EP0207197B1 - Procédé pour la réfection ou la pose d'une voie de chemin de fer - Google Patents

Procédé pour la réfection ou la pose d'une voie de chemin de fer Download PDF

Info

Publication number
EP0207197B1
EP0207197B1 EP85201055A EP85201055A EP0207197B1 EP 0207197 B1 EP0207197 B1 EP 0207197B1 EP 85201055 A EP85201055 A EP 85201055A EP 85201055 A EP85201055 A EP 85201055A EP 0207197 B1 EP0207197 B1 EP 0207197B1
Authority
EP
European Patent Office
Prior art keywords
track
shifting
point
machine
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85201055A
Other languages
German (de)
English (en)
Other versions
EP0207197A1 (fr
Inventor
Fritz Bühler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LES FILS D'AUGUSTE SCHEUCHZER SA
Original Assignee
LES FILS D'AUGUSTE SCHEUCHZER SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP85201055A priority Critical patent/EP0207197B1/fr
Application filed by LES FILS D'AUGUSTE SCHEUCHZER SA filed Critical LES FILS D'AUGUSTE SCHEUCHZER SA
Priority to EP88108740A priority patent/EP0293015B1/fr
Priority to AT85201055T priority patent/ATE41796T1/de
Priority to DE8585201055T priority patent/DE3569137D1/de
Priority to US06/876,844 priority patent/US4724653A/en
Priority to ES556741A priority patent/ES8801010A1/es
Priority to AU59458/86A priority patent/AU580429B2/en
Priority to DD86292008A priority patent/DD248159A5/de
Priority to JP61154256A priority patent/JPS6286201A/ja
Publication of EP0207197A1 publication Critical patent/EP0207197A1/fr
Priority to AT88108740T priority patent/ATE68027T1/de
Application granted granted Critical
Publication of EP0207197B1 publication Critical patent/EP0207197B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes
    • E01B35/06Applications of measuring apparatus or devices for track-building purposes for measuring irregularities in longitudinal direction
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2203/00Devices for working the railway-superstructure
    • E01B2203/16Guiding or measuring means, e.g. for alignment, canting, stepwise propagation

Definitions

  • the invention relates to a method according to the preamble of claim 1.
  • a machine in the form of a tamper-grader-ripper by means of which this process can be carried out is known from European patent No. 90,098 of the applicant.
  • the transmitter which is constituted by a laser transmitter is designed so that its beam can be rotated on its axis to emit a fan or scanning beam in a vertical plane serving as a reference base for the shifting and a horizontal beam serving as a base. of reference for leveling.
  • the two receivers automatically adjust to the vertical and respectively horizontal beam.
  • This machine advances step by step, from sleepers to sleepers, and at each stop we proceed to leveling then, after having turned the laser transmitter by 90 °, to the shifting. It is also possible to level every two sleepers while the shifting is carried out at each intermediate sleeper.
  • the cord of a section of track which is, in the known machine, formed by a laser beam in a fan or scanning in a vertical plane.
  • This cord extends between the emitter which is on the director rail or axis of the track and the point of intersection of the beam with the director rail or axis of the track.
  • To perform the shift correction we measure the deflection of this rope, we compare it with the known deflection of the desired curve, and we calculate the difference which is a measure for the lateral displacement of the rails in one or the other. meaning.
  • the measurement interval for which the transmitter remains fixed while the machine approaches it step by step is identical to the rope, i.e. the initial measurement in a measurement interval begins at the point of intersection of the beam with the director rail or track axis.
  • This measurement interval corresponding to the rope is limited in length by the condition that the largest arrow must not be greater than the possibility of lateral movement of the receiver on the machine, because this receiver must adjust to the point of impact of the beam, the value of the possible lateral displacement out of the chassis of the machine being generally limited by the prohibition to enter the gauge of the parallel rail so as not to hinder traffic on this rail.
  • the present invention provides a method which makes it possible to widen the measurement interval, therefore the interval which can be crossed step by step by the machine without changing the place of the transmitter.
  • FIGS. 1 to 5 The operating principle of a machine making it possible to carry out the process according to the invention will firstly be described by means of FIGS. 1 to 5 for its application to the straight sections of the rails, with a view to explaining the shifting and leveling.
  • a machine is moreover described in patent EP No. 90,098.
  • a single laser transmitter 1 is therefore provided, placed in front of a leveling and ripping machine on a railway track, advancing along the arrow ( Fig. 1) and shown diagrammatically in the drawings by a main frame 2.
  • This emitter 1 is suitable for emitting a fan-shaped or directed-scanning beam either horizontally for leveling (beam Fn), and after a rotation of 90 ° or vertically for shifting (beam Fr), a leveling receiver Rn and a shifting receiver Rr being both mounted on the machine, i.e. - say on a front measuring carriage (not shown) of the machine.
  • Figure 1 showing a side view of the leveling control device is illustrated by line 3 the old way which must be corrected, the faults of this way were naturally very exaggerated for the understanding of the figure, in dotted lines is illustrated the portion of this old channel which has just been corrected, line 4 represents the new corrected channel and the line in phantom 4 'represents the desired channel which is defined by the axis of the laser which is adjusted, at the start of work, parallel to this desired path.
  • the device comprises a laser transmitter 1, emitting a horizontal beam Fn and which is mounted on a carriage 5 stationary in a fixed manner, at a location chosen on the old track 3, in front of the machine which is, in the case considered, a tamper-grader-ripper symbolized by the chassis 2 and which will be hereinafter simply designated by machine.
  • This machine is equipped with a known relative measurement base, formed by the points A, B, C on the track, which are defined in a known way, for example by feelers belonging to measuring carriages rolling on the tracks. independent of the bogies of the machine, and suspended below the main chassis 2 of the latter. Point C defined by the rear measuring carriage is on track 4 already corrected.
  • Point A the position of which in FIG.
  • Point 8 represents the working point which is therefore located near the working elements used to position the track and which are constituted, in the known manner, by shifting and leveling clamps.
  • point B has just been corrected, as point C is also corrected.
  • a laser receiver for leveling Rn which can be adjusted vertically with respect to the chassis of the carriage by means of an adjustment motor Mn.
  • a reference line Ln serves as a relative measurement base for leveling.
  • an element which carries the front end AL of this reference line Ln is fixed to the receiver Rn.
  • This end AL is located above point A.
  • this reference line Ln is assumed to be produced by a wire stretched over the measuring carriages. This wire is fixed at point CL situated at the height of point C and controls by its position in a well-known manner, via a control device, the position of the leveling clamps, at point BL, situated at the height of point B .
  • the laser receiver for leveling Rn like the laser receiver for shifting Rr which will be discussed below, consists of four photoelectric cells C1 to C4, shown in FIG. 3, and it is designed in such a way that it can be moved to the desired position by means of the adjustment motor Mn as a function of the line of impact of the horizontal laser beam Fn on the cells, the adjustment being carried out as soon as the beam is exactly between the two central cells C2 and C3.
  • this reference line Ln could be formed by any other mechanical means or not, for example a light ray, and the measuring carriages defining the points A and C are not necessarily located below the chassis 2 but can be found on small auxiliary carriages which would roll at a fixed distance at the front, respectively at the rear of the chassis 2.
  • FIG. 2 a top view of the shift control device working with a vertical laser beam Fr has been shown in a manner similar to FIG. 1.
  • the shift receiver Rr installed like the receiver Rn, on the carriage front measurement is adjustable relative to this carriage on a transverse guide according to the vertical beam Fr by means of a motor M.
  • a reference line Lr serves as a relative measurement base for the shifting and is, in the example considered and for the shifts carried out on the rectilinear channels linked to the receiver Rr.
  • the position of the reference line Lr already corrected is shown in FIG. 2 and in dashed lines the reference line L'r to l 'state not corrected.
  • position A of the reference point includes the two points AG on the left rail and AD on the right rail.
  • the reference line Lr has moved transversely from the gap y A and at the height of the point B of the gap y B , which defines the desired position By of the axis of the track which is displaced from the shift correction ⁇ Br by the controlled clamps.
  • the pliers for the correction of the horizontal and vertical planes at point B of the machine are actuated by positioning motors for leveling and shifting, controlled according to the deviations x B , respectively YB determined by the bases of relative measurements as shown in Figures 1 and 2.
  • the reference lines Ln and Lr forming the relative measurement base can also be arranged on the measurement carriages in a fixed manner and therefore independently of the receivers Rn and Rr, for example at the height of the central axis longitudinal of the front (point A) and rear (point C) measuring carriages or at the level of the guide rail.
  • the deviations x B respectively YB which determine the corrections of the channel are determined, from the deviations x A and y A , by the ratios XA / XB and y A / y e which depend only on the known distances ⁇ C and ⁇ B.
  • These deviations x A and y A are given by the position of the receivers Rn and Rr on the basis of measurement relative to point A.
  • FIG. 4 schematically represents a section of the track and of the front measuring carriage at the level of the leveling receivers Rn and of shifting Rr showing their relative position, and in this precise case it has been assumed that the shifting receiver Rr is located on the central axis of the track while the leveling receiver Rn is located on the director rail which is generally the lowest track in a curve.
  • FIG 5 there is shown simultaneously, in perspective, the two systems and we see the horizontal beam Fn and vertical Fr and the two leveling receivers Rn which can move vertically and shifting Rr which can move horizontally.
  • the laser transmitter 1 is located on the axis of the track.
  • Figure 6 shows the shifting system in a curved section of channel 3 before the correction and, in phantom, the theoretical curve 4 ', known, having the radius R and defining the position in which the channel 3 should be corrected.
  • FIG. 6 only the director rail of the track or the central axis of the track, and we have indicated only the point A of the relative measurement base A, B, C (FIG. 2 ) by designating points A o , A 1 , A 2 , A 3 , A 4 at the different measurement points where the machine stops.
