EP0223223B1 - Process for the production of paper and cardboard - Google Patents

Process for the production of paper and cardboard Download PDF

Info

Publication number
EP0223223B1
EP0223223B1 EP86115915A EP86115915A EP0223223B1 EP 0223223 B1 EP0223223 B1 EP 0223223B1 EP 86115915 A EP86115915 A EP 86115915A EP 86115915 A EP86115915 A EP 86115915A EP 0223223 B1 EP0223223 B1 EP 0223223B1
Authority
EP
European Patent Office
Prior art keywords
weight
paper
acrylamide
molecular weight
stock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86115915A
Other languages
German (de)
French (fr)
Other versions
EP0223223A1 (en
Inventor
Rudolf Lorz
Friedrich Dr. Linhart
Werner Auhorn
Manfred Matz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to AT86115915T priority Critical patent/ATE50814T1/en
Publication of EP0223223A1 publication Critical patent/EP0223223A1/en
Application granted granted Critical
Publication of EP0223223B1 publication Critical patent/EP0223223B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/68Water-insoluble compounds, e.g. fillers, pigments siliceous, e.g. clays
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/37Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
    • D21H17/375Poly(meth)acrylamide
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • D21H17/45Nitrogen-containing groups
    • D21H17/455Nitrogen-containing groups comprising tertiary amine or being at least partially quaternised
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/54Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
    • D21H17/55Polyamides; Polyaminoamides; Polyester-amides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/54Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
    • D21H17/56Polyamines; Polyimines; Polyester-imides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/76Processes or apparatus for adding material to the pulp or to the paper characterised by choice of auxiliary compounds which are added separately from at least one other compound, e.g. to improve the incorporation of the latter or to obtain an enhanced combined effect
    • D21H23/765Addition of all compounds to the pulp

Definitions

  • the present invention has for its object to provide a process for the production of paper and cardboard, according to which one can produce papers with good formation and surface quality and which are well printable.
  • All paper grades can be produced using these processes, e.g. Papers for newspaper printing (high-pressure / offset printing), so-called medium-fine writing and printing papers, gravure printing papers and also lightweight coating base papers. Wood pulp, thermomechanical material (TMP), chemo-thermomechanical material (CTMP), pressure sanding (PGW), and sulphite and sulphate pulp, which can be short or long fibers, are used as the main raw material components for the production of such papers.
  • TMP thermomechanical material
  • CTMP chemo-thermomechanical material
  • PGW pressure sanding
  • sulphite and sulphate pulp which can be short or long fibers
  • filler-free and filler-containing papers can be produced by the process according to the invention.
  • the filler content in the paper can be up to a maximum of 30% by weight and is preferably in the range from 5 to 25% by weight of filler.
  • Suitable fillers are, for example, clay, kaolin, chalk, talc, titanium dioxide, calcium sulfate, barium sulfate, aluminum oxide, satin white or mixtures of the fillers mentioned.
  • an aqueous slurry of fiber and filler is first prepared.
  • the concentration of the aqueous pulp is initially 2.5 to 5% by weight and includes both the content of fibrous materials, fine materials and fillers.
  • a pulp whose substance concentration is in the range from 2.5 to 5% by weight is added in process section a) from 0.1 to 2% by weight, preferably from 0.5 to 1.5% by weight. an activated bentonite. Then the paper stock concentration is adjusted to a value of 0.3 to 2% by weight by dilution with water.
  • Bentonite is generally understood to mean layered silicates which are swellable in water. These are primarily the clay mineral montmorillonite and similar clay minerals, e.g. Nontronite, hectorite, saponite, Volkonskoit, sauconite, beidellite, allevardite, illite, halloysite, attapulgite and sepiolite.
  • the layered silicate must be swellable in water and, in extreme cases, be able to disintegrate into its elementary layers through this swelling. If this property is not inherent, the layered silicate must be activated before use, i.e. converted to its water-swellable sodium, potassium, ammonium or hydroxonium form. Such activation of the bentonites is achieved by treating the layered silicates with the appropriate bases or soda or potash.
  • a sodium bentonite is preferably used for the application according to the invention.
  • the activated bentonite is added to the aqueous pulp, based on dry paper stock, in an amount of 0.1 to 2, preferably 0.5 to 1.5% by weight.
  • the bentonite can be added either in solid form or, preferably, in the form of an aqueous slurry.
  • the cationic polyelectrolytes of component b) have a high charge density.
  • These compounds are, for example, the following polymers: polyethyleneimines, polyamines with a molecular weight of more than 50,000, polyamidoamines modified by grafting ethyleneimine, polyamidoamines, polyetheramines, polyvinylamines, modified polyvinylamines, polyalkylamines, polyvinylimidazoles, polyvinylpyridines, polyvinylimidazolines, Polyvinyltetrahydropyridines, polydialkylaminoalkyl vinyl ethers, polydialkylaminoalkyl (meth) acrylates, polydialkylaminoalkyl (meth) acrylamides in protonated or quaternized form.
  • Other suitable compounds of this type are polydiallyldialkylammonium halides, in particular polydiallyldimethylammonium chloride.
  • the polyelectrolytes are
  • Polyethyleneimines are prepared, for example, by polymerizing ethyleneimine in aqueous solution under the action of acidic catalysts by known processes. Modified polyethyleneimines are obtained by crosslinking polyethyleneimines to such an extent that the resulting polymers are still water-soluble. Suitable crosslinkers are, for example, epichlorohydrin, dichloroethane or xylylene dichloride.
  • Water-soluble condensation products containing condensed ethyleneimine are prepared, for example, by firstly condensing 1 mol of a dicarboxylic acid having 4 to 10 carbon atoms with 1 to 2 mols of a polyalkylene polyamine which has 3 to 10 basic nitrogen atoms in the molecule into polyamidoamines, then ethyleneimine onto the condensation products grafted and the ethyleneimine-modified polyamidoamines reacted with a crosslinking agent, so that water-soluble condensation products are obtained.
  • Suitable crosslinkers are, for example, epichlorohydrin, cf.
  • component b) are also suitable as component b) are the condensation products known from DE-AS 17 71 814, which are crosslinking products of polyamidoamines with bifunctional crosslinking agents.
  • Cationic polyelectrolytes with a high charge density are also obtained by condensation of di- and polyamines, such as ethylenediamine, diethylenetriamine, triethylenetetramine and the higher homologues with crosslinking agents, such as dichloroethane, epichlorohydrin, and the reaction products of polyethylene glycols and epichlorohydrin in a molar ratio of 1: at least 2 or by Reaction of primary and secondary amines, such as methylamine or dimethylamine with epichlorohydrin, dichloroethane, dichloropropane or dichlorobutane.
  • di- and polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine and the higher homologues with crosslinking agents, such as dichloroethane, epichlorohydrin
  • crosslinking agents such as dichloroethane, epichlorohydrin
  • crosslinking agents such as dichloroethane, epichlorohydrin
  • Polyvinylamines are prepared by polymerizing N-vinylformamide and hydrolyzing the resulting polymers by the action of acids or bases, the formyl groups being split off from the polymer. Those polymers which contain copolymerized N-vinylformamide and vinylamine units are also very effective. Such polymers are produced by partial hydrolysis of polyvinylformamides.
  • the polymers of vinyl heterocycles are obtained by subjecting the monomers on which these polymers are based to the polymerization, for example polymerizing N-vinylimidazole or its derivatives, for example 2-methyl-1-vinylimidazole or 2-benzyl-1-vinylimidazole, N-vinylpyridine or the like Derivatives and N-vinylimidazolines, for example 2-methyl-1-vinyl-imidazoline, 2-phenyl-1-vinyl-imidazoline or 2-benzyi-l-vinyi-imidazoiin.
  • the heterocyclic cationic monomers are preferably used in the polymerization in neutralized or quaternized form.
  • cationic polyelectrolytes are b) di-G to C 3 -alkylamino-Cz to C6-alkyl (meth) acrylates, di-G to C 3 -alkylamino-C 2 to C 6 -alkyl (meth) acrylamides and dialkylaminoalkyl vinyl ethers.
  • Another class of compounds belonging to component b) are polymerized diallyldi-C 1 -C 3 -alkylammonium halides, in particular polydi-allyldimethylammonium chloride.
  • the molecular weight of the cationic polyelectrolytes of component b) is in the range from 50,000 to 3,000,000, preferably 200,000 to 2,000,000. Polymers of this type are known and the majority are commercially available.
  • the charge density of the cationic polyelectrolytes at pH 4.5 is preferably in the range from 5 to 20 meq / g polyelectrolyte.
  • the pulp as component c) is metered in with a high molecular weight polymer based on acrylamide or methacrylamide.
  • This polymer is also mixed with the paper stock, which is then dewatered in the usual way on a sieve. Based on dry paper stock, 0.003 to 0.03, preferably 0.005 to 0.015,% by weight of a high molecular weight polymer of component c) is used.
  • This group of polymers includes the homopolymers of acrylamide and methacrylamide and the copolymers of the two monomers with anionic or cationic monomers.
  • the homopolymers and copolymers have an average mass molecular weight (determined by the light scattering method) of 1 million to 20 million.
  • Anionically modified polymers of acrylamide or methacrylamide are obtained by copolymerizing acrylamide or methacrylamide with monoethylenically unsaturated C 3 - to C s -carboxylic acids, which may or may not be partially or completely neutralized, or by partial hydrolysis of the amide groups of an acrylamide or methacrylamide homopolymer.
  • the anionically modified polyacrylamides mainly the copolymers of acrylamide and acrylic acid are used.
  • the copolymerized acrylic acid content in the copolymer can be 5 to 80% by weight.
  • the G- to C 2 -alkylamino-C 2 to Cs-alkyl (meth) acrylates for example diethylaminoethyl acrylate, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, dimethylaminopropylacrylate, dimethylaminobutyylate acrylate and methacrylate, these monomers being subjected to the copolymerization in the form of the salt with hydrochloric acid or sulfuric acid or in quaternized form, for example quaternized by reaction with methyl chloride, dimethyl sulfate or benzyl chloride.
  • the G- to C 2 -alkylamino-C 2 to Cs-alkyl (meth) acrylates for example diethylaminoethyl acrylate, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, dimethylaminopropylacrylate
  • Suitable cationic monomers for modifying the (meth) acrylamide polymers are dialkylaminoalkyl (meth) acrylamides, dialkylaminoalkyl vinyl ethers, N-vinylimidazoles, N-vinylpyridine and diallyldimethylammonium chloride.
  • polyacrylamide, copolymers of acrylamide and acrylic acid, copolymers of acrylamide and dimethylaminoethyl acrylate, copolymers of acrylamide and diethylaminoethyl acrylate, copolymers of acrylamide and N-vinylimidazoline, copolymers of acrylamide and 2-methyl-1-vinylimidazoiin are preferably used for the process according to the invention and copolymers of acrylamide and 2-phenyl-1-vinylimidazoline.
  • the cationic monomers are used in neutralized or quaternized form.
  • the two classes of compounds then differ in that the compounds c) have a molecular weight which is at least 1 million higher than the molecular weight of the compounds b).
  • Another distinguishing feature of the two connection classes b) and c) lies in the charge density.
  • the compounds c) - provided they are cationically modified - have a charge density of at most 3.5 mVaVg polyelectrolyte (measured at pH 4.5): For anionic modification of the polyacrylamides, vinylsulfonic acid, acrylamidopropanesulfonic acids and / or their alkali, ammonium or Amine salts are used.
  • the starting point is an aqueous pulp, the concentration of which is 2.5 to 5% by weight.
  • the activated bentonite is added in the amounts indicated above.
  • the bentonite is preferably added in the form of a 3 to 6% aqueous dispersion.
  • the pulp containing the bentonite is then diluted with water.
  • the white water is preferably used for this in the production plant.
  • metered in at least one compound according to b) in the amount specified above Due to the flow conditions in the line system, there is sufficient mixing of the cationic polymer with the paper stock.
  • the high molecular weight polymer of component c) can be added.
  • compounds c) are added before the headbox, advantageously at a point between the pressure sorter and the headbox.
  • the polymers b) and c) are preferably metered in in the form of dilute aqueous solutions. Due to the auxiliary system used, paper production can take place in closed water cycles. Paper with good printability is obtained which also has good printability in the offset process.
  • the parts given in the examples are parts by weight. The percentages relate to the weight of the fabrics.
  • the charge density and molecular weights (light scattering) were determined according to D. Horn, Polyethylenimine / Physicochemical Properties and Application (IUPAC) Polymeric Amines and Ammonium Salts, Pergamon Press Oxford and New York, 1980, pages 333 to 355.
  • Determining the dewatering time 1 l of the pulp slurry to be tested is dewatered in a Schopper-Riegler test device. The time that is determined for different outlet volumes is evaluated as a criterion for the drainage rate of the substance suspension examined in each case. The drainage times were determined in all cases specified here after the passage of 150, 200 and 250 ml of water.
  • the retention was checked by determining the solids content in 250 ml of a filtrate obtained by dewatering the fiber slurry to be tested in a Schopper-Riegler device.
  • High molecular polymer 1 (component c):. A homopolymer of acrylamide with a molecular weight of 3.5 million is used.
  • thermomechanical substance TMP
  • concentration of 3.2% is produced in a 20 liter container.
  • the pH of the stock suspension is 5.7.
  • the paper fiber suspension thus produced is stirred and mixed with a 5% aqueous slurry of a commercially available sodium bentonite, so that the amount of bentonite, based on paper stock, is 0.5%.
  • the substance is diluted to a concentration of 0.85% by adding water.
  • Filler-free newsprint in offset quality with a basis weight of 52 g / m 2 is made from 100% bleached TMP (thermomechanical fabric). It is initially assumed that the substance concentration is 2.95% and 0.7% sodium bentonite in the form of a 5% aqueous slurry is added in continuous operation. Then the paper stock is diluted in the mixing pump with white water to a concentration of 0.75% and metered into the line at the outlet of the mixing pump, based on dry paper stock, 0.05% of the above-mentioned polyelectrolyte 1 and after mixing between the pressure sorter and the headbox , 0.01% of the high molecular weight polymer 1. After adjusting the system balance, the values for headbox, white water are determined and the values for the first pass retention (FPR) are calculated. The machine speed and the paper production per unit of time are determined as a further parameter.
  • TMP thermomechanical fabric
  • the headbox concentration is 6.84 g / l
  • the white water contains 2.32 g / l solids.
  • the First Pass Retention (FPR) is 66.1%.
  • the production speed is 577 m / min. You get 6.8 t of paper per hour.
  • Example 1 is repeated with the exception that the polyelectrolyte 1 is omitted.
  • the paper flocculates so strongly that perfect sheet formation is not guaranteed.
  • the formation and surface quality of the sheet is insufficient for the printing requirements.
  • Example 2 is repeated with the exception that the high molecular weight polymer 1 is omitted. In this case you get a good formation, but the drainage of the paper stock is bad, so that the machine can only run at a lower speed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Paper (AREA)
  • Making Paper Articles (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

Paper and cardboard are produced by draining a paper stock by a method in which a stock having a consistency of from 2.5 to 5% by weight is used as a starting material, and (a) from 0.1 to 2% by weight of an activated bentonite are added and the stock consistency is then brought to 0.3-2% by weight by dilution with water, after which (b) from 0.01 to 0.1% by weight of a cationic polyelectrolyte having a charge density of not less than 4 meq/g of polyelectrolyte is added and distributed therein, and, after thorough mixing (c) from 0.003 to 0.3% by weight of a high molecular weight polymer based on acrylamide or methacrylamide is metered in and mixed with the paper stock, the percentages in each case being based on dry paper stock, and the resulting pulp is drained on a wire. The paper obtained is distinguished in particular by good printing properties in the offset printing process.

Description

Aus der DE-OS 2 262 906 ist bekannt, daß man bei der Herstellung von Papier und Karton Mischungen aus Bentonit und Polyamidoaminen, Polyetheraminen oder Polyethyleniminen als Entwässerungshilfsmittel von Störstoffe enthaltenden Pulpen bei der Herstellung von Papier und Karton verwenden kann. Die mit diesem Hilfsstoffsystem erreichbaren Papiermaschinengeschwindigkeiten sind jedoch noch verbesserungsbedürftig. Außerdem erhält man nach diesem Verfahren Papierqualitäten, deren Bedruckbarkeit nicht zufriedenstellend ist.From DE-OS 2 262 906 it is known that mixtures of bentonite and polyamidoamines, polyetheramines or polyethyleneimines can be used as drainage aids for pulps containing impurities in the production of paper and cardboard in the production of paper and cardboard. However, the paper machine speeds that can be achieved with this auxiliary system still need to be improved. This process also gives paper grades whose printability is unsatisfactory.

Aus der US-PS 3 052 595 ist ein Verfahren zur-Herstellung von insbesondere Füllstoffe enthaltenden Papieren bekannt, bei dem man den Papierstoff in Gegenwart von Bentonit und Polyacrylamiden entwässert. Dadurch wird zwar eine erhöhte Füllstoffretention im Papier erreicht, jedoch bewirken selbst die geringen Polyacrylamidmengen eine zu starke Flockung im Papierstoff, so daß es zu Ungleichmäßigkeiten im Papier und an der Oberfläche des Papiers kommt. Diese Papiere sind schlecht bedruckbar.From US Pat. No. 3,052,595 a process for the production of papers containing fillers in particular is known, in which the paper stock is dewatered in the presence of bentonite and polyacrylamides. Although this results in increased filler retention in the paper, even the small amounts of polyacrylamide cause too much flocculation in the paper stock, so that there are non-uniformities in the paper and on the surface of the paper. These papers are difficult to print on.

Aus der EP-PS 17 353 ist ein Verfahren zur Herstellung von Papier oder Katon aus einer wäßrigen Suspension von Cellulosefasern bekannt, bei dem man eine praktisch füllstoff-freie Stoffsuspension unter Verwendung einer Mischung aus wasserlöslichen, hochmolekularen, im wesentlichen nichtionischen Polymerisaten und eines Bentonit-artigen Tons unter Blattbildung entwässert. Als Polymerisate kommen im wesentlichen Polyacrylamide in Betracht. Auch in einem praktisch füllstoff-freien System bewirken die Polyacrylamide bereits im Papierstoff eine starke Flockung, die die Qualität der Papiere beeinträchtigt. Die Formation und Oberflächenbeschaffenheit der so hergestellten Papiere genügt nicht den Anforderungen, die an die Bedruckbarkeit der Papiere gestellt werden. Beim Bedrucken solcher Papiere nach dem Offset-Verfahren werden aus der Papieroberfläche Fasern und Feinstoffe abgelöst.From EP-PS 17 353 a process for the production of paper or Katon from an aqueous suspension of cellulose fibers is known, in which a practically filler-free substance suspension using a mixture of water-soluble, high molecular weight, essentially non-ionic polymers and a bentonite dewy clay under leaf formation. Polyacrylamides are essentially suitable as polymers. Even in a practically filler-free system, the polyacrylamides cause strong flocculation in the paper stock, which affects the quality of the paper. The formation and surface properties of the papers produced in this way do not meet the requirements placed on the printability of the papers. When printing on such papers using the offset process, fibers and fines are removed from the paper surface.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung von Papier und Karton zur Verfügung zu stellen, gemäß dem man Papiere mit guter Formation und Oberflächenbeschaffenheit herstellen kann und die gut bedruckbar sind.The present invention has for its object to provide a process for the production of paper and cardboard, according to which one can produce papers with good formation and surface quality and which are well printable.

