EP0215828B1 - Valve control circuit - Google Patents

Valve control circuit Download PDF

Info

Publication number
EP0215828B1
EP0215828B1 EP86901387A EP86901387A EP0215828B1 EP 0215828 B1 EP0215828 B1 EP 0215828B1 EP 86901387 A EP86901387 A EP 86901387A EP 86901387 A EP86901387 A EP 86901387A EP 0215828 B1 EP0215828 B1 EP 0215828B1
Authority
EP
European Patent Office
Prior art keywords
switching transistor
capacitor
resistor
current
excitation winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86901387A
Other languages
German (de)
French (fr)
Other versions
EP0215828A1 (en
Inventor
Josef Orlowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FERNSTEUERGERAETE KURT OLESCH GMBH TE BERLIJN, BON
Original Assignee
OELSCH KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6264531&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0215828(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by OELSCH KG filed Critical OELSCH KG
Priority to AT86901387T priority Critical patent/ATE34601T1/en
Publication of EP0215828A1 publication Critical patent/EP0215828A1/en
Application granted granted Critical
Publication of EP0215828B1 publication Critical patent/EP0215828B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • F02D2041/2027Control of the current by pulse width modulation or duty cycle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2041Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit for controlling the current in the free-wheeling phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • F02D2041/2075Type of transistors or particular use thereof

Definitions

  • a valve control circuit is known.
  • This known circuit is a device for controlling a carburetor with a digital controller in the form of a microcomputer which controls a switching transistor with a variable pulse ratio.
  • the switching transistor is in the circuit of an excitation winding.
  • the excitation winding, the emitter-collector path of the switching transistor and a measuring resistor are connected in series to a supply voltage in this circuit.
  • a diode is connected in parallel with the excitation winding, via which a current induced by the collapse of the magnetic field in the excitation winding flows when the switching transistor is blocked. In practice, with such an arrangement, current flows continuously in the excitation winding.
  • the current increases approximately linearly because the inductance of the excitation winding counteracts a sudden increase in the current. If the switching transistor is blocked, the current is not interrupted abruptly. Rather, the collapse of the magnetic field induces a voltage in the excitation winding, which causes a further current flow through the diode. As a result of the losses due to Joule heat, this current drops approximately linearly over time until the switching transistor becomes conductive again. The rise and fall of the current results in an average level of the current intensity, which depends on the pulse width, that is to say the ratio of the on time to the off time of the switching transistor.
  • the voltage pulses dropping to the measuring resistor are smoothed by an RC filter element and supplies a feedback voltage which is digitized by an A / D converter and fed to the microcomputer.
  • a capacitor is charged via an ohmic resistor, i. H. the capacitor lies in series with the ohmic resistance of the RC element at the measuring resistor at which the voltage to be averaged drops.
  • FR-A-2 345 595 also shows a valve control circuit in which a switching transistor is connected in series with an excitation winding of a solenoid valve. The switching transistor is controlled directly by the output signal of a two-point regulator via a transistor.
  • a measuring resistor is used as the actual value, which lies in the circuit formed by the field winding and a “free-wheeling circuit”. This measuring resistor supplies a voltage that corresponds to the true current through the excitation winding even when the switching transistor blocks.
  • the measuring resistor is not in the circuit of the "freewheeling circuit and the excitation winding, but only in series with the switching transistor.
  • the switching transistor is acted upon by a transistor directly from the output of a two-point regulator in the form of a differential amplifier.
  • the differential amplifier is with resistors, diodes and one The capacitor is wired so that it has a hysteresis. Otherwise, the actual value is tapped via a resistor at the measuring resistor and the setpoint at a voltage divider.
  • Another valve control circuit is known from EP-A-0074536.
  • This switching arrangement has an inductive consumer (solenoid valve) and a switch.
  • a field effect transistor takes over the switching function and serves as a current measuring element for regulating the current through the consumer.
  • This switching transistor is opened and closed directly by the output signal of the controller.
  • the controller is an amplifier to which the setpoint is applied to one terminal and an actual value-proportional signal to the other terminal. If the switching transistor is conductive, this is the voltage drop across the switching transistor itself. When the switching transistor is blocked, the actual value of the current flowing in the field winding is simulated by the discharge of a capacitor via a resistor. This resistor is connected to the capacitor or disconnected from the capacitor in the on and off cycle of the switching transistor.
  • the invention is based, to design the feedback means in a valve control circuit of the type mentioned in such a way that a constant control takes place.
  • the capacitor is charged via the peak rectifier. Since the time constant of the peak rectifier and capacitor is small, the capacitor voltage follows the rising voltage at the measuring resistor when the switching transistor is conductive. If the switching transistor blocks, the peak rectifier prevents the capacitor from discharging via the measuring resistor. The capacitor then discharges through the ohmic resistance of the resistor-capacitor combination. Their time constant is chosen so that the voltage across the capacitor drops to the same extent as the current in the field winding. Therefore, an alternating rising and falling voltage arises at the capacitor, the course of which corresponds exactly to the current course in the excitation coil. The feedback signal is derived from this.
  • control in the present invention is continuous.
  • the output signal of the controller does not directly control the switching transistor but a pulse width modulator. This delivers a pulsed control signal for the switching transistor, the pulse width of which depends continuously on the controller output signal. There is no changeover in which the capacitor is switched off by the voltage at the measuring resistor or switching transistor and connected to the resistor.
  • the valve control circuit contains an integrating electrical controller 10. This exists practically from an operational amplifier 12, the output of which is connected to the inverting input via a capacitor 14. A signal voltage U G from an encoder (not shown) is applied to the inverting input of the operational amplifier 12 via a resistor 16. This signal voltage U G serves as a reference variable. Furthermore, a feedback voltage is present at the inverting input of the operational amplifier 12 with the opposite sign. The feedback voltage is provided by feedback means 18 in a manner to be described.
  • the output of the controller 10 controls a pulse width modulator 20.
  • the pulse width modulator 20 in turn controls a switching transistor 24 via a transistor 22 and an auxiliary supply voltage U b .
  • a first ohmic resistor 26, the switching transistor 24 and an excitation winding 28 are connected in series in the circuit of a supply voltage U a.
  • a valve (not shown) can be proportionally adjusted by a current through the excitation winding.
  • the ohmic resistance of the excitation winding 28 is represented by a resistor 30.
  • a diode 32 is connected in parallel with the excitation winding 28. The forward direction of the diode 32 is such that the current can flow through the diode 32, which is induced in the excitation winding 28 after the switching transistor 24 has been blocked by the collapse of the magnetic field.
  • a current I L flows through the excitation winding 28 in the direction of the corresponding arrow, ie from top to bottom in FIG. 1.
  • the parallel diode 32 is blocked for this current direction.
  • the switching transistor 24 blocks, the circuit of the supply voltage U is interrupted.
  • the collapsing magnetic field of the excitation coil 28 also induces a current in the direction of arrow I L now flows in the winding of the exciter 28, the resistor 30 and the diode 32 formed closed circuit. With a suitable dimensioning of the components, this current decreases approximately linearly.
  • the average current through the excitation coil 28 is proportional to the pulse width modulation factor K.
  • the current In order to regulate this current to a value proportional to the signal voltage U, the current must be measured and fed back to the regulator 10 via suitable feedback means 18. Measuring the current via the voltage drop across the field winding itself has the disadvantage that two additional lines must then be routed to the field winding, which is difficult with commercially available components.
  • the voltage drop across the resistor 26 cannot directly serve as a measure of the current through the excitation winding, because a current flows through the resistor 26 only during the switch-on time.
  • the voltage drop across the resistor 26 is therefore switched to a peak rectifier 38 via lines 34 and 36. This charges a capacitor 40.
  • the time constant of this combination of peak rectifier 38 and capacitor 40 is small compared to the on-time t a.
  • the voltage U d at the capacitor 40 follows, therefore, during the on-time t a practically without any delay to the voltage drop U R, the resistance 26. This is shown in the third and fourth rows of FIG. 2.
  • the charge change ⁇ q is the discharge current i times the switch-off time t off . So there is

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dc-Dc Converters (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

The current is regulated by the exciting winding (28) of a valve that can be electromagnetically actuated in response to a signal voltage (UG) used as a command variable. To this purpose, the signal voltage (UG) and a return voltage (Ud) are supplied to an integrating regulator (10). The regulator (10) commands a pulse width modulator (20). The latter commands a switching transistor (24) which is in series with the exciting winding (28). A diode (32) is connected parallel to the exciting winding (28). Return means create a return voltage (Ud) which is proportional to the modulated current (IL) through the exciting winding (28), even during the cutoff period, during which the switching transistor (24) is shut off.

Description

Technisches GebietTechnical field

Die Erfindung betrifft eine Ventilsteuerschaltung zur Regelung des elektrischen Stromes durch die Erregerwicklung eines elektromagnetisch betätigbaren Ventils, enthaltend

  • a) einen elektrischen Regler, dem ein Sollwert vorgebbar ist und der ein Rückführsignal erhält,
  • b) einen Schalttransistor, der
    • b,) in Reihe mit der Erregerwicklung an einer Speisespannung (Ua) anliegt,
    • b2) in Abhängigkeit von einem Reglerausgangssignal auf- und zusteuerbar ist,
  • c) eine zu der Erregerwicklung parallelgeschaltete Diode, über welche bei gesperrtem Schalttransistor ein durch das Zusammenbrechen des Magnetfeldes und der Erregerwicklung induzierter Strom fließt, und
  • d) Rückführmittel zur Erzeugung des Rückführsignals,
    • d,) die eine Widerstands-Kondensator-Kombination enthalten, deren Zeitkonstante (RC) gleich dem Verhältnis der Induktivität (L) der Erregerwicklung zu dem ohmschen Widerstand (RL) des von Erregerwicklung und Diode gebildeten Stromkreises ist,
    • d2) bei welcher der Kondensator der Widerstand-Kondensator-Kombination
      • - bei leitendem Schalttransistor auf eine dem Strom durch den Schalttransistor proportionale Spannung aufgeladen und
      • - bei gesperrtem Schalttransistor über den Widerstand der Widerstand-Kondensator-Kombination entladen wird, wodurch der Strom simuliert wird, der bei gesperrtem Schalttransistor in dem von Erregerwicklung und Diode gebildeten Stromkreis fließt, wobei
    • d3) das Rückführsignal an dem Kondensator abgegriffen wird.
The invention relates to a valve control circuit for regulating the electrical current through the excitation winding of an electromagnetically actuated valve, comprising
  • a) an electrical controller to which a setpoint can be predetermined and which receives a feedback signal,
  • b) a switching transistor that
    • b,) is connected in series with the excitation winding to a supply voltage (U a ),
    • b 2 ) can be activated and deactivated as a function of a controller output signal,
  • c) a diode connected in parallel with the excitation winding, via which a current induced by the collapse of the magnetic field and the excitation winding flows when the switching transistor is blocked, and
  • d) feedback means for generating the feedback signal,
    • d,) which contain a resistor-capacitor combination, the time constant (RC) of which is equal to the ratio of the inductance (L) of the excitation winding to the ohmic resistance (R L ) of the circuit formed by the excitation winding and diode,
    • d 2 ) in which the capacitor of the resistor-capacitor combination
      • - charged with a conductive switching transistor to a voltage proportional to the current through the switching transistor and
      • - Discharged through the resistor of the resistor-capacitor combination when the switching transistor is blocked, thereby simulating the current that flows in the circuit formed by the field winding and diode when the switching transistor is blocked, whereby
    • d 3 ) the feedback signal is tapped at the capacitor.

Zugrundeliegender Stand der TechnikUnderlying state of the art

Durch die DE-A-3 322 006 ist eine Ventilsteuerschaltung bekannt. Bei dieser bekannten Schaltung handelt es sich um eine Vorrichtung zur Steuerung eines Vergaser mit einem digitalen Regler in Form eines Mikrocomputers, welcher einen Schalttransistor mit veränderlichem Pulsverhältnis steuert. Der Schalttransistor liegt im Stromkreis einer ErregerwicRlung. In diesem Stromkreis liegen in Reihe an einer Versorgungsspannung die Erregerwicklung, die Emitter-Kollektor-Strecke des Schalttranssistors und ein Meßwiderstand. Zu der Erregerwicklung ist eine Diode parallelgeschaltet, über welche bei gesperrtem Schalttransistor ein durch das Zusammenbrechen des Magnetfeldes in der Erregerwicklung induzierter Strom fließt. Bei einer solchen Anordnung fließt in der Praxis ständig Strom in der Erregerwicklung. Bei leitendem Schalttransistor steigt der Strom näherungsweise linear an, weil die Induktivität der Erregerwicklung einem sprunghaften Anstieg des Stromes entgegenwirkt. Wenn der Schalttransistor gesperrt wird, wird der Strom nicht abrupt unterbrochen. Vielmehr wird durch das Zusammenbrechen des Magnetfeldes in der Erregerwicklung eine Spannung induziert, welche über die Diode einen weiteren Stromfluß bewirkt. Dieser Strom sinkt infolge der Verluste durch Joulsche Wärme näherungsweise linear mit der Zeit ab, bis der Schalttransistor wieder leitend wird. Aus dem Anstieg und Absinken des Stromes stellt sich ein mittleres Niveau der Stromstärke ein, welches von der Pulsbreite, also dem Verhältnis von Einschaltzeit zu Ausschaltzeit des Schalttransistors abhängt.From DE-A-3 322 006 a valve control circuit is known. This known circuit is a device for controlling a carburetor with a digital controller in the form of a microcomputer which controls a switching transistor with a variable pulse ratio. The switching transistor is in the circuit of an excitation winding. The excitation winding, the emitter-collector path of the switching transistor and a measuring resistor are connected in series to a supply voltage in this circuit. A diode is connected in parallel with the excitation winding, via which a current induced by the collapse of the magnetic field in the excitation winding flows when the switching transistor is blocked. In practice, with such an arrangement, current flows continuously in the excitation winding. When the switching transistor is conducting, the current increases approximately linearly because the inductance of the excitation winding counteracts a sudden increase in the current. If the switching transistor is blocked, the current is not interrupted abruptly. Rather, the collapse of the magnetic field induces a voltage in the excitation winding, which causes a further current flow through the diode. As a result of the losses due to Joule heat, this current drops approximately linearly over time until the switching transistor becomes conductive again. The rise and fall of the current results in an average level of the current intensity, which depends on the pulse width, that is to say the ratio of the on time to the off time of the switching transistor.

Ein solcher ständiger Strom fließt jedoch nur in dem von Erregerwicklung und Diode gebildeten Kreis, nicht aber über den periodisch gesperrten Schalttransistor und durch den Meßwiderstand. An dem Meßwiderstand tritt daher nur ein Strom in Form von Impulsen auf, wenn der Schalttransistor lietend ist. Der Strom durch den Meßwiderstand umfaßt nicht den während der Sperrphase des Schalttransistors in der Erregerwicklung fließenden strom. Die an dem Meßwiderstand abfallende Spannung liefert daher nur sehr bedingt ein Maß für die mittlere Stromstärke in der Erregerwicklung.Such a constant current, however, only flows in the circuit formed by the field winding and diode, but not through the periodically blocked switching transistor and through the measuring resistor. Therefore, only a current in the form of pulses occurs at the measuring resistor if the switching transistor is active. The current through the measuring resistor does not include the current flowing in the excitation winding during the blocking phase of the switching transistor. The voltage drop across the measuring resistor therefore provides a measure of the average current strength in the field winding only to a very limited extent.

Bei der DE-A-3 322 006 werden die an den Meßwiderstand abfallende Spannungsimpulse durch ein RC-Siebglied geglättet und liefert eine Rückführspannung, die durch einen A/D-Wandler digitalisiert und dem Mikrocomputer zugeführt wird. Bei dem RC-Siebglied wird ein Kondensator über einen ohmschen Widerstand aufgeladen, d. h. der Kondensator liegt in Reihe mit dem ohmschen Widerstand des RC-Gliedes an dem Meßwiderstand, an welchem die zu mittelnde Spannung abfällt.In DE-A-3 322 006, the voltage pulses dropping to the measuring resistor are smoothed by an RC filter element and supplies a feedback voltage which is digitized by an A / D converter and fed to the microcomputer. In the RC filter element, a capacitor is charged via an ohmic resistor, i. H. the capacitor lies in series with the ohmic resistance of the RC element at the measuring resistor at which the voltage to be averaged drops.

Die FR-A-2 345 595 zeigt ebenfalls eine Ventilsteuerschaltung, bei welcher mit einer Erregerwicklung eines Magnetventils ein Schalttransistor in Reihe geschaltet ist. Der Schalttransistor ist über einen Transistor unmittelbar von dem Ausgangssignal eines Zweipunktreglers gesteuert. Als Istwert dient bei einer Ausführung der FR-A-2 345 595 ein Meßwiderstand, der in dem von der Erregerwicklung und einer « Freilaufschaltung » gebildeten Stromkreis liegt. Dieser Meßwiderstand liefert eine Spannung, die auch dann dem wahren Strom durch die Erregerwicklung entspricht, wenn der Schalttransistor sperrt.FR-A-2 345 595 also shows a valve control circuit in which a switching transistor is connected in series with an excitation winding of a solenoid valve. The switching transistor is controlled directly by the output signal of a two-point regulator via a transistor. In a version of FR-A-2 345 595, a measuring resistor is used as the actual value, which lies in the circuit formed by the field winding and a “free-wheeling circuit”. This measuring resistor supplies a voltage that corresponds to the true current through the excitation winding even when the switching transistor blocks.

Bei einer anderen Ausführung der FR-A-2 345 595 liegt der Meßwiderstand nicht im Stromkreis der « Freilaufschaltung und der Erregerwicklung sondern nur in Reihe mit dem Schalttransistor. Der Schalttransistor wird über einen Transistor unmittelbar vom Ausgang eines Zweipunktreglers in Form eines Differenzverstärkers beaufschlagt. Der Differenzverstärker ist mit Widerständen, Dioden und einem Kondensator so beschaltet, daß er eine Hysterese aufweist. Ansonsten wird der Istwert über einen Widerstand am Meßwiderstand und der Sollwert an einem Spannungsteiler abgegriffen.In another version of FR-A-2 345 595, the measuring resistor is not in the circuit of the "freewheeling circuit and the excitation winding, but only in series with the switching transistor. The switching transistor is acted upon by a transistor directly from the output of a two-point regulator in the form of a differential amplifier. The differential amplifier is with resistors, diodes and one The capacitor is wired so that it has a hysteresis. Otherwise, the actual value is tapped via a resistor at the measuring resistor and the setpoint at a voltage divider.

Durch die EP-A-0074536 ist eine weitere Ventilsteuerschaltung bekannt. Diese Schaltahordnung weist einen induktiven Verbraucher (Magnetventil) und einen Schalter auf. Ein Feldeffekttransistor übernimmt die Schaltfunktion und dient als Strommeßorgan zum Regeln des Stromes durch den Verbraucher. Dieser Schalttransistor wird unmittelbar vom Ausgangssignal des Reglers auf- und zugesteuert. Der Regler ist ein Verstärker, an welchem an einer Klemme der Sollwert und an der anderen Klemme ein istwertproportionales Signal anliegt. Bei leitendem Schalttransistor ist dies die am Schalttransistor selbst abfallende Spannung. Bei gesperrtem Schalttransistor wird der Istwert des in der Erregerwicklung fließenden Stromes durch die Entladung eines Kondensators über einen Widerstand simuliert. Dieser Widerstand wird im Ein- und Ausschalttakt des Schalttransistors mit dem Kondensator verbunden oder von dem Kondensator getrennt.Another valve control circuit is known from EP-A-0074536. This switching arrangement has an inductive consumer (solenoid valve) and a switch. A field effect transistor takes over the switching function and serves as a current measuring element for regulating the current through the consumer. This switching transistor is opened and closed directly by the output signal of the controller. The controller is an amplifier to which the setpoint is applied to one terminal and an actual value-proportional signal to the other terminal. If the switching transistor is conductive, this is the voltage drop across the switching transistor itself. When the switching transistor is blocked, the actual value of the current flowing in the field winding is simulated by the discharge of a capacitor via a resistor. This resistor is connected to the capacitor or disconnected from the capacitor in the on and off cycle of the switching transistor.

Bei einer solchen Anordnung ergibt sich wie bei jedem Zweipunktregler ein Regelspiel, bei welchem das Stellglied, nämlich der Schalttransistor mit einem solchen Tastverhältnis zwischen dem Ein- und Ausschaltzustand pendelt, daß die Regelgröße, hier der mittlere Strom durch die Erregerwicklung gleich dem Sollwert wird. Dabei wird für eine gewisse Hysterese zwischen Ein- und Ausschaltung gesorgt.With such an arrangement, as with any two-point controller, there is a control cycle in which the actuator, namely the switching transistor, oscillates between the on and off state with such a duty cycle that the controlled variable, here the mean current through the field winding, becomes equal to the setpoint. This ensures a certain hysteresis between switching on and off.

Offenbarung der ErfindungDisclosure of the invention

Der Erfindung liegt die Aufgabe zugrunde, bei einer Ventilsteuerschaltung der eingangs genannten Art die Rückführmittel so auszubilden, daß eine stetige Regelung stattfindet.The invention is based, to design the feedback means in a valve control circuit of the type mentioned in such a way that a constant control takes place.

Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß

  • e) das Reglerausgangssignal einen von den Rückführmitteln unabhängigen Pulsbreitenmodulator steuert, der Ausgangsimpulse mit einer dem Reglerausgangssignal proportionalen Impulsbreite liefert,
  • f) der Schalttransistor von diesem Pulsbreitenmodulator auf- und zusteuerbar ist,
  • g) die Rückführmittel
    • g,) einen mit dem Schalttransistor außerhalb des von Erregerwicklung und Diode gebildeten Kreises in Reihe liegenden Meßwiderstand aufweisen sowie
    • g2) einen Spitzengleichrichter, an welchem die an dem Meßwiderstand abfallende Spannung anliegt,
  • h) der Kondensator der Widerstand-Kondensator-Kombination unmittelbar an dem Spitzengleichrichter anliegt und
  • i) der Widerstand der Widerstand-Kondensator-Kombination ständig mit dem Kondensator verbunden ist.
According to the invention, this object is achieved in that
  • e) the controller output signal controls a pulse width modulator which is independent of the feedback means and which delivers output pulses with a pulse width proportional to the controller output signal,
  • f) the switching transistor can be opened and closed by this pulse width modulator,
  • g) the return means
    • g,) have a measuring resistor lying in series with the switching transistor outside the circuit formed by the field winding and diode, and
    • g 2 ) a peak rectifier to which the voltage drop across the measuring resistor is applied,
  • h) the capacitor of the resistor-capacitor combination is in direct contact with the peak rectifier and
  • i) the resistance of the resistor-capacitor combination is permanently connected to the capacitor.

Es wird auf diese Weise über den Spitzengleichrichter der Kondensator aufgeladen. Da die Zeitkonstante von Spitzengleichrichter und Kondensator klein ist, folgt die Kondensatorspannung bei leitendem Schalttransistor der ansteigenden Spannung am Meßwiderstand. Wenn der Schalttransistor sperrt, verhindert der Spitzengleichrichter eine Entladung des Kondensators über den Meßwiderstand. Der Kondensator entlädt sich dann über den ohmschen Widerstand der Widerstands-Kondensator-Kombination. Deren Zeitkonstante ist so gewählt, daß die Spannung am Kondensator in gleichem Maße absinkt wie der Strom in der Erregerwicklung. Am Kondensator entsteht daher eine abwechselnd ansteigende und absinkende Spannung, deren Verlauf genau dem Stromverlauf in der Erregerspule entspricht. Daraus wird das Rückführsignal abgeleitet.In this way, the capacitor is charged via the peak rectifier. Since the time constant of the peak rectifier and capacitor is small, the capacitor voltage follows the rising voltage at the measuring resistor when the switching transistor is conductive. If the switching transistor blocks, the peak rectifier prevents the capacitor from discharging via the measuring resistor. The capacitor then discharges through the ohmic resistance of the resistor-capacitor combination. Their time constant is chosen so that the voltage across the capacitor drops to the same extent as the current in the field winding. Therefore, an alternating rising and falling voltage arises at the capacitor, the course of which corresponds exactly to the current course in the excitation coil. The feedback signal is derived from this.

Im Gegensatz zu der EP-A-0 074 536 und der FR-A-2 345 595 erfolgt die Regelung bei der vorliegenden Erfindung stetig. Das Ausgangssignal des Reglers steuert nicht direkt den Schalttransistor sondern einen Pulsbreitenmodulator. Dieser liefert ein gepulstes Steuersignal für den Schalttransistor, dessen Impulsbreite stetig von dem Reglerausgangssignal abhängt. Es erfolgt keine Umschaltung, bei welcher der Kondensator von der Spannung am Meßwiderstand bzw. Schalttransistor ab- und an den Widerstand angeschaltet wird.In contrast to EP-A-0 074 536 and FR-A-2 345 595, the control in the present invention is continuous. The output signal of the controller does not directly control the switching transistor but a pulse width modulator. This delivers a pulsed control signal for the switching transistor, the pulse width of which depends continuously on the controller output signal. There is no changeover in which the capacitor is switched off by the voltage at the measuring resistor or switching transistor and connected to the resistor.

Es ist bei beiden Ausführungen der FR-A-2 345 595 weder eine stetige Regelung mittels eines Pulsbreitenmodulators noch eine Rückführung mit Spitzengleichrichter und RC-Glied vorgesehen. Es erfolgt bei der Regelung nicht einmal eine Berücksichtigung des nach dem Sperren des Schalttransistors im « Freilaufkreis » weiterfließenden Stromes.In both versions of FR-A-2 345 595, neither a continuous regulation by means of a pulse width modulator nor a feedback with a peak rectifier and an RC element is provided. The regulation does not even take into account the current that continues to flow in the "freewheeling circuit" after the switching transistor has been blocked.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Ein Ausführungsbeispiel der Erfindung ist nachstehend unter Bezugnahme auf die zugehörigen Zeichnungen näher erläutert :

  • Fig. 1 zeigt eine Ventilsteuerschaltung zur Regelung des elektrischen Stromes durch die Erregerwicklung eines elektromagnetisch betätigbaren Ventils.
  • Fig. 2 zeigt Signalverläufe, die in der Ventilsteuerschaltung von Fig. 1 auftreten.
An embodiment of the invention is explained in more detail below with reference to the accompanying drawings:
  • Fig. 1 shows a valve control circuit for regulating the electrical current through the excitation winding of an electromagnetically actuated valve.
  • FIG. 2 shows waveforms that occur in the valve control circuit of FIG. 1.

Bester Weg zur Ausführung der ErfindungBest way to carry out the invention

Die Ventilsteuerschaltung enthält einen integrierenden elektrischen Reg.ler 10. Dieser besteht praktisch aus einem Operationsverstärker 12, dessen Ausgang mit dem invertierenden Eingang über einen Kondensator 14 verbunden ist. An dem invertierenden Eingang des Operationsverstärkers 12 ist über einen Widerstand 16 eine Signalspannung UG von einem (nicht dargestellten) Geber angelegt. Diese Signalspannung UG dient als Führungsgröße. Weiterhin liegt an dem invertierenden Eingang des Operationsverstärkers 12 mit entgegengesetztem Vorzeichen noch eine Rückführspannung. Die Rückführspannung wird in noch zu beschreibender Weise von Rückführmittein 18 geliefert.The valve control circuit contains an integrating electrical controller 10. This exists practically from an operational amplifier 12, the output of which is connected to the inverting input via a capacitor 14. A signal voltage U G from an encoder (not shown) is applied to the inverting input of the operational amplifier 12 via a resistor 16. This signal voltage U G serves as a reference variable. Furthermore, a feedback voltage is present at the inverting input of the operational amplifier 12 with the opposite sign. The feedback voltage is provided by feedback means 18 in a manner to be described.

Der Ausgang des Reglers 10 steuert einen Pulsbreitenmodulator 20. Der Pulsbreitenmodulator 20 steuert seinerseits über einen Transistor 22 und eine Hilfsspeisespannung Ub einen Schalttransistor 24.The output of the controller 10 controls a pulse width modulator 20. The pulse width modulator 20 in turn controls a switching transistor 24 via a transistor 22 and an auxiliary supply voltage U b .

Im Stromkreis einer Speisespannung Ua liegen in Reihe ein erster ohmscher Widerstand 26, der Schalttransistor 24 und eine Erregerwicklung 28. Durch einen Strom durch die Erregerwicklung ist ein (nicht dargestelltes) Ventil proportional verstellbar. Der ohmsche Widerstand der Erregerwicklung 28 ist durch einen Widerstand 30 dargestellt. Parallel zu der Erregerwicklung 28 ist eine Diode 32 geschaltet. Die Durchlaßrichtung der Diode 32 ist dabei so, daß durch die Diode 32 der Strom fließen kann, welcher nach Sperren des Schalttransistors 24 durch das Zusammenbrechen des Magnetfeldes in der Erregerwicklung 28 induziert wird. Bei leitendem Schalttransistor 24 fließt durch die Erregerwicklung 28 ein Strom IL in Richtung des entsprechend bezeichneten Pfeils, d. h. von oben nach unten in Fig. 1. Die parallele Diode 32 ist für diese Stromrichtung gesperrt. Wenn der Schalttransistor 24 sperrt, wird der Stromkreis der Speisespannung U unterbrochen. Das zusammenbrechende Magnetfeld der Erregerspule 28 induziert weiterhin einen Strom in Richtung des Pfeiles IL, der nun in dem von der Erregerwicklung 28, dem Widerstand 30 und der Diode 32 gebildeten, geschlossenen Stromkreis fließt. Dieser Strom nimmt bei geeigneter Bemessung der Bauteile näherungsweise linear ab.A first ohmic resistor 26, the switching transistor 24 and an excitation winding 28 are connected in series in the circuit of a supply voltage U a. A valve (not shown) can be proportionally adjusted by a current through the excitation winding. The ohmic resistance of the excitation winding 28 is represented by a resistor 30. A diode 32 is connected in parallel with the excitation winding 28. The forward direction of the diode 32 is such that the current can flow through the diode 32, which is induced in the excitation winding 28 after the switching transistor 24 has been blocked by the collapse of the magnetic field. When the switching transistor 24 is conductive, a current I L flows through the excitation winding 28 in the direction of the corresponding arrow, ie from top to bottom in FIG. 1. The parallel diode 32 is blocked for this current direction. When the switching transistor 24 blocks, the circuit of the supply voltage U is interrupted. The collapsing magnetic field of the excitation coil 28 also induces a current in the direction of arrow I L now flows in the winding of the exciter 28, the resistor 30 and the diode 32 formed closed circuit. With a suitable dimensioning of the components, this current decreases approximately linearly.

Quantitativ ergibt sich folgendes :The following results quantitatively:

Nach dem Induktionsgesetzt ist

Figure imgb0001
According to the induction law
Figure imgb0001

Während der Einschaltzeit tein (vgl. Fig. 2, Zeile 1), während welcher der Schalttransistor 24 leitend ist, gilt näherungsweise

Figure imgb0002
wobei

  • L die Induktivität der Erregerspule 28,
  • ΔlL die Gesamtänderung des Stromes in der Erregerspule 28 während der Einschaltzeit t (vgl. Fig. 2, Zeile 2),
  • ILo der mittlere Strom in der Erregerspule 28 während der Einschaltzeit tein und
  • RL der ohmsche Widerstand (30) der Erregerspule 28 ist.
During the on-time t a (see. Fig. 2, row 1) during which the switching transistor is conductive 24, applies approximately
Figure imgb0002
in which
  • L the inductance of the excitation coil 28,
  • Δl L the total change in the current in the excitation coil 28 during the switch-on time t (see FIG. 2, line 2),
  • I Lo, the average current in the exciting coil 28 during the on-time t and
  • R L is the ohmic resistance (30) of the excitation coil 28.

Dabei ist angenomme, daß

Figure imgb0003
und
Figure imgb0004
ist, wobei UR1 der Spannungsabfall an dem Widerstand 26 ist.It is assumed that
Figure imgb0003
and
Figure imgb0004
where U R1 is the voltage drop across resistor 26.

Während der Ausschaltzeit taus, d. h. der Zeit (vgl. Fig. 2), während welcher der Schalttransistor 24 gesperrt ist, ist näherungsweise

Figure imgb0005
wenn RL ILO als groß gegen den Spannungsabfall an der Diode 32 angenommen wird, d. h.
Figure imgb0006
During the switch-off time t off , ie the time (cf. FIG. 2) during which the switching transistor 24 is blocked, is approximately
Figure imgb0005
if R L I LO is assumed to be large against the voltage drop across the diode 32, ie
Figure imgb0006

Aus den Gleichungen (2) und (5) folgt

Figure imgb0007
It follows from equations (2) and (5)
Figure imgb0007

Setzt man

Figure imgb0008
(vgl. Fig.2), so wird
Figure imgb0009
You sit down
Figure imgb0008
(see Fig. 2), so
Figure imgb0009

Dabei ist

Figure imgb0010
der Impulsbreitenmodulationsfaktor. Es wird also
Figure imgb0011
It is
Figure imgb0010
the pulse width modulation factor. So it will
Figure imgb0011

Der mittlere Strom durch die Erregerspule 28 ist proportional dem Impulsbreitenmodulationsfaktor K.The average current through the excitation coil 28 is proportional to the pulse width modulation factor K.

Um diesen Strom auf einen der Signalspannung U proportionalen Wert zu regeln, muß der Strom gemessen und über geeignete Rückführmittel 18 auf den Regler 10 zurückgeführt werden. Eine Messung des Stromes über den Spannungsabfall an der Erregerwicklung selbst hat den Nachteil, daß dann zwei zusätzliche Leitungen zu der Erregerwicklung geführt werden müssen, was bei handelsüblichen Bauteilen schwierig ist. Der Spannungsabfall an dem Widerstand 26 kann nicht unmittelbar als Maß für den Strom durch die Erregerwicklung dienen, weil ein Strom durch den Widerstand 26 nul während der Einschaltzeit fließt.In order to regulate this current to a value proportional to the signal voltage U, the current must be measured and fed back to the regulator 10 via suitable feedback means 18. Measuring the current via the voltage drop across the field winding itself has the disadvantage that two additional lines must then be routed to the field winding, which is difficult with commercially available components. The voltage drop across the resistor 26 cannot directly serve as a measure of the current through the excitation winding, because a current flows through the resistor 26 only during the switch-on time.

Es wird daher der Spannungsabfall an dem Widerstand 26 über Leitungen 34 und 36 auf einen Spitzengleichrichter 38 geschaltet. Dieser lädt einen Kondensator 40 auf. Die Zeitkonstante dieser Kombination von Spitzengleichrichter 38 und Kondensator 40 ist klein gegen die Einschaltzeit tein. Die Spannung Ud am Kondensator 40 folgt daher während der Einschaltzeit tein praktisch verzögerungslos dem Spannungsabfall UR, am Widerstand 26. Das ist in der dritten und vierten Zeile von Fig. 2 dargestellt.The voltage drop across the resistor 26 is therefore switched to a peak rectifier 38 via lines 34 and 36. This charges a capacitor 40. The time constant of this combination of peak rectifier 38 and capacitor 40 is small compared to the on-time t a. The voltage U d at the capacitor 40 follows, therefore, during the on-time t a practically without any delay to the voltage drop U R, the resistance 26. This is shown in the third and fourth rows of FIG. 2.

Während der Ausschaltzeit taus fällt der Spannungsabfall UR, an dem Widerstand 26 weg. Der Kondensator 40 entlädt sich dann über den Widerstand 42. Es ist zu beachten, daß durch die Gegenkopplung die beiden Eingänge des Operationsverstärkers 12 stets praktisch auf gleichem Potential gehalten werden. Durch geeignete Bemessung der Bauelemente ist dafür gesorgt, daß die Spannung Ud am Kondensator 40 während der Ausschaltzeit taus im gleichen Maße abfällt wie der Strom IL durch die Erregerwicklung 28. Es wird so eine Rückführspannung hergestellt, die in ihrem Verlauf dem Verlauf des Stromes durch die Erregerwicklung folgt.During the switch-off time t off , the voltage drop U R across the resistor 26 disappears. The capacitor 40 then discharges through the resistor 42. It should be noted that the negative feedback keeps the two inputs of the operational amplifier 12 practically at the same potential. By suitable dimensioning of the components it is ensured that the voltage U d on the capacitor 40 during the turn-off time t off to the same extent decreases as the current I L through the excitation winding 28. It is to prepare a feedback voltage, which in its course to the course of Current through the excitation winding follows.

Quantitativ ergibt sich dabei folgendes :The following results quantitatively:

Während der Ausschaltzeit ist

Figure imgb0012
wobei

  • Δq die Ladungsänderung im Kondensator 40 während der Ausschaltzeit,
  • C die Kapazität des Kondensators 40 und
  • - ΔUd die Änderung der an dem Kondensator 40 abfallenden Spannung während der Ausschaltzeit taus ist (vgl. Fig.2. Zeile 4).
During the switch-off time
Figure imgb0012
in which
  • Δq the charge change in the capacitor 40 during the switch-off time,
  • C the capacitance of the capacitor 40 and
  • - .DELTA.U d changing the drop across the capacitor 40 voltage during the turn-off time t off (see Figure 2 line 4..).

Die Ladungsänderung Δq ist Entladestrom i mal Ausschaltzeit taus. Es gibt also

Figure imgb0013
The charge change Δq is the discharge current i times the switch-off time t off . So there is
Figure imgb0013

Es ist wieder ΔUd klein gegen die mittlere Kondensatorspannung Udo. Es wird dann der Entladestrom

Figure imgb0014
Again ΔU d is small compared to the average capacitor voltage U do . It then becomes the discharge current
Figure imgb0014

Daraus folgt

Figure imgb0015
It follows
Figure imgb0015

Schreibt man Gleichung (5) in der Form

Figure imgb0016
so sieht man, daß man den Verlauf von Ud an den Verlauf von IL anpassen kann : Wählt man nämlich
Figure imgb0017
dann wird
Figure imgb0018
d. h. die Spannung Ud am Kondensator 40 ändert sich im Verhältnis zu ihrem mittleren Wert während der Ausschaltzeit taus in gleichem Maße, wie sich der Strom IL durch die Erregerwicklung 28 im Verhältnis zu seinem mittleren Wert verändert. Man erhält daher einen Signalverlauf der Spannung Ud am Kondensator 40, der auch während der Ausschaltzeit dem Signalverlauf des Stromes durch die Erregerwicklung entspricht. Diese Spannung ist als Rückführspannung auf den Regler 10 aufgeschaltet.If you write equation (5) in the form
Figure imgb0016
you can see that the course of U d can be adapted to the course of I L : namely, you choose
Figure imgb0017
Then it will be
Figure imgb0018
ie the voltage U d across the capacitor 40 changes in relation to its mean value during the switch-off time t out to the same extent as the current I L through the excitation winding 28 changes in relation to its mean value. A signal curve of the voltage U d across the capacitor 40 is therefore obtained, which also corresponds to the signal curve of the current through the excitation winding during the switch-off time. This voltage is applied to the controller 10 as a feedback voltage.

Claims (6)

  1. Valve control circuit for controlling the electrical current (IL) through the excitation winding (28) of a valve adapted to be actuated electromagnetically, comprising
    a) an electrical controller (10), which is adapted to receive a desired value and which receives a feedback signal,
    b) a switching transistor (24), which
    b,) is connected to a supply voltage (Ua) in series with the excitation winding (28),
    b2) is adapted to be rendered conductive and non-conductive as a function of a controller output signal,
    c) a diode (32) connected in parallel with the excitation winding (28), through which diode a current induced by the breakdown of the magnetic field and the excitation winding (28) flows when the switching transistor (24) is non-conductive, and
    d) feedback means for generating the feedback signal,
    d,) which comprise a resistor-capacitor-combination, the time constant (RC) of which is equal to the ratio of the inductivity (L) of the excitation winding (28) and of the ohmic resistance (RL) of the circuit formed by excitation winding (28) and diode (32),
    d2) wherein the capacitor (40) of the resistor-capacitor-combination
    - is charged to a voltage proportional to the current through the switching transistor when the switching transistor (24) is conductive, and
    - is discharged through the resistor (42) of the resistor-capacitor-combination when the switching transistor (24) is non-conductive, whereby the current is simulated, which flows in the current circuit formed by excitation winding (28) and diode (32) when the switching transistor (24) is non-conductive.
    d3) the feedback signal being picked-off at the capacitor (40),

    characterized in that
  2. e) the controller output signal controls a pulsewidth modulator (20) independent of the feedback means, which pulse-width modulator supplies output pulses having a pulse width proportional to the controller output signal,
  3. f) this pulse-width modulator (20) is adapted to render the switching transistor (24) conductive and non-conductive,
  4. g) the feedback means have
    gl) a measuring resistor (26) located in series with the switching transistor (24) outside the circuit formed by excitation winding (28) and diode (32), and
    g2) a point rectifier (38), to which the voltage (UR,) dropping across the measuring resistor (26) is applied,
  5. h) the capacitor (40) of the resistor-capacitor-combination is directly connected to the point rectifier (38), and
  6. i) the resistor (42) of the resistor-capacitor-combination always is connected to the capacitor.
EP86901387A 1985-03-05 1986-02-19 Valve control circuit Expired EP0215828B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86901387T ATE34601T1 (en) 1985-03-05 1986-02-19 VALVE CONTROL CIRCUIT.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853508187 DE3508187A1 (en) 1985-03-05 1985-03-05 VALVE CONTROL
DE3508187 1985-03-05

Publications (2)

Publication Number Publication Date
EP0215828A1 EP0215828A1 (en) 1987-04-01
EP0215828B1 true EP0215828B1 (en) 1988-05-25

Family

ID=6264531

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86901387A Expired EP0215828B1 (en) 1985-03-05 1986-02-19 Valve control circuit

Country Status (3)

Country Link
EP (1) EP0215828B1 (en)
DE (2) DE3508187A1 (en)
WO (1) WO1986005236A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8727070D0 (en) * 1987-11-19 1987-12-23 Nat Res Dev Electrical drive circuits
US4884573A (en) * 1988-03-07 1989-12-05 Leocor, Inc. Very low profile angioplasty balloon catheter with capacity to use steerable, removable guidewire
US4964014A (en) * 1989-01-06 1990-10-16 Deere & Company Solenoid valve driver
DE4031427A1 (en) * 1990-10-04 1992-04-09 Luetze Gmbh Co F Operating EM regulator at reduced energy level - reducing retention power once switched on and monitoring to boost power if change in switched state is detected
IT1255998B (en) * 1992-05-18 1995-11-17 Control device, especially for electromagnets and the like
DE4227165C2 (en) * 1992-08-17 1994-11-10 Siemens Ag Circuit arrangements for controlling inductive consumers
DE4237706C2 (en) * 1992-11-07 1996-09-12 Mtu Friedrichshafen Gmbh Device for detecting the time of impact for the armature of a solenoid valve
DE9409759U1 (en) * 1993-06-25 1994-10-27 Siemens Ag Circuit arrangement for realizing a constant contactor holding current
DE4443259A1 (en) * 1993-11-29 1995-06-01 Vaillant Joh Gmbh & Co Measurement of core position
US6313617B1 (en) 1997-10-17 2001-11-06 Continental Teves Ag & Co., Ohg Circuit arrangement for reducing voltage draw down in battery supply lines

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2345595A1 (en) * 1976-03-26 1977-10-21 Bosch Gmbh Robert INSTALLATION FOR THE CONTROL, WITH A REGULATED CURRENT, OF ELECTROMAGNETIC MANEUVERS
DE3135805A1 (en) * 1981-09-10 1983-03-24 Robert Bosch Gmbh, 7000 Stuttgart ELECTRICAL CIRCUIT ARRANGEMENT IN CONNECTION WITH A CAR CONTROL UNIT
DE3320110C2 (en) * 1983-06-03 1985-03-28 Mannesmann Rexroth GmbH, 8770 Lohr Circuit for operating a solenoid control valve
DE3322006A1 (en) * 1983-06-18 1984-12-20 Robert Bosch Gmbh, 7000 Stuttgart Device for controlling an inductive final control element, especially a carburetter

Also Published As

Publication number Publication date
EP0215828A1 (en) 1987-04-01
DE3508187C2 (en) 1988-11-10
DE3660225D1 (en) 1988-06-30
DE3508187A1 (en) 1986-09-11
WO1986005236A1 (en) 1986-09-12

Similar Documents

Publication Publication Date Title
DE4109233C2 (en)
DE2841569C2 (en)
DE4304517C2 (en) Power supply for predominantly inductive loads
EP0355333B1 (en) Operating process for a switch regulator
WO1986004752A1 (en) Direct voltage supplied circuit for generating voltages and/or currents with different curve form and/or different frequency and/or different polarity
DE3824526A1 (en) CIRCUIT ARRANGEMENT FOR CONTROLLING A PULSATING CURRENT
EP0215828B1 (en) Valve control circuit
DE10244522B4 (en) Control device for a magnetic coil
EP1050965A2 (en) Electrical circuit for driving a load
EP0901057A2 (en) Current regulation circuit
EP0965140B1 (en) Current-controlled output stage for electromagnetic actuators
DE2909283B2 (en) Control circuit for a solenoid pump
DE4008663C1 (en)
DE3310774C2 (en)
DE2427961B2 (en) Temperature control device
EP0653693A2 (en) Apparatus for controlling the voltage drop across an appliance
DE19711768A1 (en) Electromagnetic actuator
EP0581989B1 (en) Switching regulator with regulation of at least an output voltage
DE19740016C2 (en) Circuit arrangement and method for operating an excitation coil of an electromagnetically actuable, mechanical brake of an electric motor
DE2422535A1 (en) Async. generator excitation cct - has star-coupled excit windings broken at neutral point and bridge rectifier for smooth regulation
DE3730294C2 (en)
DE1513485C (en) Circuit arrangement for generating a regulated DC voltage
EP0193212B1 (en) Method for processing as a frequency submitted measured value
DE3126314A1 (en) Device for charging a battery which is located on a vehicle having a linear drive
DE2055473B2 (en) REGULATOR WITH SELF-ADJUSTING PARAMETERS IN POWER CONVERTER SYSTEMS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19861121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19870713

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 34601

Country of ref document: AT

Date of ref document: 19880615

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3660225

Country of ref document: DE

Date of ref document: 19880630

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: ROBERT BOSCH GMBH

Effective date: 19890223

NLR1 Nl: opposition has been filed with the epo

Opponent name: ROBERT BOSCH GMBH.

ITTA It: last paid annual fee
PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19910301

NLR2 Nl: decision of opposition
REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: FERNSTEUERGERAETE KURT OELSCH GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

NLS Nl: assignments of ep-patents

Owner name: FERNSTEUERGERAETE KURT OLESCH GMBH TE BERLIJN, BON

EAL Se: european patent in force in sweden

Ref document number: 86901387.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960205

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19960214

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960229

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960315

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970122

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970127

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970219

Ref country code: AT

Effective date: 19970219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19970228

Ref country code: CH

Effective date: 19970228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970219

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 86901387.0

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020429

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050219

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO