EP0221897A1 - Ion implant using alkali or alkaline earth metal tetrafluoroborate as boron ion source - Google Patents

Ion implant using alkali or alkaline earth metal tetrafluoroborate as boron ion source

Info

Publication number
EP0221897A1
EP0221897A1 EP19850902841 EP85902841A EP0221897A1 EP 0221897 A1 EP0221897 A1 EP 0221897A1 EP 19850902841 EP19850902841 EP 19850902841 EP 85902841 A EP85902841 A EP 85902841A EP 0221897 A1 EP0221897 A1 EP 0221897A1
Authority
EP
European Patent Office
Prior art keywords
charge
tetrafluoroborate
consists essentially
metal
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19850902841
Other languages
German (de)
French (fr)
Inventor
Andre Lagendijk
Shantia Riahi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JC Schumacher Co
Original Assignee
JC Schumacher Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JC Schumacher Co filed Critical JC Schumacher Co
Publication of EP0221897A1 publication Critical patent/EP0221897A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/20Doping by irradiation with electromagnetic waves or by particle radiation
    • C30B31/22Doping by irradiation with electromagnetic waves or by particle radiation by ion-implantation

Definitions

  • Field ol th& Invention This invention relates to ion implantation generally and more specifically relates to the manufacture of semiconductor devices using ion implant techniques.
  • Ion implantation is a well-known and widely used process for injecting atoms into a solid material to selecteddepths and concentrations in selectedareas.
  • Ion implant accelerators are similar to isotope separatorsbut typically have an added acceleration stage and field controls for precisely locating the beam of ions and controlling the energy and flux of the beam of ions to cause the desired penetration and concentration.
  • Atoms of the selected chemical element to be ionized are ionized by collisions with electrons in an electrical discharge in a gas at lowpressure andpass through an orifice into a high- vacuum region where they are accelerated by an electric field to a an intermediate energy, typically from 10 to 30 ke V, where they are analyzed by amagnetic fieldbased upon the e/m ratio, i.e. the ratio of electronic charge over mass.
  • the selected ion beam passes through an analyzer slit, and the ions are accelerated to the desired energy, and the beam passes through a refocussing field, typically a guadrupole lens, is deflected by a scanner system, and collimated by a defined aperture and allowed to strike the target.
  • This invention relates to the use of a particular class of chemicals as ion source materials and, consequently, to a modified method; i.e. a method which is modified in that it utilizes a novel source of ions.
  • Ions are introduced into the ion implant equipment periodically. This generally requires cooling the implant equipment down, opening the high vacuum to at least some atmospheric exposure, introducing the new charge of ion source material into a receptacle, closing up the equipment, pumping the ion implant and accelerator chambers down to a high vacuum, and placing the equipment into operation again. This procedure is necessarily very expensive in terms of lost production and wasted time in a very expensive piece of equipment.
  • Ion implant devices not infrequently cost over one million dollars and it is necessary to maximize production time to recoup the investment in saleable product.
  • Source Vaporizers of the type under consideration are sold by various manufacturers, one of which is described as a Nova NV-10 (TM) Series Source Vaporizer. This, however, is merely exemplary and other source vaporizers are well-known to those skilled in the art.
  • ion implantation has been a chief step in the industrial processing of semiconductor devices; in particular, large-scale integrated circuits; see, for example, ION IMPLANTATION IN SEMICONDUCTORS, Sartwell, et al., editors. Plenum Press, New York (1977). It iswithin this art that the present invention lies and to which it is an improvement.
  • the present invention is an improvement in the ion implantation process described above, the improvement comprising introducing as the ion source material a metal haloborate compound.
  • the compounds used in the method and manufacture of this invention comprise:
  • M(BX 4 ) n whereinM is an alkali or alkaline earthmetal, B is boron, X is fluorine, chlorine or iodine, and n is the ionic valence of M.
  • the most preferred of the compounds is LiBF4 » lithium fluoborate.
  • fluoborates are preferred but other haloborates may, for most applications, be considered equivalent though not possessing all the advangates of the fluorine species.
  • the preferred compounds are lithium, sodium, magnesium. potassium, calcium and zinc tetrafluoroborates.
  • Mono-, di-, and tri-valent metal tetrahaloborates which vaporize invacuumat temperatures of from about 100°C. to 500°C. and which are available or can be manufactured in highly pure form may be considered equivalents.
  • ammonium tetrahaloborate may be considered to be equivalent for limited applications, though the vapor pressure of this compound is too high for commonly used applications.
  • the invention may be described as the improved method which comprises the steps of (a) evaporating a metal tetra- fluoroborate which evaporates under a vacuum of from approximately 10 ⁇ 3 to 10"5 torr in the temperature range of from approximately 100°C. to 500°C. at a rate sufficient to form an effective ion implant beam in an ion implant instrument; (b) ionizing boron; (c) accelerating the boron ions; (d) electromagnetically selecting the boron ions to be implanted in the target; and (e) accelerating and directing a beam of the selected ions to a predetermined point or location on the target.
  • the article of manufacture of this invention comprises a charge of tetrahaloflouroborate configured and dimensioned to be recieved in an ion source vaporizer securedtomeans for inserting the charge into an ion source vaporizer of an ion implant device.
  • the invention thus, in an exemplary form, comprises, in combination, a charge of metal tetrahaloborate, preferrably lithium tetrafluoro- borate, charge forming means configuring the charge into a size and shape for being received in a source vaporizer of an ion implant instrument, and enclosure means for enclosing at least aportion of the charge forming means and for positioning the charge forming means in the well of a source vaporizer.
  • a charge of metal tetrahaloborate preferrably lithium tetrafluoro- borate
  • charge forming means configuring the charge into a size and shape for being received in a source vaporizer of an ion implant instrument
  • enclosure means for enclosing at least aportion of the charge forming means and for positioning the charge forming means in the well of a source vaporizer.
  • FIG. 1 is a perspective, exploded view of a preferred form of the article of manufacture of this invention, a charge for introduction into a source vaporizer of an ion implant instrument, showing a portion of the source vaporizer.
  • Figure 2 is a side view, enlarged and partially cut away, showing partially in cross-section the article of manufacture of this invention.
  • Figure 3 is a partial side view of an alternative embodiment of the manufacture of this inventionwherein the charge container includes a breakseal.
  • Figure 4 is another alternative embodiment of the manufacture of the present invention.
  • the invention comprises, in the form of an article of manufacture, comprises apparatus for providing ion source material to the source vaporizer of ion implant equipment, an exemplary source vaporizer being depicted at 10 in Figure 1 comprising a body of well-known configuration and a well 12 which is configured, designed and adapted to receive a charge of the ion sourcematerial.
  • Thewell 12 is about 22 mm in depth and 16 mm in diameter and generally cylindrical in configuration.
  • the article of manufacture 20 shown in Figure 1 is one feature of the present invention, providing means for providing ion source material into the source vaporizer.
  • the assembly 20 comprises a charge forming device 22 which holds the charge 24 of ion source material in its desired configuration and protects it from contamination.
  • the charge forming device 22 is preferrably formed of quartz, although for certain low temperature applications it may be formed of inert polymer or borosilicate glass.
  • the charge forming device 22 is, in the embodiment of Figure 1, an open top right cylindrical vessel being so configured and dimensioned as to be loosely received in the well of the vaporizer.
  • the charge forming device is received in an enclosure 26 which comprises a generally cylindrical receiving body having an opening 28 which includes a sealing ring which fits very snuggly around and seals against the outer cylindrical walls of the charge forming device 22, permitting the charge forming device 22, upon the application of force, to move recipically in the enclosure 26 with the walls thereof in sealing relationship therewith.
  • the enclosure 26 is generally in the form of a hollow cylinder formed of suitable inert polymer, preferrably a fluorocarbon or fluorochlorocarbonpolymer, such as Teflon (TM) for example, which is self-lubricating and forms an excellent seal with quartz, glass or metal.
  • TM Teflon
  • One end of the cylinder of the enclosure 26 comprises an end cap 30 which has a passage 32 therethrough slidably receiving the shaft 34 which, in turn, is part of a plunger or piston, the distal portion being generally discoid in configuration, as shown at 36, and forming a seal against the interior walls of the enclosure 26.
  • the enclosure assembly 26-36 may, then, be described as a piston and cylinder arrangement in which the cylinder is formed by the enclosure 26 and the piston is formed by the shaft or plunger 34 and discoid piston 36.
  • An "0" ring 38 in a groove in theplunger forms a stop against excessive travel of the piston.
  • the enclosure also includes, in apreferred form, a sealing flange 40 which, during shipping and storage, positions the charge forming device and enclosure inside a protective cylinder 42 and which maintains a seal with the walls of the cylinder 42 after the cylinder is opened.
  • the manufacture may be contained in any number of protective envelopes, but in the preferred embodiment the entire assembly 20 is stored, shipped and handled before use in a glass or quartz cylindrical tube 42 which is hermetically sealed at both ends, enclosing the assembly 20 inside in inert atmosphere, and which includes a scribe mark 44 whichpermits the tube to be easily broken, allowing the upper portion 46, as shown, to be removed and permitting removal of the assembly 22.
  • a protective ring 48 formed of a semi-rigid, self-lubricating polymer such as Ryton (TM) polysulfide is a desired but non-critical feature of the invention. This ring includes, preferrably, a projection which extends into the scribe 44 to assure a safe, clean break.
  • a moisture andvapor impervious flexiblepackage 50 formed of a layer of Mylar (TM) polyterephthalate 52 and metal, such as vapor deposited aluminum 54, sealed in any convenient way as shown, simply as an example, at 56.
  • TM Mylar
  • Figure3 depicts ahighly desirable alternative of the assembly of the invention for forming and loading a charge of ion source material which is exceptionally sensitive to contamination or which is to be given ultimate purity protection.
  • the charge forming device 122 is the same in all essential features as the device 22 except that it includes a quartz (or in some instances polymeric or borosilicate) seal 123 which hermetically seals the ion source material 124 in the charge shape and size.
  • the enclosure 126 -130 is the same as described respecting enclosure 26-30 and the piston 134- 136 is the same as described respecting piston134-136, but has the added structure of a breakpoint 137 on the distal side of the piston 136 and may include an additional "0" ring stop 139 to prevent accidental movement of thepiston.
  • the operation whichwill be described, is the same for this embodiment as for that of Figure 2 except that the first "O" ring 139 is removed and the breakpoint 137 contacts and
  • TE SHEET breaks the breakseal 123 in the early stages of movement of the piston in the cylinder.
  • FIG. 4 depicts another alternative embodiment.
  • the charge forming device 222 includes a breakseal 223 and is the same as the device 122-123.
  • the charge forming device is recived in a cylindrical enclosure portion 226which seals at 228, as describedwith respect to the opening 28 and 128 in the earlier described embodiments.
  • Projections or keys 129 may be provided in this embodiment for engaging the thermal source evaporator 10 to prevent relative rotation therewith.
  • the enclosure purtion includes threads on the outside and a cap 230 which includes an interior structure 232 for engaging the charge forming device and a breakpoint 233 for contacting and ruptureing the breakseal 223.
  • a bottom or distal cap 240 which slips on or screws on to the enclosure portion 226, providing an extra measure of protection.
  • the entire assembly may then be enclosed in a glass or quartz tube as described and in an envelope or, as depicted in Figure 4, simply enclosed in a vapor barrier envelope 250 sealed at 256, of the construction described relative to the package 50-56.
  • An important feature of the invention is the inclusion as a component of the assembly 20, 120 or 220 of a metal tetrahaloborate charge, and one facet of the invention, a very important facet indeed, is in the improved ion implant method wherein the ion source is obtained by evaporation of the metal tetrahaloborate.
  • i is customary to carry out the process of ion implantation by the general steps of (a) evaporating a source material; (b) ionizing at least one component of the source material; (c) accelerating the resulting ions; (d) electromagnetically selecting the ions to be implanted in the target; and (e) accelerating and directing a beam of the
  • SUBSTITUTE SHEET selected ions to a predetermined point or location on the target.
  • the improvement of this invention is in the first step of evaporating a source material and in a preliminary step of providing a source material.
  • the ion implant instrument is very expensive, costing a million dollars or more typically, and down-time or non ⁇ productive time must, for economic soundness, be avoided and minimized to the greatest possible extent. Down time results whenever it is necessary to shut the instrument down to recharge it with ion source material.
  • the source vaporizer must be scraped out and a weighed or measured amount of ion source introducted into the well of the sourcevaporizer. Inmost instances, this requires that the source vaporizer be introduced into a clean-room or glovebox to prevent contamination of the reagents and spread of the reagents, some of which are extremely poisonous or otherwise hazardous. Those who have worked in a glove box will appreciate that this is a very time consuming and inconvenient operation.
  • the instrument After the charge is loaded into the source vaporizer, the instrument, which operates at high vacuum and an ambient operating temperature of from about 100 to 300°C. must be pumped down and brought up to operating temperature, all of which consumes substantial periods of time.
  • the instrument spectrographic and accelerating chamber operates, for example, at vacuums of as low as 10 ⁇ 5 torr.
  • the introduction of a charge which requires extensive outgassing or which introduces volatile impurities can slow the start-up of the ion implant instrument signficantly.
  • the instrument which operates at high vacuum and an ambient operating temperature of from about 100 to 300°C. must be pumped down and brought up to operating temperature, all of which consumes substantial periods of time.
  • the instrument spectrographic and accelerating chamber operates, for example, at vacuums of as low as 10 ⁇ 5 torr.
  • SUBSTITUTE SHEET is required to operate at high temperatures, e.g. above 300°C., additional time is required to bring the instrument to a stable operating temperature and additional pumping time may be required. it is, therefore, a highly sought after goal and a long feltneed in the industry to find a method which will reduce down-time, minimize start-up time, and extend run-time between recharging the ion source.
  • Safety is also a very important consideration. It would be desirable to have an ion source which can be handled safely extreme or unusual precautions or undue risk andwhich, upon being used up, leaves either no residue or a non-toxic easily removed and safely handled residue.
  • the improvedmethod comprises the steps of (a) evaporating a metal tetra- fluoroborate which evaporates under a vacuum of from approximately 10"" 3 to10" 5 torr in the temperature range of from approximately 100°C. to 400°C. at a rate sufficient to form an effective ion implant beam in an ion implant instrument; (b) ionizing boron; (c) accelerating the boron ions; (d) electromagnetically selecting the boron ions to be implanted in the target; and (e) accelerating and directing a beam of the selected ions to a predetermined point or location on the target.
  • the article of manufacture is used in the following manner. First, once the source vaporizer is prepared to recieve a charge, the article 20, 120 or 220 is taken from its protective package(s) , depending upon the form of packaging used. The article is positioned as shown in Figure 1 with the source defining device 22 adjacent the well 12 in the source vaporizer, the distal end thereof is then inserted into the well and the article 20 is pressed ⁇ nuggly against the source vaporizer. In the case of the embodiments of Figures 1 and 2, the piston is pressed forcing the charge forming device and charge into the well and, in the case of the article 120, breaking the seal 123 thus opening the charge for use. The article 220 is handled basically in the same way, except that the lid 230 is turned to break the seal 223.
  • the charge forming device contains the residual MF3 or M2F glass and is simply poured back into the container and disposed of according to regulations which may apply to the particular facility and material.
  • the most advantageous and greatly preferred form of the inventive process includes evaporating lithium tetra ⁇ fluoroborate as the first step of the process, and this is selected as best exemplifying the process.
  • metal tetrafluoroborates and in particular lithiumtetrafluoroborate decomposes and is ionized to form (i) a particularly and unexpectedlypure source of boron ions and (ii) a substantially inert glass.
  • the reaction is described in two steps, as follows:
  • the LiF is in the form of a glass which is easily and safely removed from the source vaporizer, fluorine gas is removed through the vacuum system is quantities which are not hazardous in the least, and a beamof boron ions, either 10 B or A1 B as selected, is implanted into the target. Because of low electrical charge over mass (e/m) ratio of lithium and fluorine the ion charge material has a long run-life, i.e. for a given weight, more boron ions are available than is the case with most ion source materials.
  • the residue is a glass, being essentially inert and nonvolatile, it is easily and safely handled. Because the lithium tetrafluoroborate evaporates, under avaccuum of about 10 ⁇ 3 , at about 90° C. to 150°C. the warm-up and pump-down time for the instrument is minimal and stable operation is quickly restored after recharging the ion implant source vaporizer.
  • Ahigh implant current ofB + ions isquickly and easily achieved.
  • a current of 1-3 ma of 11 B + was repeatably obtained.
  • BF3 is a relatively inert, safely handled material
  • the extreme care and high risk of using such highly reactive and toxic gases as BF3 is avoided.
  • SuchBF3 as is generated is in microgram amounts inside the instrument and is decomposed almost immediately, thus presenting no health or safety hazard.
  • metal tetrahaloborates generally, except that with higher molecular weight halogens, e.g. chlorine and bromine, the run-life is lower because of the lower e/m ratio.
  • sodiumand potassium analogs wouldhave a shorter run-life than lithium tetrafluoroborate.
  • metal tetrahaloborates generally, principally the haloborate salts ofGroup I andGroup II metals and, preferrably alkali and alkaline earthmetals, although zinc tetrafluoroborate and other transition metal tetrahaloborate borates which evaporate in the desired range are also contemplated.
  • the invention comprises, in combination, a charge of metal tetrahaloborate, preferrably lithium tetrafluoroborate, charge forming means configuring the charge into a size and shape for being received in a source vaporizer of an ion implant instrument, and enclosure means for enclosing at least a portion of the charge forming means and for positioning the charge formingmeans in thewell of a source vaporizer.
  • a charge of metal tetrahaloborate preferrably lithium tetrafluoroborate
  • charge forming means configuring the charge into a size and shape for being received in a source vaporizer of an ion implant instrument
  • enclosure means for enclosing at least a portion of the charge forming means and for positioning the charge formingmeans in thewell of a source vaporizer.
  • the invention has been described with reference to the semiconducter industry and in the manufacture of semiconductor materials, e.g. boron implanted into silicon, the invention is of general applicablity in, for example, forming corrosion or wear resistant surfaces on bearings, cutting tools, and the like.
  • This invention finds its most direct and immediate application in the manufacture of semiconductor devices, cutting tools, bearings and other metal objects in which surface characteristics are modified by ion implantation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Utilisation de tétrafluoroborates métalliques, notamment de tétrafluoroborates alcalins et alcalino-terreux, et de préférence de tétrafluoroborate de lithium en tant que matériau de source d'ions (24) contenu dans un dispositif (22) de verre de formation de charge composé de quartz, de polymère ou de verre de borosilicate. L'utilisation de ces matériaux de source permet de résoudre le problème posé par la manipulation de substances toxiques (par exemple BF2, BF3) sans réduction de la densité du courant ionique.Use of metallic tetrafluoroborates, in particular of alkaline and alkaline-earth tetrafluoroborates, and preferably of lithium tetrafluoroborate as ion source material (24) contained in a device (22) of charge-forming glass composed of quartz, of borosilicate polymer or glass. The use of these source materials makes it possible to solve the problem posed by the handling of toxic substances (for example BF2, BF3) without reduction of the density of the ion current.

Description

ION IMPLANT USING ALKALI OR ALKALINE EARTH METAL TETRAFLUOROBORATE AS BORON ION SOURCE
Field ol th& Invention This invention relates to ion implantation generally and more specifically relates to the manufacture of semiconductor devices using ion implant techniques.
Bac ground £f £h£ invention Ion implantation is a well-known and widely used process for injecting atoms into a solid material to selecteddepths and concentrations in selectedareas. Ion implant accelerators are similar to isotope separatorsbut typically have an added acceleration stage and field controls for precisely locating the beam of ions and controlling the energy and flux of the beam of ions to cause the desired penetration and concentration. Atoms of the selected chemical element to be ionized are ionized by collisions with electrons in an electrical discharge in a gas at lowpressure andpass through an orifice into a high- vacuum region where they are accelerated by an electric field to a an intermediate energy, typically from 10 to 30 ke V, where they are analyzed by amagnetic fieldbased upon the e/m ratio, i.e. the ratio of electronic charge over mass. The selected ion beam passes through an analyzer slit, and the ions are accelerated to the desired energy, and the beam passes through a refocussing field, typically a guadrupole lens, is deflected by a scanner system, and collimated by a defined aperture and allowed to strike the target. When the ions penetrate the target lattice, they lose energy through collisions with lattice atoms and come to rest as part of the target. There are, of course, a large number of variations between specific ion implant systemsbut the foregoingprinciples applygenerally to ion implant processes. The ion implant technique is described, inter alia, in United States Patents Nos. 2,750,541, 2,787,564 and 2,842,466, whichare incorporated herein. The ion implant method is also described in many
SUBSTITUTE SHEET texts, encyclopedias and scientific journals; see, e.g. ENCYCLOPEDIA OF SEMICONDUCTOR TECHNOLOGY, ~1_2H Implantation" pp.397-410, John Wiley & Sons (1984) and the numerous references cited therein; see also, Kirk Otbmer CONCISE ENCYCLOPEDIA OF CHEMICAL TECHNOLOGY, ~1_2H implant-ation11,. p.666 et seq., JohnWiley & Sons (1985) ; and ION IMPLANTATION, J.K. Hirvonen, ed., Academic Press, Inc., (1980). Since the equipment and methods of ion implantation are so thoroughly described andwidely used in the semiconductor industry, those skilled in the art are familiarwith thesemethods and devices andmay refer to any of themany excellent journal, text andpatent descriptions for details. Manufacturer's manuals, provided with specific items of equipment are the best source for details as to a given piece of equipment.
This invention relates to the use of a particular class of chemicals as ion source materials and, consequently, to a modified method; i.e. a method which is modified in that it utilizes a novel source of ions. Ions are introduced into the ion implant equipment periodically. This generally requires cooling the implant equipment down, opening the high vacuum to at least some atmospheric exposure, introducing the new charge of ion source material into a receptacle, closing up the equipment, pumping the ion implant and accelerator chambers down to a high vacuum, and placing the equipment into operation again. This procedure is necessarily very expensive in terms of lost production and wasted time in a very expensive piece of equipment. Ion implant devices not infrequently cost over one million dollars and it is necessary to maximize production time to recoup the investment in saleable product.
While the ion implant equipment is very precise, elegant and complex in design and operation, the introductionof ion sourcematerial is a relatively simple.
r- largely manual operation. Basically, the charge of ion source material is, according to the prior art, simply pushed, poured or dropped into a small chamber in a Source Vaporizor which is then closed, after which the entire system is pumped down using well-known rotory and oil diffusion vacuum pumps. Source Vaporizers of the type under consideration are sold by various manufacturers, one of which is described as a Nova NV-10 (TM) Series Source Vaporizer. This, however, is merely exemplary and other source vaporizers are well-known to those skilled in the art.
For more than a decade, ion implantation has been a chief step in the industrial processing of semiconductor devices; in particular, large-scale integrated circuits; see, for example, ION IMPLANTATION IN SEMICONDUCTORS, Sartwell, et al., editors. Plenum Press, New York (1977). It iswithin this art that the present invention lies and to which it is an improvement.
Summary o t e invention The present invention is an improvement in the ion implantation process described above, the improvement comprising introducing as the ion source material a metal haloborate compound.
The compounds used in the method and manufacture of this invention comprise:
M(BX4)n whereinM is an alkali or alkaline earthmetal, B is boron, X is fluorine, chlorine or iodine, and n is the ionic valence of M. The most preferred of the compounds is LiBF4 » lithium fluoborate. Generally, fluoborates are preferred but other haloborates may, for most applications, be considered equivalent though not possessing all the advangates of the fluorine species. Generally, the preferred compounds are lithium, sodium, magnesium. potassium, calcium and zinc tetrafluoroborates. Mono-, di-, and tri-valent metal tetrahaloborates which vaporize invacuumat temperatures of from about 100°C. to 500°C. and which are available or can be manufactured in highly pure form may be considered equivalents. Likewise, ammonium tetrahaloborate may be considered to be equivalent for limited applications, though the vapor pressure of this compound is too high for commonly used applications.
The invention may be described as the improved method which comprises the steps of (a) evaporating a metal tetra- fluoroborate which evaporates under a vacuum of from approximately 10~3 to 10"5 torr in the temperature range of from approximately 100°C. to 500°C. at a rate sufficient to form an effective ion implant beam in an ion implant instrument; (b) ionizing boron; (c) accelerating the boron ions; (d) electromagnetically selecting the boron ions to be implanted in the target; and (e) accelerating and directing a beam of the selected ions to a predetermined point or location on the target. The article of manufacture of this invention comprises a charge of tetrahaloflouroborate configured and dimensioned to be recieved in an ion source vaporizer securedtomeans for inserting the charge into an ion source vaporizer of an ion implant device. As an article of manufacture, trade and commerce, the invention thus, in an exemplary form, comprises, in combination, a charge of metal tetrahaloborate, preferrably lithium tetrafluoro- borate, charge forming means configuring the charge into a size and shape for being received in a source vaporizer of an ion implant instrument, and enclosure means for enclosing at least aportion of the charge forming means and for positioning the charge forming means in the well of a source vaporizer.
Bxifif escrip ion Q_t ϊ_h& Drawing Figure 1 is a perspective, exploded view of a preferred form of the article of manufacture of this invention, a charge for introduction into a source vaporizer of an ion implant instrument, showing a portion of the source vaporizer. Figure 2 is a side view, enlarged and partially cut away, showing partially in cross-section the article of manufacture of this invention.
Figure 3 is a partial side view of an alternative embodiment of the manufacture of this inventionwherein the charge container includes a breakseal.
Figure 4 is another alternative embodiment of the manufacture of the present invention.
Description Δ£ th& Preferred Embodiment The invention comprises, in the form of an article of manufacture, comprises apparatus for providing ion source material to the source vaporizer of ion implant equipment, an exemplary source vaporizer being depicted at 10 in Figure 1 comprising a body of well-known configuration and a well 12 which is configured, designed and adapted to receive a charge of the ion sourcematerial. Thewell 12 is about 22 mm in depth and 16 mm in diameter and generally cylindrical in configuration. The article of manufacture 20 shown in Figure 1 is one feature of the present invention, providing means for providing ion source material into the source vaporizer.
Referring to Figure 2 next, a preferred, complete article of manufacture is depicted. The assembly 20 comprises a charge forming device 22 which holds the charge 24 of ion source material in its desired configuration and protects it from contamination. The charge forming device 22 is preferrably formed of quartz, although for certain low temperature applications it may be formed of inert polymer or borosilicate glass. The charge forming device 22 is, in the embodiment of Figure 1, an open top right cylindrical vessel being so configured and dimensioned as to be loosely received in the well of the vaporizer.
The charge forming device is received in an enclosure 26 which comprises a generally cylindrical receiving body having an opening 28 which includes a sealing ring which fits very snuggly around and seals against the outer cylindrical walls of the charge forming device 22, permitting the charge forming device 22, upon the application of force, to move recipically in the enclosure 26 with the walls thereof in sealing relationship therewith.
The enclosure 26 is generally in the form of a hollow cylinder formed of suitable inert polymer, preferrably a fluorocarbon or fluorochlorocarbonpolymer, such as Teflon (TM) for example, which is self-lubricating and forms an excellent seal with quartz, glass or metal. One end of the cylinder of the enclosure 26 comprises an end cap 30 which has a passage 32 therethrough slidably receiving the shaft 34 which, in turn, is part of a plunger or piston, the distal portion being generally discoid in configuration, as shown at 36, and forming a seal against the interior walls of the enclosure 26. The enclosure assembly 26-36 may, then, be described as a piston and cylinder arrangement in which the cylinder is formed by the enclosure 26 and the piston is formed by the shaft or plunger 34 and discoid piston 36. An "0" ring 38 in a groove in theplunger forms a stop against excessive travel of the piston. The enclosure also includes, in apreferred form, a sealing flange 40 which, during shipping and storage, positions the charge forming device and enclosure inside a protective cylinder 42 and which maintains a seal with the walls of the cylinder 42 after the cylinder is opened.
The manufacture may be contained in any number of protective envelopes, but in the preferred embodiment the entire assembly 20 is stored, shipped and handled before use in a glass or quartz cylindrical tube 42 which is hermetically sealed at both ends, enclosing the assembly 20 inside in inert atmosphere, and which includes a scribe mark 44 whichpermits the tube to be easily broken, allowing the upper portion 46, as shown, to be removed and permitting removal of the assembly 22. A protective ring 48 formed of a semi-rigid, self-lubricating polymer such as Ryton (TM) polysulfide is a desired but non-critical feature of the invention. This ring includes, preferrably, a projection which extends into the scribe 44 to assure a safe, clean break.
Finally, the overall assembly 22 and its protective tube 42 is packaged in an inert atmosphere contained in a moisture andvapor impervious flexiblepackage 50 formed of a layer of Mylar (TM) polyterephthalate 52 and metal, such as vapor deposited aluminum 54, sealed in any convenient way as shown, simply as an example, at 56.
Figure3 depicts ahighly desirable alternative of the assembly of the invention for forming and loading a charge of ion source material which is exceptionally sensitive to contamination or which is to be given ultimate purity protection. In this assembly 120, the charge forming device 122 is the same in all essential features as the device 22 except that it includes a quartz (or in some instances polymeric or borosilicate) seal 123 which hermetically seals the ion source material 124 in the charge shape and size. The enclosure 126 -130 is the same as described respecting enclosure 26-30 and the piston 134- 136 is the same as described respecting piston134-136, but has the added structure of a breakpoint 137 on the distal side of the piston 136 and may include an additional "0" ring stop 139 to prevent accidental movement of thepiston. The operation, whichwill be described, is the same for this embodiment as for that of Figure 2 except that the first "O" ring 139 is removed and the breakpoint 137 contacts and
TE SHEET breaks the breakseal 123 in the early stages of movement of the piston in the cylinder.
Figure 4 depicts another alternative embodiment. In this assembly 220, the charge forming device 222 includes a breakseal 223 and is the same as the device 122-123. The charge forming device is recived in a cylindrical enclosure portion 226which seals at 228, as describedwith respect to the opening 28 and 128 in the earlier described embodiments. Projections or keys 129 may be provided in this embodiment for engaging the thermal source evaporator 10 to prevent relative rotation therewith. The enclosure purtion includes threads on the outside and a cap 230 which includes an interior structure 232 for engaging the charge forming device and a breakpoint 233 for contacting and ruptureing the breakseal 223. While not necessary, it is sometimes desirable to include a bottom or distal cap 240 which slips on or screws on to the enclosure portion 226, providing an extra measure of protection. The entire assembly may then be enclosed in a glass or quartz tube as described and in an envelope or, as depicted in Figure 4, simply enclosed in a vapor barrier envelope 250 sealed at 256, of the construction described relative to the package 50-56.
An important feature of the invention is the inclusion as a component of the assembly 20, 120 or 220 of a metal tetrahaloborate charge, and one facet of the invention, a very important facet indeed, is in the improved ion implant method wherein the ion source is obtained by evaporation of the metal tetrahaloborate. i is customary to carry out the process of ion implantation by the general steps of (a) evaporating a source material; (b) ionizing at least one component of the source material; (c) accelerating the resulting ions; (d) electromagnetically selecting the ions to be implanted in the target; and (e) accelerating and directing a beam of the
SUBSTITUTE SHEET selected ions to a predetermined point or location on the target. The improvement of this invention is in the first step of evaporating a source material and in a preliminary step of providing a source material. As background for understanding the significance and importance of this invention, a brief discussion of some factors of great practical and economic, as well as technical, importance is in order.
The ion implant instrument is very expensive, costing a million dollars or more typically, and down-time or non¬ productive time must, for economic soundness, be avoided and minimized to the greatest possible extent. Down time results whenever it is necessary to shut the instrument down to recharge it with ion source material. In many instances in the prior art, the source vaporizer must be scraped out and a weighed or measured amount of ion source introducted into the well of the sourcevaporizer. Inmost instances, this requires that the source vaporizer be introduced into a clean-room or glovebox to prevent contamination of the reagents and spread of the reagents, some of which are extremely poisonous or otherwise hazardous. Those who have worked in a glove box will appreciate that this is a very time consuming and inconvenient operation. After the charge is loaded into the source vaporizer, the instrument, which operates at high vacuum and an ambient operating temperature of from about 100 to 300°C. must be pumped down and brought up to operating temperature, all of which consumes substantial periods of time. The instrument spectrographic and accelerating chamber operates, for example, at vacuums of as low as 10~5 torr. The introduction of a charge which requires extensive outgassing or which introduces volatile impurities can slow the start-up of the ion implant instrument signficantly. In addition, if the instrument
SUBSTITUTE SHEET is required to operate at high temperatures, e.g. above 300°C., additional time is required to bring the instrument to a stable operating temperature and additional pumping time may be required. it is, therefore, a highly sought after goal and a long feltneed in the industry to find a method which will reduce down-time, minimize start-up time, and extend run-time between recharging the ion source.
Safety is also a very important consideration. It would be desirable to have an ion source which can be handled safely extreme or unusual precautions or undue risk andwhich, upon being used up, leaves either no residue or a non-toxic easily removed and safely handled residue.
These and other desirable, long sought after and unexpected results are accomplished by the improvedmethod which comprises the steps of (a) evaporating a metal tetra- fluoroborate which evaporates under a vacuum of from approximately 10""3 to10"5 torr in the temperature range of from approximately 100°C. to 400°C. at a rate sufficient to form an effective ion implant beam in an ion implant instrument; (b) ionizing boron; (c) accelerating the boron ions; (d) electromagnetically selecting the boron ions to be implanted in the target; and (e) accelerating and directing a beam of the selected ions to a predetermined point or location on the target.
The article of manufacture is used in the following manner. First, once the source vaporizer is prepared to recieve a charge, the article 20, 120 or 220 is taken from its protective package(s) , depending upon the form of packaging used. The article is positioned as shown in Figure 1 with the source defining device 22 adjacent the well 12 in the source vaporizer, the distal end thereof is then inserted into the well and the article 20 is pressed βnuggly against the source vaporizer. In the case of the embodiments of Figures 1 and 2, the piston is pressed forcing the charge forming device and charge into the well and, in the case of the article 120, breaking the seal 123 thus opening the charge for use. The article 220 is handled basically in the same way, except that the lid 230 is turned to break the seal 223. This takes only a few seconds and the vaporizer is secured in the ion implant instrument, in the usual and conventional manner, and the ion implant instrument is put back into normal operation. Upon completion of the run, the charge forming device contains the residual MF3 or M2F glass and is simply poured back into the container and disposed of according to regulations which may apply to the particular facility and material.
The most advantageous and greatly preferred form of the inventive process includes evaporating lithium tetra¬ fluoroborate as the first step of the process, and this is selected as best exemplifying the process.
It has been discovered that metal tetrafluoroborates and in particular lithiumtetrafluoroborate decomposes and is ionized to form (i) a particularly and unexpectedlypure source of boron ions and (ii) a substantially inert glass. The reaction is described in two steps, as follows:
L1BF4 > LiF(glass) + BF3
2BF3 > 2B+ + 3F2 The LiF is in the form of a glass which is easily and safely removed from the source vaporizer, fluorine gas is removed through the vacuum system is quantities which are not hazardous in the least, and a beamof boron ions, either 10B or A1B as selected, is implanted into the target. Because of low electrical charge over mass (e/m) ratio of lithium and fluorine the ion charge material has a long run-life, i.e. for a given weight, more boron ions are available than is the case with most ion source materials.
Because the residue is a glass, being essentially inert and nonvolatile, it is easily and safely handled. Because the lithium tetrafluoroborate evaporates, under avaccuum of about 10~3, at about 90° C. to 150°C. the warm-up and pump-down time for the instrument is minimal and stable operation is quickly restored after recharging the ion implant source vaporizer.
Ahigh implant current ofB+ ions isquickly and easily achieved. For example, a current of 1-3 ma of 11B+ was repeatably obtained.
Because the source material is a relatively inert, safely handled material, the extreme care and high risk of using such highly reactive and toxic gases as BF3 is avoided. SuchBF3 as is generated is in microgram amounts inside the instrument and is decomposed almost immediately, thus presenting no health or safety hazard. Most of these advantages are obtained using metal tetrahaloborates generally, except that with higher molecular weight halogens, e.g. chlorine and bromine, the run-life is lower because of the lower e/m ratio. Likewise, sodiumand potassium analogswouldhave a shorter run-life than lithium tetrafluoroborate. Notwith¬ standing that not all of the advantages are obtained using all species, the invention contemplates the use of metal tetrahaloborates generally, principally the haloborate salts ofGroup I andGroup II metals and, preferrably alkali and alkaline earthmetals, although zinc tetrafluoroborate and other transition metal tetrahaloborate borates which evaporate in the desired range are also contemplated.
As an article of manufacture, trade and commerce, the invention comprises, in combination, a charge of metal tetrahaloborate, preferrably lithium tetrafluoroborate, charge forming means configuring the charge into a size and shape for being received in a source vaporizer of an ion implant instrument, and enclosure means for enclosing at least a portion of the charge forming means and for positioning the charge formingmeans in thewell of a source vaporizer.
While the invention has been described with reference to the semiconducter industry and in the manufacture of semiconductor materials, e.g. boron implanted into silicon, the invention is of general applicablity in, for example, forming corrosion or wear resistant surfaces on bearings, cutting tools, and the like.
Furthermore, while the invention has been described in terms of particular materials of composition, construction and configuration, these (except for the fluoborates) are merely exemplary and great variation is permited, as these are not critical, within the scope, concept and claims of the invention without departing from equivalents of examples and principles hereinbefore setforth.
Industrial Application
This invention finds its most direct and immediate application in the manufacture of semiconductor devices, cutting tools, bearings and other metal objects in which surface characteristics are modified by ion implantation.

Claims

WHAT IS CLAIMED IS:
1. In the method of implanting b"dr'on'inff'o1^ substrate which comprises generating a bea» '#"- ": a θn"T.,io s , and directing said beam at the substrate under the influence of
5 electrical and magnetic fields, the improvement wherein the step of generating a beam of boron ions comprises evaporating a charge of metal tetrahaloborate
2. The method of Claim 1 wherein the charge consists essentially of a Group I or Group II metal tetrahaloborate.
10 3. The method of Claim 2 wherein the charge consists essentially of an alkali or alkaline earth metal tetrahaloborate.
4. The method of Claim 3 wherein the charge consists essentially of an alkali or alkaline earth metal tetra-
15 fluoroborate.
5. The method of Claim 4 wherein the charge consists essentially of lithium tetrafluoroborate, sodium tetra¬ fluoroborate, calcium tetrafluoroborate or potassium tetrafluoroborate.
•20 6. The method of Claim 4 wherein the charge is lithium fluoborate.
7. As an article of manufacture, trade and commerce, the combination of a charge of metal tetra¬ haloborate, charge forming means configuring the charge
2 into a size and shape for being received in a source vaporizer of an ion implant instrument, and enclosuremeans for enclosing at least aportion of the charge forming means and for positioning the charge forming means in the well of a source vaporizer.
30 8. The article of Claim7 wherein the charge consists essentially of aGroup I or Group II metal tetrahaloborate.
9. The article of Claim 7 wherein the charge consists essentially of an alkali or alkaline earth metal tetrafluoroborate. 5 ιo. The article of Claim 7 wherein the charge consists essentially of an alkali or alkaline earth metal tetrafluoroborate.
11. The article of Claim 7 wherein the charge consists essentially of lithium tetrafluoroborate. 12. The improved method ion implantation which comprises the steps of (a) evaporating a metal tetrahalo¬ borate which evaporates under a vacuum of from approximately 10~3 tolO"5 torr in the temperature range of from approximately 100°C. to 400°C. at a rate sufficient to form an effective ion implant beam in an ion implant instrument; (b) ionizing boron; (c) accelerating the boron ions; (d) electromagnetically selecting the boron ions to be implanted in the target; and (e) accelerating and directing a beam of the selected ions to a predetermined point or location on the target.
13. The method of Claim 12 wherein the tetrahalo¬ borate consists essentially of a Group I or Group II metal tetrahaloborate.
14. The method of Claim 12 wherein the tetrahalo- borate consists essentially of an alkali or alkaline earth metal tetrafluoroborate.
15. The method of Claim 12 wherein the tetrahalo¬ borate consists essentially of lithium tetrafluoroborate, sodium tetrafluoroborate, calcium tetrafluoroborate or potassium tetrafluoroborate.
16. The method of Claim 12 wherein the tetrahalo¬ borate is lithium fluoborate.
EP19850902841 1985-05-17 1985-05-17 Ion implant using alkali or alkaline earth metal tetrafluoroborate as boron ion source Withdrawn EP0221897A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1985/000932 WO1986006875A1 (en) 1985-05-17 1985-05-17 Ion implant using alkali or alkaline earth metal tetrafluoroborate as boron ion source

Publications (1)

Publication Number Publication Date
EP0221897A1 true EP0221897A1 (en) 1987-05-20

Family

ID=22188685

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19850902841 Withdrawn EP0221897A1 (en) 1985-05-17 1985-05-17 Ion implant using alkali or alkaline earth metal tetrafluoroborate as boron ion source

Country Status (7)

Country Link
EP (1) EP0221897A1 (en)
JP (1) JPS62503064A (en)
AU (1) AU578707B2 (en)
DK (1) DK24487A (en)
FI (1) FI870181A0 (en)
NO (1) NO870194L (en)
WO (1) WO1986006875A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616385B2 (en) * 1986-04-09 1994-03-02 エアー・プロダクツ・アンド・ケミカルズ・インコーポレーテッド Evaporator

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3477887A (en) * 1966-07-01 1969-11-11 Motorola Inc Gaseous diffusion method
DE2222736A1 (en) * 1972-05-09 1973-11-22 Siemens Ag METHOD OF ION IMPLANTATION
DE2408829C2 (en) * 1974-02-23 1984-03-22 Ibm Deutschland Gmbh, 7000 Stuttgart Boron ion source material and process for its manufacture
US4074139A (en) * 1976-12-27 1978-02-14 Rca Corporation Apparatus and method for maskless ion implantation
FR2383702A1 (en) * 1977-03-18 1978-10-13 Anvar IMPROVEMENTS IN METHODS AND DEVICES FOR DOPING SEMICONDUCTOR MATERIALS
FR2412939A1 (en) * 1977-12-23 1979-07-20 Anvar HIGH CURRENT ION IMPLANTER
JPS57174467A (en) * 1981-04-20 1982-10-27 Inoue Japax Res Inc Ion working device
JPS57182956A (en) * 1981-05-07 1982-11-11 Hitachi Ltd Ion-implantation device
US4385946A (en) * 1981-06-19 1983-05-31 Bell Telephone Laboratories, Incorporated Rapid alteration of ion implant dopant species to create regions of opposite conductivity
JPS60109260A (en) * 1983-11-15 1985-06-14 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Compensated polycrystalline silicon resistance element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8606875A1 *

Also Published As

Publication number Publication date
DK24487D0 (en) 1987-01-16
AU578707B2 (en) 1988-11-03
DK24487A (en) 1987-01-16
WO1986006875A1 (en) 1986-11-20
NO870194D0 (en) 1987-01-16
AU4431585A (en) 1986-12-04
FI870181A0 (en) 1987-01-16
NO870194L (en) 1987-03-10
JPS62503064A (en) 1987-12-03

Similar Documents

Publication Publication Date Title
US4851255A (en) Ion implant using tetrafluoroborate
US4855604A (en) Ion Beam implant system
US3933530A (en) Method of radiation hardening and gettering semiconductor devices
Kaiser et al. Electric Deflection of Molecular Beams of the Lanthanide Di‐and Trifluorides, ScF3 and YF3
SE500657C2 (en) Method and apparatus for preparing implant surfaces using gas discharge plasma
KR20080075015A (en) Method for the deposition of a vaporizing material
Clampitt Advances in molten metal field ion sources
AU578707B2 (en) Ion implant using alkali or alkaline earth metal tetrafluoroborate as boron ion source
US5861630A (en) Method for generating a boron vapor
EP0098935A1 (en) Negative ion beam etching process
Wong et al. Sputtering of large molecular ions by low energy particle impact
US4760263A (en) Ion implant using tetrafluoroborate
US5059292A (en) Single-chamber apparatus for in-situ generation of dangerous polyatomic gases and radicals from a source material contained within a porous foamed structure
Liebl et al. Study of an iodine discharge in a duoplasmatron
Wilson et al. Comparison of sources of boron, phosphorus, and arsenic ions
US5282903A (en) High quality oxide films on substrates
Lehmann et al. An isotope separator for small noble gas samples
Amick et al. The Stabilization of Germanium Surfaces by Ethylation: II. Chemical Analysis
Dunbar et al. Radiative and collisional association of mesitylene ion with parent neutral at 196 K
Armour Ion implantation
JP3837566B2 (en) Method of coating high quantum efficiency material on cooled high quantum efficiency photocathode electron beam source
Ohkoshi et al. 8 New ion generation method of refractory materials with SF6 plasma
Bin The plasma‐chemical reactions of several materials in a rf ion source
Gibson et al. High temperature vaporization/decomposition of lanthanide and actinide fluorides.[CeF/sub 4/, AmF/sub 4/]
Martinez et al. Reaction‐induced mass discrimination in XQQ instruments. Absolute cross‐sections for N+ SF6→ N2+ SF (x= 1–5)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19870202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19890601

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LAGENDIJK, ANDRE

Inventor name: RIAHI, SHANTIA