EP0222654B1 - Turboréacteur à post-combustion à injecteurs de post-combustion radiaux individuels - Google Patents

Turboréacteur à post-combustion à injecteurs de post-combustion radiaux individuels Download PDF

Info

Publication number
EP0222654B1
EP0222654B1 EP86402356A EP86402356A EP0222654B1 EP 0222654 B1 EP0222654 B1 EP 0222654B1 EP 86402356 A EP86402356 A EP 86402356A EP 86402356 A EP86402356 A EP 86402356A EP 0222654 B1 EP0222654 B1 EP 0222654B1
Authority
EP
European Patent Office
Prior art keywords
fuel
stream
chamber
injector
apertures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86402356A
Other languages
German (de)
English (en)
Other versions
EP0222654A1 (fr
Inventor
René Alain Benoist
Guy Jean-Louis Lapergue
Jacques Albert Legueux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA filed Critical Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Publication of EP0222654A1 publication Critical patent/EP0222654A1/fr
Application granted granted Critical
Publication of EP0222654B1 publication Critical patent/EP0222654B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/16Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration with devices inside the flame tube or the combustion chamber to influence the air or gas flow
    • F23R3/18Flame stabilising means, e.g. flame holders for after-burners of jet-propulsion plants
    • F23R3/20Flame stabilising means, e.g. flame holders for after-burners of jet-propulsion plants incorporating fuel injection means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/60Fluid transfer
    • F05B2260/602Drainage

