EP0221939B1 - Schaltung zur steuerung eines bürstenlosen elektromotors - Google Patents

Schaltung zur steuerung eines bürstenlosen elektromotors Download PDF

Info

Publication number
EP0221939B1
EP0221939B1 EP86902829A EP86902829A EP0221939B1 EP 0221939 B1 EP0221939 B1 EP 0221939B1 EP 86902829 A EP86902829 A EP 86902829A EP 86902829 A EP86902829 A EP 86902829A EP 0221939 B1 EP0221939 B1 EP 0221939B1
Authority
EP
European Patent Office
Prior art keywords
mains
winding
circuit according
switches
stator winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86902829A
Other languages
English (en)
French (fr)
Other versions
EP0221939A1 (de
Inventor
Gerard Rilly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Thomson Brandt GmbH
Original Assignee
Deutsche Thomson Brandt GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Thomson Brandt GmbH filed Critical Deutsche Thomson Brandt GmbH
Priority to AT86902829T priority Critical patent/ATE55205T1/de
Publication of EP0221939A1 publication Critical patent/EP0221939A1/de
Application granted granted Critical
Publication of EP0221939B1 publication Critical patent/EP0221939B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor

Definitions

  • the invention is based on a circuit according to the preamble of claim 1.
  • a circuit is known from DE-OS-15 38 916, 15 38 893.
  • the highest speed of the motor is determined by the mains frequency and is e.g. with single pole version 3000 rpm. A higher speed cannot easily be achieved with this known circuit. In practice, however, motors with a higher speed of e.g. 6000-9000 rpm required.
  • the invention has for its object to develop the known circuit so that the motor can also be operated at a higher speed than corresponds to the mains frequency. This object is achieved by the invention described in claim 1. Advantageous developments of the invention are described in the subclaims.
  • a network period is thus cut several times with the pulse control circuit. This measure alone does not lead to an increased speed.
  • the current pulses obtained by the pulse control are fed to the stator winding in the sense of generating opposite magnetic poles, a rotating field can be generated, the frequency of which is higher than the mains frequency.
  • the frequency of the rotating field generated can then e.g. be twice, three times or four times the network frequency. This means that the speed of the motor can be correspondingly higher than it corresponds to synchronous operation with the mains frequency.
  • the supply of the current pulses obtained by the pulse control to the stator winding must take place in such a way that e.g. Currents of opposite polarity in the stator winding have the same magnetic poles, e.g. North, or currents of the same polarity generate different magnetic poles, i.e. north and south.
  • this is achieved in that the stator winding is divided into two oppositely polarized partial windings and the current pulses are alternately fed to one or the other partial winding. The magnetic poles are then reversed by reversing the polarity of the partial winding.
  • the stator winding is arranged in the diagonal of a bridge which is fed by the mains voltage and has four controllable switches, in particular triacs, in the bridge branches.
  • the current direction in the winding can be reversed by firing diagonally opposite switches. Then it is not necessary to split the winding into two partial windings.
  • stator winding S1 is divided into two oppositely polarized partial windings S1a and S1b, which are connected to the mains voltage UN via two triacs T1 and T2.
  • FIG. 2 shows the line voltage UN with the line period TN of t1 ⁇ t5.
  • the mains voltage UN is controlled with the triacs T1, T2 during each mains period TN over two angular ranges, namely from t2 to t3 and from t4 to t5, the triac T1 being conductive from t2 to t3 and the triac T2 being conductive from t4 to t5.
  • This process is then repeated for each network period TN.
  • the current pulses obtained from t2 to t3 and from t4 to t5 are fed to the two partial windings S1a and S1b. Since these partial windings are polarized in opposite directions, the likewise opposite current pulses generate the same magnetic poles.
  • the circuit according to FIG. 1 thus represents the simplest version in which the rotor is driven with only a single winding.
  • a drive is possible if the start is initiated by aids.
  • These tools can consist, for example, of so-called positioning.
  • the rotor is always automatically stopped in a position from which it can also be started with a single winding.
  • the starting position of the rotor is not at a zero point of the torque exerted by the stator winding on the rotor.
  • the start can also take place with a second winding, which is spatially offset from the stator winding and is supplied with a current that is used for starting, or is continuously fed from the mains.
  • the motor can run with only one winding as shown in FIG.
  • FIG. 3 two stator windings S1 and S2 are provided, both of which are divided into partial windings S1a and S1b as well as S2a and S2b.
  • the two stator windings S1 and S2 are spatially offset by 90 °.
  • Both windings S1 and S2 are controlled according to FIG. 2, only the phase position of the control being offset by 90 ° from TD.
  • the in the two coils S1 and 2 then have the same course, but are shifted in phase by 90 ° with respect to the frequency of the rotating field D. This is achieved by the appropriate position of the angle of the pulse control.
  • the choke Dr shown in Fig. 3 has the following purpose:
  • the pulse control generates a large number of short current pulses, since e.g. in Fig. 3 the triacs T1 to T3 are fired sequentially.
  • the resulting high frequencies of the currents drawn from the network can violate regulations regarding the network load and lead to faults.
  • the choke Dr serves to smooth the current iN drawn from the network, i.e. for screening or integration of this current in the sense that the current iN is largely sinusoidal.
  • the winding S1 is not divided into two partial windings, but lies in the diagonal a-b of a bridge connected to the mains voltage UN with the triacs T5, T6, T7, T8.
  • the triacs can be ignited so that the current i in the winding S1 can be reversed. If e.g. the mains voltage UN is positive and the triacs T5 and T8 are ignited, the current i1 flows through the winding S1 in the direction shown. If the triacs T6 and T7 are ignited with the same polarity of the mains voltage UN, the current i2 flows in the opposite direction.
  • the desired effect of the current on the magnetic field that is to say deliberate generation of a north pole or south pole, can thus be achieved independently of the original polarity of the current by appropriate control of the triacs T5 to T8.
  • the bridge with the triacs T5 to T8 is expanded by an additional bridge branch with the triacs T9, T10, in the diagonal b-c of which the second stator winding S2 lies.
  • the Triacs T5 to T10 e.g. the windings S1, S2 are controlled as described for these windings with reference to FIG. 3.
  • a third stator winding S3 can also be connected between the diagonal points a and c. This results in a symmetrical structure with three equivalent stator windings S1, S2, S3. These windings are then spatially offset by 120 ° for so-called three-phase operation. This symmetrical three-phase operation makes it possible to make the inductor Dr used for smoothing the current smaller.
  • a plurality of triacs are fired in succession in order to generate the currents with the desired polarity.
  • the following effect can also be used for the alternate ignition and extinguishing of the triacs.
  • the triac T1 is initially triggered by a control pulse.
  • the triac T2 is triggered by a control pulse.
  • This EMF can act on the triac T1 in such a way that it is extinguished as desired. In this way, the ignition of the triac T2 can inevitably effect the switchover from the triac T1 to the triac T2.
  • the speeds were doubled. At a mains frequency of 50 Hz, a speed of 6000 rpm can then be achieved. It is also possible to set higher speeds, e.g. To reach 9000 rpm. For this purpose, a network period is then controlled correspondingly frequently, and the current pulses obtained act with such an effect on the magnetic poles, that is to say north or south, that, as in FIG. 2, a rotating field D with a correspondingly short period duration TD results.
  • the circuit 4 can only be operated with the four triacs T5, T6, T7, T8 and the winding S1. It then works like the circuit of FIG. 1 without dividing the winding.
  • the circuit can also be operated with the six Triacs T5-T10 and the two windings S1 and S2. It then acts like the circuit according to FIG. 3, likewise without division of the windings.
  • the circuit can also be operated with the six Triacs T5-T10 and the three windings S1, S2 and S3 in order to generate the aforementioned symmetrical rotating field. To control the winding S3, the triacs T5 and T10 or for the reverse current direction the triacs T9 and T6 are turned on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

  • Die Erfindung geht aus von einer Schaltung gemäß dem Oberbegriff des Anspruchs 1. Eine derartige Schaltung ist bekannt durch die DE-OS-15 38 916, 15 38 893.
  • Die höchste Drehzahl des Motors ist dabei durch die Netzfrequenz vorgegeben und beträgt z.B. bei einpoliger Ausführung 3000 Upm. Eine höhere Drehzahl läßt sich mit dieser bekannten Schaltung ohne weiteres nicht erreichen. In der Praxis werden jedoch oft Motoren mit einer höheren Drehzahl von z.B. 6000-9000 Upm benötigt.
  • Der Erfindung liegt die Aufgabe zugrunde, die bekannte Schaltung so weiterzubilden, daß der Motor auch mit einer höheren Drehzahl betrieben werden kann, als es Netzfrequenz entspricht. Diese Aufgabe wird durch die im Anspruch 1 beschriebene Erfindung gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüche beschrieben.
  • Bei der Erfindung wird also mit der Impuls-Steuerschaltung eine Netzperiode mehrmals angeschnitten. Diese Maßnahme allein führt noch nicht zu einer erhöhten Drehzahl. Wenn jedoch die durch die Impulssteuerung gewonnenen Stromimpulse der Statorwicklung im Sinne der Erzeugung entgegengesetzter Magnetpole zugeführt werden, kann ein Drehfeld erzeugt werden, dessen Frequenz höher ist als die Netzfrequenz. Die Frequenz des erzeugten Drehfeldes kann dann z.B. gleich der doppelten, dreifachen oder vierfachen Netzfrequenz sein. Das bedeutet, daß die Drehzahl des Motors entsprechend höher sein kann, als es dem Synchronbetrieb mit der Netzfrequenz entspricht.
  • Die Zuführung der durch die Impulssteuerung gewonnenen Stromimpulse zu der Statorwicklung muß je nach dei gewünschten Drehzahl so erfolgen, daß z.B. Ströme entgegengesetzter Polarität in der Statorwicklung gleiche Magnetpole, z.B. Nord, oder auch Ströme gleicher Polarität unterschiedliche Magnetpole, also Nord und Süd, erzeugen. Gemäß einer Weiterbildung der Erfindung ist dies dadurch erreicht, daß die Statorwicklung in zwei entgegengesetzt gepolte Teilwicklungen aufgeteilt ist und die Stromimpulse abwechselnd der einen oder anderen Teilwicklung zugeführt werden. Die Umkehr der Magnetpole erfolgt dann durch die entgegengesetzte Polung der Teilwicklung.
  • Gemäß einer anderen Weiterbildung der Erfindung ist die Statorwicklung in der Diagonalen einer Brücke angeordnet, die von der Netzspannung gespeist ist und in den Brückenzweigen vier steuerbare Schalter, insbesondere Triacs, aufweist. Mit einer solchen Schaltung kann jeweil durch Zünden diagonal gegenüberliegender Schalter die Stromrichtung in der Wicklung umgepolt werden. Dann ist die Aufteilung der Wicklung in zwei Teilwicklungen nicht notwendig.
  • Die Erfindung wird im folgenden anhand der Zeichnung näher erläutert. Darin zeigen
    • Fig. 1 ein Prinzipschaltbild der erfindungsgemäßen Steuerung,
    • Fig. 2 ideolisieite Kurven zur Erläuterung der Schaltung nach Fig. 1,
    • Fig. 3 eine Weiterbildung der Schaltung nach Fig. 1
    • Fig. 4 ein Beispiel für die Steuerung der Statorwicklung mittels einer Brückenschaltung.
  • In Fig. 1 ist die Statorwicklung S1 in zwei entgegengesetzt gepolte Teilwicklungen S1a und S1 b aufgeteilt, die über zwei Triacs T1 und T2 an die Netzspannung UN angeschlossen sind.
  • Fig. 2 zeigt die Netzspannung UN mit der Netzperiode TN von t1―t5. Die Netzspannung UN wird mit den Triacs T1, T2 jeweils während einer Netzperiode TN über zwei Winkelbereiche, nämlich von t2 bis t3 und von t4 bis t5 angesteueit, wobei das Triac T1 von t2 bis t3 und das Triac T2 von t4 bis t5 leitend ist. Dieser Vorgang wiederholt sich dann für jede Netzperiode TN. Die von t2 bis t3 und von t4 bis t5 gewonnenen Stromimpulse werden den beiden Teilwicklungen S1a und S1b zugeführt. Da diese Teilwicklungen entgegengesetzt gepolt sind, erzeugen die ebenfalls entgegengesetzten Stromimpulse gleiche Magnetpole. Dadurch ergibt sich ein Drehfeld D mit einer Periodendauer TD. Es ist ersichtlich, daß die Periodendauer TD des Drehfeldes D nur die Hälfte der Netzperiode TN beträgt. Wenn der Stator somit durch des Drehfeld D angetrieben wird, läuft der Motor mit der doppelten Netzfrequenz, also z.B. mit 6000 Upm. Die Stromimpulse von t2 bis t3 und t4 bis t5 bilden jeweils zusammen mit der in der Statorwicklung induzierten EMK die der Statorwicklung zugeführte Leistung, die die Größe des auf den Rotor ausgeübten Drehmomentes bestimmt.
  • Die Schaltung nach Fig. 1 stellt somit die einfachste Version dar, bei der der Antrieb des Rotors mit nur einer einzigen Wicklung erfolgt. Ein derartiger Antrieb ist möglich, wenn der Start durch Hilfsmittel eingeleitet wird. Diese Hilfsmittel können z.B. in einer sogenannten Positionierung bestehen. Dabei wird der Rotor automatisch immer in einer solchen Stellung angehalten, aus der heraus er auch mit einer einzigen Wicklung gestartet werden kann. Dabei liegt die Ausgangsstellung des Rotors nicht in einem Nullpunkt des von der Statorwicklung auf den Rotor ausgeübten Drehmoments. Der Start kann auch mit einer zweiten Wicklung erfolgen, die gegenüber der Statorwicklung raümlich versetzt ist und mit einem zum Starten dienenden Strom oder ständig vom Netz gespeist wird. Im eingelaufenen Betrieb kann der Motor mit nur einer Wicklung gemäß Fig. 1 und mit einer gegenüber der Netzfrequenz erhöhten Drehzahl laufen. In Fig. 3 sind zwei Statorwicklungen S1 und S2 vorgesehen, die beide in Teilwicklungen S1a und S1b sowie S2a und S2b aufgeteilt sind. Die beiden Statorwicklungen S1 und S2 sind um 90° räumlich versetzt angeordnet. Beide Wicklungen S1 und S2 werden gemäß Fig. 2 gesteuert, wobei lediglich die Phasenlage der Ansteuerung um 90° von TD versetzt ist. Die in den beiden Spulen S1 und S2 erzeugten Drehfelder D gemäß Fig. 2 haben dann also den gleichen Verlauf, sind jedoch in der Phase um 90° bezogen auf die Frequenz des Drehfeldes D gegeneinander verschoben. Dies wird erreicht durch entsprechende Lage der Winkel der Impulssteuerung.
  • Die in Fig. 3 dargestellte Drossel Dr hat folgenden Zweck: Die Impulssteuerung erzeugt eine Vielzahl kurzer Stromimpulse, da z.B. in Fig. 3 die Triacs T1 bis T3 zeitlich nacheinander gezündet werden. Die dadurch auftretenden hohen Frequenzen der dem Netz entnommenen Ströme können gegen Vorschriften hinsichtlich der Netzbelastung verstoßen und zu Störungen führen. Die Drossel Dr dient zur Glättung des dem Netz entnommenen Stromes iN, d.h. zu Siebung oder Integration dieses Stromes in dem Sinne, daß der Strom iN weitestgehend sinusförmig ist.
  • In Fig. 4 ist die Wicklung S1 nicht in zwei Teilwicklungen aufgeteilt, sondern liegt in der Diagonalen a-b einer die Netzspannung UN angeschlossenen Brücke mit den Triacs T5, T6, T7, T8. Die Triacs können so gezündet werden, daß der Strom i in der Wicklung S1 umgepolt werden kann. Wenn z.B. die Netzspannung UN positiv ist und die Triacs T5 und T8 gezündet sind, fließt durch die Wicklung S1 der Strom i1 in der dargestellten Richtung. Wenn bei gleicher Polarität der Netzspannung UN die Triacs T6 und T7 gezündet sind, fließt der Strom i2 in der entgegengesetzten Richtung. Mit dieser Schaltung kann somit durch entsprechende Steuerung der Triacs T5 bis T8 die jeweils gewünschte Wirkung des Stromes auf das Magnetfeld, also bewußte Erzeugung eines Nordpols oder Südpols, unabhängig von der ursprünglichen Polarität des Stromes erreicht werden.
  • In Fig. 4 ist die Brücke mit den Triacs T5 bis T8 noch durch einen zusätzlichen Brückenzweig mit den Triacs T9, T10 erweitert, in dessen Diagonale b-c die zweite Statorwicklung S2 liegt. Durch entsprechende Steuerung der Triacs T5 bis T10 können z.B. die Wicklungen S1, S2 so gesteuert werden, wie es anhand der Fig. 3 für diese Wicklungen beschrieben ist. Zwischen die Diagonalpunkte a und c kann noch eine dritte Statorwicklung S3 geschaltet sein. Dadurch ergibt sich ein symmetrischer Aufbau mit drei gleichwertigen Statorwicklungen S1, S2, S3. Diese Wicklungen sind dann räumlich um 120° versetzt für einen sogenannten Dreiphasenbetrieb angeordnet. Dieser symmetrische Dreiphasenbetrieb ermöglicht es, die zu Glättung des Stromes dienende Drossel Dr kleiner auszubilden.
  • Wie beschrieben, werden in Fig. 3 und 4 mehrere Triacs zeitlich nacheinander zur Erzeugung der Ströme mit der jeweils gewünschten Polarität gezündet. Für die abwechselnde Zündung und Löschung der Triacs kann zusätzlich folgender Effekt ausgenutzt werden.
  • Es sei angenommen, daß zunächst das Triac T1 durch einen Steuerimpuls gezündet ist. Noch während dieser Zeit wird das Triac T2 durch einen Steuerimpuls gezündet. Dadurch entsteht in der dem Triac T2 zugeordneten Statorwicklung eine EMK. Diese EMK kann so auf das Triac T1 einwirken, daß dieses in erwünschter Weise gelöscht wird. Auf diese Weise kann also die Zündung des Triac T2 die Umschaltung von dem Triac T1 auf das Triac T2 zwangsläufig bewirken.
  • Bei den beschriebenen Beispielen erfolgte eine Verdoppelung der Drehzahlen. Bei einer Netzfrequenz von 50 Hz kann dann eine Drehzahl von 6000 Upm erreicht werden. Ebenso ist es möglich, noch höhere Drehzahlen von z.B. 9000 Upm zu erreichen. Zu diesem Zweck wird dann jeweils eine Netzperiode entsprechend häufig angesteuert, und die gewonnenen Stromimpulse wirken mit solcher Wirkung auf die Magnetpole, also Nord oder Süd, daß sich wie in Fig. 2 ein Drehfeld D mit einer entsprechend geringen Periodedauer TD ergibt.
  • Die Schaltung nach Fig. 4 kann grundsätzlich nur mit den vier Triacs T5, T6, T7, T8 und der Wicklung S1 betrieben werden. Sie arbeitet dann wie die Schaltung nach Fig. 1 ohne Aufteilung der Wicklung. Die Schaltung kann auch mit den sechs Triacs T5-T10 und den beiden Wicklungen S1 und S2 betrieben werden. Sie wirkt dann wie die Schaltung nach Fig. 3, ebenfalls ohne Aufteilung der Wicklungen. Die Schaltung kann ebenso mit den sechs Triacs T5-T10 und den drei Wicklungen S1, S2 und S3 betrieben werden, um das genannte symmetrische Drehfeld zu erzeugen. Zur Ansteuerung der Wicklung S3 werden dabei die Triacs T5 und T10 oder für die umgekehrte Stromrichtung die Triacs T9 und T6 leitend gesteuert. Die Ansteuerung der Triacs T5―T10 für die Ströme in den Wicklungen S1, S2 und S3 erfolgt dann mit derart unterschiedlicher Phase, daß die drei Wicklungen S1-S3 gleiche, in der Phase um 120° gegeeinander verschobene Drehfelder erzeugen.

Claims (8)

1. Schaltung zur Steuerung eines bürstenlosen Elektromotors mit permanentmagnetischem Rotor am Einphasennetz, bei der die Statorwicklung (S1, S2) über elektronisch steuerbare Schalter (T1, T2) an das Netz (UN) angeschlossen und an die Steuerelektroden der Schalter (T1, T2) im Sinne einer Impulssteuerung aus der Rotorstellung abgeleitete Steuerspannungen angelegt sind, dadurch gekennzeichnet, daß die Impulssteuerung während einer halben Netzperiode (NT) mehrmals während verschiedener Winkeibereiche betätigt wird und die dadurch erzeugten Stromimpulse der Statorwicklung (S) im Sinne der Erzeugung entgegengesetzter Magnetpol (N/ S) derart zugeführt werden, daß ein Drehfeld (D) mit einem ganzzahligen Vielfachen der Netzfrequenz entsteht.
2. Schaltung nach Anspruch 1, dadurch gekennzeichnet, daß die Statorwicklung (S1) in zwei entgegengesetzt gepolte Teilwicklungen (Sla, S1b) aufgeteilt ist und die Stromimpulse abwechselnd der ersten Teilwicklung (S1a) und der zweiten Teilwicklung (S1b) zugeführt werden.
3. Schaltung nach Anspruch 1, dadurch gekennzeichnet, daß die Wicklung (S1, S2) in der Diagonalen (a-b) einer aus vier Schaltern (T5- T8) gebildeten und mit der Netzspannung (UN) gespeisten Brücke liegt und während der Winkelbereiche abwechselnd jeweils zwei einander diametral gegenüber liegende Schalter (T5 und T8 oder T6 und T7) leitend gesteuert sind (Fig. 4).
4. Schaltung nach Anspruch 3, dadurch gekennzeichnet, daß der Brücke (T5-T8) ein dritter Längszweig mit zwei Schaltern (T9, T10) zugeordnet ist, der mit der Brücke eine zweite Diagonale (b, c) bildet, in der eine zweite Statorwicklung (S2) liegt.
5. Schaltung nach Anspruch 4, dadurch gekennzeichnet, daß an die beiden Enden der nicht miteinander verbundenen Punkte (a, c) der beiden Diagonalen (a, b; b, c) eine dritte Statorwicklung (S3) angeschlossen ist.
6. Schaltung nach Anspruch 1, dadurch gekennzeichnet, daß die Winkelbereiche (t2-t3, t4-t5) immer dieselbe Phasenlage innerhalb der Netzperiode (TN) haben.
7. Schaltung nach Anspruch 1, dadurch gekennzeichnet, daß im Stromweg vom Netz eine Drossel (Dr) liegt, die zur Unterdrückung von Oberwellen in dem dem Netz entnommenen Strom (iN) dient.
8. Schaltung nach Anspruch 1, dadurch gekennzeichnet, daß bei einer Vielzahl von Schaltern (T1-T10), die zeitlich nacheinander leitend gesteuert sind und die Impulslängen bestimmen, die beim Zünden eines Schalters in der zugehörigen Wicklung erzeugte EMK zur Sperrung eines vorher leitenden Schalters ausgenutzt wird.
EP86902829A 1985-05-15 1986-04-22 Schaltung zur steuerung eines bürstenlosen elektromotors Expired - Lifetime EP0221939B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86902829T ATE55205T1 (de) 1985-05-15 1986-04-22 Schaltung zur steuerung eines buerstenlosen elektromotors.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853517570 DE3517570A1 (de) 1985-05-15 1985-05-15 Schaltung zur steuerung eines buerstenlosen elektromotors
DE3517570 1985-05-15

Publications (2)

Publication Number Publication Date
EP0221939A1 EP0221939A1 (de) 1987-05-20
EP0221939B1 true EP0221939B1 (de) 1990-08-01

Family

ID=6270845

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86902829A Expired - Lifetime EP0221939B1 (de) 1985-05-15 1986-04-22 Schaltung zur steuerung eines bürstenlosen elektromotors

Country Status (5)

Country Link
US (1) US4769581A (de)
EP (1) EP0221939B1 (de)
JP (1) JPS62502826A (de)
DE (2) DE3517570A1 (de)
WO (1) WO1986006893A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3841147A1 (de) * 1988-12-07 1990-06-13 Mulfingen Elektrobau Ebm Verfahren zum ansteuern eines wechselstrom-motors sowie nach diesem verfahren ansteuerbarer wechselstrom-motor
WO1995012240A1 (fr) * 1993-10-26 1995-05-04 Chongqing Iron & Steel Designing Institute, Ministry Of Metallurgical Industry Procede et appareil de commande d'un moteur haute frequence a courant alternatif
US5675226A (en) * 1995-09-06 1997-10-07 C.E.Set. S.R.L. Control circuit for an synchronous electric motor of the brushless type
IT1289817B1 (it) * 1996-12-30 1998-10-16 Plaset Srl Dispositivo per il controllo di un motore elettrico sincrono con rotore a magnete permanente
DE19701856A1 (de) * 1997-01-21 1998-07-23 Wunnibald Kunz Elektronische Anlauf und Betriebssteuerung für einen Einphasen-Synchronmotor
ITTO980027A1 (it) * 1998-01-15 1999-07-15 Plaset Srl Circuito di pilotaggio per un motore elettrico sincrono in corrente al ternata.
US6433505B2 (en) * 1998-09-25 2002-08-13 Michael Saman, Jr. Phase shifting network
IT1304666B1 (it) 1998-10-01 2001-03-28 Plaset Spa Motore elettrico sincrono.
FR2816129B1 (fr) * 2000-11-02 2003-06-27 Felix Bernier Procede et dispositifs de commande d'un moteur alternatif a deux enroulements d'induit
ES2197822B1 (es) * 2002-06-18 2005-09-16 Fagor, S. Coop. Dispositivo electronico para el control de un motor sincrono con rotor de iman permanente.
EP1443635B1 (de) * 2003-01-21 2009-10-07 Grundfos A/S Verfahren zum Steuern des Zündwinkels und einphasiger wechselstromversorgter Elektromotor
DE10346711A1 (de) * 2003-10-08 2005-05-25 Minebea Co., Ltd. Verfahren zur Kommutierung eines bürstenlosen Gleichstrommotors
EP2104221A1 (de) * 2008-03-22 2009-09-23 Grundfos Management A/S Verfahren zum Ansteuern eines mehrphasigen in Sternschaltung betriebenen Elektromotors
BRPI0900726B1 (pt) * 2009-03-10 2019-04-24 Embraco Indústria De Compressores E Soluções Em Refrigeração Ltda Sistema de controle de motor à indução monofásico e método de controle de motor à indução monofásico
US10056852B2 (en) 2016-01-22 2018-08-21 Canarm Ltd. Controller for EC motor and method thereof
US20180219500A1 (en) 2017-01-27 2018-08-02 Ken Wong 2-phase brushless ac motor with embedded electronic control

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA475667A (en) * 1951-07-31 H. Cowin Stuart Diesel electric drive and control systems
DE1538893A1 (de) * 1966-08-16 1970-04-23 Licentia Gmbh Buerstenloser Universalmotor
DE1538916A1 (de) * 1966-10-24 1970-10-22 Licentia Gmbh Buerstenloser Universalmotor
US3470436A (en) * 1967-10-27 1969-09-30 Westinghouse Electric Corp Electrical control apparatus
US3564372A (en) * 1968-11-29 1971-02-16 Black & Decker Mfg Co Electrical power control means
GB1480899A (en) * 1973-10-19 1977-07-27 Secr Defence Phase shifting apparatus
US4039915A (en) * 1974-05-02 1977-08-02 Wolfgang Kofink D-c commutator-type dynamo electric machine with electronic control
JPS5216158A (en) * 1975-07-30 1977-02-07 Hitachi Ltd Pulse ignition system for ac thyristor
CH600671A5 (de) * 1976-11-30 1978-06-30 Micro Electric Ag
US4238719A (en) * 1978-03-24 1980-12-09 Bourbeau Frank J Rotatable transformer field excitation system for variable speed brushless synchronous motor
US4431958A (en) * 1981-01-30 1984-02-14 Eaton Corporation Control apparatus for single phase AC induction motor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Lexikon der Elektronik, Neufang, VIEWEG 1983, Seite 372 *

Also Published As

Publication number Publication date
EP0221939A1 (de) 1987-05-20
WO1986006893A1 (fr) 1986-11-20
DE3517570A1 (de) 1986-11-20
US4769581A (en) 1988-09-06
JPS62502826A (ja) 1987-11-12
DE3673123D1 (de) 1990-09-06

Similar Documents

Publication Publication Date Title
EP0221939B1 (de) Schaltung zur steuerung eines bürstenlosen elektromotors
DE2827340C2 (de) Antriebseinrichtung mit wenigstens zwei Elektromotoren
EP0762625A1 (de) Elektrischer Antrieb
EP0489970A1 (de) Verfahren und Vorrichtung zum Betrieb von elektrischen Antrieben
DE2457838A1 (de) Wechselstrommotor-steller
EP0215827B1 (de) Schaltung zur steuerung eines bürstenlosen elektromotors
DE3012833A1 (de) Schaltungsanordnung zurversorgung eines synchronomotors aus einem gleichspannungsnetz
DE1638104C2 (de) System zur Umwandlung digitaler elektrischer Steuersignale in diskrete, abgestufte Winkelbewegungen in einem mehrphasigen elektrischen Schrittmotor
EP3629468B1 (de) Verfahren zum betreiben einer drehstrommaschine
DE10121767A1 (de) Elektronisch kommutierte Mehrphasen-Synchronmaschine
EP1070382B1 (de) Drehzahl-steuervorrichtung für einen elektronisch kommutierten mehrphasigen elektromotor
DE69803885T2 (de) Steuerungsvorrichtung für elektrische motoren
DE3341948A1 (de) Schaltung zur erzeugung eines zweiphasigen treiberstromes fuer einen bipolaren buerstenlosen motor
DE2445162A1 (de) Asynchron-einphasenmotor
DE2556582A1 (de) Verfahren und motor-vorrichtung zur erzeugung hoher drehzahlen
DE1437154B2 (de) Schaltungsanordnung zur Synchronisierung der Drehzahl eines Synchronmotors auf die Frequenz eines Bezugsoszillators
DE2842391A1 (de) Vorrichtung zum umschalten der drehzahl eines drehstrommotors
DE2734267C2 (de) Steuerschaltung für einen Mehrphasen-Schrittmotor
DE2150531A1 (de) Verfahren zur steuerung der drehzahl eines schleifringlaeufers und anordnung zur durchfuehrung des verfahrens
DE3348465C2 (de) Steueranordnung für einen elektronisch kommutierten Gleichstrommotor
DE19828046A1 (de) Bürstenloser Gleichstrommotor
DE3306676A1 (de) Antriebsvorrichtung mit einer steuerung fuer einen elektrischen motor
DE2110796B2 (de) Schaltungsanordnung zur steuerung der drehzahl eines einphasen-wechselstrom-asynchronmotors
DE19524118C2 (de) Verfahren und Vorrichtung zum drehgeschwindigkeitsabhängigen Ansteuern eines Mehrphasen-Schrittmotors
DE2008032C3 (de) Steuerschaltung für in einer Ringschaltung angeordnete Halbleiterschaltelemente zur Schaltung der Ständerwicklungsstränge eines Stromrichte rmotors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19861210

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19881110

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEUTSCHE THOMSON-BRANDT GMBH

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 55205

Country of ref document: AT

Date of ref document: 19900815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3673123

Country of ref document: DE

Date of ref document: 19900906

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITTA It: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 86902829.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19960401

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960409

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960416

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960417

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960424

Year of fee payment: 11

Ref country code: AT

Payment date: 19960424

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960425

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960430

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960617

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970422

Ref country code: GB

Effective date: 19970422

Ref country code: AT

Effective date: 19970422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970430

Ref country code: BE

Effective date: 19970430

BERE Be: lapsed

Owner name: DEUTSCHE THOMSON-BRANDT G.M.B.H.

Effective date: 19970430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19971101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970422

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19971101

EUG Se: european patent has lapsed

Ref document number: 86902829.0

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050422