  • the differences between track 3 and the theoretical curve 4 ' are of course largely exaggerated in FIG. 6.
  • the transmitter 1 placed on the track in front of the machine emits a vertical beam Fr which cuts the curve of the track and forms therefore a secant.
  • the rope was chosen as the measurement interval in which the machine moves step by step towards the transmitter without having to change the position of the latter, and the measurement initial was carried out at the intersection of the beam with the guide rail or track axis, in this way there were only the arrows of the rope located on the same side of the rail.
  • the maximum rope was of course limited by the condition that the maximum deflection did not exceed the possible travel of the receiver on the machine.
  • a larger measurement interval G ′ is chosen, which exceeds the chord beyond the point of intersection of the beam with the director rail or axis of the track, up to point A o which represents, in the example chosen, the place of initial measurement and correction.
  • the reference values of the arrows f o , fl, ... f4 (distance between the theoretical curve 4 ′ and the beam Fr) have been indicated, which are calculated by a calculator UC (FIG. 8), the values arrows fm o , fm l , ...
  • the machine with the shifting receiver Rr is therefore at point A o . More precisely, it is the front measuring carriage which is at point A o .
  • the machine follows the curve of track 3 and arrives successively after a distance traveled S1, S2, S3, S4 etc, at points A 1 ' A 2 , A 3 , A 4 etc, while the shift receiver Rr follows the vertical beam Fr of the laser and therefore always moves automatically on its carriage to the point of impact with the beam Fr. This position of the receiver each time determines the current value of the arrow fm 1 , fm 2 , etc.
  • the calculator UC calculates the setpoint value of the deflection in a known manner for the curves and all the connection curves, as a function of the geometric data, such as the radius R of the curve, the length G 'of the interval of chosen measurement, data for the variable radius of a connection curve which includes the length L of this curve, etc., and of the path traveled S, and compares it with the measured arrow, therefore the current value of this arrow. From the difference of the two values are calculated the corresponding deviations y 1 , y 2 etc.
  • the setpoint value of the arrow f 2 is zero, because the receiver is precisely at the point of intersection between the theoretical curve 4 'and the beam Fr.
  • the current value of the arrow fm 2 is equal to the deviation y z .
  • the arrow f B of the relative measurement base must also be taken into account, as illustrated diagrammatically in FIG. 7 for a working position of the machine.
  • the arrow f B is the distance between the theoretical curve and the reference line forming a chord of this curve.
  • the theoretical curve 4 "has been indicated with respect to the relative measurement base with the reference line L'r not yet corrected; the arrow f B shown therefore relates to this theoretical curve.
  • this arrow f B is always known; it is constant in a curve with constant radius, and variable in a connection curve and calculated by a UR computer ( Figure 8) as a function of the path traveled.
  • FIG. 7 and of FIG. 8 shows the block diagram of control and command in a curve.
  • the arrows calculator UC in the absolute measurement base is arranged to calculate the setpoint values of the arrows f at each working place and to generate at its output a signal corresponding to the difference y A at point A or y B at point B.
  • Radius R of the curve of the concerned track respectively the data for the variable radius of a curve connection
  • the initial deviation y o at the point A o measured in the track for example, with respect to a fixed mark or stake
  • the length of the interval G ' the length of the interval G '.
  • variable data are introduced: the path traveled S, measured by a unit of measurement UM; the current value of the deflection fm measured by the receiver Rr as well as the angle of superelevation measured in a known manner by a pendulum Pe.
  • the channels to be adjusted are always subject to slope faults and, therefore, it is essential to correct the difference y A , YB respectively, as a function of the superelevation at the measurement points. This is done using a Pe pendulum, installed on the relative measurement base.
  • a reference line Lr adjustable independently of the position of the receiver Rr transversely by a motor Mf (FIGS. 8 and 9).
  • the difference y A appears at point A corresponding to the difference fm - f o , corrected if necessary by a correction depending on the angle a.
  • This difference YA controls the motor Mf which moves the reference line Lr to point A of this difference y A.
  • the computer UR calculates the deflection f B of the relative measurement base from data S and R, respectively L and from the other data for the variable radius of a connection curve.
  • the calculator UR emits an output signal corresponding to this arrow f B which controls a second motor Mb (FIG. 8). This motor corrects the position of the abovementioned abutment with respect to the reference line Lr by a distance equal to f B , such that the abutment is now exactly on the theoretical curve 4 '.
  • the clamps which engage the rails are moved from the shift correction AB by a hydraulic drive engaged until the track is at the set position defined by the stop, therefore on the theoretical line 4 '.
  • the value AB is equal to the addition of the deviations y B and yf B , yf B representing the distance between the current position of the uncorrected channel 3 and the uncorrected reference line L'r.
  • the output signal YB of the computer UC can be introduced into the computer UR which directly calculates the total displacement y B + f B and gives a signal corresponding to the motor Mb.
  • the calculator UC it is also possible for the calculator UC to send a signal corresponding to the difference y A to the calculator UR which transforms it into a signal corresponding to the difference y B at point B. In this case, the calculator UC must not emit a signal y B.
  • the calculator UR gives a signal corresponding to f B to the calculator UC which emits a signal corresponding to the sum y B + f B as a control signal to the motor Mb.
  • the hydraulic drive of the grippers is therefore indirectly controlled by the UC and UR computers.
  • a position detector is provided which at all times determines the current position of the clamps and therefore of channel 3 and sends a signal relating thereto for the computer UR.
  • This UR computer calculates not only the arrow f B but also from this arrow f B and from the signal which represents the current position of channel 3, directly the difference yf B (FIG. 7).
  • the clamps are controlled directly by means of the output signal y B of the calculator UC and the output signal yf B of the calculator UR, or else from the signal corresponding to the sum y B + yf B of the UR computer without the need to use a stop or a movable reference element which determines the set position.
  • the block diagrams corresponding to this way of controlling the hydraulic drive of the grippers would correspond to Figures 8, 8a and 8b with the only modifications that the motor Mb shown would represent the hydraulic drive of the grippers and that the output signal corresponding to the arrow f should be replaced by the signal corresponding to the deviation yf B.
  • the unit EC shown in FIG. 8, 8a and 8b, which receives the signal y A , will be explained during the description of FIG. 10.
  • FIG. 9 illustrates a sectional view of the track and the front measuring carriage - seen from the front - at point A o (FIG. 6) and, in dashed lines, at point A 3 , and this before correction.
  • the shifting receiver Rr is moved to the front end of the relative measurement base on the support 6 of the carriage measurement, at a distance from the central axis La of the measuring device (therefore the central longitudinal axis of the measuring carriages) equal to the value of the current deflection fm o , for example by means of a screw, driven by the motor Mr.
  • the vertical beam Fr is centered at the receiver Rr.
  • the front point AL O of the reference line is moved on the support 7 of the measuring carriage by the motor Mf of the difference y, therefore of the difference fm o - f o in the center of the theoretical path 4 ' o .
  • the receiver Rr has moved on the support 6 by the value of the arrow measured fm 3 smaller than the theoretical arrow f 3 , making it possible to calculate the difference y 3 .
  • the front end AL 3 of the relative base is moved on the support 7 of the measuring carriage at the center of the theoretical track 4 ' 3 ,
  • the path of the receiver Rr has been shown on its support 6 during the measurements at points A o and A 4 .
  • the maximum width that the transverse support 6 can occupy is generally 3 meters.
  • the invention is, of course, not limited to the embodiments described and many other variants could be envisaged.
  • the fact that the measurement interval G 'can be chosen to be wider than hitherto also means that the distances between the fixed marks or stakes installed along the track and defining the theoretical route can be greater and therefore that the number of these benchmarks is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Machines For Laying And Maintaining Railways (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Valve Device For Special Equipments (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

