature and method for controlling such a system
IT1393216B1 (en) * 2009-03-05 2012-04-11 Eberle DEVICE FOR IMPROVING THE ENERGY BALANCE, PARTICULARLY FOR HEATING BOILERS.
CN105627357A (en) * 2014-11-03 2016-06-01 银川艾尼工业科技开发有限公司 Wall hanging stove discharge outlet stage sampling auto-control system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2811153A1 (en) * 1978-03-15 1979-09-20 Wolfgang Behm Automatic room heating control system - uses supply and return flow temps. under stationary conditions to establish flow temp. and control circuit
EP0024778A2 (en) * 1979-09-03 1981-03-11 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO Heat consumption meter
EP0062856A1 (en) * 1981-04-13 1982-10-20 Honeywell B.V. Control device for a gas-heated boiler of a warm-water heating installation
US4497438A (en) * 1982-12-23 1985-02-05 Honeywell Inc. Adaptive, modulating boiler control system
JPS60165463A (en) * 1984-02-08 1985-08-28 Matsushita Electric Ind Co Ltd Hot-water room heater

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH209378A (en) * 1938-11-04 1940-04-15 Landis & Gyr Ag Method and device for measuring the amount of heat in a hot water heating system with a constant flow rate.
US4009825A (en) * 1976-02-11 1977-03-01 Coon George M Control for forced air heating or cooling system
US4433810A (en) * 1977-07-29 1984-02-28 Simon Gottlieb Hot water heating system
DE3069584D1 (en) * 1979-04-25 1984-12-13 Heinz Lampert Means for regulating a discontinuous flow of material and for measuring a value proportional to this flow of material and to a second physical quantity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2811153A1 (en) * 1978-03-15 1979-09-20 Wolfgang Behm Automatic room heating control system - uses supply and return flow temps. under stationary conditions to establish flow temp. and control circuit
EP0024778A2 (en) * 1979-09-03 1981-03-11 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO Heat consumption meter
EP0062856A1 (en) * 1981-04-13 1982-10-20 Honeywell B.V. Control device for a gas-heated boiler of a warm-water heating installation
US4497438A (en) * 1982-12-23 1985-02-05 Honeywell Inc. Adaptive, modulating boiler control system
JPS60165463A (en) * 1984-02-08 1985-08-28 Matsushita Electric Ind Co Ltd Hot-water room heater

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Band 9, Nr. 333 (M-443)[2056], 27. Dezember 1985; & JP-A-60 165 463 (MATSUSHITA DENKI SANGYO K.K.) 28-08-1985 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413986B1 (en) 1991-09-25 2002-07-02 Aventis Pharmaceuticals Inc. [1-indanon-2-yl]methylpiperidines
CN111771083A (en) * 2018-02-27 2020-10-13 莫蒂克马克斯特罗尔有限及两合公司 Device for status display of gas burner

Also Published As

Publication number Publication date
US4695052A (en) 1987-09-22
DE3544411A1 (en) 1987-06-19
EP0229319B1 (en) 1990-10-31
DK607186A (en) 1987-06-17
DK607186D0 (en) 1986-12-16
EP0229319A3 (en) 1988-02-10
DE3675362D1 (en) 1990-12-06

Similar Documents

Publication Publication Date Title
EP0208256B1 (en) Space temperature regulation device
EP0062854B1 (en) Gas-fired water or air heater
DE4317981A1 (en) Gas-air ratio control device for a temperature control loop for gas appliances
EP0614046A1 (en) Control device for gas burner automats of heating installations
EP0229319B1 (en) Hot water heating installation with a heat consumption meter
DE19506628A1 (en) Method and arrangement for controlling a low-temperature heating system
DE3114942A1 (en) CONTROL DEVICE FOR THE GAS-FIRED BOILER OF A HOT WATER HEATING SYSTEM
DE3620929A1 (en) Method and device for controlling at least one heating installation
EP0337922B1 (en) Heating plant
DE3544410A1 (en)
DE3707883C1 (en) Device for regulating the output of fuel-fired heat generators
DE2703438C2 (en) Regulation of gas flow to burner - uses main valve controlled by electric valve controlled by temp. probes
DE102005040792B3 (en) Control device for a combination heating device comprises a control unit formed as a self-learning pilot control unit
DE3409742A1 (en) Method for controlling a fluid temperature and device for implementing the method
DE19512995A1 (en) Heating installation for multiple rooms
DE3689309T2 (en) Control of the fluid temperature in a hot water central heating system and components suitable for a central heating system.
DE102016223726A1 (en) Heating system of a building and method for operating the system
EP0008461B1 (en) Control device for heating or refrigerating systems
EP0194637B1 (en) Circuit for controlling a fuel heated source charging a water storage heater
DE2515081C3 (en) Frost protection device for heat exchangers in a control device for heating, ventilation or air conditioning systems
DE3503738A1 (en) Circuit for controlling the heat delivery of a fuel-heated heat source
DE2952432C2 (en) Device for lowering the temperature of radiators
EP0029922A2 (en) Heating control device
AT297163B (en) Charge control for electric storage heaters
DE1679325C (en) Priority switching for a water heater in a district heating system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19880119

17Q First examination report despatched

Effective date: 19890118

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19901031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19901129

Year of fee payment: 5

REF Corresponds to:

Ref document number: 3675362

Country of ref document: DE

Date of ref document: 19901206

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910322

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19911210

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19921231

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930914

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950901