Definitions

  • the technical sector of the present invention is that of fuel injection devices in an air flow stream and more particularly of post-combustion fuel injection devices for aviation turbojet engines having a device for heating or post-combustion.
  • This device had the same drawbacks as the previous one concerning the poor spraying of the fuel, the heterogeneity of the fuel mixture downstream of the injection device and the problems of coking of the injectors.
  • a third embodiment provided, as disclosed in patent FR 1 454 312, the combination of pressurized fuel injectors and catalytic igniters using a mixture of compressor air from a pipe bypassing the turbine and fuel to create a homogeneous mixture.
  • Such an arrangement requires the presence in the vein of two types of organs, injectors and igniters, which complicates the production of the post-combustion system, increases their cost and complicates their maintenance.
  • the present invention therefore aims to solve the problems of injecting post-combustion fuel in modern engines with high turbine outlet temperature by combining in a new way fuel injection and spraying means.
  • Another object of the invention is to provide a device for injecting post-combustion fuel with the shortest possible response time.
  • Another object of the invention is to provide an injection device that is not very sensitive to coking and therefore reduces maintenance measures, as well as an easily removable device in order to further minimize maintenance operations.
  • the subject of the invention is therefore a turbojet engine having a post-combustion device downstream of its turbine comprising at least one device for injecting fuel into the vein, connected to a circuit for distributing pressurized fuel and a flame holder.
  • the injection device consists of a set of individual tubular injectors regularly repaired tis radially in the vein, perpendicular to the direction of flow and each connected through openings made in the wall forming the vein to the pressurized fuel distribution circuit, each injector being supplied separately from the others and comprising, associated with its tubular part, a fuel spray chamber using a fraction of air from the vein to inject therein a finely sprayed and widely distributed fuel mixture, said spray chamber communicating with the tubular part of the injector by at least one calibrated nozzle and comprising on an upstream face with respect to the vein at least one air inlet orifice taken from the vein and on a downstream side at least one orifice for expulsion towards the vein of the fuel mixture constituted by the sprayed fuel suspended in the
  • the spray chamber is arranged at the end of the tubular part of the injector, said end being narrowed to form the fuel outlet nozzle and the chamber comprises, facing the outlet nozzle, a spherical cap disposed on the wall of the chamber between its upstream and downstream faces, on which the fuel jet explodes to carry out a first spraying of fuel, the part of the air flow admitted in the chamber through the upstream orifices ensuring a second finer atomization of the fuel, the finely atomized fuel mixture being expelled from the chamber through the downstream orifices towards the vein.
  • the spraying chamber is constituted by a tubular sheath closed at each of its ends, surrounding the tubular part of the injector and being integral with it, the tubular sheath forming the chamber comprising at least one orifice air inlet upstream and an orifice downstream for expelling the fuel mixture, orifices with axes parallel to the flow axis of the air flow.
  • the tubular part of the injector is also closed at its end and has on its wall at least two nozzles opening into the spraying chamber, the axes of the nozzles being perpendicular to the plane containing the axes of the upstream and downstream orifices of the chamber.
  • FIG. 1 the rear part of a post-combustion turbojet engine 1 is shown diagrammatically, the last turbine wheel 2 and the nozzle 3 being simply shown.
  • the post-combustion device comprises a set of injectors arranged radially (FIG. 7) in the air flow upstream of known flame catchers 4.
  • each injector 8 consists of a tubular part 5 passing through the external wall 3 to which it is fixed by any known means, this tubular part comprising an internal conduit 6 connected to the fuel distribution circuit 7 comprising a pump 9 and a regulation of known type 10.
  • Each injector has the end of its tubular part constricted in order to form a calibrated nozzle 11 for injecting fuel into a spray chamber 12 integral with the injector and constituted in this embodiment by a cylinder 13 welded to the end of the tubular part 5 of the injector, the cylinder having, opposite the outlet nozzle, a bottom 14 in the form of a spherical cap against which the pressurized fuel is sprayed through the nozzle 11.
  • a large diameter orifice 16 is drilled while on the opposite part, therefore downstream of the flow 15, are pierced with small diameter orifices 17.
  • the orifices 16 allow part of the hot flow to be taken from the vein which, with the fuel coming from the nozzle 11 and sprayed against the bottom 14, will constitute a finely pulverized fuel mixture which will be expelled through the orifices 17 downstream of the vein where this mixture will be ignited by any known means, either by means of a candle for example or simply by self-ignition if the conditions of turbine outlet temperatures allow it.
  • the number of inlet ports and their respective diameters are calculated so that the diameter of the air inlets is 5 to 8 times greater than the diameter of the outlet ports so as to create a swirl in the spray chamber. significant air capable of promoting fuel spraying as much as possible.
  • each injector is connected, independently of the other injectors, to the fuel distribution circuit. This is important because it makes it possible to reduce the residence time of the fuel in each injector and therefore to reduce the risks of clogging of the fuel mixture outlet orifices and of the fuel outlet nozzle 11 by coking.
  • each injector is associated with an injector purge unit.
  • This box is constituted by a switching valve 18 making it possible to connect the line 6 of the injector to a source of compressed air at a temperature lower than the air of the stream in order to expel in the stream all the fuel and to prevent the deposition of coke in the nozzles 11 and outlet orifices 17, and this as soon as the PC operation is stopped and throughout the duration of the dry operation.
  • Each purge box can be made in the form of a diverter valve distributor (as shown in FIG. 1), controlled by hydromechanical post-combustion regulation 10.
  • the source of cold air 19 may consist of air taken from the fan or from the low pressure compressor.
  • the lowering of temperature thus achieved in the injector conduit can in this way reach fifty degrees, and this as soon as the fuel supply stops, thus avoiding the formation of coke.
  • the injector according to the invention consists of a tubular conduit 6 closed at its end 116 and having on its parts oriented perpendicular to the air flow, twice two fuel outlet nozzles 111 diametrically opposite.
  • the spraying chamber 112 is constituted by a tubular sheath closed at its two ends and welded to a flange 106 of the duct 6.
  • the sheath 112 has two orifices 16 for the entry of air taken from the flow and three longitudinal rows of outlet orifices (17, 17a, 17b) of the fuel mixture.
  • the middle row 17 (FIG. 6) of outlet openings is diametrically opposite to the inlet openings 16 while the rows 17a and 17b are inclined on either side of the plane of the axes of the openings 16, 17 by an angle between 30 and 50 degrees in order to obtain the widest and most homogeneous distribution of mixture in the flow.
  • FIG. 5 differs from that of FIG. 4 only by the arrangement of the sleeve 212 on the conduit 6 of the injector.
  • the end of the duct 6 is closed by a spacer 216 on which a cylindrical seat 214 of the sheath is centered, while the lower end of the sheath is also centered on a spacer 206 and is wedged in a cup 221 integral with channel 6.
  • the spray injectors thus produced are also supplied separately with fuel as previously by the pump 9 and each associated with a bleed box 18 (not shown in FIGS. 4 and 5).
  • the injectors produced according to the present invention are fixed directly to the external wall of the vein when they are used in a single-flow turbojet and this by any known means, for example by a threaded ring symbolized at 22 in FIG. 1.
  • the sheath 12, 112, 212 may comprise a spherical bead 25 bearing against the opening 23 to compensate for any positioning games of the two intermediate and external walls.
  • the injectors according to the invention are preferably positioned in the plane of the pins 26 (FIG. 2) serving to maintain the spacing of the two walls.
  • a spray chamber associated with each injector is based on the principle of a jet of fuel transverse to the air flow and bursting over an obstacle (spherical cap 14 or inner wall of sheath 114) then sprayed by the fraction of flow taken from the upstream orifices makes it possible to achieve a broad and homogeneous dilution of the fuel which allows, using a dozen spray injectors according to the invention arranged radially in the flow to advantageously replace the booms upstream currently used by simplifying the production of the post-combustion device as well as its maintenance and by reducing the problems of trails and wakes such as those caused by the current upstream ramps.
  • the type of injector according to the invention applies very particularly to modern engines with high outlet temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles (AREA)
  • Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