  • L'invention se rapporte à un procédé selon le préambule de la revendication 1.
  • Une machine sous la forme d'une bourreuse-niveleuse-ripeuse au moyen de laquelle ce procédé peut être effectué est connue du brevet européen No 90 098 de la demanderesse. L'émetteur qui est constitué par un émetteur laser est conçu pour que son faisceau puisse être tourné sur son axe pour émettre un faisceau en éventail ou à balayage dans un plan vertical servant de base de référence pour le ripage et un faisceau horizontal servant de base de référence pour le nivellement. Les deux récepteurs s'ajustent automatiquement sur le faisceau vertical, respectivement horizontal. Cette machine avance pas à pas, de traverses en traverses, et à chaque arrêt on procède au nivellement puis, après avoir tourné de 90° l'émetteur laser, au ripage. Il est aussi possible de procéder au nivellement toutes les deux traverses tandis que le ripage est effectué à chaque traverse intermédiaire.
  • Dans les courbes, il est connu d'utiliser comme ligne de référence absolue la corde d'une section de voie qui est, dans la machine connue, formée par un faisceau laser en éventail ou à balayage dans un plan vertical. Cette corde s'étend entre l'émetteur qui se trouve sur le rail directeur ou axe de la voie et le point d'intersection du faisceau avec le rail directeur ou axe de la voie. Pour effectuer la correction de ripage, on mesure la flèche de cette corde, on la compare avec la flèche connue de la courbe voulue, et l'on calcule la différence qui est une mesure pour le déplacement latéral des rails dans un ou l'autre sens.
  • Jusqu'ici, l'intervalle de mesure pour lequel l'émetteur reste fixe tandis que la machine s'approche de lui pas à pas, est identique à la corde, c'est à dire que la mesure initiale dans un intervalle de mesure commence au point d'intersection du faisceau avec le rail directeur ou axe de la voie. Cet intervalle de mesure correspondant à la corde est limité en longueur par la condition que la plus grande flèche ne doit pas être supérieure à la possibilité de déplacement latéral du récepteur sur la machine, car ce récepteur doit s'ajuster au point d'impact du faisceau, la valeur du déplacement latéral possible hors du châssis de la machine étant en général limitée par l'interdiction de pénétrer dans le gabarit du rail parallèle pour ne pas gêner le trafic sur ce rail.
  • A cause de ces conditions, dans les courbes, on est obligé de choisir des intervalles de mesure relativement courts, donc de déplacer fréquemment l'émetteur laser pour définir l'intervalle de mesure suivant, ce qui entraîne des pertes de temps, augmente le nombre des manipulations et diminue le rendement des opérations de ripage.
  • La présente invention propose un procédé qui permet d'élargir l'intervalle de mesure, donc l'intervalle qui peut être traversé pas à pas par la machine sans changer la place de l'émetteur.
  • A cet effet le procédé selon l'invention est caractérisé par les caractéristiques de la revendication 1.
  • Des formes d'exécution préférées sont décrites dans les revendications 2, 3 et 4.
  • Dans ce qui suit, l'invention est exposée plus en détail à l'aide des dessins représentant, schématiquement, un mode d'éxécution du dispositif et des détails préférés du dispositif.
    • La figure 1 représente, schématiquement en vue latérale, l'émetteur laser avec le récepteur pour le nivellement et, en traits mixtes, le faisceau horizontal, et en pointillés le faisceau vertical.
    • La figure 2 représente la même vue que la figure 1, mais en plan, avec le récepteur pour le ripage, le faisceau vertical étant dessiné en traits mixtes tandis que le faisceau horizontal est dessiné en pointillés.
    • La figure 3 représente, schématiquement, le récepteur laser soit pour le ripage, soit pour le nivellement avec le faisceau laser ajusté.
    • La figure 4 représente, schématiquement, une vue transversale de la voie avec les récepteurs de nivellement et de ripage.
    • La figure 5 est une vue schématique en perspective illustrant le principe du dispositif avec les deux faisceaux et les deux récepteurs.
    • La figure 6 représente, schématiquement, une vue de dessus, sur une section courbée de la voie, dont l'écart par rapport de la courbe théorique indiquée en traits mixtes a été exagéré pour une meilleure compréhension, et sur laquelle on a représenté plusieurs points de mesure pour illustrer le ripage.
    • La figure 7 représente une vue partielle agrandie de la section courbée de la voie, selon la figure 6, à un endroit de travail.
    • Les figures 8, 8a, 8b représentent des schéma-blocs du dispositif pour trois différentes méthodes de commande des corrections de voie.
    • La figure 9 représente, schématiquement, une coupe transversale de la voie au niveau du récepteur pour le ripage, montrant le système de calcul de flèche, et au dessous, le trajet parcouru par ce récepteur sur son support pendant les mesures aux différents points de mesure.
  • Le principe de fonctionnement d'une machine permettant de réaliser le procédé selon l'invention sera tout d'abord décrit au moyen des figures 1 à 5 pour son application aux sections droites des rails, en vue d'expliquer les procédés de ripage et de nivellement. Une telle machine est d'ailleurs décrite dans le brevet EP No 90 098. Selon ce principe, il est donc prévu un seul émetteur laser 1, placé devant une machine à niveler et riper une voie de chemin de fer, avançant selon la flèche (fig. 1) et schématisée sur les dessins par un châssis principal 2. Cet émetteur 1 est adapté pour émettre un faisceau en éventail ou à balayage dirigé soit horizontalement pour le nivellement (faisceau Fn), et après une rotation de 90° soit verticalement pour le ripage (faisceau Fr), un récepteur de nivellement Rn et un récepteur de ripage Rr étant montes tous deux sur la machine, c'est-à-dire sur un chariot de mesure avant (non représenté) de la machine.
  • Sur la figure 1 montrant une vue latérale du dispositif de commande du nivellement on a illustré par la ligne 3 l'ancienne voie qui doit être corrigée, les défauts de cette voie ont été naturellement très exagérés pour la compréhension de la figure, en traits pointillés est illustrée la portion de cette ancienne voie qui vient d'être corrigée, la ligne 4 représente la nouvelle voie corrigée et la ligne en traits mixtes 4' représente la voie désirée qui est définie par l'axe du laser lequel est ajusté, en début de travail, parallèlement à cette voie désirée.
  • Le dispositif comprend un émetteur laser 1, émettant un faisceau horizontal Fn et qui est monté sur un chariot 5 stationné d'une manière fixe, à un emplacement choisi sur l'ancienne voie 3, en avant de la machine laquelle est, dans le cas considéré, une bourreuse-niveleuse-ripeuse symbolisée par le châssis 2 et qui sera ci-après simplement désignée par machine. Cette machine est équipée d'une base de mesure relative connue, formée par les points A, B, C sur la voie, lesquels sont définis d'une manière connue, par exemple par des palpeurs appartenant à des chariots de mesure roulant sur les voies indépendants des boggies de la machine, et suspendus au-dessous du châssis principal 2 de celle-ci. Le point C défini par le chariot de mesure arrière se trouve sur la voie 4 déjà corrigée. Le point A dont la position sur la figure 1 a été exagérée, se trouve sur la voie pas encore corrigée, c'est pourquoi le châssis 2 est incliné vers l'avant. Le point 8 représente le point de travail qui est donc situé à proximité des éléments de travail servant à positionner la voie et qui sont constitués, de la manière connue, par des pinces de ripage et de nivellement. Sur la figure 1, le point B vient juste d'être corrigé, comme le point C est également corrigé.
  • A la hauteur du point A se trouve, monté sur le chariot de mesure avant, un récepteur laser pour le nivellement Rn qui peut être ajusté dans le sens vertical par rapport au châssis du chariot au moyen d'un moteur d'ajustage Mn. Une ligne de référence Ln sert comme base de mesure relative pour le nivellement. Dans l'exemple considéré, un élément qui porte l'extrémité antérieure AL de cette ligne de référence Ln est fixé au récepteur Rn. Cette extrémité AL se trouve au-dessus du point A. Dans le cas présent, cette ligne de référence Ln est supposée être réalisée par un fil tendu sur les chariots de mesure. Ce fil est fixe au point CL situé à la hauteur du point C et commande par sa position d'une manière bien connue, via un dispositif de commande, la position des pinces de nivellement, au point BL, situé à la hauteur du point B.
  • Le récepteur laser pour le nivellement Rn, comme le récepteur laser pour le ripage Rr dont il sera question ci-après, est constitué par quatre cellules photoélectriques C1 à C4, représentées sur la figure 3, et il est conçu de telle manière qu'il peut être déplacé dans la position voulue au moyen du moteur d'ajustage Mn en fonction de la ligne d'impact du faisceau laser horizontal Fn sur les cellules, l'ajustement étant réalisé dès que le faisceau se trouve exactement entre les deux cellules centrales C2 et C3.
