EP0228005A2 - Storage element for dosing and introducing liquid mercury into a discharge lamp - Google Patents

Storage element for dosing and introducing liquid mercury into a discharge lamp Download PDF

Info

Publication number
EP0228005A2
EP0228005A2 EP86117329A EP86117329A EP0228005A2 EP 0228005 A2 EP0228005 A2 EP 0228005A2 EP 86117329 A EP86117329 A EP 86117329A EP 86117329 A EP86117329 A EP 86117329A EP 0228005 A2 EP0228005 A2 EP 0228005A2
Authority
EP
European Patent Office
Prior art keywords
mercury
storage element
metal
alloy
element according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86117329A
Other languages
German (de)
French (fr)
Other versions
EP0228005B1 (en
EP0228005A3 (en
Inventor
Werner Dr. Schuster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0228005A2 publication Critical patent/EP0228005A2/en
Publication of EP0228005A3 publication Critical patent/EP0228005A3/en
Application granted granted Critical
Publication of EP0228005B1 publication Critical patent/EP0228005B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/38Exhausting, degassing, filling, or cleaning vessels
    • H01J9/395Filling vessels

Definitions

  • the invention relates to a storage element for metering and introducing liquid mercury or liquid mercury alloys into a discharge lamp.
  • Mercury is required for the operation of almost all discharge lamps.
  • the mercury In the case of high-pressure discharge lamps, the mercury is brought into the discharge vessel in the form of halide compounds or by direct dropping over the pump handle.
  • glass or metal containers into which the mercury or the mercury alloy is filled in addition to the direct dropping for metering and introduction. These containers are placed near an electrode inside the discharge vessel and opened with the aid of induced high frequency or laser beams after the vessel has been closed, so that the mercury can escape.
  • An example of this is listed in DE-OS 30 41 398.
  • a method is recently proposed in DE patent application 35 34 208.0 in which a strand of liquid mercury is cooled below the solidification point. Sub-strands of the required length, i.e. the required amount of mercury is separated off and introduced into the discharge vessel. This procedure enables a much more precise dosing.
  • the method is very complex in terms of mechanical engineering and, since the corresponding devices have to be integrated into the production machines for the lamps, can be implemented only with great effort.
  • liquid mercury is a major environmental and workplace burden, since mercury has a relatively high vapor pressure, whereby the vapor is highly toxic. When it hits hard documents, it splashes into tiny droplets that are very difficult to collect again.
  • the invention has for its object to provide a storage element for metering and introducing liquid mercury or liquid mercury alloys, which enables precise metering of the mercury and easy introduction of the mercury into the lamp.
  • the physical properties of the mercury or the mercury alloy, such as the high vapor pressure, cannot be changed.
  • the storage element for metering and introducing liquid mercury or liquid mercury alloys into a discharge lamp is characterized according to the invention in that it is a porous compact which stores the defined amount of the metering substance in its pores and consists of a single metal, the melting point of which is above 250 ° C lies, wherein the metal of the compact with mercury does not form an alloy, is wettable by mercury and has a high resistance to oxidation.
  • the compact can also consist of at least two metals forming a mixture or an alloy, this mixture or alloy in turn forming no alloy with mercury, being wettable by mercury and having a melting point which is above 250 ° C. and also the first Metal has more than 50% by weight of the compact and the second or further metals are elements which increase the oxidation resistance of the first metal.
  • Such a compact stores a precisely definable amount of the mercury or the mercury alloy per unit weight of the metal, as will be explained in more detail below. Measurements showed that the amount of mercury stored fluctuated at most by ⁇ 10% in the case of compacts from different batches, which were each produced under the same process conditions. In this way, depending on the weight of the compact, any desired amount of mercury or mercury alloy can even be obtained in the mg range.
  • the pressing body can be introduced very easily into the discharge lamp, and it does not unite either through intermediate storage or through contact Memory leak suffered. In the case of longer storage, this must of course take place either under vacuum or under protective gas, since the mercury evaporates in a normal atmosphere due to the high vapor pressure. An overdosing of the mercury in the lamp is therefore no longer necessary. As a further advantage, it is possible to fix the pressing body in the pump stem, thereby eliminating the removal of fluorescent substances, such as those caused by the dropping of liquid mercury. The heat from the heating of the electrodes then releases the mercury from the compact.
  • Such a compact can be made by adding the mercury or the mercury alloy to one or more electrolysis vessels, each with different metal salt solutions and an anode of the corresponding metal, and electrolytically enriched with the respective metal of the salt solution, so that one or more mercury metal suspensions are formed .
  • the resulting suspension product is overlaid with anhydrous glycerol and annealed at at least 100 ° C. The glycerin is then decanted and the suspension product washed and dried.
  • the unsaved mercury or the unsaved mercury alloy is filtered off, the remaining filter cake is filled into the bore of a steel cylinder and the excess mercury or the excess mercury alloy is pressed out under high pressure using a stamp. With the help of the pressure, the mercury content of the compact can be varied.
  • a brittle compact is formed, which is then pulverized and from which the compact of the corresponding dimensions, e.g. in pill form.
  • the first or only metal for the pressed body is theoretically all elements of the fourth to eighth subgroup of the periodic table, provided that they do not form an alloy with mercury but can be wetted by mercury. In practice, however, only those metals are considered which are non-toxic and / or radioactive and which enable the pressed body to be produced as inexpensively as possible. In this sense, the metals iron and nickel have proven to be suitable, a second metal such as copper being required here in order to achieve sufficient resistance to oxidation. Good storage properties can also be achieved with a press body made of iron, chromium and possibly nickel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

The storage element is a porous pressed body which stores the fixed quantity of the metering material in its pores. The pressed body consists of a single metal or of a plurality of metals forming a mixture or an alloy, the single metal or the mixture or alloy in turn not forming an alloy with mercury, being wettable by mercury and having a high oxidation resistance. The elements of subgroups 4 to 8 of the periodic table are particularly suitable as the single metal or as the main constituent of the mixture or alloy.

Description

Die Erfindung betrifft ein Speicherelement zum Dosieren und Einbringen von flüssigem Quecksilber oder flüssigen Quecksilberlegierungen in eine Entladungslampe.The invention relates to a storage element for metering and introducing liquid mercury or liquid mercury alloys into a discharge lamp.

Quecksilber wird für den Betrieb von fast allen Entladungslampen benötigt. Bei Hochdruckentladungslampen wird das Quecksilber in Form von Halogenidverbindungen oder durch direktes Eintropfen über den Pumpstengel in das Entladungsgefäß gebracht. Bei Niederdruckentladungslampen dagegen ist es üblich, neben dem direkten Eintropfen für das Dosieren und Einbringen Behälter aus Glas oder Metall zu verwenden, in die das Quecksilber bzw. die Quecksilberlegierung gefüllt wird. Diese Behälter werden nahe einer Elektrode im Innern des Entladungsgefäßes angebracht und mit Hilfe von induzierter Hochfrequenz oder Laserstrahlen nach dem Verschließen des Gefäßes geöffnet, so daß das Quecksilber austreten kann. Ein Beispiel dafür ist in der DE-OS 30 41 398 aufgeführt.Mercury is required for the operation of almost all discharge lamps. In the case of high-pressure discharge lamps, the mercury is brought into the discharge vessel in the form of halide compounds or by direct dropping over the pump handle. In the case of low-pressure discharge lamps, on the other hand, it is customary to use glass or metal containers into which the mercury or the mercury alloy is filled in addition to the direct dropping for metering and introduction. These containers are placed near an electrode inside the discharge vessel and opened with the aid of induced high frequency or laser beams after the vessel has been closed, so that the mercury can escape. An example of this is listed in DE-OS 30 41 398.

Aufgrund der hohen Oberflächenspannung ist eine exakte Dosierung von flüssigem Quecksilber, insbesondere in kleinsten Mengen praktisch nicht möglich. Daher wird in den meisten Fällen eine weit höhere Menge in die Lampe eingefüllt, als für den Betrieb benötigt wird. Bei direktem Einbringen des flüssigen Quecksilbers wird somit auch verhindert, daß die Quecksilbertropfen im Pumpstengel hängenbleiben, was dann der Fall ist, wenn die Tröpfchen eine gewisse Mindestgröße unterschreiten.Due to the high surface tension, exact dosing of liquid mercury, especially in very small quantities, is practically impossible. In most cases, therefore, a much larger quantity is filled into the lamp than is required for operation. If the liquid mercury is introduced directly, the mercury drops are also prevented get stuck in the pump stem, which is the case when the droplets fall below a certain minimum size.

Neuerdings ist in der DE-Patentanmeldung 35 34 208.0 auch ein Verfahren vorgeschlagen, bei der ein Strang flüssigen Quecksilbers unter den Erstarrungspunkt abgekühlt wird. Von diesem gefrorenen Strang werden dann Teilstränge der benötigten Länge, d.h. der benötigten Quecksilbermenge abgetrennt und in das Entladungsgefäß eingebracht. Dieses Verfahren ermöglicht eine wesentlich genauere Dosierung. Das Verfahren ist jedoch maschinentechnisch sehr aufwendig und, da die entsprechenden Vorrichtungen in die Fertigungsmaschinen für die Lampen integriert sein müssen, nur mit großem Aufwand zu realisieren.A method is recently proposed in DE patent application 35 34 208.0 in which a strand of liquid mercury is cooled below the solidification point. Sub-strands of the required length, i.e. the required amount of mercury is separated off and introduced into the discharge vessel. This procedure enables a much more precise dosing. However, the method is very complex in terms of mechanical engineering and, since the corresponding devices have to be integrated into the production machines for the lamps, can be implemented only with great effort.

Die Verarbeitung von flüssigem Quecksilber stellt eine große Umwelt- bzw. Arbeitsplatzbelastung dar, da Quecksilber einen relativ hohen Dampfdruck besitzt, wobei der Dampf stark toxisch ist. Beim Auftreffen auf harte Unterlagen verspritzt es in winzige Tröpfchen, die nur sehr schwer wieder aufgesammelt werden können.The processing of liquid mercury is a major environmental and workplace burden, since mercury has a relatively high vapor pressure, whereby the vapor is highly toxic. When it hits hard documents, it splashes into tiny droplets that are very difficult to collect again.

Der Erfindung liegt die Aufgabe zugrunde, ein Speicherelement zum Dosieren und Einbringen von flüssigem Quecksilber bzw. flüssigen Quecksilberlegierungen zu schaffen, das eine genaue Dosierung des Quecksilbers und eine einfache Einbringung des Quecksilbers in die Lampe ermöglicht. Dabei sollten die physikalischen Eigenschaften des Quecksilbers bzw. der Quecksilberlegierung, wie z.B. der hohe Dampfdruck, nicht verändert werden.The invention has for its object to provide a storage element for metering and introducing liquid mercury or liquid mercury alloys, which enables precise metering of the mercury and easy introduction of the mercury into the lamp. The physical properties of the mercury or the mercury alloy, such as the high vapor pressure, cannot be changed.

Das Speicherelement zum Dosieren und Einbringen von flüssigem Quecksilber oder flüssigen Quecksilberlegierungen in eine Entladungslampe ist erfindungsgemäß dadurch gekennzeichnet, daß es ein poröser Preßkörper ist, der in seinen Poren die festgelegte Menge des Dosierstoffes speichert und aus einem einzigen Metall besteht, dessen Schmelzpunkt über 250 °C liegt, wobei das Metall des Preßkörpers mit Quecksilber keine Legierung bildet, von Quecksilber benetzbar ist und eine hohe Oxidationsbeständigkeit aufweist. Der Preßkörper kann aber auch aus mindestens zwei eine Mischung bzw. eine Legierung bildenden Metallen bestehen, wobei diese Mischung bzw. Legierung ihrerseits mit Quecksilber keine Legierung bildet, von Quecksilber benetzbar ist und einen Schmelzpunkt hat, der über 250 °C liegt und außerdem das erste Metall mehr als 50 Gew.-% Anteil am Preßkörper besitzt und das zweite bzw. die weiteren Metalle Elemente sind, die die Oxidationsbeständigkeit des ersten Metalls erhöhen.The storage element for metering and introducing liquid mercury or liquid mercury alloys into a discharge lamp is characterized according to the invention in that it is a porous compact which stores the defined amount of the metering substance in its pores and consists of a single metal, the melting point of which is above 250 ° C lies, wherein the metal of the compact with mercury does not form an alloy, is wettable by mercury and has a high resistance to oxidation. However, the compact can also consist of at least two metals forming a mixture or an alloy, this mixture or alloy in turn forming no alloy with mercury, being wettable by mercury and having a melting point which is above 250 ° C. and also the first Metal has more than 50% by weight of the compact and the second or further metals are elements which increase the oxidation resistance of the first metal.

Ein solcher Preßkörper speichert pro Gewichtseinheit des Metalls eine genau festlegbare Menge des Quecksilbers bzw. der Quecksilberlegierung, wie weiter unten noch näher ausgeführt wird. Messungen ergaben, daß bei Preßkörpern aus unterschiedlichen Chargen, die jeweils unter den gleichen Verfahrensbedingungen hergestellt wurden, die gespeicherte Quecksilbermenge höchstens um ± 10 % schwankt. Auf diese Weise läßt sich abhängig vom Gewicht des Preßkörpers jede gewünschte Menge des Quecksilbers bzw. der Quecksilberlegierung sogar im mg-Bereich erhalten. Der Preßkörper kann sehr einfach in die Entladungslampe eingebracht werden, wobei er weder durch eine Zwischenlagerung noch durch Berührung einen Speicherverlust erleidet. Bei einer längeren Lagerung muß diese natürlich entweder unter Vakuum oder aber unter Schutzgas erfolgen, da aufgrund des hohen Dampfdrucks das Quecksilber in normaler Atmosphäre wegdampft. Eine Überdosierung des Quecksilbers in der Lampe ist somit nicht mehr erforderlich. Als weiterer Vorteil ist es möglich, den Preßkörper im Pumpstengel zu fixieren, wodurch Leuchtstoffabtragungen, wie sie durch das Eintropfen von flüssigem Quecksilber verursacht werden, ausgeschlossen sind. Durch die Wärme bei der Aufheizung der Elektroden wird sodann das Quecksilber aus dem Preßkörper freigesetzt.Such a compact stores a precisely definable amount of the mercury or the mercury alloy per unit weight of the metal, as will be explained in more detail below. Measurements showed that the amount of mercury stored fluctuated at most by ± 10% in the case of compacts from different batches, which were each produced under the same process conditions. In this way, depending on the weight of the compact, any desired amount of mercury or mercury alloy can even be obtained in the mg range. The pressing body can be introduced very easily into the discharge lamp, and it does not unite either through intermediate storage or through contact Memory leak suffered. In the case of longer storage, this must of course take place either under vacuum or under protective gas, since the mercury evaporates in a normal atmosphere due to the high vapor pressure. An overdosing of the mercury in the lamp is therefore no longer necessary. As a further advantage, it is possible to fix the pressing body in the pump stem, thereby eliminating the removal of fluorescent substances, such as those caused by the dropping of liquid mercury. The heat from the heating of the electrodes then releases the mercury from the compact.

Ein solcher Preßkörper läßt sich hersfellen, indem das Quecksilber oder die Quecksilberlegierung in eine oder mehrere Elektrolysegefäße mit jeweils unterschiedlichen Metallsalzlösungen und einer Anode des entsprechenden Metalls gegeben und elektrolytisch mit dem jeweiligen Metall der Salzlösung angereichert wird, so daß eine oder mehrere Quecksilber-Metallsuspensionen gebildet werden. Im Fall, daß es sich um mehrere Quecksilber-Metallsuspensionen handelt, werden diese sodann in bestimmten Verhältnissen gemischt, das entstandene Suspensionsprodukt mit wasserfreiem Glycerin überschichtet und bei mindestens 100 °C getempert. Anschließend wird das Glycerin dekantiert und das Suspensionsprodukt gewaschen und getrocknet. Das nicht gespeicherte Quecksilber bzw. die nicht gespeicherte Quecksilberlegierung wird abgefiltert, der verbleibende Filterkuchen in die Bohrung eines Stahlzylinders gefüllt und das überschüssige Quecksilber bzw. die überschüssige Quecksilberlegierung mit Hilfe eines Stempels unter hohem Druck herausgepreßt. Mit Hilfe des Preßdruckes läßt sich dabei der Quecksilbergehalt des Preßkörpers variieren.Such a compact can be made by adding the mercury or the mercury alloy to one or more electrolysis vessels, each with different metal salt solutions and an anode of the corresponding metal, and electrolytically enriched with the respective metal of the salt solution, so that one or more mercury metal suspensions are formed . In the event that there are several mercury metal suspensions, these are then mixed in certain proportions, the resulting suspension product is overlaid with anhydrous glycerol and annealed at at least 100 ° C. The glycerin is then decanted and the suspension product washed and dried. The unsaved mercury or the unsaved mercury alloy is filtered off, the remaining filter cake is filled into the bore of a steel cylinder and the excess mercury or the excess mercury alloy is pressed out under high pressure using a stamp. With the help of the pressure, the mercury content of the compact can be varied.

Auf diese Weise entsteht ein spröder Preßling, der sodann pulverisiert wird und aus dem dann Preßkörper der entsprechenden Dimensionen, z.B. in Pillenform, hergestellt werden können.In this way, a brittle compact is formed, which is then pulverized and from which the compact of the corresponding dimensions, e.g. in pill form.

Als erstes bzw. einziges Metall für den Preßkörper eignen sich theoretisch alle Elemente der vierten bis achten Nebengruppe des Periodensystems, sofern sie mit Quecksilber keine Legierung bilden, aber von Quecksilber benetzbar sind. Praktisch kommen jedoch nur solche Metalle in Frage, die nicht toxisch und/oder radioaktiv sind und eine möglichst kostengünstige Herstellung des Preßkörpers ermöglichen. Als geeignet in diesem Sinn erwiesen sich die Metalle Eisen und Nickel, wobei hier ein zweites Metall wie Kupfer benötigt wird, um eine ausreichende Oxidationsbeständigkeit zu erreichen. Auch mit einem Preßkörper aus Eisen, Chrom und evtl. Nickel lassen sich gute Speichereigenschaften erzielen.The first or only metal for the pressed body is theoretically all elements of the fourth to eighth subgroup of the periodic table, provided that they do not form an alloy with mercury but can be wetted by mercury. In practice, however, only those metals are considered which are non-toxic and / or radioactive and which enable the pressed body to be produced as inexpensively as possible. In this sense, the metals iron and nickel have proven to be suitable, a second metal such as copper being required here in order to achieve sufficient resistance to oxidation. Good storage properties can also be achieved with a press body made of iron, chromium and possibly nickel.

Für den Fall, daß die Herstellung des Preßkörpers und das Einbringen des Preßkörpers in das Entladungsgefäß unter einer Schutzgasatmosphäre abgewickelt wird, kann auf die Beigabe des bzw. der weiteren Metalle zur Oxidationshemmung verzichtet werden. Untersuchungen an Preßkörpern aus Eisen, denen kein die Oxidation hemmendes Metall beigegeben war, zeigten, daß diese Preßkörper, wenn sie an der Luft gelagert werden (neben dem Verdampfen von Quecksilber), im Laufe der Zeit Quecksilbertropfen abgeben, da mit fortschreitender Oxidation die Benetzbarkeit des Körpers sinkt.In the event that the manufacture of the compact and the introduction of the compact into the discharge vessel are carried out under a protective gas atmosphere, the addition of the other metal or metals to inhibit oxidation can be dispensed with. Studies on iron compacts, to which no oxidation-inhibiting metal was added, showed that these compacts, when stored in the air (in addition to the vaporization of mercury), give off mercury drops over time, since with increasing oxidation the wettability of the Body sinks.

Besonders gute Ergebnisse bezüglich Quecksilberspeicherung, Oxidationsbeständigkeit sowie vollständiger Quecksilberabgabe bei Erwärmung im Entladungsgefäß zeigten Preßkörper aus 75 bis 99,5 Gew.-% Eisen und als Rest zu 100 % aus 25 bis 0,5 Gew.-% Kupfer. Auch Preßkörper aus 55 bis 80 Gew.-% Nickel und 45 bis 20 Gew.-% Kupfer speichern das Quecksilber sehr gut und besitzen eine hohe Oxidationsbeständigkeit. Sie haben jedoch den Nachteil, daß sie bei Raumtemperatur ca. die Hälfte des Quecksilbers hartnäckig festhalten und erst oberhalb 80 bis 100 °C wieder freigeben. Im Fall einer Zusammensetzung aus Eisen, Chrom und evtl. Nickel sollte der Preßkörper insbesondere aus 65 bis 75 Gew.-% Eisen, 12 bis 25 Gew.-% Chrom und als Rest zü 100 % aus 23 bis 0 Gew.-% Nickel bestehen. Ein solcher Preßkörper besitzt jedoch nicht die hohe Oxidationsbeständigkeit wie die beiden oben erwähnten Preßkörperzusammensetzungen.Particularly good results regarding mercury Storage, oxidation resistance and complete mercury release when heated in the discharge vessel showed compacts from 75 to 99.5% by weight of iron and the remainder to 100% from 25 to 0.5% by weight of copper. Compressed bodies made of 55 to 80% by weight of nickel and 45 to 20% by weight of copper also store the mercury very well and have a high resistance to oxidation. However, they have the disadvantage that they stubbornly hold on to about half of the mercury at room temperature and only release them again above 80 to 100 ° C. In the case of a composition of iron, chromium and possibly nickel, the pressed body should consist in particular of 65 to 75% by weight of iron, 12 to 25% by weight of chromium and the remainder of 100% of 23 to 0% by weight of nickel . However, such a compact does not have the high oxidation resistance as the two compact compositions mentioned above.

Claims (10)

1. Speicherelement zum Dosieren und Einbringen von flüssigem Quecksilber oder flüssigen Quecksilberlegierungen in eine Entladungslampe, dadurch gekennzeichnet, daß das Speicherelement ein poröser Preßkörper ist, der in seinen Poren die festgelegte Menge des Dosierstoffes speichert und aus einem einzigen Metall besteht, dessen Schmelzpunkt über 250 °C liegt, wobei das Metall des Preßkörpers mit Quecksilber keine Legierung bildet, von Quecksilber benetzbar ist und eine hohe Oxidationsbeständigkeit aufweist.1. Storage element for dosing and introducing liquid mercury or liquid mercury alloys into a discharge lamp, characterized in that the storage element is a porous compact which stores the defined amount of the dosing substance in its pores and consists of a single metal, the melting point of which is over 250 ° C lies, wherein the metal of the compact with mercury does not form an alloy, is wettable by mercury and has a high resistance to oxidation. 2. Speicherelement zum Dosieren und Einbringen von flüssigem Quecksilber oder flüssigen Quecksilberlegierungen in eine Entladungslampe, dadurch gekennzeichnet, daß das Speicherelement ein poröser Preßkörper ist, der in seinen Poren die festgelegte Menge des Dosierstoffes speichert und aus mindestens zwei eine Mischung bzw. eine Legierung bildenden Metallen besteht, wobei diese Mischung bzw. Legierung ihrerseits mit Quecksilber keine Legierung bildet, von Quecksilber benetzbar ist und einen Schmelzpunkt hat, der über 250 OC liegt und außerdem das erste Metall mehr als 50 Gew.-% Anteil am Preßkörper besitzt und das zweite bzw. die weiteren Metalle Elemente sind, die die Oxidationsbeständigkeit des ersten Metalls erhöhen.2. Storage element for dosing and introducing liquid mercury or liquid mercury alloys into a discharge lamp, characterized in that the storage element is a porous compact which stores the defined amount of the dosing substance in its pores and from at least two metals forming a mixture or an alloy is, said mixture or alloy for its part forms with mercury not an alloy of mercury is wettable and has a melting point which is about 250 O C and also the first metal greater than 50 wt .-% has share of the pressing body and the second or the other metals are elements which increase the oxidation resistance of the first metal. 3. Speicherelement nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das einzige bzw. das erste Metall ein Element der vierten bis achten Nebengruppe des Periodensystems ist.3. Storage element according to claim 1 or 2, characterized in that the single or the first metal is an element of the fourth to eighth subgroup of the periodic table. 4. Speicherelement nach Anspruch 2 und 3, dadurch gekennzeichnet, daß das erste Metall Eisen ist.4. Storage element according to claim 2 and 3, characterized in that the first metal is iron. 5. Speicherelement nach Anspruch 2 und 3, dadurch gekennzeichnet, daß das erste Metall Nickel ist.5. Storage element according to claim 2 and 3, characterized in that the first metal is nickel. 6. Speicherelement nach Anspruch 2, 4 und 5, dadurch gekennzeichnet, daß das zweite Metall Kupfer ist.6. Storage element according to claim 2, 4 and 5, characterized in that the second metal is copper. 7. Speicherelement nach Anspruch 2, 3 und 4, dadurch gekennzeichnet, daß die weiteren Metalle Chrom und Nickel sind.7. Storage element according to claim 2, 3 and 4, characterized in that the further metals are chromium and nickel. 8. Speicherelement nach Anspruch 4 und 6, dadurch gekennzeichnet, daß der Preßkörper aus 75 bis 99,5 Gew.-% Eisen und als Rest zu 100 % aus 25 bis 0,5 Gew.-% Kupfer besteht.8. Storage element according to claim 4 and 6, characterized in that the pressed body consists of 75 to 99.5% by weight of iron and the remainder consists 100% of 25 to 0.5% by weight of copper. 9. Speicherelement nach Anspruch 5 und 6, dadurch gekennzeichnet, daß der Preßkörper aus 55 bis 80 Gew.-% Nickel und als Rest zu 100 % aus 45 bis 20 Gew.-% Kupfer besteht.9. Storage element according to claim 5 and 6, characterized in that the pressed body consists of 55 to 80 wt .-% nickel and the remainder 100% of 45 to 20 wt .-% copper. 10. Speicherelement nach Anspruch 4 und 7, dadurch gekennzeichnet, daß der Preßkörper aus 65 bis 75 Gew.-% Eisen, 12 bis 25 Gew.-% Chrom und als Rest zu 100 % aus 23 bis 0 Gew.-% Nickel besteht.10. Storage element according to claim 4 and 7, characterized in that the pressed body consists of 65 to 75 wt .-% iron, 12 to 25 wt .-% chromium and the remainder to 100% from 23 to 0 wt .-% nickel.
EP86117329A 1985-12-19 1986-12-12 Storage element for dosing and introducing liquid mercury into a discharge lamp Expired - Lifetime EP0228005B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3545073 1985-12-19
DE19853545073 DE3545073A1 (en) 1985-12-19 1985-12-19 STORAGE ELEMENT FOR DOSING AND PUTING LIQUID MERCURY INTO A DISCHARGE LAMP

Publications (3)

Publication Number Publication Date
EP0228005A2 true EP0228005A2 (en) 1987-07-08
EP0228005A3 EP0228005A3 (en) 1989-05-10
EP0228005B1 EP0228005B1 (en) 1992-03-04

Family

ID=6288937

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86117329A Expired - Lifetime EP0228005B1 (en) 1985-12-19 1986-12-12 Storage element for dosing and introducing liquid mercury into a discharge lamp

Country Status (5)

Country Link
US (1) US4808136A (en)
EP (1) EP0228005B1 (en)
JP (1) JP2960414B2 (en)
KR (1) KR940004834B1 (en)
DE (2) DE3545073A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0479259A2 (en) * 1990-10-01 1992-04-08 Toshiba Lighting & Technology Corporation Mercury vapor discharge lamp
EP0581160A1 (en) * 1992-07-29 1994-02-02 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Amalgam body or amalgam creating body for fluorescent lamp

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3907277A1 (en) * 1989-03-07 1990-09-20 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh MERCURY LOW PRESSURE DISCHARGE LAMP
JP3220472B2 (en) * 1991-05-16 2001-10-22 ウエスト電気株式会社 Cold cathode fluorescent discharge tube
IT1270598B (en) 1994-07-07 1997-05-07 Getters Spa COMBINATION OF MATERIALS FOR MERCURY DISPENSING DEVICES PREPARATION METHOD AND DEVICES SO OBTAINED
DE19512129A1 (en) * 1995-03-31 1996-10-02 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Low pressure mercury vapor discharge lamp
IT1277239B1 (en) * 1995-11-23 1997-11-05 Getters Spa DEVICE FOR THE EMISSION OF MERCURY, THE ABSORPTION OF REACTIVE GASES AND THE SHIELDING OF THE ELECTRODE INSIDE LAMPS
IT1291974B1 (en) * 1997-05-22 1999-01-25 Getters Spa DEVICE AND METHOD FOR THE INTRODUCTION OF SMALL QUANTITIES OF MERCURY IN FLUORESCENT LAMPS
IT1317117B1 (en) 2000-03-06 2003-05-27 Getters Spa METHOD FOR THE PREPARATION OF MERCURY DISPENSING DEVICES FOR USE IN FLUORESCENT LAMPS
WO2001078858A2 (en) 2000-04-12 2001-10-25 Advanced Lighting Technologies, Inc. A solid mercury releasing material and method of dosing mercury into discharge lamps
JP3565137B2 (en) * 2000-05-26 2004-09-15 ウシオ電機株式会社 Method for producing discharge lamp, discharge lamp and carrier for introducing halogen
JP3688612B2 (en) * 2000-09-22 2005-08-31 松下電器産業株式会社 Mercury inclusion body, method for producing the mercury inclusion body, and fluorescent lamp using the mercury inclusion body
US7625258B2 (en) * 2006-03-16 2009-12-01 E.G.L. Company Inc. Lamp electrode and method for delivering mercury
US20070216308A1 (en) * 2006-03-16 2007-09-20 Kiermaier Ludwig P Lamp electrode and method for delivering mercury
ITMI20061344A1 (en) * 2006-07-11 2008-01-12 Getters Spa METHOD FOR RELEASING MERCURY
US8339043B1 (en) * 2011-08-15 2012-12-25 James Bernhard Anderson Arc discharge with improved isotopic mixture of mercury
AU2014265563B9 (en) 2013-05-13 2018-02-08 Board Of Regents, The University Of Texas System Compositions of mercury isotopes for lighting
JP2017019203A (en) * 2015-07-10 2017-01-26 ニッタ・ハース株式会社 System for refining material for polishing pad

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3657589A (en) * 1969-10-20 1972-04-18 Getters Spa Mercury generation
DE2301465A1 (en) * 1972-01-13 1973-07-19 Thorn Electrical Ind Ltd ELECTRIC DISCHARGE LAMP
GB2063556A (en) * 1979-11-07 1981-06-03 Gte Prod Corp Mercury dispenser for arc discharge lamps

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2651737A (en) * 1950-10-06 1953-09-08 Westinghouse Electric Corp Ignitron
US2929705A (en) * 1956-07-27 1960-03-22 Siemens Ag Process of treating amalgams of metals which are difficultly soluble in mercury
NL280327A (en) * 1963-11-22
JPS49132877A (en) * 1973-02-02 1974-12-20
US4661078A (en) * 1985-12-31 1987-04-28 Gte Products Corporation Methods for dispensing mercury into devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3657589A (en) * 1969-10-20 1972-04-18 Getters Spa Mercury generation
DE2301465A1 (en) * 1972-01-13 1973-07-19 Thorn Electrical Ind Ltd ELECTRIC DISCHARGE LAMP
GB2063556A (en) * 1979-11-07 1981-06-03 Gte Prod Corp Mercury dispenser for arc discharge lamps

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0479259A2 (en) * 1990-10-01 1992-04-08 Toshiba Lighting & Technology Corporation Mercury vapor discharge lamp
EP0479259A3 (en) * 1990-10-01 1992-05-20 Toshiba Lighting & Technology Corporation Mercury vapor discharge lamp
EP0581160A1 (en) * 1992-07-29 1994-02-02 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Amalgam body or amalgam creating body for fluorescent lamp

Also Published As

Publication number Publication date
EP0228005B1 (en) 1992-03-04
DE3545073A1 (en) 1987-07-02
JPS62180933A (en) 1987-08-08
KR940004834B1 (en) 1994-06-01
DE3684123D1 (en) 1992-04-09
US4808136A (en) 1989-02-28
JP2960414B2 (en) 1999-10-06
KR870006611A (en) 1987-07-13
EP0228005A3 (en) 1989-05-10

Similar Documents

Publication Publication Date Title
EP0228005B1 (en) Storage element for dosing and introducing liquid mercury into a discharge lamp
DE1446161C3 (en) Superconducting component and method for its manufacture
DE3509039A1 (en) COMPOSITE FOR ELECTRICAL CONTACTS AND METHOD FOR THE PRODUCTION THEREOF
DE2625214A1 (en) Process for the production of sintered molded bodies
DE1902604B2 (en) WORKPIECE MADE OF NIOB OR A NIOB ALLOY WITH PROTECTIVE COVER AND PROCESS FOR ITS MANUFACTURING
DE2749215A1 (en) METHOD FOR MANUFACTURING A COPPER-BASED IRON POWDER
DE2631906A1 (en) METAL POWDER MIXTURE FOR THE MANUFACTURE OF DENTAL AMALGAMS USED IN DENTISTRY BY MIXING WITH MERCURY
DE2856466A1 (en) METHOD FOR PRODUCING HIGH-RADIOACTIVE WASTE MATERIALS MADE FROM GLASS GRANULES EMBEDDED IN A METAL MATRIX
DE1942702B1 (en) Solid lubricant
DE4331526C2 (en) Material for electrical contacts based on silver-tin oxide or silver-zinc oxide and method for producing a composite powder therefor
EP0226192B1 (en) Method of producing a storage element to dose and introduce mercury into a discharge lamp
EP0568754A1 (en) Manufacture of thin metal articles, which are corrosion-sensitive at high temperatures
DE3308409C2 (en)
DE939042C (en) Vaporizable getter material for electrical discharge vessels, which contains a permanent barium alloy and an additive
DE858738C (en) Powdery, non-evaporating trapping material for electrical discharge vessels
DE3330231C2 (en)
DE1930859A1 (en) Powder metal compositions and processes for their preparation
DE2129992C3 (en) Process for the production of welding wires
EP0338401B1 (en) Powder-metallurgical process for the production of a semi-finished product for electrical contacts made from a composite material based on silver and iron
DE2320553C3 (en) Process for making a plasma sprayed beryllium article
DE19735734B4 (en) Powder metallurgy sputtering target based on bismuth and process for its preparation
DE2820746C3 (en) Mercury vapor low pressure discharge lamp
DE60023959T2 (en) A method for changing the meta-isotope ratio in a metal alkyl
DE3708158C2 (en) Switch contact for a vacuum switch and method for producing such a switch contact
DE914522C (en) Process for the production of highly heat-emitting coatings on electrodes of electrical discharge vessels, in particular high-performance short-wave tubes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19890608

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PATENT-TREUHAND-GESELLSCHAFT FUER ELEKTRISCHE GLUE

17Q First examination report despatched

Effective date: 19901128

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REF Corresponds to:

Ref document number: 3684123

Country of ref document: DE

Date of ref document: 19920409

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 86117329.2

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20051208

Year of fee payment: 20

Ref country code: SE

Payment date: 20051208

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20051216

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20051228

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060220

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20061211

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

EUG Se: european patent has lapsed