  • Le secteur technique de la présente invention est celui des dispositifs d'injection de carburant dans une veine d'écoulement d'air et plus particulièrement des dispositifs d'injection de carburant de post-combustion pour turboréacteur d'aviation possédant un dispositif de rechauffe ou post-combustion.
  • Dans ce domaine, on a tenté, il y a de nombreuses années, de réaliser des injecteurs individuels disposés radialement dans le flux en aval de la turbine. Ces injecteurs étaient constitués de simples tubulures bouchées à leur extrémité et percées sur le côté d'un orifice disposé à contre-courant dans le flux d'air issu de la turbine. Ainsi, le brevet GB 587 083 montre un tel injecteur. L'injection de carburant sous pression dans la veine par un orifice de très petit diamètre créait un jet très localisé qu'il était nécessaire de faire éclater contre une enclume ou éclateur afin de le disperser de façon à ce que le mélange carburé réalisé dans la tuyère soit le plus uniforme possible. Dans le cas du brevet cité, l'éclateur était constitué par une grille disposée en amont de l'injecteur, percée de trous diffusant une partie du flux d'air et contre laquelle le jet de carburant était projeté.
  • De tels injecteurs avaient pour inconvénients de ne pas être fonctionnels très longtemps car utilisant des orifices très petits, les risques de cokéfaction, notamment lors du passage du fonctionnement sec en fonctionnement PC étaient inévitables et difficilement maîtrisables, ce qui amenait à l'obstruction rapide des injecteurs.
  • Un autre inconvénient de ce type d'injecteurs était de réaliser des mélanges carburés pulvérisés de façon très hétérogène sur le pourtour de la veine, ce qui créait des zones "chaudes" et des zones "froides" en aval de l'injecteur, donc un fonctionnement incorrect du dispositif de post-combustion.
  • Un autre inconvénient majeur résidait dans la nécessité des grilles annulaires formant éclateur et qui créaient dans la veine des sillages importants également générateurs d'hétérogénéités.
  • Un second dispositif ancien d'injecteurs de post-combustion tel que décrit dans le brevet FR 1 297 164, prévoyait de créer un jet tourbillonnaire au moyen d'une buse à éjection tangentielle du carburant dans la veine.
  • Ce dispositif présentait les mêmes inconvénients que le précédent concernant la mauvaise pulvérisation du carburant, l'hétérogénéité du mélange carburé en aval du dispositif d'injection et les problèmes de cokéfaction des injecteurs.
  • Un troisième mode de réalisation prévoyait, ainsi que le divulgue le brevet FR 1 454 312, la combinaison d'injecteurs de carburant sous pression et d'allumeurs catalytiques utilisant un mélange d'air compresseur issu d'une tubulure bypassant la turbine et de carburant pour créer un mélange homogène. Une telle disposition nécessite la présence dans la veine de deux types d'organes, injecteurs et allumeurs, ce qui complique la réalisation du système de post-combustion, augmente leur coût et complique leur entretien.
  • Tous ces inconvénients ont amené les constructeurs de moteurs d'avion à réaliser des dispositifs de post-combustion à rampes circulaires d'injection de carburant et à anneaux brûleurs, dispositifs seuls utilisés depuis de nombreuses années. De tels dispositifs sont exemplifiés par le brevet FR 2 097 587 au nom de la Demanderesse et donnent des résultats convenables quant à l'homogénéité du mélange carburé qu'ils réalisent.
  • Ils ont toutefois pour inconvénients de constituer un obstacle annulaire important dans l'écoulement du flux qui crée des sillages importants dans la veine, de créer des pertes de charges importantes en fonctionnement sec.
  • Un autre inconvénient réside dans le fait que ces rampes possèdent une seule arrivée de carburant, ou mieux deux opposées et que le temps de réponse du dispositif de post-combustion s'en trouve augmenté du temps mis par le carburant pour parcourir la longueur de rampe séparant la tubulure d'admission des orifices de sortie qui en sont le plus éloignés.
  • Outre ces problèmes, l'augmentation importante des températures en sortie de turbine, permise par l'amélioration des chambres de combustion, et l'utilisation de nouveaux matériaux pour les disques de turbines (matériaux céramiques, composites...) amène à réaliser des dispositifs de post-combustion à plusieurs rampes d'injection concentriques et de rayons croissants, ce qui augmente la complexité des dispositifs d'injection PC, nécessite des moyens de suspension complexes des rampes, ce qui exige de monter flottante par rapport à la paroi de la veine la tubulure d'admission de carburant et peut créer des fuites au niveau de la paroi à l'endroit du passage de la tubulure d'admission, si la liaison vissée doit supporter des déplacements thermiques des tubes d'alimentation.
  • Ces rampes multiples augmentent encore le temps de séjour du carburant, ce qui multiplie les problèmes de cokéfaction pendant les changements de modes de fonctionnement (sec ou PC allumée), problème que le boîtier de purge associé à la tubulure d'admission ne suffit pas à résoudre parfaitement.
  • La présente invention a donc pour but de résoudre les problèmes d'injection de carburant de post-combustion dans les moteurs modernes à forte température de sortie de turbine en combinant de façon nouvelle des moyens d'injection et de pulvérisation de carburant.
  • Un autre but de l'invention est de réaliser un dispositif d'injection de carburant de post-combustion ayant un temps de réponse le plus faible possible.
  • L'invention a également pour but de réaliser un dispositif d'injection peu sensible à la cokéfaction et donc diminuant les mesures d'entretien ainsi qu'un dispositif facilement démontable afin de minimiser plus encore les opérations d'entretien.
  • L'invention a donc pour objet un turboréacteur possédant en aval de sa turbine un dispositif de post-combustion comprenant au moins un dispositif d'injection de carburant dans la veine, relié à un circuit de distribution de carburant sous pression et un accroche-flammes, caractérisé en ce que le dispositif d'injection est constitué par un ensemble d'injecteurs individuels tubulaires régulièrement répartis radialement dans la veine, perpendiculairement au sens de l'écoulement et reliés chacun au travers d'ouvertures réalisées dans la paroi formant la veine au circuit de distribution de carburant sous pression, chaque injecteur étant alimenté séparément des autres et comportant, associée à sa partie tubulaire, une chambre de pulvérisation de carburant empruntant une fraction d'air de la veine pour injecter dans celle-ci un mélange carburé finement pulvérisé et largement diffusé, ladite chambre de pulvérisation communiquant avec la partie tubulaire de l'injecteur par au moins un ajutage calibré et comportant sur une face amont par rapport à la veine au moins un orifice d'entrée d'air prélevé dans la veine et sur une face aval au moins un orifice d'expulsion vers la veine du mélange carburé constitué par le carburant pulvérisé en suspension dans l'air admis par l'orifice d'entrée.
  • Dans un premier mode de réalisation de l'invention, la chambre de pulvérisation est disposée à l'extrémité de la partie tubulaire de l'injecteur, ladite extrémité étant rétrécie pour former l'ajutage de sortie de carburant et la chambre comprend, face à l'ajutage de sortie, une calotte sphérique disposée sur la paroi de la chambre comprise entre ses faces amont et aval, sur laquelle le jet de carburant vient s'éclater pour réaliser une première pulvérisation de carburant, la partie du flux d'air admise dans la chambre par les orifices amont assurant une seconde pulvérisation plus fine du carburant, le mélange carburé finement pulvérisé étant expulsé de la chambre par les orifices aval vers la veine.
  • Dans un deuxième mode de réalisation, la chambre de pulvérisation est constituée par un fourreau tubulaire fermé à chacune de ses extrémités, entourant la partie tubulaire de l'injecteur et lui étant solidaire, le fourreau tubulaire formant la chambre comportant au moins un orifice d'entrée d'air en amont et un orifice en aval d'expulsion du mélange carburé, orifices d'axes parallèles à l'axe d'écoulement du flux d'air. La partie tubulaire de l'injecteur est également fermée à son extrémité et comporte sur sa paroi au moins deux ajutages débouchant dans la chambre de pulvérisation, les axes des ajutages étant perpendiculaires au plan contenant les axes des orifices amont et aval de la chambre.
  • D'autres particularités de l'invention seront explicitées en regard des planches de figures représentant les deux modes de réalisation de l'invention et leur montage dans un turboréacteur. Parmi ces planches:
    • - la figure 1 montre schématisé en coupe longitudinale un turboréacteur comportant un dispositif d'injection de post-combustion selon l'invention
    • - la figure 2 montre l'application de l'invention à un turboréacteur double flux
    • - la figure 3 montre en coupe le détail de la chambre de pulvérisation de l'injecteur dans le premier mode de réalisation de l'invention
    • - la figure 4 montre en coupe longitudinale une première variante du deuxième mode de réalisation de l'invention
    • - la figure 5 montre une deuxième variante du deuxième mode de réalisation de l'invention
    • - la figure 6 montre en section BB des figures 4 ou 5 la disposition des orifices amont et aval
    • - la figure 7 montre, représentée de façon très schématisée en coupe transversale selon AA de la figure 1, la disposition radiale des injecteurs et leurs circuits d'alimentation en carburant et en air de purge.
  • A la figure 1, on a représenté schématiquement la partie arrière d'un turboréacteur 1 à post-combustion dont on a simplement représenté la dernière roue de turbine 2 et la tuyère 3.
  • Le dispositif de post-combustion comporte un ensemble d'injecteurs disposés radialement (figure 7) dans le flux d'air en amont d'accroche-flammes connus 4.
  • Dans le premier mode de réalisation de l'invention (figure 3), chaque injecteur 8 est constitué d'une partie tubulaire 5 traversant la paroi externe 3 sur laquelle elle est fixée par tout moyen connu, cette partie tubulaire comportant un conduit interne 6 relié au circuit de distribution de carburant 7 comprenant une pompe 9 et une régulation de type connu 10.
  • Chaque injecteur a l'extrémité de sa partie tubulaire rétreinte afin de former un ajutage calibré 11 d'injection de carburant dans une chambre de pulvérisation 12 solidaire de l'injecteur et constituée dans ce mode de réalisation par un cylindre 13 soudé à l'extrémité de la partie tubulaire 5 de l'injecteur, le cylindre possédant face à l'ajutage de sortie un fond 14 en forme de calotte sphérique contre lequel le carburant sous pression est projeté au travers de l'ajutage 11.
  • Sur la portion du cylindre 13 en regard de l'amont de l'écoulement (représenté par la flèche 15 sur la figure 3), est percé un orifice de grand diamètre 16 tandis que sur la partie opposée, donc en aval de l'écoulement 15, sont percés des orifices de petit diamètre 17. Les orifices 16 permettent de prélever dans la veine une partie du flux chaud qui constituera avec le carburant issu de l'ajutage 11 et pulvérisé contre le fond 14, un mélange carburé finement pulvérisé qui sera expulsé par les orifices 17 vers l'aval de la veine où ce mélange sera enflammé par tout moyen connu, soit au moyen d'une bougie par exemple soit simplement par auto-inflammation si les conditions de températures de sortie de turbine le permettent.
  • De façon préférentielle, on calcule le nombre des orifices d'entrée et leurs diamètres respectifs afin que le diamètre des entrées d'air soit de 5 à 8 fois supérieur au diamètre des orifices de sortie de façon à créer dans la chambre de pulvérisation un tourbillonnement d'air important apte à favoriser le plus possible la pulvérisation du carburant.
  • On a vu plus haut que chaque injecteur est relié, indépendamment des autres injecteurs, au circuit de distribution de carburant. Ceci est important car cela permet de diminuer le temps de séjour du carburant dans chaque injecteur et donc de diminuer les risques de bouchage des orifices de sortie de mélange carburé et de l'ajutage de sortie 11 du carburant par cokéfaction.
  • Pour diminuer encore ce risque, à chaque injecteur est associé un boîtier de purge de l'injecteur. Ce boîtier est constitué par une vanne de commutation 18 permettant de relier le conduit 6 de l'injecteur à une source d'air comprimé à une température plus faible que l'air de la veine afin d'expulser dans la veine la totalité du carburant et d'empêcher le dépôt de coke dans les ajutages 11 et orifices de sortie 17, et ceci dès l'arrêt du fonctionnement PC et pendant toute la durée du fonctionnement sec. Chaque boi- tier de purge peut être réalisé sous la forme d'un distributeur inverseur à tiroir (tel que représenté à la figure 1), commandé par la régulation hydromécanique de post-combustion 10.
  • La source d'air froid 19 peut être constituée par de l'air prélevé au niveau du fan ou du compresseur basse pression. L'abaissement de température ainsi réalisé dans le conduit d'injecteur peut de cette façon atteindre une cinquantaine de degrés, et ce dès l'arrêt d'arrivée de carburant, évitant ainsi la formation de coke.
  • Dans le mode de réalisation de la figure 4 l'injecteur selon l'invention est constitué par un conduit tubulaire 6 fermé à son extrémité 116 et comportant sur ses parties orientées perpendiculairement au flux d'air, deux fois deux ajutages de sortie de carburant 111 diamétralement opposées. La chambre de pulvérisation 112 est constituée par un fourreau tubulaire fermé à ses deux extrémités et soudée à une collerette 106 du conduit 6. Dans ce mode de réalisation, le fourreau 112 comporte deux orifices 16 d'entrée d'air prélevé dans le flux et trois rangées longitudinales d'orifices de sortie (17, 17a, 17b) du mélange carburé.
  • La rangée médiane 17 (figure 6) d'orifices de sortie est diamétralement opposée aux orifices d'entrée 16 tandis que les rangées 17a et 17b sont inclinées de part et d'autre du plan des axes des orifices 16, 17 d'un angle compris entre 30 et 50 degrés afin d'obtenir une répartition de mélange dans le flux, la plus large et la plus homogène possible.
  • La variante de construction de ce mode de réalisation représentée à la figure 5 ne diffère de celle de la figure 4 que par l'agencement du fourreau 212 sur le conduit 6 de l'injecteur. Dans cette variante l'extrémité du conduit 6 est fermée par une entretoise 216 sur laquelle vient se centrer une portée cylindrique 214 du fourreau tandis que l'extrémité inférieure du fourreau est elle aussi centrée sur une entretoise 206 et vient se caler dans une coupelle 221 solidaire du canal 6.
  • Dans ce deuxième mode de réalisation, les injecteurs à pulvérisation ainsi réalisés sont également alimentés séparément en carburant comme précéde- ment par la pompe 9 et associés chacun à un boîtier de purge 18 (non représenté sur les figures 4 et 5).
  • Les injecteurs réalisés selon la présente invention sont fixés directement sur la paroi externe de la veine lorsqu'ils sont utilisés dans un turboréacteur monoflux et ceci par tout moyen connu par exemple par une bague filetée symbolisée en 22 sur la figure 1.
  • S'ils sont utilisés dans la veine primaire d'un turboréacteur double flux (voir figure 2 et figure 4), ils sont fixés sur la paroi externe de la veine secondaire que le canal 6 traverse entièrement pour pénétrer dans la veine primaire par une ouverture 23 de la paroi intermédiaire 24 séparant les deux flux. Dans ce cas le fourreau 12, 112, 212 peut comporter un bourrelet sphérique 25 venant en appui contre l'ouverture 23 pour compenser les jeux éventuels de positionnement des deux parois intermédiaire et externe.
  • En outre pour limiter ces jeux, les injecteurs selon l'invention sont de préférence positionnés dans le plan des broches 26 (figure 2) servant à maintenir l'écartement des deux parois.
  • La présence d'une chambre de pulvérisation, associée à chaque injecteur est basée sur le principe d'un jet de carburant transversal au flux d'air et venant s'éclater sur un obstacle (calotte sphérique 14 ou paroi interne de fourreau 114) puis pulvérisé par la fraction de flux prélevé par les orifices amont permet de réaliser une dilution large et homogène du carburant qui permet à l'aide d'une dizaine d'injecteurs à pulvérisation selon l'invention disposés radialement dans le flux de remplacer avantageusement les rampes amont actuellement utilisées en simplifiant la réalisation du dispositif de post-combustion ainsi que son entretien et en diminuant les problèmes de traînées et de sillages tels qu'en occasionnent les rampes amont actuelles.
  • En outre la combinaison d'injecteurs individuels et de boîtiers de purge associés à chaque injecteur en augmente la durée d'utilisation et limite les risques de pollution des injecteurs en fonctionnement sec du moteur.
  • Le type d'injecteur selon l'invention s'applique tout particulièrement aux moteurs modernes à forte température de sortie.

Claims (7)

1. Turboréacteur d'aviation possédant en aval de la turbine un dispositif de post-combustion comprenant au moins un dispositif d'injection de carburant dans la veine, relié à un circuit de distribution de carburant sous pression et un accroche-flamme, le dispositif d'injection étant constitué par un ensemble d'injecteurs individuels tubulaires régulièrement répartis radialement dans la veine perpendiculairement au sens de l'écoulement et reliés chacun au travers de trous (23) réalisés dans la paroi (3, 24) formant la veine, au circuit de distribution de carburant sous pression (7, 9, 10), caractérisé en ce que chaque injecteur est alimenté séparément des autres et comporte, associé à sa partie tubulaire (6), une chambre de pulvérisation (12, 112, 212) empruntant une fraction d'air de la veine pour injecter dans celle ci un mélange carburé finement pulvérisé et largement diffusé, ladite chambre de pulvérisation (12, 112, 212) communiquant avec la partie tubulaire (5, 6) de l'injecteur par au moins un ajutage calibré (11, 111, 211) et comportant sur une face amont par rapport à la veine au moins un orifice (16) d'entrée d'air prélevé dans la veine et sur une face aval au moins un orifice d'expulsion (17) vers la veine du mélange carburé constitué par le carburant pulvérisé en suspension dans l'air admis par l'orificie d'entrée.
2. Turboréacteur selon la revendication 1 caractérisé en ce que les orifices amont (16) de la chambre de pulvérisation ont un diamètre compris entre 5 et 8 fois le diamètre des orifices aval (17) pour permettre dans la chambre de pulvérisation un tourbillo- nement d'air apte à favoriser la pulvérisation.
3. Turboréacteur d'aviation selon l'une des revendications 1 ou 2 caractérisé en ce que la chambre de pulvérisation est disposés à l'extrémité de la partie tubulaire (5) de l'injecteur, ladite extrémité étant rétrécie pour former l'ajutage (11) de sortie de carburant et en ce qu'elle comprend face audit ajutage de sortie, une calotte sphérique (14) disposée sur la paroi de la chambre comprise entre ses faces amont et aval sur laquelle le jet de carburant vient s'éclater pour réaliser une première pulvérisation de carburant, la pratie du flux d'air admise dans la chambre de pulvérisation par les orifices amont (16) assurant une seconde pulvérisation plus fine du carburant, le mélange carburé finement pulvérisé étant expulsé de la chambre par les orifices aval (17) vers la veine.
4. Turboréacteur d'aviation selon la revendication 2 caractérisé en ce que la chambre de pulvérisation est constituée par un fourreau tubulaire (112, 212) fermé à chacune des ses extrémités, entourant la partie tubulaire (6) de l'injecteur et lui étant solidaire, le fourreau tubulaire (112, 212) formant la chambre comportant au moins un orifice d'entrée d'air (16) et au moins un orifice d'expulsion (17) du mélange carburé, orifices d'axes parallèles à l'axe d'écoulement du flux d'air, en ce que la partie tubulaire de l'injecteur est fermée à son extrémité (116, 216) et comporte sur sa paroi au moins deux ajutages (111, 211 ) débouchant dans la chambre de pulvérisation, les axes des ajutages (111, 211) étant perpendiculaires au plan contenant les axes des orifices amont (16) et aval (17) de la chambre.
5. Turboréacteur selon la revendication 4 caractérisé en ce que la chambre du pulvérisation comporte deux orifices amont (16) de grand diamètre et trois rangées (17, 17a, 17b) d'orifices aval d'expulsion du mélange carburé, les orifices aval d'une première rangée (17) ayant leurs axes parallèles à l'axe du flux tandis que les axes des orifices des deux autres rangées (17a, 17B) sont orientés par rapport au flux d'un angle compris entre 30 et 50 degrés.
6. Turboréacteur selon l'une quelconque des revendications 1 à 5 dont le dispositif de post-combustion comporte un dispositif d'alimentation d'air de purge du circuit de carburant, comprenant au moins un boîtier de purge possédant une vanne (18) permettant le passage d'air de purge dans les injecteurs lorsque l'alimentation en carburant de post-combustion est coupée, caractérisé en ce que à chaque injecteur (8) est associé un boîtier de purge (18) permettant la purge simultanée de tous les injecteurs.
7. Turboréacteur double flux à post-combustion selon l'une quelconque des revendications 1 à 6, comportant une paroi externe (3) délimitant l'extérieur de la veine secondaire et une paroi intermédiaire (24) fixée à la paroi externe par un ensemble de broches de fixation (26) et séparant la veine secondaire de la veine primaire, caractérisé en ce que chaque injecteur (8) est fixé par des moyens connus sur la paroi externe de la veine secondaire au droit des broches de fixation (26) et traverse la paroi intermédiaire par une ouverture de celle-ci, la chambre de pulvérisation étant toute entière contenue à l'intérieur de la veine primaire.
EP86402356A 1985-10-23 1986-10-22 Turboréacteur à post-combustion à injecteurs de post-combustion radiaux individuels Expired EP0222654B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8515713A FR2588920B1 (fr) 1985-10-23 1985-10-23 Turboreacteur a postcombustion a injecteurs de postcombustion radiaux individuels
FR8515713 1985-10-23

Publications (2)

Publication Number Publication Date
EP0222654A1 EP0222654A1 (fr) 1987-05-20
EP0222654B1 true EP0222654B1 (fr) 1989-03-29

Family

ID=9324110

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86402356A Expired EP0222654B1 (fr) 1985-10-23 1986-10-22 Turboréacteur à post-combustion à injecteurs de post-combustion radiaux individuels

Country Status (4)

Country Link
US (1) US4730453A (fr)
EP (1) EP0222654B1 (fr)
DE (1) DE3662623D1 (fr)
FR (1) FR2588920B1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0550126A1 (fr) * 1992-01-02 1993-07-07 General Electric Company Bouclier thermique pour post-combusteur
FR2689567B1 (fr) * 1992-04-01 1994-05-27 Snecma Injecteur de carburant pour chambre de post-combustion d'une turbomachine.
DE4309131A1 (de) * 1993-03-22 1994-09-29 Abb Management Ag Verfahren und Vorrichtung zur Nachlaufbeeinflussung bei Brennkammereinbauten
DE59409252D1 (de) * 1994-09-21 2000-05-04 Abb Alstom Power Ch Ag Brennkammer einer Gasturbogruppe
US5768886A (en) * 1995-09-29 1998-06-23 National Science Council Twin-plate flameholder construction
US5826429A (en) * 1995-12-22 1998-10-27 General Electric Co. Catalytic combustor with lean direct injection of gas fuel for low emissions combustion and methods of operation
US5927067A (en) * 1997-11-13 1999-07-27 United Technologies Corporation Self-cleaning augmentor fuel manifold
FR2871519B1 (fr) * 2004-06-10 2006-08-04 Snecma Moteurs Sa Procede et systeme de protection des injecteurs de carburant de turbine de gaz
US7805948B2 (en) * 2005-12-15 2010-10-05 Pratt & Whitney Canada Corp. Internally mounted device for a pressure vessel
US9291139B2 (en) * 2008-08-27 2016-03-22 Woodward, Inc. Dual action fuel injection nozzle
US9115897B2 (en) 2008-09-04 2015-08-25 United Technologies Corporation Gas turbine engine systems and methods involving enhanced fuel dispersion
FR3017445B1 (fr) 2014-02-12 2019-05-24 Fives Pillard Module de bruleur en veine
FR3039220B1 (fr) * 2015-07-24 2017-08-11 Snecma Dipositif de postcombustion pour turboreacteur
CN111829009A (zh) * 2020-07-10 2020-10-27 中国空气动力研究与发展中心 一种基于楔形体的燃料组合喷注结构
CN114060851B (zh) * 2021-11-15 2022-09-20 中国航发沈阳发动机研究所 一种基于3d打印的分区分压加力喷油杆
CN114645799B (zh) * 2022-02-24 2024-04-26 哈尔滨工业大学 一种使用电动辅助增压的轴对称全速域冲压发动机

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL67339C (fr) * 1944-11-28
GB670247A (en) * 1948-02-19 1952-04-16 Power Jets Res & Dev Ltd Improvements in or relating to combustion apparatus
GB650608A (en) * 1948-11-26 1951-02-28 Lucas Ltd Joseph Improvements relating to internal combustion engine systems
US2963857A (en) * 1958-12-12 1960-12-13 Gen Motors Corp Turbojet engine
DE1133185B (de) * 1959-04-21 1962-07-12 Snecma Verbrennungseinrichtung an Rueckstosstrieb-werken, insbesondere zur Nachverbrennung
FR1230868A (fr) * 1959-07-21 1960-09-20 Gen Electric Système d'augmentation de poussée pour les moteurs à réaction
US2967394A (en) * 1959-12-14 1961-01-10 Gen Electric Combustion apparatus
US3044264A (en) * 1960-05-11 1962-07-17 United Aircraft Corp Fuel spray nozzle
FR1321385A (fr) * 1962-05-09 1963-03-15 Rolls Royce Réchauffeur à combustion pour turbine à gaz ou analogue
GB1049977A (en) * 1964-11-19 1966-11-30 Rolls Royce Prime mover ignition device
GB1056477A (en) * 1964-12-12 1967-01-25 Rolls Royce Liquid or gas supply system for a gas turbine engine
FR2097587A5 (fr) * 1970-07-10 1972-03-03 Snecma
US3698186A (en) * 1970-12-24 1972-10-17 United Aircraft Corp Afterburner combustion apparatus
JPS5824695B2 (ja) * 1977-03-14 1983-05-23 トヨタ自動車株式会社 ガスタ−ビンエンジンの燃焼器構造
DE2815916C2 (de) * 1978-04-13 1983-11-03 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Ringbrennkammer mit Brennstoff-Vorverdampfung für Gasturbinentriebwerke

Also Published As

Publication number Publication date
EP0222654A1 (fr) 1987-05-20
DE3662623D1 (en) 1989-05-03
FR2588920A1 (fr) 1987-04-24
FR2588920B1 (fr) 1987-12-04
US4730453A (en) 1988-03-15

Similar Documents

Publication Publication Date Title
EP0222654B1 (fr) Turboréacteur à post-combustion à injecteurs de post-combustion radiaux individuels
CA2478876C (fr) Systeme d'injection air/carburant ayant des moyens de generation de plasmas froids
CA1147974A (fr) Bruleurs de combustible pour turbomoteurs a gaz
EP1640662B1 (fr) Injecteur à effervescence pour système aéromécanique d'injection air/carburant dans une chambre de combustion de turbomachine
EP0214003B1 (fr) Dispositif d'injection à bol elargi pour chambre de combustion de turbomachine
EP0828115B1 (fr) Système d'injection de carburant pour une chambre de combustion
FR2626043A1 (fr) Dispositif de formation de turbulences-injecteur de carburant pour ensemble de combustion dans une turbine a gaz
CA2206184C (fr) Chambre de combustion anti-nox a injection de carburant de type annulaire
CA2646959C (fr) Systeme d'injection d'un melange d'air et de carburant dans une chambre de combustion de turbomachine
CA2605952C (fr) Injecteur de carburant pour chambre de combustion de moteur a turbine a gaz
FR2931203A1 (fr) Injecteur de carburant pour turbine a gaz et son procede de fabrication
FR2971040A1 (fr) Systeme de premelange d'air et de combustible dans une tuyere de combustible
FR2572463A1 (fr) Systeme d'injection a geometrie variable.
FR2867513A1 (fr) Systeme d'injection de carburant a regulation de pression
EP0565441A1 (fr) Chambre de combustion munie d'un fond générateur de prémélange
CA2033366C (fr) Bruleur industriel a combustible liquide a faible emission d'oxydes d'azote, ledit bruleur generant plusieurs flammes elementaires et son utilisation
CA2498242A1 (fr) Procede d'amelioration des performances d'allumage de dispositif de post-combustion pour turboreacteur double flux et dispositif de post-combustion a performance d'allumage amelioree
EP0224397B1 (fr) Dispositif d'injection à bol sectorisé
EP3368826A1 (fr) Systeme d'injection aerodynamique pour turbomachine d'aeronef, a melange air/carburant ameliore
FR2942640A1 (fr) Chambre de post-combustion pour turbomachine
FR2943119A1 (fr) Systemes d'injection de carburant dans une chambre de combustion de turbomachine
EP0301950B1 (fr) Moteur à combustion interne suralimenté équipé d'une chambrede combustion auxiliaire
EP0967434B1 (fr) Brûleur à conduits concentriques d'alimentation en air et à stabilisateur central
FR2608258A1 (fr) Dispositif de combustion pour un moteur a turbine a gaz
EP4004443B1 (fr) Chambre de combustion comportant des systèmes d'injection secondaires et procédé d'alimentation en carburant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19861103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 19880224

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3662623

Country of ref document: DE

Date of ref document: 19890503

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 86402356.9

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030922

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030924

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031022

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031219

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050503

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051022