  • Dans le cas représenté sur la figure 1, l'ajustage a déjà été effectué de telle manière que la ligne de référence Ln qui avait, avant correction, la position représentée par la ligne L'n a maintenant la position correcte parallèle à l'axe du laser. Cela signifie que le point AL s'est déplacé verticalement vers le haut de l'écart xA, qui correspond à la hauteur dont la voie devrait être soulevée au point A, et que le point BL a été corrigé verticalement de l'écart xB, ce qui définit au point de travail le point Bx situé exactement sur la ligne théorique 4' et sur lequel la voie 3 a été soulevée de la correction de nivellement ABn par les pinces, BC représente donc le tronçon de la voie corrigée tandis que AB représente le tronçon non corrigé.
  • Bien entendu, cette ligne de référence Ln pourrait être formée par n'importe quel autre moyen mécanique ou non, par exemple un rayon lumineux, et les chariots de mesure définissant les points A et C ne se trouvent pas obligatoirement au-dessous du châssis 2 mais peuvent se trouver sur des petits chariots auxiliaires qui rouleraient à une distance fixe à l'avant, respectivement à l'arrière du châssis 2.
  • Sur la figure 2 on a montré d'une manière analogue à la figure 1 une vue de dessus du dispositif de commande du ripage travaillant avec un faisceau laser vertical Fr. Le récepteur de ripage Rr, installé comme le récepteur Rn, sur le chariot de mesure avant est ajustable par rapport à ce chariot sur un guide transversal en fonction du faisceau vertical Fr par l'intermédiaire d'un moteur Mr. Une ligne de référence Lr sert de base de mesure relative pour le ripage et est, dans l'exemple considéré et pour les ripages effectués sur les voies rectilignes liée au récepteur Rr. On a indiqué sur la figure 2, en ligne continue, la position de la ligne de référence Lr déjà corrigée et en traits pointillés la ligne de référence L'r à l'état non corrigé. Dans cette vue, la position A du point de référence comprend les deux points AG sur le rail gauche et AD sur le rail droit. A la hauteur de ces points AG, AD, la ligne de référence Lr s'est déplacée transversalement de l'écart yA et à la hauteur du point B de l'écart yB, ce qui définit la position voulue By de l'axe de la voie qui est déplacée de la correction de ripage ΔBr par les pinces commandées.
  • Les pinces pour les corrections de la coie aux plans horizontal et vertical au point B de la machine, sont actionnées par des moteurs de postitionnement pour le nivellement et le ripage, commandés en fonction des écarts xB, respectivement YB déterminés par les bases de mesures relatives comme indiqué dans les figures 1 et 2.
  • Selon une variante, les lignes de référence Ln et Lr formant la base de mesure relative peuvent aussi être disposées sur les chariots de mesure d'une manière fixe et donc indépendamment des récepteurs Rn et Rr, par exemple à la hauteur de l'axe central longitudial des chariots de mesure avant (point A) et arrière (point C) ou à la hauteur du rail directeur. Dans ce cas, les écarts xB, respectivement YB qui déterminent les corrections de la voie sont déterminés, à partir des écarts xA et yA, par les rapports XA/XB et yA/ye qui ne dépendent que des distances connues ÂC et ÂB. Ces écarts xA et yA sont donnés par la position des récepteurs Rn et Rr sur la base de mesure relative au point A.
  • La figure 4 représente schématiquement une section de la voie et du chariot de mesure avant au niveau des récepteurs de nivellement Rn et de ripage Rr montrant leur position relative, et dans ce cas précis on a supposé que le récepteur de ripage Rr se trouve situé sur l'axe central de la voie tandis que le récepteur de nivellement Rn se trouve sur le rail directeur qui est généralement la voie la plus basse dans une courbe.
  • Sur la figure 5 on a représenté simultanément, en perspective, les deux systèmes et l'on voit le faisceau horizontal Fn et vertical Fr ainsi que les deux récepteurs de nivellement Rn qui peut se déplacer verticalement et de ripage Rr qui peut se déplacer horizontalement. L'émetteur laser 1 se trouve sur l'axe de la voie.
  • La figure 6 montre le système de ripage dans une section courbée de la voie 3 avant la correction et, en traits mixtes, la courbe théorique 4', connue, ayant le rayon R et définissant la position dans laquelle la voie 3 devrait être corrigée. Pour des raisons de simplification on a montré figure 6 seulement le rail directeur de la voie ou l'axe central de la voie, et l'on a indique seulement le point A de la base de mesure relative A, B, C (figure 2) en désignant les points Ao, A1, A2, A3, A4 aux différents points de mesure où la machine s'arrête. Les écarts entre la voie 3 et la courbe théorique 4' sont bien sûr largement exagérés sur la figure 6. L'émetteur 1 placé sur la voie au devant de la machine, émet un faisceau vertical Fr qui sectionne la courbe de la voie et forme donc une sécante.
  • Jusqu'ici, selon le procédé conventionnel, pour le ripage dans une courbe on choisissait la corde comme intervalle de mesure dans lequel la machine se déplace pas à pas vers l'émetteur sans avoir à changer la position de celui-ci, et la mesure initiale était effectuée à l'intersection du faisceau avec le rail directeur ou axe de la voie, de cette façon il y avait seulement les flèches de la corde situées sur le même côté du rail. La corde maximale était bien entendu limitée par la condition que la flèche maximale ne dépasse pas la course possible du récepteur sur la machine.
  • Selon l'invention, on choisit, comme illustré figure 6, un intervalle de mesure G' plus grand, qui dépasse la corde au delà du point d'intersection du faisceau avec le rail directeur ou axe de la voie, jusqu'au point Ao qui représente, dans l'exemple choisi, l'endroit de mesure et correction initiales. Sur la figure 6 on a indiqué les valeurs de consigne des flèches fo, fl,...f4 (distance entre la courbe théorique 4' et le faisceau Fr), qui sont calculées par un calculateur UC (figure 8), les valeurs actuelles des flèches fmo, fml,...fm4' (distance entre le rail directeur ou axe de la voie actuelle et Fr) qui sont mesurées, ainsi que les écarts yo, y1, ... y4, définis par les différences fmo - fo = yo, fml - fI = y1 etc.
  • L'intervalle de mesure maximum G' doit bien entendu être choisi de telle manière que la somme des flèches maximum gauche et droite qui sont, dans l'exemple considéré, les flèches fmo + fm4, soit compatible avec la course du récepteur Rr qui s'ajuste toujours au faisceau Fr.
  • Dans la pratique, si l'on se trouve sur un tronçon de voie ne présentant pas trop de courbures, on peut positionner au départ le chariot 5 portant l'émetteur laser 1 à une distance d'environ 350 à 400 mètres de la machine, donc plus grande que jusqu'ici, et une fois que celle-ci s'est avancée en cours de travail trop près de l'émetteur, on redéplace de nouveau le chariot 5 d'une distance d'environ 350 à 400 mètres de la machine.
  • Au début du travail, dans l'intervalle de mesure G', la machine avec le récepteur de ripage Rr se trouve donc au point Ao. Plus exactement, c'est le chariot de mesure avant qui se trouve au point Ao. Dans cette position initiale, ou bien la valeur actuelle de la flèche fmo et donc l'écart fmo - fo = yo sont connues de la dernière mesure dans l'intervalle de mesure précédent et peuvent servir pour ajuster le faisceau Fr du laser; ou bien, si la réfection commence, l'écart yo est mesuré directement comme différence de la position actuelle de la voie et sa position voulue, définie, par exemple par un repère ou piquet fixe.
  • Pendant le travail, la machine suit la courbe de la voie 3 et arrive successivement après une distance parcourue S1, S2, S3, S4 etc, aux points A1' A2, A3, A4 etc, tandis que le récepteur de ripage Rr suit le faisceau vertical Fr du laser et se déplace donc toujours automatiquement sur son chariot jusqu'au point d'impact avec le faisceau Fr. Cette position du récepteur détermine chaque fois la valeur actuelle de la flèche fm1, fm2, etc.
  • Au fur et à mesure de l'avance de la machine, à chaque point de mesure A1, A2, etc, la valeur de consigne de la flèche fl, f2, etc qui correspond à la courbe théorique 4' est calculée. Pour cela on utilise, comme cela est encore expliqué en relation avec la figure 8, un calculateur de flèche UC et une unité de mesure du chemin parcouru UM. Le calculateur UC calcule la valeur de consigne de la flèche d'une manière connue pour les courbes et toutes les courbes de raccordement, en fonction des données géométriques, comme du rayon R de la courbe, de la longueur G' de l'intervalle de mesure choisi, des données pour le rayon variable d'une courbe de raccordement qui comprennent la longueur L de cette courbe, etc, et du chemin parcouru S, et la compare avec la flèche mesurée, donc la valeur actuelle de cette flèche. A partir de la différence des deux valeurs sont calculés les écarts correspondants y1, y2 etc.
  • Bien sûr, si la différence fm - f donne un écart y positif, le déplacement des rails a lieu en direction du faisceau Fr, comme c'est le cas aux points Ao, A1 A2, A4. Si l'écart y est négatif, les rails sont déplacés dans l'autre direction, comme c'est le cas au point A3.
  • Au point A2, dans l'exemple représenté figure 6, la valeur de consigne de la flèche f2 est nulle, car le récepteur se trouve justement au point d'intersection entre la courbe théorique 4' et le faisceau Fr. La valeur actuelle de la flèche fm2 est égale à l'écart yz.