Die Aufgabe wird erfindungsgemäß gelöst mit einem Verfahren zur Herstellung von Papier und Karton durch Entwässern eines Papierstoffs, der Bentonit und Polyelektrolyte enthält, auf einem Sieb, wenn man zu einer wäßrigen Pulpe, deren Stoffkonzentration 2,5 bis 5 Gew.-% beträgt, jeweils bezogen auf trockenen Papierstoff,

  • a) 0,1 bis 2 Gew.% eines aktivierten Bentönits zusetzt, danach die Papierstoffkonzentration durch Verdünnen mit Wasser auf 0,3 bis 2 Gew.% einstellt,
  • b) 0,01 bis 0,1 Gew.% eines kationischen Polyelektrolyten mit einer Ladungsdichte von mindestens 4 mVaVg Polyelektrolyt (gemessen bei pH 4,5) zufügt, darin verteilt und nach der Durchmischung
  • c) 0,003 bis 0,03 Gew.% eines hochmolekularen Homopolymerisats von Acrylamid oder Methacrylamid, eines hochmolekularen kationischen Copolymerisats auf Basis von Acrylamid oder Methacrylamid mit einer Ladungsdichte von höchstens 3,5 mVal/g Polyelektrolyt (gemessen bei pH 4,5) oder eines hochmolekularen anionisch modifizierten Copolymerisats des Acrylamids oder Methacrylamids zudosiert, wobei im Fall des Einsatzes chemischer ähnlicher Verbindungen b) und c) die Verbindungen c) ein Molekulargewicht aufweisen, das um mindestens 1 Million höher ist als das Molekulargewicht der Verbindungen b),
The object is achieved according to the invention with a process for the production of paper and cardboard by dewatering a paper stock which contains bentonite and polyelectrolytes, on a sieve, if in each case an aqueous pulp, the substance concentration of which is 2.5 to 5% by weight based on dry paper stock,
  • a) 0.1 to 2% by weight of an activated bentonite is added, then the pulp concentration is adjusted to 0.3 to 2% by weight by dilution with water,
  • b) 0.01 to 0.1% by weight of a cationic polyelectrolyte with a charge density of at least 4 mVaVg polyelectrolyte (measured at pH 4.5) is added, distributed therein and after mixing
  • c) 0.003 to 0.03% by weight of a high molecular weight homopolymer of acrylamide or methacrylamide, a high molecular weight cationic copolymer based on acrylamide or methacrylamide with a charge density of at most 3.5 meq / g polyelectrolyte (measured at pH 4.5) or one high molecular weight anionically modified copolymer of acrylamide or methacrylamide is metered in, if chemical similar compounds b) and c) are used, compounds c) have a molecular weight which is at least 1 million higher than the molecular weight of compounds b),

mit dem Papierstoff mischt und die so erhaltene Pulpe auf einem Sieb entwässert.mixes with the paper stock and the pulp thus obtained is dewatered on a sieve.

Nach diesen Verfahren können sämtliche Papierqualitäten hergestellt werden, z.B. Papiere für den Zeitungsdruck (Hochdruck/Offset-Druck), sogenannte mittelfeine Schreib- und Druckpapiere, Naturtiefdruckpapiere und auch leichtgewichtige Streichrohpapiere. Zur Herstellung solcher Papiere verwendet man als Hauptrohstoffkomponente Holzschliff, thermomechanischen Stoff (TMP), chemo-thermomechanischen Stoff (CTMP), Druckschliff (PGW), sowie Sulfit- und Sulfatzellstoff, die jeweils kurz- bzw. langfaserig sein können. Als Rohstoffe für die Herstellung der Pulpe kommt auch Zellstoff und Holzstoff in Betracht, der in den sogenannten integrierten Fabriken in mehr oder weniger feuchter Form direkt ohne vorherige Eindickung bzw. Trocknung weiter zu Papier verarbeitet wird und aufgrund der nicht vollständig entfernten Verunreinigungen vom Aufschluß her noch Stoffe enthält, die den üblichen Papierherstellprozeß stark stören. Nach dem erfindungsgemäßen Verfahren können sowohl füllstoff-freie als auch füllstoff-haltige Papiere hergestellt werden. Der Füllstoffgehalt im Papier kann bis maximal 30 Gew.% betragen und liegt vorzugsweise in dem Bereich von 5 bis 25 Gew.% Füllstoff. Geeignete Füllstoffe sind beispielsweise Clay, Kaolin, Kreide, Talkum, Titandioxid, Kalziumsulfat, Bariumsulfat, Aluminiumoxid, Satinweiß oder Mischungen der genannten Füllstoffe. Sofern füllstoff-enthaltende Papiere hergestellt werden, stellt man zunächst eine wäßrige Anschlämmung von Faserstoff und Füllstoff her. Die Stoffkonzentration der wäßrigen Pulpe beträgt zunächst 2,5 bis 5 Gew.% und umfaßt sowohl den Gehalt an Faserstoffen, Feinstoffen und Füllstoffen. Bei dem erfindungsgemäßen Verfahren gibt man zu einer Pulpe, deren Stoffkonzentration in dem Bereich von 2,5 bis 5 Gew.% beträgt, im Verfahrenabschnitt a) 0,1 bis 2 Gew.%, vorzugsweise 0,5 bis 1,5 Gew.% eines aktivierten Bentonits. Danach wird erst die Papierstoffkonzentration durch Verdünnen mit Wasser auf einen Wert von 0,3 bis 2 Gew.% eingestellt.All paper grades can be produced using these processes, e.g. Papers for newspaper printing (high-pressure / offset printing), so-called medium-fine writing and printing papers, gravure printing papers and also lightweight coating base papers. Wood pulp, thermomechanical material (TMP), chemo-thermomechanical material (CTMP), pressure sanding (PGW), and sulphite and sulphate pulp, which can be short or long fibers, are used as the main raw material components for the production of such papers. Also suitable as raw materials for the production of pulp are pulp and wood pulp, which in the so-called integrated factories are further processed in paper in a more or less moist form directly to paper without prior thickening or drying, and due to the incomplete removal of impurities from the pulp Contains substances that severely disrupt the usual paper manufacturing process. Both filler-free and filler-containing papers can be produced by the process according to the invention. The filler content in the paper can be up to a maximum of 30% by weight and is preferably in the range from 5 to 25% by weight of filler. Suitable fillers are, for example, clay, kaolin, chalk, talc, titanium dioxide, calcium sulfate, barium sulfate, aluminum oxide, satin white or mixtures of the fillers mentioned. If filler-containing papers are produced, an aqueous slurry of fiber and filler is first prepared. The concentration of the aqueous pulp is initially 2.5 to 5% by weight and includes both the content of fibrous materials, fine materials and fillers. In the process according to the invention, a pulp whose substance concentration is in the range from 2.5 to 5% by weight is added in process section a) from 0.1 to 2% by weight, preferably from 0.5 to 1.5% by weight. an activated bentonite. Then the paper stock concentration is adjusted to a value of 0.3 to 2% by weight by dilution with water.

Unter Bentonit werden allgemein Schichtsilikate verstanden, die in Wasser quellbar sind. Es handelt sich hierbei in erster Linie um das Tonmineral Montmorillonit sowie ähnliche Tonmineralien, z.B. Nontronit, Hectorit, Saponit, Volkonskoit, Sauconit, Beidellit, Allevardit, Illit, Halloysit, Attapulgit und Sepiolit. Das Schichtsilikat muß dabei in Wasser quellbar sein und durch diese Quellung im Extremfall in seine Elementarschichten zerfallen können. Sollte diese Eigenschaft nicht von Natur aus gegeben sein, so muß das Schichtsilikat vor der Anwendung aktiviert werden, d.h. in seine mit Wasser quellbare Natrium-, Kalium-, Ammonium- oder Hydroxoniumform überführt worden sein. Eine derartige Aktivierung der Bentonite wird erreicht, indem man die Schichtsilikate mit den entsprechenden Basen oder Soda bzw. Pottasche behandelt. Vorzugsweise wird für die erfindungsgemäße Anwendung ein Natriumbentonit verwendet.Bentonite is generally understood to mean layered silicates which are swellable in water. These are primarily the clay mineral montmorillonite and similar clay minerals, e.g. Nontronite, hectorite, saponite, Volkonskoit, sauconite, beidellite, allevardite, illite, halloysite, attapulgite and sepiolite. The layered silicate must be swellable in water and, in extreme cases, be able to disintegrate into its elementary layers through this swelling. If this property is not inherent, the layered silicate must be activated before use, i.e. converted to its water-swellable sodium, potassium, ammonium or hydroxonium form. Such activation of the bentonites is achieved by treating the layered silicates with the appropriate bases or soda or potash. A sodium bentonite is preferably used for the application according to the invention.

Der aktivierte Bentonit wird der wäßrigen Pulpe, bezogen auf trockenen Papierstoff, in einer Menge von 0,1 bis 2, vorzugsweise 0,5 bis 1,5 Gew.% zugesetzt. Die Zugabe des Bentonits kann entweder in fester Form oder bevorzugt in Form einer wäßrigen Aufschlämmung erfolgen.The activated bentonite is added to the aqueous pulp, based on dry paper stock, in an amount of 0.1 to 2, preferably 0.5 to 1.5% by weight. The bentonite can be added either in solid form or, preferably, in the form of an aqueous slurry.

Der Pulpe, die einen aktivierten Bentonit in den oben angegebenen Mengen enthält, werden dann 0,01 bis 0,1, vorzugsweise 0,03 bis 0,06 Gew.%, bezogen auf trockenen Papierstoff, eines kationischen Polyelektrolyten zugesetzt, der bei pH 4,5 eine Ladungsdichte von mindestens 4 mVal/g Polyelektrolyt besitzt. Die Ladungsdichte wird bestimmt nach D. Horn, Polyethylenimine/Physicochemical Properties and Application (IUPAC) Polymeric Amines and Ammonium Salts, Pergamon Press Oxford and New York, 1980, Seite 333 bis 355.0.01 to 0.1, preferably 0.03 to 0.06% by weight, based on dry paper stock, of a cationic polyelectrolyte, which is present at pH 4, is then added to the pulp, which contains an activated bentonite in the amounts specified above , 5 has a charge density of at least 4 meq / g polyelectrolyte. The charge density is determined according to D. Horn, Polyethylenimine / Physicochemical Properties and Application (IUPAC) Polymeric Amines and Ammonium Salts, Pergamon Press Oxford and New York, 1980, pages 333 to 355.

Die kationischen Polyelektrolyte der Komponente b) haben eine hohe Ladungsdichte. Es handelt sich bei diesen Verbindungen beispielsweise um folgende Polymerisate: Polyethylenimine, Polyamine mit einem Molekulargewicht von mehr als 50 000, Polyamidoamine, die durch Aufpfropfen von Ethylenimin modifiziert sind, Polyamidoamine, Polyetheramine, Polyvinylamine, modifizierte Polyvinylamine, Polyalkylamine, Polyvinylimidazole, Polyvinylpyridine, Polyvinylimidazoline, Polyvinyltetrahydropyridine, Polydialkylaminoalkylvinylether, Polydialkylaminoalkyl(meth)acrylate, Polydialkylaminoalkyl(meth)acrylamide in protonierter oder quaternisierter Form. Weitere geeignete Verbindungen dieses Typs sind Polydiallyldialkylammoniumhalogenide, insbesondere Polydiallyldimethylammoniumchlorid. Die Polyelektrolyte sind in Wasser löslich und werden in Form der wäßrigen Lösungen eingesetzt.The cationic polyelectrolytes of component b) have a high charge density. These compounds are, for example, the following polymers: polyethyleneimines, polyamines with a molecular weight of more than 50,000, polyamidoamines modified by grafting ethyleneimine, polyamidoamines, polyetheramines, polyvinylamines, modified polyvinylamines, polyalkylamines, polyvinylimidazoles, polyvinylpyridines, polyvinylimidazolines, Polyvinyltetrahydropyridines, polydialkylaminoalkyl vinyl ethers, polydialkylaminoalkyl (meth) acrylates, polydialkylaminoalkyl (meth) acrylamides in protonated or quaternized form. Other suitable compounds of this type are polydiallyldialkylammonium halides, in particular polydiallyldimethylammonium chloride. The polyelectrolytes are soluble in water and are used in the form of aqueous solutions.

Polyethylenimine werden beispielsweise durch Polymerisieren von Ethylenimin in wäßriger Lösung unter Einwirkung von sauren Katalysatoren nach bekannten Verfahren hergestellt. Modifizierte Polyethylenimine erhält man, indem man Polyethylenimine in einem Maße vernetzt, daß die entstehenden Polymerisate noch wasserlöslich sind. Als Vernetzer eignen sich beispielsweise Epichlorhydrin, Dichlorethan oder Xylylendichlorid.Polyethyleneimines are prepared, for example, by polymerizing ethyleneimine in aqueous solution under the action of acidic catalysts by known processes. Modified polyethyleneimines are obtained by crosslinking polyethyleneimines to such an extent that the resulting polymers are still water-soluble. Suitable crosslinkers are, for example, epichlorohydrin, dichloroethane or xylylene dichloride.

Wasserlösliche, Ethylenimin einkondensiert enthaltende Kondensationsprodukte werden beispielsweise dadurch hergestellt, daß man zunächst 1 Mol einer Dicarbonsäure mit 4 bis 10 Kohlenstoffatomen mit 1 bis 2 Mol eines Polyalkylenpolyamins, das 3 bis 10 basische Stickstoffatome im Molekül aufweist, zu Polyamidoaminen kondensiert, dann Ethylenimin auf die Kondensationsprodukte aufpfropft und die Ethylenimin modifizierten Polyamidoamine mit einem Vernetzer umsetzt, so daß wasserlösliche Kondensationsprodukte erhalten werden. Als Vernetzer eignen sich beispielsweise Epichlorhydrin, vgl. DE-PS 18 02 435 und Polyalkylenoxide mit 8 bis 100 Alkylenoxideinheiten, die an den endständigen OH-Gruppen mit mindestens äquivalenten Mengen Epichlorhydrin umgesetzt worden sind, vgl. DE-PS 24 34 816. Außerdem eignen sich als Komponente b) die Kondensationsprodukte, die aus der DE-AS 17 71 814 bekannt sind, bei denen es sich um Vernetzungsprodukte von Polyamidoaminen mit bifunktionellen Vernetzern handelt. Kationische Polyelektrolyte mit einer hohen Ladungsdichte erhält man auch durch Kondensation von Di- und Polyaminen, wie Ethylendiamin, Diethylentriamin, Triethylentetramin und den höheren Homologen mit Vernetzern, wie Dichlorethan, Epichlorhydrin, und den Umsetzungsprodukten aus Polyethylenglykolen und Epichlorhydrin im Molverhältnis 1: mindestens 2 oder durch Umsetzung von primären und sekundären Aminen, wie Methylamin oder Dimethylamin mit Epichlorhydrin, Dichlorethan, Dichlorpropan oder Dichlorbutan. Polyvinylamine werden hergestellt, indem man N-Vinylformamid polymerisiert und die erhaltenen Polymerisate durch Einwirkung von Säuren oder Basen hydrolysiert, wobei die Formylgruppen aus dem Polymerisat abgespalten werden. Sehr wirksam sind auch diejenigen Polymerisate, die N-Vinylformamid- und Vinylamin-einheiten einpolymerisiert enthalten. Solche Polymerisate werden durch partielle Hydrolyse von Polyvinylformamiden hergestellt. Die Polymerisate von Vinylheterocyclen werden erhalten, indem man die diesen Polymerisaten zugrundeliegenden Monomeren der Polymerisation unterwirft, z.B. polymerisiert man N-Vinylimidazol oder dessen Derivate, z.B. 2-Methyl-1-vinylimidazol oder 2-Benzyl-1-vinylimidazol, N-Vinylpyridin oder dessen Derivate sowie N-Vinylimidazoline, z.B. 2-Methyl-1-vinyl-imidazolin, 2-Phenyl-1-vinyl-imidazolin oder 2-Benzyi-l-vinyi-imidazoiin. Die heterocyclischen kationischen Monomeren werden vorzugsweise in neutralisierter oder quaternisierter Form bei der Polymerisation eingesetzt. Außerdem eigenen sich als kationische Polyelektrolyte b) Di-G-bis C3- alkylamino-Cz-bis C6-alkyl(meth)acrylate, Di-G-bis C3-alkylamino-C2-bis C6-alkyl(meth)acrylamide und Dialkylaminoalkylvinylether. Eine weitere Verbindungsklasse, die zu der Komponente b) gehört, sind polymerisierte Diallyldi-Ci-C3-alkylammoniumhalogenide, insbesondere Polydi-allyldimethylammoniumchlorid. Außerdem eignen sich Polymerisate, die durch eine polymeranaloge Umsetzung von Polyacrylamid mit Formaldehyd und sekundären Aminen, z.B. Dimethylamin erhältlich sind. Vorzugsweise verwendet man als Verbindungen der Komponente b) Polyethylenimin, wasserlösliche, Ethylenimin einkondensiert enthaltende vernetzte Kondensationsprodukte auf Basis von Polyamidoaminen, Polyvinylamine, Polydiallylammoniumchlorid und/oder zumindestens 10 Mol.% hydrolysierte Poly-N-vinylformamide. Das Molekulargewicht der kationischen Polyelektrolyte der Komponente b) liegt in dem Bereich von 50 000 bis 3 000 000, vorzugsweise 200 000 bis 2 000 000. Polymerisate dieser Art sind bekannt und größtenteils im Handel erhältlich. Die Ladungsdichte der kationischen Polyelektrolyte liegt bei pH 4,5 vorzugsweise in dem Bereich von 5 bis 20 mVal/g Polyelektrolyt.Water-soluble condensation products containing condensed ethyleneimine are prepared, for example, by firstly condensing 1 mol of a dicarboxylic acid having 4 to 10 carbon atoms with 1 to 2 mols of a polyalkylene polyamine which has 3 to 10 basic nitrogen atoms in the molecule into polyamidoamines, then ethyleneimine onto the condensation products grafted and the ethyleneimine-modified polyamidoamines reacted with a crosslinking agent, so that water-soluble condensation products are obtained. Suitable crosslinkers are, for example, epichlorohydrin, cf. DE-PS 18 02 435 and polyalkylene oxides with 8 to 100 alkylene oxide units which have been reacted at the terminal OH groups with at least equivalent amounts of epichlorohydrin, cf. DE-PS 24 34 816. Also suitable as component b) are the condensation products known from DE-AS 17 71 814, which are crosslinking products of polyamidoamines with bifunctional crosslinking agents. Cationic polyelectrolytes with a high charge density are also obtained by condensation of di- and polyamines, such as ethylenediamine, diethylenetriamine, triethylenetetramine and the higher homologues with crosslinking agents, such as dichloroethane, epichlorohydrin, and the reaction products of polyethylene glycols and epichlorohydrin in a molar ratio of 1: at least 2 or by Reaction of primary and secondary amines, such as methylamine or dimethylamine with epichlorohydrin, dichloroethane, dichloropropane or dichlorobutane. Polyvinylamines are prepared by polymerizing N-vinylformamide and hydrolyzing the resulting polymers by the action of acids or bases, the formyl groups being split off from the polymer. Those polymers which contain copolymerized N-vinylformamide and vinylamine units are also very effective. Such polymers are produced by partial hydrolysis of polyvinylformamides. The polymers of vinyl heterocycles are obtained by subjecting the monomers on which these polymers are based to the polymerization, for example polymerizing N-vinylimidazole or its derivatives, for example 2-methyl-1-vinylimidazole or 2-benzyl-1-vinylimidazole, N-vinylpyridine or the like Derivatives and N-vinylimidazolines, for example 2-methyl-1-vinyl-imidazoline, 2-phenyl-1-vinyl-imidazoline or 2-benzyi-l-vinyi-imidazoiin. The heterocyclic cationic monomers are preferably used in the polymerization in neutralized or quaternized form. Also suitable as cationic polyelectrolytes are b) di-G to C 3 -alkylamino-Cz to C6-alkyl (meth) acrylates, di-G to C 3 -alkylamino-C 2 to C 6 -alkyl (meth) acrylamides and dialkylaminoalkyl vinyl ethers. Another class of compounds belonging to component b) are polymerized diallyldi-C 1 -C 3 -alkylammonium halides, in particular polydi-allyldimethylammonium chloride. Also suitable are polymers which are obtainable by polymer-analogous reaction of polyacrylamide with formaldehyde and secondary amines, for example dimethylamine. Preference is given to using compounds of component b) polyethyleneimine, water-soluble crosslinked condensation products based on polyamidoamines, polyvinyl and containing ethyleneimine in condensed form amines, polydiallylammonium chloride and / or at least 10 mol% of hydrolyzed poly-N-vinylformamides. The molecular weight of the cationic polyelectrolytes of component b) is in the range from 50,000 to 3,000,000, preferably 200,000 to 2,000,000. Polymers of this type are known and the majority are commercially available. The charge density of the cationic polyelectrolytes at pH 4.5 is preferably in the range from 5 to 20 meq / g polyelectrolyte.

Nach einer Durchmischung der Komponente b) mit dem Papierstoff wird der Pulpe als Komponente c) ein hochmolekulares Polymerisat auf Basis von Acrylamid oder Methacrylamid zudosiert. Auch dieses Polymerisat wird mit dem Papierstoff gemischt, der dann in üblicher Weise auf einem Sieb entwässert wird. Bezogen auf trockenen Papierstoff verwendet man 0,003 bis 0,03, vorzugsweise 0,005 bis 0,015 Gew.% eines hochmolekularen Polymerisats der Komponente c). Zu dieser Gruppe von Polymerisaten gehören die Homopolymerisate von Acrylamid und Methacrylamid sowie die Copolymerisate der beiden Monomeren mit anionischen oder kationischen Monomeren. Die Homo- und Copolymerisate haben ein mittleres Massenmolekulargewicht (bestimmt nach der Lichtstreuungsmethode) von 1 Million bis 20 Millionen. Anionisch modifizierte Polymerisate des Acrylamids bzw. Methacrylamids erhält man durch Copolymerisieren von Acrylamid oder Methacrylamid mit monoethylenisch ungesättigten C3- bis Cs-Carbonsäuren, die gegebenenfalls teilweise oder vollständig neutralisiert sein können, oder durch teilweise Hydrolyse der Amidgruppen eines Acrylamid- oder Methacrylamidhomopolymerisats. Von den anionisch modifizierten Polyacrylamiden verwendet man hauptsächlich die Copolymerisate aus Acrylamid und Acrylsäure. Der Gehalt an einpolymerisierter Acrylsäure im Copolymerisat kann dabei 5 bis 80 Gew.% betragen.After component b) has been mixed with the paper stock, the pulp as component c) is metered in with a high molecular weight polymer based on acrylamide or methacrylamide. This polymer is also mixed with the paper stock, which is then dewatered in the usual way on a sieve. Based on dry paper stock, 0.003 to 0.03, preferably 0.005 to 0.015,% by weight of a high molecular weight polymer of component c) is used. This group of polymers includes the homopolymers of acrylamide and methacrylamide and the copolymers of the two monomers with anionic or cationic monomers. The homopolymers and copolymers have an average mass molecular weight (determined by the light scattering method) of 1 million to 20 million. Anionically modified polymers of acrylamide or methacrylamide are obtained by copolymerizing acrylamide or methacrylamide with monoethylenically unsaturated C 3 - to C s -carboxylic acids, which may or may not be partially or completely neutralized, or by partial hydrolysis of the amide groups of an acrylamide or methacrylamide homopolymer. Of the anionically modified polyacrylamides, mainly the copolymers of acrylamide and acrylic acid are used. The copolymerized acrylic acid content in the copolymer can be 5 to 80% by weight.

Für die kationische Modifizierung der (Meth)acrylamidpolymerisate verwendet man beispielsweise die G- bis C2-Alkylamino-C2- bis Cs-Alkyl(meth)acrylate, z.B. Diethylaminoethylacrylat, Dimethylaminoethylacrylat, Dimethylaminoethylmethacrylat, Dimethylaminopropylacrylat, Dimethylaminobutylacrylat, Dimethylaminoneopentylacrylat sowie die entsprechenden Methacrylate, wobei diese Monomeren in Form des Salzes mit Salzsäure oder Schwefelsäure bzw. in quaternisierter Form, z.B. quaternisiert durch Umsetzung mit Methylchlorid, Dimethylsulfat oder Benzylchlorid der Copolymerisation unterworfen werden. Weitere geeignte kationische Monomere zur Modifizierung der (Meth)acrylamidpoly- merisate sind Dialkylaminoalkyl(meth)acrylamide, Dialkylaminoalkylvinylether, N-Vinylimidazole, N-Vinylpyridin und Diallyldimethylammoniumchlorid. Als Komponente c) verwendet man für das erfindungsgemäße Verfahren vorzugsweise Polyacrylamid, Copolymerisate aus Acrylamid und Acrylsäure, Copolymerisate aus Acrylamid und Dimethylaminoethylacrylat, Copolymerisate aus Acrylamid und Diethylaminoethylacrylat, Copolymerisate aus Acrylamid und N-Vinylimidazolin, Copolymerisate aus Acrylamid und 2-Methyi-l-vinyiimidazoiin und Copolymerisate aus Acrylamid und 2-Phenyl-1-vinylimidazolin. Die kationischen Monomeren werden dabei in neutralisierter bzw. quaternisierter Form eingesetzt.For the cationic modification of the (meth) acrylamide polymers, use is made, for example, of the G- to C 2 -alkylamino-C 2 to Cs-alkyl (meth) acrylates, for example diethylaminoethyl acrylate, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, dimethylaminopropylacrylate, dimethylaminobutyylate acrylate and methacrylate, these monomers being subjected to the copolymerization in the form of the salt with hydrochloric acid or sulfuric acid or in quaternized form, for example quaternized by reaction with methyl chloride, dimethyl sulfate or benzyl chloride. Other suitable cationic monomers for modifying the (meth) acrylamide polymers are dialkylaminoalkyl (meth) acrylamides, dialkylaminoalkyl vinyl ethers, N-vinylimidazoles, N-vinylpyridine and diallyldimethylammonium chloride. As component c), polyacrylamide, copolymers of acrylamide and acrylic acid, copolymers of acrylamide and dimethylaminoethyl acrylate, copolymers of acrylamide and diethylaminoethyl acrylate, copolymers of acrylamide and N-vinylimidazoline, copolymers of acrylamide and 2-methyl-1-vinylimidazoiin are preferably used for the process according to the invention and copolymers of acrylamide and 2-phenyl-1-vinylimidazoline. The cationic monomers are used in neutralized or quaternized form.

Sofern bei dem erfindungsgemäßen Verfahren chemisch ähnliche Verbindungen b) und c) eingesetzt werden, so unterscheiden sich die beiden Verbindungsklassen dann dadurch, daß die Verbindungen c) ein Molekulargewicht aufweisen, das um mindestens 1 Million höher ist als das Molekulargewicht der Verbindungen b). Ein weiteres Unterscheidungsmerkmal der beiden Verbindungsklassen b) und c) liegt in der Ladungsdichte. Die Verbindungen c) haben - sofern sie kationisch modifiziert sind - eine Ladungsdichte von höchstens 3,5 mVaVg Polyelektrolyt (gemessen bei pH 4,5): Zur anionischen Modifizierung der Polyacrylamide können außerdem Vinylsulfonsäure, Acrylamidopropansulfonsäuren und/oder deren Alkali-, Ammonium- bzw. Aminsalze eingesetzt werden.If chemically similar compounds b) and c) are used in the process according to the invention, the two classes of compounds then differ in that the compounds c) have a molecular weight which is at least 1 million higher than the molecular weight of the compounds b). Another distinguishing feature of the two connection classes b) and c) lies in the charge density. The compounds c) - provided they are cationically modified - have a charge density of at most 3.5 mVaVg polyelectrolyte (measured at pH 4.5): For anionic modification of the polyacrylamides, vinylsulfonic acid, acrylamidopropanesulfonic acids and / or their alkali, ammonium or Amine salts are used.

Bei der Herstellung von Papier geht man zunächst von einer wäßrigen Pulpe aus, deren Stoffkonzentration 2,5 bis 5 Gew.% beträgt. Hierzu gibt man den aktivierten Bentonit in den oben angegebenen Einsatzmengen. Der Bentonit wird vorzugsweise in Form einer 3- bis 6 %igen wäßrigen Dispersion zugegeben. Die Pulpe, die den Bentonit enthält, wird dann mit Wasser verdünnt. Hierfür verwendet man im Produktionsbetrieb vorzugsweise das Siebwasser. In die verdünnte Stoffsuspension wird dann, z.B. in die Leitung am Ausgang der Mischpumpe, mindestens eine Verbindung gemäß b) in der oben angegebenen Menge zudosiert. Aufgrund der Strömungsverhältnisse in dem Leitungssystem kommt es zu einer ausreichenden Vermischung des kationischen Polymeren mit dem Papierstoff. Sobald die Komponenten ausreichend miteinander vermischt sind, kann das hochmolekulare Polymerisat der Komponente c) zugeführt werden. Die Zugabe der Verbindungen c) erfolgt in jedem Fall vor dem Stoffauflauf, zweckmäßigerweise an einer Stelle zwischen Drucksortierer und dem Stoffauflauf. Die Polymerisate b) und c) werden vorzugsweise in Form verdünnter wäßriger Lösungen zudosiert. Aufgrund des verwendeten Hilfsstoffsystems kann die Papierproduktion in geschlossenen Wasserkreisläufen erfolgen. Man erhält Papier mit guter Bedruckbarkeit, das auch im Offset-Verfahren eine gute Bedruckbarkeit aufweist.In the production of paper, the starting point is an aqueous pulp, the concentration of which is 2.5 to 5% by weight. To do this, the activated bentonite is added in the amounts indicated above. The bentonite is preferably added in the form of a 3 to 6% aqueous dispersion. The pulp containing the bentonite is then diluted with water. The white water is preferably used for this in the production plant. Then, e.g. into the line at the outlet of the mixing pump, metered in at least one compound according to b) in the amount specified above. Due to the flow conditions in the line system, there is sufficient mixing of the cationic polymer with the paper stock. As soon as the components have been mixed sufficiently, the high molecular weight polymer of component c) can be added. In any case, compounds c) are added before the headbox, advantageously at a point between the pressure sorter and the headbox. The polymers b) and c) are preferably metered in in the form of dilute aqueous solutions. Due to the auxiliary system used, paper production can take place in closed water cycles. Paper with good printability is obtained which also has good printability in the offset process.

Die in den Beispielen angegebenen Teile sind Gewichtsteile. Die Angaben in Prozent beziehen sich auf das Gewicht der Stoffe. Die Ladungsdichte und die Molekulargewichte (Lichtstreuung) wurden nach D. Horn, Polyethylenimine/Physicochemical Properties and Application (IUPAC) Polymeric Amines and Ammonium Salts, Pergamon Press Oxford and New York, 1980, Seite 333 bis 355 bestimmt.The parts given in the examples are parts by weight. The percentages relate to the weight of the fabrics. The charge density and molecular weights (light scattering) were determined according to D. Horn, Polyethylenimine / Physicochemical Properties and Application (IUPAC) Polymeric Amines and Ammonium Salts, Pergamon Press Oxford and New York, 1980, pages 333 to 355.

Bestimmung der Entwässerungszeit: 1 I der zu prüfenden Faserstoffaufschlämmung wird jeweils in einem Schopper-Riegler-Testgerät entwässert. Die Zeit, die für verschiedene Auslaufvolumina ermittelt wird, wird als Kriterium für die Entwässerungsgeschwindigkeit der jeweils untersuchten Stoffsuspension gewertet. Die Entwässerungszeiten wurden in allen hier angegebenen Fällen nach dem Durchlauf von 150, 200 und 250 ml Wasser ermittelt.Determining the dewatering time: 1 l of the pulp slurry to be tested is dewatered in a Schopper-Riegler test device. The time that is determined for different outlet volumes is evaluated as a criterion for the drainage rate of the substance suspension examined in each case. The drainage times were determined in all cases specified here after the passage of 150, 200 and 250 ml of water.

Die Retention wurde geprüft, indem man jeweils den Feststoffgehalt in 250 ml eines Filtrats bestimmte, das durch Entwässern der zu prüfenden Faseraufschlämmung in einem Schopper-Riegler-Gerät erhalten wurde.The retention was checked by determining the solids content in 250 ml of a filtrate obtained by dewatering the fiber slurry to be tested in a Schopper-Riegler device.

Folgende Einsatzstoffe wurden verwendet:

  • Polyelektrolyt 1 (Komponente b)
  • Hierbei handelte es sich um ein Polyamidoamin aus Adipinsäure und Diethylentriamin, das mit Ethylenimin gepfropft und mit einem Polyalkylenoxid, dessen endständige OH-Gruppen mit Epichlorhydrin umgesetzt sind, vernetzt ist. Ein derartiges Produkt ist aus Beispiel 1 der DE-PS 24 34 816 bekannt, es hat eine Ladungsdichte von 12,2 mVal/g (gemessen bei pH 4,5).
The following ingredients were used:
  • Polyelectrolyte 1 (component b)
  • This was a polyamidoamine from adipic acid and diethylenetriamine, which was grafted with ethyleneimine and crosslinked with a polyalkylene oxide, the terminal OH groups of which had been reacted with epichlorohydrin. Such a product is known from Example 1 of DE-PS 24 34 816, it has a charge density of 12.2 meq / g (measured at pH 4.5).

Hochmolekulares Polymerisat 1 (Komponente c): . Man verwendet ein Homopolymerisat des Acrylamids vom Molekulargewicht 3,5 Millionen.High molecular polymer 1 (component c):. A homopolymer of acrylamide with a molecular weight of 3.5 million is used.

Beispiel 1example 1

In einem 20 I fassenden Gefäß wird eine Stoffsuspension aus thermomechanischem Stoff (TMP) mit einer Konzentration von 3,2 % hergestellt. Der pH-Wert der Stoffsuspension beträgt 5,7. Die so hergestellte Papierfasersuspension wird gerührt und mit einer 5 %igen wäßrigen Anschlämmung eines handelsüblichen Natrium-Bentonits versetzt, so daß die Bentonitmenge, bezogen auf Papierstoff, 0,5 % beträgt. Nach dem Homogenisieren wird der Stoff auf eine Konzentration von 0,85 % durch Zugabe von Wasser verdünnt.A suspension of thermomechanical substance (TMP) with a concentration of 3.2% is produced in a 20 liter container. The pH of the stock suspension is 5.7. The paper fiber suspension thus produced is stirred and mixed with a 5% aqueous slurry of a commercially available sodium bentonite, so that the amount of bentonite, based on paper stock, is 0.5%. After homogenization, the substance is diluted to a concentration of 0.85% by adding water.

Im Versuch

  • a) werden von dieser Stoffmischung die Entwässerungszeiten sowie die Retention gemessen. Die dafür ermittelten Werte sind in Tabelle 1 angegeben.
  • b) Zu der gemäß a) erhaltenen Papierstoffsuspension gibt man, bezogen auf trockenen Papierstoff, 0,06 % des oben angegebenen Polyelektrolyten 1. Nach dem Durchmischen wird die Entwässerungszeit gemessen und die Retention bestimmt. Bei der visuellen Prüfung des Flockungszustandes konnte nur eine geringe Flockung festgestellt werden. Die Ergebnisse sind in Tabelle 1 angegeben.
  • c) Zu der gemäß a) erhaltenen Stoffsuspension gibt man 0,02 % des oben angegebenen hochmolekularen Polymerisats 1, und bestimmt nach dem Durchmischen die Entwässerungszeit, die Retention und Flockung. Die Ergebnisse sind in Tabelle 1 angegeben. Bemerkenswert ist hierbei vor allem, daß es zu einer starken Flockung kommt.
  • d) - Beispiel gemäß Erfindung Zu 1 I der gemäß a) erhaltenen Bentonit-haltigen Stoffsuspension gibt man zunächst 0,06 % des Polyelektrolyten 1 und rührt die Mischung 1 Minute. Danach fügt man 0,02 % des hochmolekularen Polymerisats 1 zu, rührt die Mischung wiederum 1 Minute und prüft nach der oben angegebenen Vorschrift die Entwässerung und die Retention. Das System weist bemerkenswerterweise nur eine geringe Flockung auf:
Figure imgb0001
In the attempt
  • a) the dewatering times and the retention are measured from this mixture of substances. The values determined for this are given in Table 1.
  • b) 0.06% of the above-mentioned polyelectrolyte 1, based on dry paper stock, is added to the paper stock suspension obtained according to a). After mixing, the dewatering time is measured and the retention is determined. Only a slight flocculation was found during the visual inspection of the flocculation state. The results are shown in Table 1.
  • c) 0.02% of the high molecular weight polymer 1 mentioned above is added to the stock suspension obtained in a), and the dewatering time, retention and flocculation are determined after mixing. The results are shown in Table 1. It is particularly noteworthy that there is strong flocculation.
  • d) - Example according to the invention To 1 l of the bentonite-containing stock suspension obtained according to a), 0.06% of the polyelectrolyte 1 is first added and the mixture is stirred for 1 minute. Then 0.02% of the high molecular weight polymer 1 is added, the mixture is stirred again for 1 minute and the drainage and the retention are checked in accordance with the above-mentioned instructions. Remarkably, the system has little flocculation:
Figure imgb0001

Beispiel 2Example 2

Auf einer Papiermaschine wird füllstoff-freies Zeitungsdruckpapier in Offset-Qualität mit einem Flächengewicht von 52 g/m2 aus 100 % gebleichtem TMP (thermomechanischem Stoff) hergestellt. Man geht dabei zunächst von einer Stoffkonzentration von 2,95 % aus und gibt dazu im kontinuierlichen Betrieb 0,7 % Natrium-Bentonit in Form einer 5 %igen wäßrigen Anschlämmung zu. Dann verdünnt man den Papierstoff in der Mischpumpe mit Siebwasser auf eine Konzentration von 0,75 % und dosiert am Ausgang der Mischpumpe in die Leitung, bezogen auf trockenen Papierstoff, 0,05 % des oben angegebenen Polyelektrolyten 1 und nach dem Durchmischen zwischen Drucksortierer und Stoffauflauf, 0,01 % des hochmolekularen Polymerisats 1. Nach Einstellung des Systemgleichgewichts ermittelt man die Werte für Stoffauflauf, Siebwasser und errechnet daraus die Werte für die First Pass Retention (FPR). Als weiteren Parameter ermittelt man die Maschinengeschwindigkeit und die Papierproduktion pro Zeiteinheit.Filler-free newsprint in offset quality with a basis weight of 52 g / m 2 is made from 100% bleached TMP (thermomechanical fabric). It is initially assumed that the substance concentration is 2.95% and 0.7% sodium bentonite in the form of a 5% aqueous slurry is added in continuous operation. Then the paper stock is diluted in the mixing pump with white water to a concentration of 0.75% and metered into the line at the outlet of the mixing pump, based on dry paper stock, 0.05% of the above-mentioned polyelectrolyte 1 and after mixing between the pressure sorter and the headbox , 0.01% of the high molecular weight polymer 1. After adjusting the system balance, the values for headbox, white water are determined and the values for the first pass retention (FPR) are calculated. The machine speed and the paper production per unit of time are determined as a further parameter.

Die Konzentration des Stoffauflaufs beträgt 6,84 g/l, das Siebwasser enthält 2,32 g/l Feststoffe. Die First Pass Retention (FPR) liegt bei 66,1 %. Die Produktionsgeschwindigkeit beträgt 577 m/min. Pro Stunde erhält man 6,8 t Papier.The headbox concentration is 6.84 g / l, the white water contains 2.32 g / l solids. The First Pass Retention (FPR) is 66.1%. The production speed is 577 m / min. You get 6.8 t of paper per hour.

Vergleichsbeispiel 2Comparative Example 2

Das Beispiel 1 wird mit der Ausnahme wiederholt, daß man den Polyelektrolyten 1 fortläßt. In diesem Fall flockt der Papierstoff derart stark, daß eine einwandfreie Blattbildung nicht gewährleistet ist. Die Formation und Oberflächenbeschaffenheit des Blattes ist für die gestellten Druckanforderungen unzureichend.Example 1 is repeated with the exception that the polyelectrolyte 1 is omitted. In this case, the paper flocculates so strongly that perfect sheet formation is not guaranteed. The formation and surface quality of the sheet is insufficient for the printing requirements.

Vergleichsbeispiel 3Comparative Example 3

Das Beispiel 2 wird mit der Ausnahme wiederholt, daß man das hochmolekulare Polymerisat 1 fortläßt. In diesem Fall bekommt man zwar eine gute Formation, aber die Entwässerung des Papierstoffs ist schlecht, so daß die Maschine nur mit geringerer Geschwindigkeit laufen kann.Example 2 is repeated with the exception that the high molecular weight polymer 1 is omitted. In this case you get a good formation, but the drainage of the paper stock is bad, so that the machine can only run at a lower speed.

Claims (5)

1. A process for the production of paper and cardboard by draining a paper stock which contains bentonite and a polyelectrolyte on a wire, wherein
a) from 0.1 to 2% by weight of an activated bentonite is added to an aqueous pulp whose stock consistency of the paper is from 2.5 to 5% by weight and the stock consistency is then brought to 0.3-2% by weight by dilution with water,
b) from 0.01 to 0.1% by weight of a cationic polyelectrolyte having a charge density of not less than 4 meq/g (measured at pH 4.5) of polyelectrolyte is added and distributed therein, and after thorough mixing,
c) from 0.003 to 0.03% by weight of a high molecular weight homopolymer of acrylamide or methacrylamide, a high molecular weight cationic copolymer based on acrylamide or methacrylamide having a charge density of not more than 3.5 meq/g (measured at pH 4.5) of polyelectrolyte or a high molecular weight anionically modified copolymer of acrylamide or methacrylamide is metered in, and if chemically
similar compounds b) and c) are used, the compounds c) having a molecular weight which is not less than 1 million higher than the molecular weight of compounds b), and mixed with the paper stock, and the resulting pulp is drained on a wire, the percentages of a), b) and c) each being based on dry paper stock.
2. A process as claimed in claim 1, wherein polyethyleneimines, water-soluble crosslinked condensates containing ethyleneimine as condensed units and based on polyamidoamines, polyetheramines, polyvinylamines, polydiallylammonium chloride and/or not less than 10 mol % of hydrolyzed poly-N-vinyl- formamides are used as component b).
3. A process as claimed in claim 1, wherein homopolymers of acrylamide and methacrylamide which have a weight average molecular weight of from 1,000,000 to 20,000,000 are used as component c).
4. A process as claimed in claim 1, wherein copolymers of acrylamide and one or more anionic monomers from the group consisting of the ethylenically unsaturated Cs-Cs-carboxyiic acids, vinylsulfonic acid, acrylamidopropanesulfonic acids and/or their alkali metal, ammonium and amine salts are used as component c).
5. A process as claimed in claim 1, wherein copolymers of acrylamide and one or more cationic monomers from the group consisting of di-G- or C2-alkylamino-C2-C6-alkyl(meth)acrylates, di-C1- or Cz- alkylamino-C2-C6-alkyl(meth)acrylamides, N-vinylimidazoles, N-vinylpyridines and N-vinylimidazo- lines, if appropriate in quaternized form or as salts, and diallyldi-C1- or C2-alkylammonium halides are used as component c).
EP86115915A 1985-11-21 1986-11-17 Process for the production of paper and cardboard Expired - Lifetime EP0223223B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86115915T ATE50814T1 (en) 1985-11-21 1986-11-17 METHODS OF MAKING PAPER AND BOARD.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3541163 1985-11-21
DE19853541163 DE3541163A1 (en) 1985-11-21 1985-11-21 METHOD FOR PRODUCING PAPER AND CARDBOARD

Publications (2)

Publication Number Publication Date
EP0223223A1 EP0223223A1 (en) 1987-05-27
EP0223223B1 true EP0223223B1 (en) 1990-03-07

Family

ID=6286467

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86115915A Expired - Lifetime EP0223223B1 (en) 1985-11-21 1986-11-17 Process for the production of paper and cardboard

Country Status (10)

Country Link
US (1) US4749444A (en)
EP (1) EP0223223B1 (en)
JP (1) JPS62125098A (en)
AT (1) ATE50814T1 (en)
AU (1) AU578404B2 (en)
CA (1) CA1278403C (en)
DE (2) DE3541163A1 (en)
FI (1) FI85397C (en)
NO (1) NO168593C (en)
NZ (1) NZ217951A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10236252B4 (en) * 2002-08-07 2005-06-30 Basf Ag Process for the production of paper, cardboard and cardboard
EP1831459B1 (en) 2004-12-22 2016-03-23 Basf Se Method for the production of paper, cardboard and card

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3783772T2 (en) * 1987-06-22 1993-05-13 Nippon Catalytic Chem Ind METHOD FOR PRODUCING CATIONIC WATER-EXTINGUISHABLE RESINS AND MEANS FOR TREATING WATER.
JPH0192498A (en) * 1987-10-02 1989-04-11 Hokuetsu Paper Mills Ltd Production of neutral paper
JPH01174700A (en) * 1987-12-28 1989-07-11 Sanyo Kokusaku Pulp Co Ltd Neutral paper making method
US4964955A (en) * 1988-12-21 1990-10-23 Cyprus Mines Corporation Method of reducing pitch in pulping and papermaking operations
EP0335575B2 (en) * 1988-03-28 2000-08-23 Ciba Specialty Chemicals Water Treatments Limited Production of paper and paper board
US5071512A (en) * 1988-06-24 1991-12-10 Delta Chemicals, Inc. Paper making using hectorite and cationic starch
GB8828899D0 (en) * 1988-12-10 1989-01-18 Laporte Industries Ltd Paper & paperboard
JPH0345799A (en) * 1989-07-11 1991-02-27 Mitsubishi Paper Mills Ltd Production of paper
US5178730A (en) * 1990-06-12 1993-01-12 Delta Chemicals Paper making
US5032227A (en) * 1990-07-03 1991-07-16 Vinings Industries Inc. Production of paper or paperboard
US5185062A (en) * 1991-01-25 1993-02-09 Nalco Chemical Company Papermaking process with improved retention and drainage
US5098520A (en) * 1991-01-25 1992-03-24 Nalco Chemcial Company Papermaking process with improved retention and drainage
US5415740A (en) * 1991-04-25 1995-05-16 Betz Paperchem, Inc. Method for improving retention and drainage characteristics in alkaline papermaking
US5126014A (en) * 1991-07-16 1992-06-30 Nalco Chemical Company Retention and drainage aid for alkaline fine papermaking process
FR2679546B1 (en) * 1991-07-26 1994-01-28 Zschimmer Schwarz France WATER TREATMENT PROCESS.
US5234548A (en) * 1992-01-02 1993-08-10 Vinings Industries Inc. Production of paper and paperboard
FR2692292B1 (en) * 1992-06-11 1994-12-02 Snf Sa Method for manufacturing paper or cardboard with improved retention.
US5453310A (en) 1992-08-11 1995-09-26 E. Khashoggi Industries Cementitious materials for use in packaging containers and their methods of manufacture
US5830548A (en) 1992-08-11 1998-11-03 E. Khashoggi Industries, Llc Articles of manufacture and methods for manufacturing laminate structures including inorganically filled sheets
US5582670A (en) 1992-08-11 1996-12-10 E. Khashoggi Industries Methods for the manufacture of sheets having a highly inorganically filled organic polymer matrix
NZ255666A (en) 1992-08-11 1997-04-24 Khashoggi E Ind Food/drink containers formed from a hydraulically settable binder, water and a rheology-modifying agent
US5631097A (en) 1992-08-11 1997-05-20 E. Khashoggi Industries Laminate insulation barriers having a cementitious structural matrix and methods for their manufacture
US5508072A (en) 1992-08-11 1996-04-16 E. Khashoggi Industries Sheets having a highly inorganically filled organic polymer matrix
US5800647A (en) 1992-08-11 1998-09-01 E. Khashoggi Industries, Llc Methods for manufacturing articles from sheets having a highly inorganically filled organic polymer matrix
US5506046A (en) 1992-08-11 1996-04-09 E. Khashoggi Industries Articles of manufacture fashioned from sheets having a highly inorganically filled organic polymer matrix
US5928741A (en) 1992-08-11 1999-07-27 E. Khashoggi Industries, Llc Laminated articles of manufacture fashioned from sheets having a highly inorganically filled organic polymer matrix
US5660903A (en) 1992-08-11 1997-08-26 E. Khashoggi Industries Sheets having a highly inorganically filled organic polymer matrix
US5641584A (en) 1992-08-11 1997-06-24 E. Khashoggi Industries Highly insulative cementitious matrices and methods for their manufacture
GB9301451D0 (en) * 1993-01-26 1993-03-17 Allied Colloids Ltd Production of filled paper
DK169728B1 (en) 1993-02-02 1995-01-23 Stein Gaasland Process for releasing cellulose-based fibers from each other in water and molding for plastic molding of cellulosic fiber products
DE4493351T1 (en) * 1993-05-10 1996-08-22 Grace W R & Co Papermaking process
GB9313956D0 (en) * 1993-07-06 1993-08-18 Allied Colloids Ltd Production of paper
US5431783A (en) * 1993-07-19 1995-07-11 Cytec Technology Corp. Compositions and methods for improving performance during separation of solids from liquid particulate dispersions
US5738921A (en) 1993-08-10 1998-04-14 E. Khashoggi Industries, Llc Compositions and methods for manufacturing sealable, liquid-tight containers comprising an inorganically filled matrix
US5484834A (en) * 1993-11-04 1996-01-16 Nalco Canada Inc. Liquid slurry of bentonite
US5529699A (en) * 1993-11-12 1996-06-25 W. R. Grace & Co.-Conn. Water-soluble cationic copolymers and their use as flocculants
US5473033A (en) * 1993-11-12 1995-12-05 W. R. Grace & Co.-Conn. Water-soluble cationic copolymers and their use as drainage retention aids in papermaking processes
US5700893A (en) * 1993-11-12 1997-12-23 Betzdearborn Inc. Water-soluble cationic copolymers and their use as flocculants and drainage aids
US5516852A (en) * 1993-11-12 1996-05-14 W. R. Grace & Co.-Conn. Method of producing water-soluble cationic copolymers
US5720888A (en) * 1993-11-12 1998-02-24 Betzdearborn Inc. Water-soluble cationic copolymers and their use as flocculants
US6273998B1 (en) 1994-08-16 2001-08-14 Betzdearborn Inc. Production of paper and paperboard
US20030192664A1 (en) * 1995-01-30 2003-10-16 Kulick Russell J. Use of vinylamine polymers with ionic, organic, cross-linked polymeric microbeads in paper-making
US5810971A (en) * 1995-05-17 1998-09-22 Nalco Canada, Inc. Liquid slurry of bentonite
SE9502522D0 (en) * 1995-07-07 1995-07-07 Eka Nobel Ab A process for the production of paper
PL326550A1 (en) * 1995-11-08 1998-09-28 Minerals Tech Inc Microparticles consisting of synthetic and mineral materials, auxilary tetention agent, systems for and methods of treating water using such particles
US5893436A (en) * 1996-01-16 1999-04-13 Tenneco Automotive Inc. One piece aluminum pressure tube with rod guide for shock absorbers
US5989696A (en) * 1996-02-13 1999-11-23 Fort James Corporation Antistatic coated substrates and method of making same
GB9604950D0 (en) * 1996-03-08 1996-05-08 Allied Colloids Ltd Clay compositions and their use in paper making
GB9604927D0 (en) * 1996-03-08 1996-05-08 Allied Colloids Ltd Activation of swelling clays and processes of using the activated clays
DE19627553A1 (en) * 1996-07-09 1998-01-15 Basf Ag Process for the production of paper and cardboard
US6113741A (en) * 1996-12-06 2000-09-05 Eka Chemicals Ab Process for the production of paper
US6099689A (en) * 1998-02-17 2000-08-08 Nalco Chemical Company Production of paper and board products with improved retention, drainage and formation
US5942087A (en) * 1998-02-17 1999-08-24 Nalco Chemical Company Starch retention in paper and board production
KR100403838B1 (en) 1998-04-27 2003-11-01 악조 노벨 엔.브이. A process for the production of paper
US6183650B1 (en) 1998-05-04 2001-02-06 Minerals Technologies Inc. Synthetic mineral microparticles and retention aid and water treatment systems and methods using such particles
CA2336970A1 (en) * 1998-07-10 2000-01-20 Calgon Corporation A microparticle system in the paper making process
US6103065A (en) * 1999-03-30 2000-08-15 Basf Corporation Method for reducing the polymer and bentonite requirement in papermaking
TW483970B (en) * 1999-11-08 2002-04-21 Ciba Spec Chem Water Treat Ltd A process for making paper and paperboard
US6572736B2 (en) 2000-10-10 2003-06-03 Atlas Roofing Corporation Non-woven web made with untreated clarifier sludge
US6673205B2 (en) * 2001-05-10 2004-01-06 Fort James Corporation Use of hydrophobically modified polyaminamides with polyethylene glycol esters in paper products
JP2003055454A (en) * 2001-08-10 2003-02-26 Hymo Corp Modified polyalkylene imine
JP4925234B2 (en) * 2001-08-10 2012-04-25 ハイモ株式会社 Papermaking raw material processing method
US20030136534A1 (en) * 2001-12-21 2003-07-24 Hans Johansson-Vestin Aqueous silica-containing composition
DE20220979U1 (en) * 2002-08-07 2004-10-14 Basf Ag Preparation of paper, pasteboard, or cardboard involving cutting of the paper pulp, addition of microparticles of cationic polymer, e.g. cationic polyamide, and a finely divided inorganic component after the last cutting step
AU2005206565A1 (en) * 2004-01-23 2005-08-04 Buckman Laboratories International Inc Process for making paper
US20070166512A1 (en) * 2004-08-25 2007-07-19 Jesch Norman L Absorbent Release Sheet
GB0419815D0 (en) * 2004-09-07 2004-10-13 Ciba Spec Chem Water Treat Ltd Treatment of oily sludges
DE102004044379B4 (en) * 2004-09-10 2008-01-10 Basf Ag Process for the production of paper, paperboard and cardboard and use of a retention agent combination
DE102004060587A1 (en) * 2004-12-16 2006-07-06 Süd-Chemie AG Bentonites for impurity binding in papermaking
US7955473B2 (en) 2004-12-22 2011-06-07 Akzo Nobel N.V. Process for the production of paper
PT1834040E (en) * 2004-12-22 2015-04-15 Akzo Nobel Nv A process for the production of paper
US8932433B2 (en) * 2004-12-29 2015-01-13 Solenis Technologies, L.P. Retention and drainage in the manufacture of paper
US20060249269A1 (en) * 2005-05-03 2006-11-09 Kurian Pious V High molecular weight compact structured polymers, methods of making and using
US20060254464A1 (en) 2005-05-16 2006-11-16 Akzo Nobel N.V. Process for the production of paper
US20070000568A1 (en) * 2005-06-29 2007-01-04 Bohme Reinhard D Packaging material for food items containing permeating oils
US20070292569A1 (en) * 2005-06-29 2007-12-20 Bohme Reinhard D Packaging material for food items containing permeating oils
US8273216B2 (en) * 2005-12-30 2012-09-25 Akzo Nobel N.V. Process for the production of paper
EP2322714A1 (en) 2005-12-30 2011-05-18 Akzo Nobel N.V. A process for the production of paper
US8753012B2 (en) * 2006-06-29 2014-06-17 Graphic Flexible Packaging, Llc High strength packages and packaging materials
US8826959B2 (en) * 2006-06-29 2014-09-09 Graphic Packaging International, Inc. Heat sealing systems and methods, and related articles and materials
DE102008000811A1 (en) 2007-03-29 2008-10-09 Basf Se Preparing paper, paperboard and cardboard, comprises shearing the paper material, adding ultrasound treated microparticle system and fine-particle inorganic component to the paper material and dewatering the paper material to form sheets
EP2315875B1 (en) * 2008-08-18 2014-03-05 Basf Se Method for increasing the dry strength of paper, paperboard and cardboard
WO2013081955A1 (en) * 2011-12-01 2013-06-06 Buckman Laboratories International, Inc. Method and system for producing market pulp and products thereof
KR101901627B1 (en) 2012-02-22 2018-09-27 더블유.알. 그레이스 앤드 캄파니-콘. Functionalized polyamines for clay mitigation
KR20150001807A (en) 2012-04-13 2015-01-06 바스프 에스이 New cationic polymers
US20130274369A1 (en) 2012-04-13 2013-10-17 Basf Se New cationic polymers
KR20150008125A (en) * 2012-04-18 2015-01-21 날코 컴퍼니 Controllable filler prefloculation using a dual polymer system
MY184550A (en) 2012-05-04 2021-04-01 Gcp Applied Tech Inc Method for treating clay and clay-bearing aggregates and compositions therefor
US20160073686A1 (en) 2014-09-12 2016-03-17 R.J. Reynolds Tobacco Company Tobacco-derived filter element
US9950858B2 (en) 2015-01-16 2018-04-24 R.J. Reynolds Tobacco Company Tobacco-derived cellulose material and products formed thereof
ES2744317T3 (en) 2016-06-22 2020-02-24 Buchmann Ges Mit Beschraenkter Haftung Multilayer fiber product with an inhibited migration rate of aromatic or saturated hydrocarbons and manufacturing process
CN111440324B (en) * 2020-04-16 2022-04-15 浙江传化华洋化工有限公司 Preparation method of polyamide polyamine-polyetheramine cylinder sticking agent

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2795545A (en) * 1953-04-14 1957-06-11 Monsanto Chemicals Organic materials
US3052595A (en) * 1955-05-11 1962-09-04 Dow Chemical Co Method for increasing filler retention in paper
US3021257A (en) * 1958-07-31 1962-02-13 American Cyanamid Co Paper containing pigment or filler
DE2262906A1 (en) * 1972-03-30 1973-10-11 Sandoz Ag Dewatering of paper - accelerated by polyamide amines polyether amines and polyethylene imines, with addn of bentonite
DE3065576D1 (en) * 1979-03-28 1983-12-22 Allied Colloids Ltd Production of paper and paper board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10236252B4 (en) * 2002-08-07 2005-06-30 Basf Ag Process for the production of paper, cardboard and cardboard
EP1831459B1 (en) 2004-12-22 2016-03-23 Basf Se Method for the production of paper, cardboard and card

Also Published As

Publication number Publication date
CA1278403C (en) 1991-01-02
NO168593C (en) 1992-03-11
NZ217951A (en) 1988-10-28
NO864644L (en) 1987-05-22
DE3541163A1 (en) 1987-05-27
JPS62125098A (en) 1987-06-06
DE3669336D1 (en) 1990-04-12
JPH0159399B2 (en) 1989-12-18
NO864644D0 (en) 1986-11-20
US4749444A (en) 1988-06-07
FI85397B (en) 1991-12-31
FI864294A0 (en) 1986-10-23
AU578404B2 (en) 1988-10-20
EP0223223A1 (en) 1987-05-27
FI864294A (en) 1987-05-22
FI85397C (en) 1992-04-10
ATE50814T1 (en) 1990-03-15
AU6397786A (en) 1987-05-28
NO168593B (en) 1991-12-02

Similar Documents

Publication Publication Date Title
EP0223223B1 (en) Process for the production of paper and cardboard
DE69522410T3 (en) Papermaking
EP0948677B1 (en) Method for producing paper
EP2443284B1 (en) Method for increasing dry strength of paper, paperboard and cardboard
EP0910701B1 (en) Process for producing paper and cardboard
EP1819875B1 (en) Method for producing paper with a high substance weight
EP1792010B1 (en) Method for the production of paper, paperboard and cardboard
EP0249891B1 (en) Process for producing paper and cardboard
DE3644072A1 (en) WEIGHED PAPER
EP0438707B1 (en) Process for making paper and board
DE60007549T2 (en) PRODUCTION OF PAPER AND CARDBOARD
DE60029141T2 (en) METHOD OF PAPER MANUFACTURE
EP0193111B1 (en) Process for producing paper with a high dry strength
DE20220979U1 (en) Preparation of paper, pasteboard, or cardboard involving cutting of the paper pulp, addition of microparticles of cationic polymer, e.g. cationic polyamide, and a finely divided inorganic component after the last cutting step
DE19632079A1 (en) Improved process for the production of paper
EP2334871B1 (en) Method for manufacturing paper, cardboard and paperboard using endo-beta-1,4 glucanases as dewatering means
EP0573458B1 (en) Aqueous sludges of finely-ground fillers and their use for producing filler-containing paper
EP1727938B1 (en) Method for producing paper, paperboard and cardboard
EP1831459B1 (en) Method for the production of paper, cardboard and card
DE4436317C2 (en) Process for improving the retention of mineral fillers and cellulose fibers on a cellulose fiber sheet
DE1621699A1 (en) Papermaking process
DE2938510A1 (en) Flocculation with cationic polyelectrolyte - added to part of aq. system before combining with the rest

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19870404

17Q First examination report despatched

Effective date: 19880802

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 50814

Country of ref document: AT

Date of ref document: 19900315

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 3669336

Country of ref document: DE

Date of ref document: 19900412

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19931018

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19931019

Year of fee payment: 8

Ref country code: CH

Payment date: 19931019

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19931028

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19931115

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931123

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19931130

Year of fee payment: 8

Ref country code: BE

Payment date: 19931130

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941117

Ref country code: AT

Effective date: 19941117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19941128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19941130

Ref country code: CH

Effective date: 19941130

Ref country code: BE

Effective date: 19941130

EAL Se: european patent in force in sweden

Ref document number: 86115915.0

BERE Be: lapsed

Owner name: BASF A.G.

Effective date: 19941130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941117

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 86115915.0

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051117