  • Pour effectuer le ripage dans une courbe il faut encore tenir compte de la flèche fB de la base de mesure relative, comme cela est illustré schématiquement sur la figure 7 pour une position de travail de la machine. On a indiqué la base de mesure relative avec le point A (sur la voie 3 non corrigée), le point B de travail et le point C (sur la voie 4 corrigée), la ligne de référence L'r avant et Lr après la correction, le récepteur Rr centré sur le faisceau Fr, ce qui détermine la flèche actuelle fm de la base de mesure absolue, ainsi que la différence fm - f = - yA (f est la valeur de consigne de la flèche). La flèche fB est la distance entre la courbe théorique et la ligne de référence formant une corde de cette courbe. Sur la figure 7 on a indiqué la courbe théorique 4" par rapport à la base de mesure relative avec la ligne de référence L'r pas encore corrigée; la flèche fB montrée se rapporte donc à cette courbe théorique.
  • La valeur de cette flèche fB est toujours connue; elle est constante dans une courbe à rayon constant, et variable dans une courbe de raccordement et calculée par un calculateur UR (figure 8) en fonction du chemin parcouru.
  • La procédure de correction de ripage est décrite en détail au moyen de la figure 7 et de la figure 8 qui montre le schéma-bloc de contrôle et de commande dans une courbe.
  • Le calculateur UC des flèches dans la base de mesure absolue est disposé pour calculer à chaque endroit de travail les valeurs de consigne des flèches f et pour créer à sa sortie un signal correspondant à l'écart yA au point A ou yB au point B. Pour cela, on introduit tout d'abord, avant le commencement des travaux dans un intervalle de mesure G', les données suivantes: Rayon R de la courbe de la voie concernée, respectivement les données pour le rayon variable d'une courbe de raccordement; l'écart initial yo au point Ao mesuré dans la voie, par exemple, par rapport à un repère ou piquet fixe, et la longueur de l'intervalle G'.
  • Au cours de l'avance de la machine, les données variables sont introduites: le chemin parcouru S, mesuré par une unité de mesure UM; la valeur actuelle de la flèche fm mesurée par le récepteur Rr ainsi que l'angle a de dévers mesuré d'une manière connue par un pendule Pe. En effet, les voies à régler sont toujours soumises à des défauts de devers et, de ce fait, il est indispensable de corriger l'écart yA, respectivement YB, en fonction du dévers aux points de mesure. Ceci est effectué à l'aide d'un pendule Pe, installé sur la base de mesure relative.
  • Pour effectuer un ripage correct au point B on a deux méthodes principales en utilisant une ligne de référence Lr soit déplaçable, soit immobile, sur la machine.
  • Selon la première méthode, on prévoit, comme illustré figure 7, une ligne de référence Lr ajustable indépendamment de la position du récepteur Rr transversalement par un moteur Mf (figures 8 et 9). Dans ce cas à la sortie du calculateur UC apparait l'écart yA au point A correspondant à la différence fm - fo, corrigée le cas échéant d'un correctif dépendant de l'angle a. Cet écart YA commande le moteur Mf qui déplace la ligne de référence Lr au point A de cet écart yA. Cela correspond à un écart yB au point de travail B, où une butée, ou un élément de référence, est déplacée avec la ligne de référence Lr définissant la position voulue ou position de consigne des pinces qui corrigent les rails.
  • En outre, le calculateur UR calcule la flèche fB de la base de mesure relative à partir des données S et R, respectivement L et des autres données pour le rayon variable d'une courbe de raccordement. Le calculateur UR émet un signal de sortie correspondant à cette flèche fB qui commande un deuxième moteur Mb (figure 8). Ce moteur corrige la position de la butée mentionnée par rapport à la ligne de référence Lr d'une distance égale à fB, telle que la butée se trouve maintenant exactement sur la courbe théorique 4'.
  • Maintenant les pinces qui engagent les rails sont déplacées de la correction de ripage AB par un entraînement hydraulique enclenché jusqu'à ce que la voie se trouve à la position de consigne définie par la butée, donc sur la ligne théorique 4'. Comme montré figure 7 la valeur AB est égale à l'addition des écarts yB et yfB, yfB représentant la distance entre la position actuelle de la voie non corrigée 3 et la ligne de référence non corrigée L'r.
  • Selon l'autre méthode de ripage (figure 8a), on travaille avec une ligne de référence Lr immobile, le moteur Mf est supprimé, et le calculateur UC calcule l'écart yB au point B et envoie un signal de sortie correspondant à cet écart yB au moteur Mb lequel reçoit en outre le signal correspondant à la flèche fB calculée par le calculateur UR. Ce moteur Mb est donc commandé par les deux signaux yB et fB et fait déplacer la butée de cette distance yB et fB dans la position de consigne.
  • Comme variante, (figure 8b), le signal de sortie YB du calculateur UC peut être introduit dans le calculateur UR qui calcule directement le déplacement total yB + fB et donne un signal correspondant au moteur Mb.
  • Selon une autre variante, il est aussi possible que le calculateur UC envoie un signal correspondant à l'écart yA au calculateur UR qui le transforme en un signal correspondant à l'écart yB au point B. Dans ce cas, le calculateur UC ne doit pas émettre un signal yB.
  • Comme alternative, le calculateur UR donne un signal correspondant à fB au calculateur UC qui émet un signal correspondant à la somme yB + fB comme signal de commande au moteur Mb.
  • Dans tous les cas décrits auparavant, pour effectuer le ripage, l'entraînement hydraulique des pinces qui saisissent les rails est commandé par un signal correspondant à la correction de ripage ΔB = yB + yfB (figure 7) pour que les rails soient ripés dans la position de consigne qui est définie par la butée ou l'élément de référence dans la base de mesure relative. L'entraînement hydraulique des pinces est donc commandé indirectement par les calculateurs UC et UR.
  • Alternativement, on peut procéder aussi de la manière suivante: on prévoit un détecteur de position qui détermine à chaque instant la position actuelle des pinces et donc de la voie 3 et émet un signal y relatif pour le calculateur UR. Ce calculateur UR calcule non seulement la flèche fB mais aussi à partir de cette flèche fB et à partir du signal qui représente la position actuelle de la voie 3, directement l'écart yfB (figure 7). Dans ce cas, en renonçant au moteur Mb, les pinces sont commandées directement au moyen du signal de sortie yB du calculateur UC et du signal de sortie yfB du calculateur UR, ou bien à partir du signal correspondant à la somme yB + yfB du calculateur UR sans qu'il soit nécessaire d'utiliser une butée ou un élément de référence déplaçable qui détermine la position de consigne. Les schéma-blocs correspondant à cette manière de commander l'entraînement hydraulique des pinces correspondraient aux figures 8, 8a et 8b avec les seules modifications que le moteur Mb montré représenterait l'entraînement hydraulique des pinces et que le signal de sortie correspondant à la flèche f devrait être remplacé par le signal correspondant à l'écart yfB.
  • L'unité EC montrée figure 8, 8a et 8b, qui reçoit le signal yA, sera expliquée lors de la description de la figure 10.
  • Sur la figure 9 est illustrée une vue en coupe de la voie et du chariot de mesure avant - vu de l'avant - au niveau du point Ao (figure 6) et, en traits mixtes, au niveau du point A3, et ceci avant la correction. Au point Ao de départ pour le ripage d'un secteur de voie, dans l'intervalle de mesure G', le récepteur de ripage Rr est déplacé à l'extrémité avant de la base de mesure relative sur le support 6 du chariot de mesure, à une distance de l'axe central La du dispositif de mesure (donc l'axe longitudinal central des chariots de mesure) égale à la valeur de la flèche actuelle fmo, par exemple au moyen d'une vis, entraînée par le moteur Mr. Le faisceau vertical Fr est centré au récepteur Rr. Le point avant ALO de la ligne de référence est déplacé sur le support 7 du chariot de mesure par le moteur Mf de l'écart y, donc de la différence fmo - fo au centre de la voie théorique 4'o.
  • Au point de mesure A, le récepteur Rr s'est déplacé sur le support 6 de la valeur de la flèche mesurée fm3 plus petite que la flèche théorique f3, permettant de calculer l'écart y3. Dans ce cas, l'extrémité avant AL3 de la base relative est déplacée sur le support 7 du chariot de mesure au centre de la voie théorique 4'3,
  • En dessous de la figure 9 on a représenté le trajet du récepteur Rr sur son support 6 lors des mesures aux points Ao et A4. En principe, la largeur maximale que peut occuper le support transversal 6 est généralement de 3 mètres.
  • L'invention n'est, bien entendu, pas limitée aux formes d'exécution décrites et de nombreuses autres variantes pourraient être envisagées. Le fait que l'intervalle de mesure G' puisse être choisi plus large que jusqu'ici signifie aussi que les distances entre les repères ou piquets fixes installés le long de la voie et définissant le tracé théorique peuvent être plus grandes et donc que le nombre de ces repères est réduit.

Claims (4)

1. Procédé pour la réfection ou la pose d'une voie de chemin de fer en utilisant une machine (2) à niveler et riper, et d'une part un système d'émetteur (1) de rayons électromagnétiques, en particulier des rayons laser, installé sur un chariot (5) stationné sur la voie (3) ou le tracé devant la machine (2), et conçu pour émettre un premier faisceau en éventail ou à balayage (Fn) dans un plan horizontal pour le nivellement et un deuxième faisceau en éventail ou à balayage (Fr) dans un plan vertical pour le ripage, d'autre part, installés sur un chariot de mesure de la machine (2), deux récepteurs (Rn, Rr) pour le faisceau horizontal (Fn) et pour le faisceau vertical (Fr), ces récepteurs (Rn, Rr) étant conçus pour qu'ils se centrent automatiquement à chaque mesure à la ligne d'impact de l'un ou l'autre desdits faisceaux, dans une courbe de la voie le faisceau vertical (Fr) définit une corde (G) de cette courbe, la position ajustée du récepteur (Rr) pour le ripage définissant la valeur actuelle de la flèche (fm1' fm2...) de la courbe, un calculateur (UC) calculant à chaque point de mesure (A" A2...), dans un intervalle de mesure donné, la valeur de consigne de la flèche (f" f2...) ainsi que l'écart (Y1, y2...) des deux valeurs, cet écart déterminant la correction de ripage (AB) à effectuer, caractérisé par le fait que l'intervalle de mesure (G') qui est parcouru par la machine (2) sans changement de la position de l'émetteur (1) est choisi plus grand que ladite corde (G) et que le point de mesure initiale (Ao) est choisi sur la sécante passant par ladite corde au delà du point d'intersection dudit faisceau (Fr) et de la voie (3) à une distance du point d'intersection, cet intervalle étant choisi tel que la somme des flèches maximum vers l'un et l'autre côté est compatible avec la course du récepteur (Rr) sur son chariot de mesure.
2. Procédé selon la revendication 1, en utilisant avec la machine une ligne de référence (Lr) d'une base de mesure relative (A, B, C) qui s'ajuste automatiquement en fonction dudit écart (yA) au point avant de ladite base de mesure relative, écart calculé par ledit calculateur (UC), caractérisé par le fait que le ripage de la voie est commandé d'une part en fonction de la position ajustée de cette ligne de référence (Lr) au point de travail (B) et d'autre part en fonction de la valeur de la flèche (fB) de la base de mesure relative calculée par un deuxième calculateur (UR).
3. Procédé selon la revendication 1, en utilisant avec la machine une ligne de référence (Lr) d'une base de mesure relative (A, B, C), caractérisé par le fait que ladite ligne de référence reste immobile sur la machine et que le ripage de la voie est commandé d'une part en fonction de l'écart (yB) entre la position actuelle de la ligne de référence (Lr) au point de travail (B) et la position de consigne, cet écart (ye) étant déterminé à partir dudit écart (yA) calculé par ledit calculateur (UC), et d'autre part en fonction de la flèche (fB) de la base de mesure relative calculée par un autre calculateur (UR).
4. Procédé selon la revendication 3, en utilisant dans la base de mesure relative (A, B, C) une butée déplaçable et définissant la position de consigne de la voie à corriger, caractérisé par le fait que ladite butée est actionnée par un moteur (Mb) et que ce moteur (Mb) est commandé par les deux signaux correspondants à yB et à fB ou par un seul signal correspondant à la somme yB + fB calculée dans l'un des calculateurs (UR ou UC).
EP85201055A 1985-07-02 1985-07-02 Procédé pour la réfection ou la pose d'une voie de chemin de fer Expired EP0207197B1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP88108740A EP0293015B1 (fr) 1985-07-02 1985-07-02 Dispositif pour la commande d'une machine à niveler et riper une voie de chemin de fer
AT85201055T ATE41796T1 (de) 1985-07-02 1985-07-02 Verfahren zur instandsetzung oder verlegung eines eisenbahngleises.
DE8585201055T DE3569137D1 (en) 1985-07-02 1985-07-02 Method for the renewing or laying of a railway track
EP85201055A EP0207197B1 (fr) 1985-07-02 1985-07-02 Procédé pour la réfection ou la pose d'une voie de chemin de fer
US06/876,844 US4724653A (en) 1985-07-02 1986-06-20 Process for repairing or laying a railroad track
ES556741A ES8801010A1 (es) 1985-07-02 1986-06-25 Procedimiento para la nivelacion y ripado de una via de ferrocarril.
AU59458/86A AU580429B2 (en) 1985-07-02 1986-07-01 Process for repairing or laying a railroad track
DD86292008A DD248159A5 (de) 1985-07-02 1986-07-01 Verfahren und vorrichtung zur instandsetzung oder verlegung eines eisenbahngleises
JP61154256A JPS6286201A (ja) 1985-07-02 1986-07-02 鉄道の軌道を修理又は敷設する方法並びに装置
AT88108740T ATE68027T1 (de) 1985-07-02 1988-06-01 Steuervorrichtung fuer eine eisenbahngleisnivellier- und -richtmaschine.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP85201055A EP0207197B1 (fr) 1985-07-02 1985-07-02 Procédé pour la réfection ou la pose d'une voie de chemin de fer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP88108740.7 Division-Into 1988-06-01

Publications (2)

Publication Number Publication Date
EP0207197A1 EP0207197A1 (fr) 1987-01-07
EP0207197B1 true EP0207197B1 (fr) 1989-03-29

Family

ID=8194040

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85201055A Expired EP0207197B1 (fr) 1985-07-02 1985-07-02 Procédé pour la réfection ou la pose d'une voie de chemin de fer

Country Status (8)

Country Link
US (1) US4724653A (fr)
EP (1) EP0207197B1 (fr)
JP (1) JPS6286201A (fr)
AT (1) ATE41796T1 (fr)
AU (1) AU580429B2 (fr)
DD (1) DD248159A5 (fr)
DE (1) DE3569137D1 (fr)
ES (1) ES8801010A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI80790C (fi) * 1988-02-22 1990-07-10 Matti Henttinen Foerfarande och anordning foer bestaemning av ett spaors laege.
US5012413A (en) * 1988-07-27 1991-04-30 Pandrol Jackson, Inc. Railroad track curve lining apparatus and method
JP2873010B2 (ja) * 1988-11-09 1999-03-24 株式会社熊谷組 直線レールの整列方法及び装置
US5930904A (en) * 1997-06-17 1999-08-03 Mualem; Charles Catenary system measurement apparatus and method
US7350467B2 (en) * 2004-08-20 2008-04-01 Loram Maintenance Of Way, Inc. Long rail pick-up and delivery system
CN101113898B (zh) * 2007-07-24 2011-03-30 济南蓝动激光技术有限公司 铁路钢轨正矢测量仪
GB0717403D0 (en) * 2007-09-07 2007-10-24 Jarvis Plc Track adjustment
ES2364635B8 (es) * 2011-03-24 2015-01-08 Tecsa Empresa Constructora, S.A Máquina automática de nivelación y alineación de vía ferroviaria en placa, previas al hormigonado.
CN104176090B (zh) * 2013-05-21 2017-02-15 中国铁建高新装备股份有限公司 基于激光开关的轨道检测仪
US10345099B2 (en) * 2015-03-18 2019-07-09 Focus Point Solutions Reference system for track alignment machines
FR3035127B1 (fr) * 2015-04-16 2017-04-28 Synthaxes Ingenierie & Projets Procede de determination de ripages d'un rail d'une voie ferree
US10407835B2 (en) * 2015-07-24 2019-09-10 Focus Point Solutions Projector for track alignment reference systems
FR3047814B1 (fr) * 2016-02-12 2019-07-26 Leyfa Measurement Procede de determination de ripages d'un rail d'une voie ferree en domaine absolu

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT287041B (de) * 1968-12-02 1971-01-11 Plasser Bahnbaumasch Franz Gleisstopf-Nivellier-Maschine, vorzugsweise Gleisstopf-Nivellier-Richtmaschine
AT324391B (de) * 1971-10-08 1975-08-25 Plasser Bahnbaumasch Franz Einrichtung zur feststellung der abweichung der lage eines gleises von seiner soll-lage
US4173073A (en) * 1977-05-25 1979-11-06 Hitachi, Ltd. Track displacement detecting and measuring system
AT359110B (de) * 1977-08-16 1980-10-27 Plasser Bahnbaumasch Franz Selbstfahrbare gleisbaumaschinenanordnung
US4166291A (en) * 1977-12-21 1979-08-28 Canron, Inc. Chord liner using angle measurement
EP0090098B1 (fr) * 1982-03-31 1985-12-27 Les Fils D'auguste Scheuchzer S.A. Dispositif pour la commande d'une machine pour la construction ou réfection d'une voie de chemin de fer

Also Published As

Publication number Publication date
ES556741A0 (es) 1987-12-01
US4724653A (en) 1988-02-16
DD248159A5 (de) 1987-07-29
AU580429B2 (en) 1989-01-12
JPS6286201A (ja) 1987-04-20
EP0207197A1 (fr) 1987-01-07
AU5945886A (en) 1987-01-08
ES8801010A1 (es) 1987-12-01
ATE41796T1 (de) 1989-04-15
DE3569137D1 (en) 1989-05-03

Similar Documents

Publication Publication Date Title
EP0090098B1 (fr) Dispositif pour la commande d'une machine pour la construction ou réfection d'une voie de chemin de fer
EP0207197B1 (fr) Procédé pour la réfection ou la pose d'une voie de chemin de fer
EP0235602B1 (fr) Procédé de mesure et de rectifiage d'un champignon de rail
FR2678962A1 (fr) Procede pour determiner les ecarts de la position reelle d'un troncon de voie ferree.
FR2554839A1 (fr) Systeme de correction de niveau et d'inclinaison transversale d'une voie ferree
CH680672A5 (fr)
FR2475721A1 (fr) Vehicule de mesure et procede pour mesurer le trace du profil longitudinal de tunnels
WO1985004484A1 (fr) Procede et dispositif de controle non destructif d'un rail de voie ferree
FR2692607A1 (fr) Machine de construction de voie ferrée comprenant un système de référence à laser et procédé de guidage d'appareils en fonction dudit système.
FR2518603A1 (fr) Machine de correction de voie mobile avec systeme de reference de mesure
CA2288921C (fr) Methode de bourrage de voies
EP0356311B1 (fr) Procédé et engin pour ouvrer une surface de sol, notamment pour revêtir une chaussée
EP0417452B1 (fr) Procédé de programmation du travail de reprofilage des rails d'une voie ferrée et/ou de reprofilage de ces rails, ainsi qu'un dispositif pour la mise en oeuvre de ce procédé
EP1178153A1 (fr) Procédé et dispositif de guidage pour l'insertion d'éléments dans le sol
RU2151231C1 (ru) Путевая машина с лазерной базовой системой и способ для восстановления положения рельсового пути
FR2500863A1 (fr) Installation mobile pour ameliorer, et en particulier corriger l'assiette d'une voie ferree
EP0293015B1 (fr) Dispositif pour la commande d'une machine à niveler et riper une voie de chemin de fer
EP1418273B1 (fr) Procédé de bourrage de voies ferrées
EP0329918B1 (fr) Procédé de réfection d'une voie de chemin de fer
FR2770859A1 (fr) Machine de construction de voie ferree avec un systeme de reference pour la commande d'un appareil de travail et procede pour detecter des valeurs de mesure de la voie
EP0089702B1 (fr) Procédé de guidage d'un dispositif de positionnement de voie ferrée et machine de mise en oeuvre
FR2677679A1 (fr) Procede et machine pour la correction de position d'une voie ferree posee sur une couche de support.
FR2635544A1 (fr) Procedes et engin pour ouvrer une surface de sol, notamment pour revetir une chaussee
FR2741169A1 (fr) Procede et dispositif pour ajuster la position transversale d'un engin mobile
FR2586474A1 (fr) Procede et dispositif de detection du positionnement d'un engin de travail ferroviaire par rapport a la voie adjacente a celle sur laquelle ledit engin circule

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19870128

17Q First examination report despatched

Effective date: 19871221

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 41796

Country of ref document: AT

Date of ref document: 19890415

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: BUGNION S.P.A.

REF Corresponds to:

Ref document number: 3569137

Country of ref document: DE

Date of ref document: 19890503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890630

Year of fee payment: 5

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900702

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900718

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900808

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19900817

Year of fee payment: 6

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910703

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910711

Year of fee payment: 7

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19910731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910731

Year of fee payment: 7

BERE Be: lapsed

Owner name: S.A. FILS D'AUGUSTE SCHEUCHZER

Effective date: 19910731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920525

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19920702

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920729

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 85201055.2

Effective date: 19920210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980630

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL