EP0204910A1 - Process for the chemical-thermal decomposition of halogenated hydrocarbons - Google Patents

Process for the chemical-thermal decomposition of halogenated hydrocarbons Download PDF

Info

Publication number
EP0204910A1
EP0204910A1 EP86104351A EP86104351A EP0204910A1 EP 0204910 A1 EP0204910 A1 EP 0204910A1 EP 86104351 A EP86104351 A EP 86104351A EP 86104351 A EP86104351 A EP 86104351A EP 0204910 A1 EP0204910 A1 EP 0204910A1
Authority
EP
European Patent Office
Prior art keywords
silicates
halogenated hydrocarbons
reaction
calcium
chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86104351A
Other languages
German (de)
French (fr)
Other versions
EP0204910B1 (en
Inventor
Paul-Gerhard Dr. Dipl.-Chem. Maurer
Daniel Dr. Dipl.-Chem. Neupert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nukem GmbH
Original Assignee
Nukem GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nukem GmbH filed Critical Nukem GmbH
Priority to AT86104351T priority Critical patent/ATE35910T1/en
Publication of EP0204910A1 publication Critical patent/EP0204910A1/en
Application granted granted Critical
Publication of EP0204910B1 publication Critical patent/EP0204910B1/en
Expired legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/40Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by heating to effect chemical change, e.g. pyrolysis
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/34Dehalogenation using reactive chemical agents able to degrade
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/22Organic substances containing halogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S588/00Hazardous or toxic waste destruction or containment
    • Y10S588/901Compositions

Definitions

  • the invention relates to a process for the chemical-thermal decomposition of halogenated hydrocarbons, in particular of higher halogenated hydrocarbons, by reaction with a stoichiometric amount of alkaline solid substances at elevated temperatures in a reactor.
  • halogenated hydrocarbons are used very frequently in industry and research.
  • fluorocarbons serve as propellants and refrigerants and are the starting materials for the production of chemically very resistant plastics.
  • Chlorinated hydrocarbons are used in large quantities as degreasing agents in metal processing plants. Further areas of application are chemical cleaning of all kinds.
  • the chlorinated hydrocarbons are raw materials for the production of polymers, pesticides and herbicides.
  • the polychlorinated hydrocarbons were used as heat transfer oils or hydraulic fluids due to their high chemical and thermal resistance.
  • the polychlorinated biphenyls (PCB) are typical representatives of this class of substances.
  • DE-OS 30 28 193 describes a process for the pyrolytic decomposition of halogens and / or phosphorus-containing organic substances, which are reacted with calcium oxide / calcium hydroxide in a superstoichiometric ratio at temperatures of 300 to 800 ° C. in a reactor.
  • the disadvantage of this process is that not all halogenated hydrocarbons can be easily decomposed.
  • the temperatures required for the quantitative decomposition of the chemically and thermally very stable, higher halogenated hydrocarbons, to which the polychlorinated biphenyls in particular must be counted, are above 600 C. Above this temperature, mixtures of Ca0 and Ca (OH) 2 with the corresponding calcium chlorides melt. This fact causes considerable difficulties, since the necessary continuous solid throughput through the reactor is thereby impeded and may even become impossible under certain circumstances. In addition to the process engineering difficulties, the formation of melts also leads to a considerable reduction in the decomposition rate of the halogenated hydrocarbons.
  • DE-OS 34 47 337 describes a method which prevents the formation of melts in the temperature range of 600-800 ° C. by the calcium oxide and / or calcium hydroxide, based on the halogen to be set, being present in at least a two-fold stoichiometric excess and containing 2 to 30% by weight iron oxide.
  • a disadvantage of this method is that the temperature must not exceed 800 ° C if incrustations are to be reliably prevented. Avoiding incrustations is a necessary prerequisite for the success of this decomposition process.
  • a temperature of 800 ° C is sufficient for the implementation of the chemically and thermally extremely stable PCB, but the reaction of the highly halogenated hydrocarbons with Ca0 is strongly exothermic. With a correspondingly high metering rate, there is a sharp rise in temperature in the reactor, which must then be limited to 800 ° C. by appropriate measures. This temperature increase can be reduced by partially replacing Ca0 with Ca (OH) 2 .
  • So-called island silicates such as, for example, Ca 2 SiO 4 , Ca 3 Si 2 O 7 and Ca 3 Si 3 0 9 , chain silicates such as CaSi0 3 , band silicates such as Ca 3 Si 4 O 11, are preferably used as potassium silicates or magnesium , or network silicates such as CaSi 2 0 5 are used.
  • These silicates can be used as naturally occurring minerals such as wollastonite or tobororite, or they can be produced synthetically. During production, however, care must be taken to ensure that the melting points of the silicates in question are not reached, in order to avoid that a glass-like solidified product with only a small surface area and porosity is formed.
  • magnesium silicates can equally well be used, it being possible for some of the calcium or magnesium in the silicate to be substituted by other metal cations, such as iron.
  • synthetic silicates or silicate hydrates of calcium or magnesium can be used, which contain free excess calcium oxide or magnesium oxide.
  • the chemical reaction of the halogenated hydrocarbons with silicates is less exothermic than the comparable reaction with calcium oxide, so that a lower temperature increase in the reactor results at comparable metering rates. This can be important for the reactor because of the choice of material.
  • halogenated hydrocarbons are reacted with the silicates in the presence of inert gas under normal pressure.
  • silicates in the form of granules or in lumpy form has proven to be very cheap.
  • the production of such granules can be carried out by a simple pelletizing process, it being possible to use commercially available cements or ground cement raw clinker and water as starting materials.
  • the use of granules enables the reaction to be carried out in a wide variety of reactors.
  • a cartridge can be filled with granules into which the halogenated hydrocarbon is metered in either liquid or gaseous after heating to a reaction temperature of 450-700 ° C.
  • the chemical-thermal decomposition then takes place inside the bed, while the halogen-free exhaust gas flows unhindered through the granulate bed and can escape at the other end of the cartridge. After approximately 80-85% utilization of the granulate fill, it can then be replaced or, if the cartridge is designed accordingly, it can be completely replaced.
  • cement clinker, sand-lime brick and / or gas concrete is used as the alkaline solid substance.
  • a shaft furnace which contains a bed of calcium silicate granulate, which is designed as a moving bed, the halogenated hydrocarbon and the resulting exhaust gas flowing through the bed either in cocurrent or in countercurrent.
  • the gaseous reaction products formed during the chemical-thermal decomposition of halogenated hydrocarbons with silicates are halogen-free.
  • the exhaust gas contains corresponding amounts of hydrogen, methane and possibly other partly saturated partly unsaturated low hydrocarbons, as well as carbon monoxide and carbon dioxide.
  • the exhaust gas still has a significant calorific value and can be used accordingly or simply post-burned to carbon dioxide and water in a post-combustion chamber.
  • gas concrete which is in granular form with a main grain fraction of about 4 mm, are filled into a reaction tube made of aluminum oxide ceramic.
  • the filled reaction tube is closed on the side and fixed vertically in a tube furnace and heated to 700 ° C.
  • a total of 70 g of polychlorinated biphenyls (PCB) with an average chlorine content of 60% by weight are then metered into the reaction tube from above via a capillary within 3 hours, and at the same time the reactor is preheated from top to bottom with nitrogen preheated to 650 ° C. at normal pressure flows through.
  • the nitrogen volume flow is about 5 to 10 N1 per hour. The nitrogen escapes together with the gaseous reaction products at the lower end of the reactor and is passed through a washing section.
  • the exothermic reaction of the PCB with Ca silicate leads to a temperature increase in the reaction zone in the upper part of the bed.
  • the approximately 820 to 850 ° C. hot reaction zone migrates downward, so that a temperature measurement can be used to determine at what point in time the capacity of the bed is exhausted.
  • composition of the gas concrete used as the solid reactant was a mixture of 58% by weight Ca 3 Si 2 O 7 . H 2 O and 42% by weight of ⁇ -quartz were determined.
  • the chemical analysis of the implementation was based on the residue analysis of the washing solution and the analysis of the solid residue. With a detection limit of 20 ⁇ g PCB in the wash solution, no PCB could be detected, from which a degree of conversion of> 99.99996% is calculated.
  • the chemical-thermal decomposition of PCBs does not result in the formation of metabolites, such as chlorinated dibenzodioxins or dibenzofurans. The compounds mentioned could not be detected at a limit of quantification of 10 ng.
  • the solid granules were free-flowing even after the reaction and showed no caking.
  • the main components were SiO 2 and CaCl 2 .
  • the solid residue also contained calcium silicate and small amounts of elemental carbon.
  • the chlorine metered into the reactor in the form of PCB was quantitatively recovered as chloride after the chemical-thermal decomposition of the PCB in the solid residue.
  • the exhaust gas was halogen-free and essentially contained CO and H2 in addition to nitrogen.
  • test result is comparable to the results described in Examples 1 and 2.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Fire-Extinguishing Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Processing Of Solid Wastes (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

1. A process for the thermochemical decomposition of halogenated hydrocarbons, more especially relatively highly halogenated hydrocarbons, in an inert gas atmosphere by reaction with an overstoichiometric quantity of alkaline solids at elevated temperatures in a reactor, characterized in that calcium and/or magnesium silicates are used as the alkaline solids.

Description

Die Erfindung betrifft ein Verfahren zur chemisch-thermischen Zersetzung von Halogenkohlenwasserstoffen, insbesondere von höher halogenierten Kohlenwasserstoffen, durch Reaktion mit einer überstöchiometrischen Menge alkalischer Festsubstanzen bei höheren Temperaturen in einem Reaktor.The invention relates to a process for the chemical-thermal decomposition of halogenated hydrocarbons, in particular of higher halogenated hydrocarbons, by reaction with a stoichiometric amount of alkaline solid substances at elevated temperatures in a reactor.

Höher halogenierte Kohlenwasserstoffe werden in Industrie und Forschung sehr häufig eingesetzt. So dienen Fluorkohlenwasserstoffe als Treibgas und Kältemittel und sind Ausgangsstoffe zur Herstellung von chemisch sehr beständigen Kunststoffen. Chlorkohlenwasserstoffe werden in großen Mengen als Entfettungsmittel in metallverarbeitenden Betrieben eingesetzt. Weitere Anwendungsgebiete sind chemische Reinigungen aller Art. Darüberhinaus sind die Chlorkohlenwasserstoffe Ausgangsstoffe zur Herstellung von Polymeren, Pestiziden und Herbiziden. Insbesondere die polychlorierten Kohlenwasserstoffe wurden aufgrund ihrer hohen chemischen und thermischen Beständigkeit als Wärmeträgeröle oder Hydraulikflüssigkeiten eingesetzt. Die polychlorierten Biphenyle (PCB) sind typische Vertreter dieser Stoffklasse.Highly halogenated hydrocarbons are used very frequently in industry and research. For example, fluorocarbons serve as propellants and refrigerants and are the starting materials for the production of chemically very resistant plastics. Chlorinated hydrocarbons are used in large quantities as degreasing agents in metal processing plants. Further areas of application are chemical cleaning of all kinds. In addition, the chlorinated hydrocarbons are raw materials for the production of polymers, pesticides and herbicides. In particular, the polychlorinated hydrocarbons were used as heat transfer oils or hydraulic fluids due to their high chemical and thermal resistance. The polychlorinated biphenyls (PCB) are typical representatives of this class of substances.

Obwohl von der Möglichkeit der Rezyklierung gebrauchter Halogenkohlenwasserstoffe, soweit dies technisch möglich und wirtschaftlich vertretbar ist, Gebrauch gemacht wird, fallen allein in der Bundesrepublik Deutschland jährlich ca. 30.000 bis 40.000 t Chlorkohlenwasserstoffe mit Chlorgehalten > 20 % an, die entsorgt werden müssen.Although use is made of the possibility of recycling used halogenated hydrocarbons, insofar as this is technically possible and economically justifiable, In the Federal Republic of Germany alone, approx. 30,000 to 40,000 t of chlorinated hydrocarbons with chlorine contents> 20% are generated each year, which must be disposed of.

Bei diesen sogenannten Sonderabfällen handelt es sich neben Rückständen aus Rezyklierungsanlagen und Produktionsrückständen auch um Stoffe, deren Verwendung aus sicherheits-und umwelttechnischen Gesichtspunkten immer mehr eingeschränkt wird und die letztendlich einer Entsorgung zugeführt werden müssen. Das bekannteste Beispiel hierfür sind die polychlorierten Biphenyle, die in der Vergangenheit hauptsächlich als Trafoöle und als Dielektrika in Kondensatoren eingesetzt wurden. Allein durch Austausch dieser Flüssigkeiten gegen Ersatzstoffe rechnet man in der Bundesrepublik in den nächsten zehn Jahren mit jährlich ca. 6.000 t zu entsorgenden polychlorierten Biphenylen.In addition to residues from recycling plants and production residues, these so-called special wastes are also substances whose use is being increasingly restricted for safety and environmental reasons and which ultimately have to be disposed of. The best known example of this are the polychlorinated biphenyls, which in the past were mainly used as transformer oils and as dielectrics in capacitors. Simply by replacing these liquids with substitutes, the Federal Republic of Germany expects to dispose of around 6,000 t of polychlorinated biphenyls annually over the next ten years.

Als Möglichkeit zur Entsorgung von Halogenkohlenwasserstoffen wird derzeit hauptsächlich die Verbrennung auf See angesehen. Internationale Abkommen (Osloer und Londoner Konvention) zielen jedoch darauf hin, die Verbrennung auf See bis Ende dieses Jahrzehnts gänzlich einzuschränken. Als Alternative dazu bleibt dann nur noch die Verbrennung an Land. Die Verbrennung von Halogenkohlenwasserstoffen, insbesondere fluorierten und höher chlorierten, in bestehenden Sonderabfallverbrennungsanlagen ist problematisch. Die wesentlichen Gründe für die Schwierigkeiten sind die Korrosionsgefahr für die Ausmauerung und die Abgasstrecke durch eine höhe Rohgasbeladung an Halogenwasserstoffen (HF und HCl), die Emissionssituation, insbesondere bei Verbrennung von fluorierten Kohlenwasserstoffen, und der hohe Einsatz an Energie.At present, incineration at sea is the main way of disposal of halogenated hydrocarbons. However, international agreements (the Oslo and London Conventions) aim to limit combustion at sea entirely by the end of this decade. The only alternative then is incineration on land. The combustion of halogenated hydrocarbons, especially fluorinated and more chlorinated ones, in existing hazardous waste incineration plants is problematic. The main reasons for the difficulties are the risk of corrosion for the brick lining and the exhaust gas section due to a high raw gas load of hydrogen halide (HF and HCl), the emission situation, especially when burning fluorinated hydrocarbons, and the high use of energy.

Besonders durch den Umstand, daß bei unzureichenden Verbrennungsbedingungen bei der Chlorkohlenwasserstoff-Verbrennung hochgiftige polychlorierte Dibenzodioxine und Dibenzofurane gebildet werden können, ist diese Entsorgungspraxis zunehmender Kritik ausgesetzt.Especially due to the fact that with insufficient combustion conditions in the chlorinated hydrocarbon Ver burning highly toxic polychlorinated dibenzodioxins and dibenzofurans, this waste disposal practice is subject to increasing criticism.

In der DE-OS 30 28 193 ist ein Verfahren zur pyrolytischen Zersetzung von Halogene und/oder Phosphor enthaltenden organischen Substanzen beschrieben, wobei diese mit Calciumoxid/Calciumhydroxid in einem überstöchiometrischen Verhältnis gemischt bei Temperaturen von 300 bis 800° C in einem Reaktor umgesetzt werden.DE-OS 30 28 193 describes a process for the pyrolytic decomposition of halogens and / or phosphorus-containing organic substances, which are reacted with calcium oxide / calcium hydroxide in a superstoichiometric ratio at temperatures of 300 to 800 ° C. in a reactor.

Nachteilig bei diesem Verfahren ist es, daß nicht alle Halogenkohlenwasserstoffe problemlos zersetzt werden können. Die notwendigen Temperaturen zur quantitativen Zersetzung der chemisch und thermisch sehr stabilen höher halogenierten Kohlenwasserstoffe, zu denen insbesondere die polychlorierten Biphenyle gezählt werden müssen, liegen über 600 C. Oberhalb dieser Temperatur bilden Mischungen aus Ca0 und Ca(OH)2 mit den entsprechenden Calciumchloriden Schmelzen. Diese Tatsache bereitet erhebliche Schwierigkeiten, da der notwendige kontinuierlide Feststoffdurchsatz durch den Reaktor dadurch behindert und unter Umständen sogar unmöglich wird. Neben den verfahrenstechnischen Schwierigkeiten führt die Bildung von Schmelzen gleichzeitig zu einer erheblichen Herabsetzung der Zersetzungsrate der halogenierten Kohlenwasserstoffe. Dies ist auf die starke Verringerung der Oberfläche der festen Reaktionspartner zurückzuführen, die bei Gas-Feststoffreaktionen einen wesentlichen Einfluß auf die Reaktion ausüben. Selbst ein starker Überschuß der genannten basischen Verbindungen vermag bei Temperaturen oberhalb 600 C eine Schmelzenbildung mit anschließender Verkrustung in der Abkühlphase nicht zu verhindern.The disadvantage of this process is that not all halogenated hydrocarbons can be easily decomposed. The temperatures required for the quantitative decomposition of the chemically and thermally very stable, higher halogenated hydrocarbons, to which the polychlorinated biphenyls in particular must be counted, are above 600 C. Above this temperature, mixtures of Ca0 and Ca (OH) 2 with the corresponding calcium chlorides melt. This fact causes considerable difficulties, since the necessary continuous solid throughput through the reactor is thereby impeded and may even become impossible under certain circumstances. In addition to the process engineering difficulties, the formation of melts also leads to a considerable reduction in the decomposition rate of the halogenated hydrocarbons. This is due to the large reduction in the surface area of the solid reactants, which have a significant influence on the reaction in gas-solid reactions. Even a strong excess of the basic compounds mentioned at temperatures above 600 C cannot prevent the formation of melts with subsequent incrustation in the cooling phase.

In der DE-OS 34 47 337 ist ein Verfahren beschrieben, die die Bildung von Schmelzen im Temperaturbereich von 600 - 800° C dadurch verhindert, daß das Calciumoxid und/ oder Calciumhydroxid, bezogen auf das abzubindende Halogen, in mindestens zweifachem stöchiometrischem Überschuß vorliegt und 2 bis 30 Gew. % Eisenoxid enthält.DE-OS 34 47 337 describes a method which prevents the formation of melts in the temperature range of 600-800 ° C. by the calcium oxide and / or calcium hydroxide, based on the halogen to be set, being present in at least a two-fold stoichiometric excess and containing 2 to 30% by weight iron oxide.

Nachteilig bei diesem Verfahren ist, daß die Temperatur von 800° C nicht überschritten werden darf, wenn Verkrustungen zuverlässig verhindert werden sollen. Das Vermeiden von Verkrustungen ist aber notwendige Voraussetzung für das Gelingen dieses Zersetzungs-Verfahrens. Zwar reicht eine Temperatur von 800° C für die Umsetzung der chmemisch und thermisch äußerst stabilen PCB aus, doch ist die Reaktion der hochhalogenierten Kohlenwasserstoffe mit Ca0 stark exotherm. Es kommt also bei entsprechend hoher Dosierrate zu einem starken Temperaturanstieg im Reaktor, der dann durch entsprechende Maßnahmen auf 800° C begrenzt werden muß. Dieser Temperaturanstieg kann durch teilweisen Ersatz des Ca0 durch Ca(OH)2 verringert werden. Dabei entsteht aber Wasser, das seinerseits bei 800° C mit dem bei der Umsetzung von Chlorkohlenwasserstoffen gebildete Calciumchlorid reagiert, wobei Chlorwasserstoff entsteht. Der so gebildete Chlorwasserstoff ist damit unerwünschter Bestandteil des Abgases. Es muß daher bei diesem Verfahren angestrebt werden, die Reaktionstemperatur auf 8000 C zu begrenzen, was in der Praxis auf eine Begrenzung der Dosierrate an halogenierten Kohlenwasserstoffen hinausläuft.A disadvantage of this method is that the temperature must not exceed 800 ° C if incrustations are to be reliably prevented. Avoiding incrustations is a necessary prerequisite for the success of this decomposition process. A temperature of 800 ° C is sufficient for the implementation of the chemically and thermally extremely stable PCB, but the reaction of the highly halogenated hydrocarbons with Ca0 is strongly exothermic. With a correspondingly high metering rate, there is a sharp rise in temperature in the reactor, which must then be limited to 800 ° C. by appropriate measures. This temperature increase can be reduced by partially replacing Ca0 with Ca (OH) 2 . However, this creates water, which in turn reacts at 800 ° C with the calcium chloride formed in the reaction of chlorinated hydrocarbons, whereby hydrogen chloride is formed. The hydrogen chloride formed in this way is therefore an undesirable component of the exhaust gas. In this process, therefore, the aim must be to limit the reaction temperature to 8000 C, which in practice amounts to limiting the metering rate of halogenated hydrocarbons.

Es war daher Aufgabe der vorliegenden Erfindung, ein Verfahren zur chemisch-thermischen Zersetzung von Halogenkohlenwasserstoffen, insbesondere von höher halogenierten Kohlenwasserstoffen, durch Reaktion mit einer überstöchiometrischen Menge alkalischer Festsubstanzen bei höheren Temperaturen in einem Reaktor zu entwickeln, bei dem selbst bei Temperaturen über 1000° C keine Verkrustungen der Restsubstanzen auftreten, das hinsichtlich der Temperaturführung unkritisch ist, hohe Dosierraten an halogenierten Kohlenwasserstoffen zuläßt und ein halogenfreies Abgas liefert.It was therefore an object of the present invention to develop a process for the chemical-thermal decomposition of halogenated hydrocarbons, in particular of higher halogenated hydrocarbons, by reaction with an over-stoichiometric amount of alkaline solid substances at elevated temperatures in a reactor, in which there are no incrustations of the residual substances even at temperatures above 1000 ° C, which is not critical with regard to the temperature control, allows high dosing rates of halogenated hydrocarbons and delivers a halogen-free exhaust gas.

Diese Aufgabe wurde erfindungsgemäß dadurch gelöst, daß als alkalische Festsubstanzen Calcium- und/oder Magnesiumsilikate eingesetzt werden.This object has been achieved according to the invention in that calcium and / or magnesium silicates are used as alkaline solid substances.

Als Caleiumsilikate bzw. Magnesium werden dabei vorzugsweise sog. Insel-Silikate, wie beispielsweise Ca2SiO4, Ca3Si2O7 und Ca3Si309, Ketten-Silikate wie CaSi03, Bandsilikate wie Ca3Si4O11, oder Netzsilikate wie CaSi205 eingesetzt. Diese Silikate können als natürlich vorkommende Mineralien wie z.B. Wollastonit oder Tobemorit verwendet oder synthetisch hergestellt werden. Bei der Herstellung ist aber darauf zu achten, daß die Schmelzpunkte der betreffenden Silikate nicht erreicht werden, um zu vermeiden, daß ein glasartig erstarrtes Produkt mit nur geringer Oberfläche und Porosität entsteht.So-called island silicates, such as, for example, Ca 2 SiO 4 , Ca 3 Si 2 O 7 and Ca 3 Si 3 0 9 , chain silicates such as CaSi0 3 , band silicates such as Ca 3 Si 4 O 11, are preferably used as potassium silicates or magnesium , or network silicates such as CaSi 2 0 5 are used. These silicates can be used as naturally occurring minerals such as wollastonite or tobororite, or they can be produced synthetically. During production, however, care must be taken to ensure that the melting points of the silicates in question are not reached, in order to avoid that a glass-like solidified product with only a small surface area and porosity is formed.

Es hat sich überraschenderweise gezeigt, daß beispielsweise Calciumsilikate bei Temperaturen von 400 bis 1000° C mit Halogenkohlenwasserstoffen zu den entsprechenden Calciumhalogeniden und Siliziumdioxid umgesetzt werden, ohne daß es bei diesen Temperaturen zu Verbackungen oder Verkrustungen der Reaktionsprodukte kommt. Wie entsprechende Untersuchungen gezeigt haben, bleibt selbst bei quantitativer Umsetzung des im Silikat enthaltenen Calciums zu Calciumhalogenid das Si02-Skelett erhalten. Gleichzeitig wird gebildetes Calciumhalogenid im Si02-Gerüst fein verteilt, so daß es selbst bei 1000° C zu keinen Verkrustungen kommt.It has surprisingly been found that, for example, calcium silicates are reacted with halogenated hydrocarbons at temperatures of 400 to 1000 ° C. to give the corresponding calcium halides and silicon dioxide without caking or crusting of the reaction products at these temperatures. As corresponding studies have shown, the Si0 2 skeleton is retained even when the calcium contained in the silicate is converted quantitatively to calcium halide. At the same time, calcium halide formed is finely distributed in the Si0 2 framework, so that there are no incrustations even at 1000 ° C.

bei der Reaktion der Halogenkohlenwasserstoffe mit Calciumsilikat das Calcium aus dem Kristallgefüge herausgelöst wird, kommt es mit fortschreitender Reaktion, d.h. zunehmender Ausnutzung des festen Reaktionsproduktes, zu einem lockeren Gefüge, was gleichzeitig das Eindiffundieren der Halogenkohlenwasserstoffe in den Feststoff begünstigt. Dadurch reicht für die quantitative Umsetzung von Halogenkohlenwasserstoff mit Calciumsilikaten ein geringerer stöchiometrischer Überschuß an festem Reaktionspartner aus als bei Verwendung von Calciumoxid oder Calciumhydroxid.When the halogenated hydrocarbons react with calcium silicate, the calcium is released from the crystal structure As the reaction progresses, that is to say increasing use of the solid reaction product, a loose structure occurs, which at the same time favors the diffusion of the halogenated hydrocarbons into the solid. As a result, a smaller stoichiometric excess of solid reactant is sufficient for the quantitative reaction of halogenated hydrocarbon with calcium silicates than when using calcium oxide or calcium hydroxide.

Für die quantitative Umsetzung eines Halogenkohlenwasserstoffs genügt es, wenn das Calcium- bzw. Magnesiumsilikat, bezogen auf das abzubindende Halogen und unter Zugrundlegung der Bildung von Caleiumhalogeniden, in einem 1,2- fachen stöchiometrischen Überschuß vorliegt. Vorzugsweise verwendet man einen ca. 1,5-fachen Überschuß.For the quantitative conversion of a halogenated hydrocarbon, it is sufficient if the calcium or magnesium silicate, based on the halogen to be set and on the basis of the formation of caleium halides, is present in a 1.2-fold stoichiometric excess. An approximately 1.5-fold excess is preferably used.

Anstatt Calciumsilitate können ebensogut Magnesiumsilikate eingesetzt werden, wobei ein Teil des CalciUms oder Magnesiums im Silikat durch andere Metallkationen, wie beispielsweise Eisen, substituiert sein können.Instead of calcium silicates, magnesium silicates can equally well be used, it being possible for some of the calcium or magnesium in the silicate to be substituted by other metal cations, such as iron.

Darüber hinaus können auch synthetische Silikate oder Silikathydrate des Calciums oder Magnesiums eingesetzt werden, die freies überschüssiges Calciumoxid oder Magnesiumoxid enthalten.In addition, synthetic silicates or silicate hydrates of calcium or magnesium can be used, which contain free excess calcium oxide or magnesium oxide.

Die chemische Reaktion der Halogenkohlenwasserstoffe mit Silikaten ist weniger stark exotherm als die vergleichbare Reaktion mit Calciumoxid, so daß-bei vergleichbaren Dosierraten eine geringere Temperaturerhöhung im Reaktor resultiert. Dies kann aus Gründen der Werkstoffwahl für den Reaktor von Bedeutung sein.The chemical reaction of the halogenated hydrocarbons with silicates is less exothermic than the comparable reaction with calcium oxide, so that a lower temperature increase in the reactor results at comparable metering rates. This can be important for the reactor because of the choice of material.

Die Umsetzung der Halogenkohlenwasserstoffe mit den Silikaten erfolgt in Anwesenheit von Inertgas unter Normaldruck.The halogenated hydrocarbons are reacted with the silicates in the presence of inert gas under normal pressure.

Als sehr günstig hat sich die Verwendung von Silikaten in Form von Granulat bzw. in stückiger Form erwiesen. Die Herstellung solcher Granulate kann durch einen einfachen Pel letierprozeß erfolgen, wobei als Ausgangsstoffe handelsübliche Zemente oder auch gemahlene Zementrohklinker und Wasser eingesetzt werden können. Durch den Einsatz von Granulat läßt sich die Umsetzung in den unterschiedlichsten Reaktoren durchführen. So kann im einfachsten Fall eine Kartusche mit Granulat gefüllt werden, in die nach dem Aufheizen auf eine Reaktionstemperatur von 450 - 700° C der Halogenkohlenwasserstoff entweder flüssig oder gasförmig eindosiert wird. Die chemisch-thermische Zersetzung findet dann innerhalb der Schüttung statt, während das halogenfreie Abgas ungehindert durch das Granulatbett strömt und am anderen Ende der Kartusche austreten kann. Nach einer ca. 80 - 85 %-igen Ausnutzung der Granulatschüttung kann diese dann erneuert werden oder bei entsprechend preisgünstiger Gestaltung der Kartusche diese komplett ersetzt werden.The use of silicates in the form of granules or in lumpy form has proven to be very cheap. The production of such granules can be carried out by a simple pelletizing process, it being possible to use commercially available cements or ground cement raw clinker and water as starting materials. The use of granules enables the reaction to be carried out in a wide variety of reactors. In the simplest case, a cartridge can be filled with granules into which the halogenated hydrocarbon is metered in either liquid or gaseous after heating to a reaction temperature of 450-700 ° C. The chemical-thermal decomposition then takes place inside the bed, while the halogen-free exhaust gas flows unhindered through the granulate bed and can escape at the other end of the cartridge. After approximately 80-85% utilization of the granulate fill, it can then be replaced or, if the cartridge is designed accordingly, it can be completely replaced.

Vorzugsweise verwendet man als alkalische Festsubstanzen Zementklinker, Kalksandstein und/oder Gasbeton.Preferably, cement clinker, sand-lime brick and / or gas concrete is used as the alkaline solid substance.

Für eine kontinuierliche chemisch-thermische Zersetzung eines Halogenkohlewasserstoffs mit Calciumsilikaten bietet sich ein Schachtofen an, der eine Schüttung an Calciumsilikat-Granulat enthält, die als Wanderbett ausgeführt ist, wobei der Halogenkohlenwasserstoff und entstehendes Abgas entweder im Gleichstrom oder im Gegenstrom durch die Schüttung strömt.For a continuous chemical-thermal decomposition of a halogenated hydrocarbon with calcium silicates, a shaft furnace is suitable, which contains a bed of calcium silicate granulate, which is designed as a moving bed, the halogenated hydrocarbon and the resulting exhaust gas flowing through the bed either in cocurrent or in countercurrent.

Als sehr vorteilhaft hat sich die Verwendung von künstlich hergestellten porösem Calciumsilikat in granulierter Form herausgestellt. Entsprechendes Granulat läßt sich beispielsweise durch Zerkleinern silikatreicher Baustoffe, wie Gasbetonsteinen oder Kalksandsteinen, herstellen. Diese Materialien sind mechanisch und thermisch ausreichend stabil, um als Schüttung in einem Wanderbettreaktor zu dienen und besitzt darüber hinaus eine sehr große Oberfläche. Dieses Material läßt sich bezogen auf den Ca-Gehalt nahezu stöchiometrisch mit den Halogenkohlenwasserstoffen umsetzen.The use of artificially produced porous calcium silicate in granulated form has proven to be very advantageous. Corresponding granules can be broken down, for example, by crushing silicate-rich building materials, such as gas concrete blocks or sand-lime blocks. These materials are mechanically and thermally sufficiently stable to serve as a bed in a moving bed reactor and also have a very large surface area. This material can be converted almost stoichiometrically with the halogenated hydrocarbons based on the Ca content.

Die bei der chemisch-thermischen Zersetzung von Halogenkohlenwasserstoffen mit Silikaten entstehenden gasförmigen Reaktionsprodukte sind halogenfrei. Im Falle von nicht perhalogenierten Kohlenwasserstoffen enthält das Abgas entsprechende Mengen an Wasserstoff, Methan und eventuell andere teils gesättigte teils ungesättigte niedrige Kohlenwasserstoffe, sowie Kohlenmonoxid und Kohlendioxid. Das Abgas besitzt in diesem Fall noch einen erheblichen Heizwert und kann entsprechend genutzt werden oder auch einfach in einer Nachbrennkammer zu Kohlendioxid und Wasser nachverbrannt werden.The gaseous reaction products formed during the chemical-thermal decomposition of halogenated hydrocarbons with silicates are halogen-free. In the case of non-perhalogenated hydrocarbons, the exhaust gas contains corresponding amounts of hydrogen, methane and possibly other partly saturated partly unsaturated low hydrocarbons, as well as carbon monoxide and carbon dioxide. In this case, the exhaust gas still has a significant calorific value and can be used accordingly or simply post-burned to carbon dioxide and water in a post-combustion chamber.

Das erfindungsgemäße Verfahren zur chemisch-thermischen Zersetzung von höher halogenierten Kohlenwasserstoffen durch Reaktion mit Caicium- bzw. Magnesiumsilikaten ist ein umweltverträgliches und kostengünstiges Verfahren zur Entsorgung dieser-Substanzen. Eine Bildung von Metaboliten, wie polychlorierten Dibenzodioxinen oder Furanen, wurde in keinem Fall beobachtet.The process according to the invention for the chemical-thermal decomposition of higher halogenated hydrocarbons by reaction with calcium or magnesium silicates is an environmentally friendly and inexpensive process for the disposal of these substances. No formation of metabolites such as polychlorinated dibenzodioxins or furans was observed.

Anhand der nachfolgenden-Beispiele soll das erfindungsgemäße Verfahren zur chemisch-thermischen Zersetzung von Halogenkohlenwasserstoffen näher erläutert werden.The process according to the invention for the chemical-thermal decomposition of halogenated hydrocarbons is to be explained in more detail with reference to the examples below.

Beispiel 1-Example 1-

In ein Reaktionsrohr aus Aluminiumoxidkeramik werden ca. 250 g Gasbeton, der in granulierter Form mit einer Hauptkornfraktion von ca. 4 mm vorliegt, eingefüllt.About 250 g of gas concrete, which is in granular form with a main grain fraction of about 4 mm, are filled into a reaction tube made of aluminum oxide ceramic.

Das gefüllte Reaktionsrohr wird bei seitig verschlossen und senkrecht in einem Röhrenofen fixiert und auf 700° C aufgeheizt. Über eine Kapillare werden anschließend innerhalb von 3 Stunden insgesamt 70 g polychlorierte Biphenyle (PCB) mit einem mittleren Chlorgehalt von 60 Gew. % von oben in das Reaktionsrohr eindosiert und gleichzeitig wird der Reaktor von oben nach unten mit auf 650° C vorgeheiztem Stickstoff bei Normaldruck durchströmt. Der Stickstoffvolumenstrom beträgt dabei ca. 5 bis 10 N1 pro Stunde. Der Stickstoff tritt zusammen mit den gasförmigen Reaktionsprodukten am unteren Ende des Reaktors aus und wird durch eine Waschstrecke geleitet.The filled reaction tube is closed on the side and fixed vertically in a tube furnace and heated to 700 ° C. A total of 70 g of polychlorinated biphenyls (PCB) with an average chlorine content of 60% by weight are then metered into the reaction tube from above via a capillary within 3 hours, and at the same time the reactor is preheated from top to bottom with nitrogen preheated to 650 ° C. at normal pressure flows through. The nitrogen volume flow is about 5 to 10 N1 per hour. The nitrogen escapes together with the gaseous reaction products at the lower end of the reactor and is passed through a washing section.

Zu Beginn der Umsetzung kommt es durch die exotherme Reaktion der PCB mit Ca-Silikat zu einem Temperaturanstieg in der Reaktionszone im oberen Teil der Schüttung. Im Laufe der Umsetzung wandert die ca. 820 bis 850° C heiße Reaktionszone nach unten, so daß anhand einer Temperaturmessung festgestellt werden kann, zu welchem Zeitpunkt die Kapazität der Schüttung erschöpft ist.At the beginning of the reaction, the exothermic reaction of the PCB with Ca silicate leads to a temperature increase in the reaction zone in the upper part of the bed. In the course of the reaction, the approximately 820 to 850 ° C. hot reaction zone migrates downward, so that a temperature measurement can be used to determine at what point in time the capacity of the bed is exhausted.

Die Zusammensetzung des als festen Reaktionspartner verwendeten Gasbetons wurde als Gemisch aus 58 Gew. % Ca3Si2O7. H2O und 42 Gew. % α-Quarz ermittelt.The composition of the gas concrete used as the solid reactant was a mixture of 58% by weight Ca 3 Si 2 O 7 . H 2 O and 42% by weight of α-quartz were determined.

Die chemisch analytische Auswertung der Umsetzung erfolgte anhand der Rückstandsanalyse der Waschlösung und der Analyse des Feststoffrückstands. Bei einer Nachweisgrenze von 20 µg PCB in der Waschlösung konnte kein PCB nachgewiesen werden, woraus sich ein Umsetzungsgrad von >99,99996 % errechnet. Eine Bildung von Metaboliten, wie chlorierten Dibenzodioxinen oder Dibenzofuranen, findet bei der beschriebenen chemisch-thermischen Zersetzung von PCB nicht statt. Die genannten Verbindungen konnten bei einer Bestimmungsgrenze von 10 ng nicht nachgewiesen werdbn.The chemical analysis of the implementation was based on the residue analysis of the washing solution and the analysis of the solid residue. With a detection limit of 20 µg PCB in the wash solution, no PCB could be detected, from which a degree of conversion of> 99.99996% is calculated. The chemical-thermal decomposition of PCBs does not result in the formation of metabolites, such as chlorinated dibenzodioxins or dibenzofurans. The compounds mentioned could not be detected at a limit of quantification of 10 ng.

Das Feststoffgranulat war auch nach der Reaktion rieselfähig und zeigte keinerlei Verbackungen. Die Hauptbestandteile waren SiO2 und CaCl2. Daneben enthielt der feste Rückstand noch Reste von Calciumsilikat sowie geringe Mengen an elementarem Kohlenstoff. Das in Form von PCB in den Reaktor eindosierte Chlor wurde nach der chemisch-thermischen Zersetzung der PCB im Feststoffrückstand quantitativ als Chlorid wiedergefunden. Das Abgas war halogenfrei und enthielt neben Stickstoff im wesentlichen noch CO und H2.The solid granules were free-flowing even after the reaction and showed no caking. The main components were SiO 2 and CaCl 2 . In addition, the solid residue also contained calcium silicate and small amounts of elemental carbon. The chlorine metered into the reactor in the form of PCB was quantitatively recovered as chloride after the chemical-thermal decomposition of the PCB in the solid residue. The exhaust gas was halogen-free and essentially contained CO and H2 in addition to nitrogen.

Beispiel 2Example 2

Analog Beispiel 1, wobei anstatt Gasbeton Zement verwendet wird. Um die Reaktion in einem Reaktionsrohr, wie in Beispiel 1 beschrieben, durchführen zu können, wurde aus dem Zementpulver ein poriges Granulat wie folgt hergestellt:

  • 300 g Portlandzement werden mit i40 g Wasser angerührt. Nach einer Aushärtezeit von 24 h wird der Probekörper bei 600° C getrocknet, wobei nahezu das gesamte Anmachwasser aus dem Probekörper ausgetrieben wird. Der nach dem Trocknen und Abkühlen in kleine Stücke zerschlagene Zementkörper dient als Füllgut für das Reaktionsrohr.
Analogous to Example 1, but cement is used instead of gas concrete. In order to be able to carry out the reaction in a reaction tube as described in Example 1, a porous granulate was produced from the cement powder as follows:
  • 300 g of Portland cement are mixed with i40 g of water. After a curing time of 24 hours, the test specimen is dried at 600 ° C, almost all of the mixing water being expelled from the test specimen. The cement body, broken up into small pieces after drying and cooling, serves as filling material for the reaction tube.

Es wurden gleich gute Umsetzungsraten wie in Beispiel 1 erzielt. Der Feststoffrückstand zeigt keine Anbackungen und ist rieselfähig.The conversion rates were the same as in Example 1. The solid residue shows no caking and is free-flowing.

Beispiel 3Example 3

Analog Beispiel 2, wobei anstatt Portlandzement Zementrohklinker verwendet wird, ein Ausgangsprodukt der Zementherstellung.Analogous to Example 2, using cement raw clinker instead of Portland cement, a starting product of cement production.

Das Versuchsergebnis ist vergleichbar mit den in Beispiel 1 und 2 beschriebenen Ergebnissen.The test result is comparable to the results described in Examples 1 and 2.

Beispiel 4Example 4

Analog Beispiel 1, wobei anstatt Gasbeton ein synthetisch hergestelltes poriges Tricalciumsilikat in Granulatform eingesetzt wird. Die Herstellung des Produkts erfolgt wie nachfolgend beschrieben:

  • 168 g gebrannter Kalk werden mit 60 g Quarzsand gemischt und fein gemahlen. Anschließend wird die Mischung mit Wasser zu einer teigartigen Masse angerührt und mit 0,6 Aluminiumpulver vermischt. Innerhalb kurzer Zeit bläht sich die Masse auf. Die Probe wird dann in einem Autoklaven in Wasserdampfatmosphäre auf 200° C aufgeheizt. Es entsteht ein festes poriges Produkt, das in einem Backenbrecher zu einem Granulat mit einer mittleren Korngröße von ca. 5 mm gebrochen wird.
Analogous to Example 1, but instead of gas concrete a synthetically produced porous tricalcium silicate in granulate form is used. The product is manufactured as described below:
  • 168 g of burnt lime are mixed with 60 g of quartz sand and finely ground. Then the mixture is mixed with water to a dough-like mass and mixed with 0.6 aluminum powder. The mass swells up within a short time. The sample is then heated to 200 ° C. in an autoclave in a steam atmosphere. A solid, porous product is created which is broken in a jaw crusher into granules with an average grain size of approx. 5 mm.

Claims (4)

1. Verfahren zur chemisch-thermischen Zersetzung von Halogenkohlenwasserstoffen, insbesondere von höher halogenierten Kohlenwasserstoffen, durch Reaktion mit einer überstochiometrischen Menge alkalischer Festsubstanzen bei höheren Temperaturen in einem Reaktor,
dadurch gekennzeichnet,
daß als alkalische Festsubstanzen Calium- und/oder Magnesiumsilikate eingesetzt werden.
1. Process for the chemical-thermal decomposition of halogenated hydrocarbons, in particular of higher halogenated hydrocarbons, by reaction with an excess of stoichiometric amount of alkaline solid substances at higher temperatures in a reactor,
characterized,
that calcium and / or magnesium silicates are used as alkaline solid substances.
2. Verfahren nach Anspruch 1,
dadurch gekenzeichnet,
daß als Silikate Inselsilikate, Kettensilikate, Bandsilikate und/oder Netzsilikate eingesetzt werden.
2. The method according to claim 1,
characterized by
that island silicates, chain silicates, band silicates and / or network silicates are used as silicates.
3. Verfahren nach Anspruch 1 und 2,
dadurch gekennzeichnet,
daß die Silikate in granulierter oder stückiger Form verwendet werden.
3. The method according to claim 1 and 2,
characterized,
that the silicates are used in granular or lumpy form.
4. Verfahren nach Anspruch 1 bis 3,
dadurch gekennzeichnet,
daß als alkalische Festsubstanzen Zementklinker, Kalksandstein und/oder Gasbeton eingesetzt werden.
4. The method according to claim 1 to 3,
characterized,
that cement clinker, sand-lime brick and / or gas concrete are used as alkaline solid substances.
EP86104351A 1985-05-11 1986-03-29 Process for the chemical-thermal decomposition of halogenated hydrocarbons Expired EP0204910B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86104351T ATE35910T1 (en) 1985-05-11 1986-03-29 PROCESSES FOR THE CHEMICAL-THERMAL DECOMPOSITION OF HYDROCARBONS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853517019 DE3517019A1 (en) 1985-05-11 1985-05-11 METHOD FOR CHEMICAL-THERMAL DECOMPOSITION OF HALOGEN HYDROCARBONS
DE3517019 1985-05-11

Publications (2)

Publication Number Publication Date
EP0204910A1 true EP0204910A1 (en) 1986-12-17
EP0204910B1 EP0204910B1 (en) 1988-07-27

Family

ID=6270478

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86104351A Expired EP0204910B1 (en) 1985-05-11 1986-03-29 Process for the chemical-thermal decomposition of halogenated hydrocarbons

Country Status (7)

Country Link
US (1) US4937065A (en)
EP (1) EP0204910B1 (en)
JP (1) JPS61259683A (en)
AT (1) ATE35910T1 (en)
CA (1) CA1288441C (en)
DE (2) DE3517019A1 (en)
ES (1) ES8802119A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0401810A1 (en) * 1989-06-08 1990-12-12 Nukem GmbH Process for the chemical-thermal destruction of halogenated hydrocarbons
EP0252521B1 (en) * 1986-07-11 1991-10-09 Hagenmaier, Hanspaul, Prof.Dr. Process for decomposing polyhalogenated compounds
US5387734A (en) * 1986-07-11 1995-02-07 Hagenmaier; Hanspaul Process for decomposing polyhalogenated compounds

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3632366C2 (en) * 1986-09-24 1997-12-18 Boelsing Friedrich Process for the removal of halogenated hydrocarbons from the gas phase
JPH066177B2 (en) * 1987-01-13 1994-01-26 大豊産業株式会社 Immobilization treatment agent for liquid organic halides using industrial waste, immobilization treatment method and combustion treatment method
DE3940903A1 (en) * 1989-12-11 1991-06-20 Dinda Kickdown Gmbh Toxic waste esp. halogenated organic and heavy metal disposal - by fixing with synthetic calcium hydro-silicate and opt. calcium aluminosilicate
ATE104932T1 (en) * 1990-08-31 1994-05-15 Rheinische Kalksteinwerke PROCESS FOR THE PRODUCTION OF CHLOROSILICATES.
JPH0787867B2 (en) * 1991-01-18 1995-09-27 日本碍子株式会社 Organic chloride decomposition method
US5191154A (en) * 1991-07-29 1993-03-02 Molten Metal Technology, Inc. Method and system for controlling chemical reaction in a molten bath
US5585532A (en) * 1991-07-29 1996-12-17 Molten Metal Technology, Inc. Method for treating a gas formed from a waste in a molten metal bath
US5776420A (en) * 1991-07-29 1998-07-07 Molten Metal Technology, Inc. Apparatus for treating a gas formed from a waste in a molten metal bath
US5260036A (en) * 1992-02-27 1993-11-09 Process Technologies, Inc. Method and apparatus for use in photochemically oxidizing gaseous halogenated organic compounds
US5397552A (en) * 1992-02-27 1995-03-14 Process Technologies, Inc. Method and apparatus for use in photochemically oxidizing gaseous organic compounds
AT402506B (en) * 1993-01-26 1997-06-25 Holderbank Financ Glarus METHOD FOR THE PRODUCTION OF RAW IRON AND CEMENT CLINKER
US5374337A (en) * 1993-08-20 1994-12-20 Technichem Engineering, Ltd. Halohydrocarbon recovery process
AU5575194A (en) * 1993-11-29 1995-06-13 Eimatsu Kanzaki Detoxifying method for polychlorobiphenyl
US5468459A (en) * 1995-02-28 1995-11-21 The Boc Group, Inc. Gas stream treatment method for removing per-fluorocarbons
US5705140A (en) * 1995-07-18 1998-01-06 Transformation Technologies, Ltd. Process for the transformation of halogenated refrigerant gases
US5601184A (en) * 1995-09-29 1997-02-11 Process Technologies, Inc. Method and apparatus for use in photochemically oxidizing gaseous volatile or semi-volatile organic compounds
US6888040B1 (en) * 1996-06-28 2005-05-03 Lam Research Corporation Method and apparatus for abatement of reaction products from a vacuum processing chamber
US6018091A (en) * 1998-06-08 2000-01-25 Quantum Marketing Corporation Methods for thermally degrading unwanted substances using particular metal compositions
USH2198H1 (en) 2002-07-30 2007-08-07 Ch2M Hill Inc. Multi-stage pyrolysis systems for treating chlorine contaminated wastes
CN100528300C (en) * 2004-01-29 2009-08-19 大阳日酸株式会社 Exhaust gas treating agent, method for treating exhaust gas and apparatus for treating exhaust gas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3004968A1 (en) * 1980-02-11 1981-08-20 Sante M Cundari Fuel compsn. contg. iron oxide - in form of by=product waste obtd. in steel prodn. and a metallic reducer
DE3416965A1 (en) * 1982-07-30 1985-11-14 Kitamura Gokin Seisakusho METHOD AND DEVICE FOR ELIMINATING THE TOXICITY OF POLYCHLORBIPHENYL
DE3447337A1 (en) * 1984-12-24 1986-07-03 Nukem Gmbh METHOD FOR CHEMICAL-THERMAL DECOMPOSITION OF HIGHER HALOGENATED HYDROCARBONS

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3845191A (en) * 1972-06-02 1974-10-29 Du Pont Method of removing halocarbons from gases
US4022630A (en) * 1972-07-27 1977-05-10 The Associated Portland Cement Manufacturers Limited Portland cement-making and municipal refuse conversion
JPS4994578A (en) * 1973-01-16 1974-09-07
US3864458A (en) * 1973-06-11 1975-02-04 Dorr Oliver Inc Fluid bed incineration of chloride-containing waste streams
US4001031A (en) * 1973-11-16 1977-01-04 Chem-Trol Pollution Services, Inc. Process for making low alkali cement clinker
GB1510392A (en) * 1976-01-19 1978-05-10 Ass Portland Cement Portland cement manufacture and utilisation of waste matter
US4301137A (en) * 1977-12-21 1981-11-17 Occidental Research Corporation Removal of chlorine from pyrolysis vapors
SE420646B (en) * 1979-01-08 1981-10-19 Cementa Ab WAY TO DESTROY HEALTH AND ENVIRONMENTALLY WASTE AND YOUNG SYSTEM FOR IMPLEMENTATION OF THE KIT
US4352332A (en) * 1979-06-25 1982-10-05 Energy Incorporated Fluidized bed incineration of waste
FR2480269A1 (en) * 1980-04-09 1981-10-16 Pichat Philippe PROCESS FOR TREATING LIQUID WASTE OF HIGH ACIDITY
DE3028193C2 (en) * 1980-07-25 1984-11-22 Nukem Gmbh, 6450 Hanau Method and device for the pyrolytic decomposition of halogens and / or phosphorus-containing organic substances

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3004968A1 (en) * 1980-02-11 1981-08-20 Sante M Cundari Fuel compsn. contg. iron oxide - in form of by=product waste obtd. in steel prodn. and a metallic reducer
DE3416965A1 (en) * 1982-07-30 1985-11-14 Kitamura Gokin Seisakusho METHOD AND DEVICE FOR ELIMINATING THE TOXICITY OF POLYCHLORBIPHENYL
DE3447337A1 (en) * 1984-12-24 1986-07-03 Nukem Gmbh METHOD FOR CHEMICAL-THERMAL DECOMPOSITION OF HIGHER HALOGENATED HYDROCARBONS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DESTRUCTION TECHNOLOGIES FOR POLYCHLORINATED BIPHENYLS (PCBs), Economic and Technical Review, Report EPS 3-EC-83-1, Februar 1983, Seite 26-29,78-81, Ottawa, CA; M.M. DILLON: "Environmental protection service" *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0252521B1 (en) * 1986-07-11 1991-10-09 Hagenmaier, Hanspaul, Prof.Dr. Process for decomposing polyhalogenated compounds
US5387734A (en) * 1986-07-11 1995-02-07 Hagenmaier; Hanspaul Process for decomposing polyhalogenated compounds
EP0401810A1 (en) * 1989-06-08 1990-12-12 Nukem GmbH Process for the chemical-thermal destruction of halogenated hydrocarbons

Also Published As

Publication number Publication date
EP0204910B1 (en) 1988-07-27
ES554801A0 (en) 1988-04-01
CA1288441C (en) 1991-09-03
ES8802119A1 (en) 1988-04-01
ATE35910T1 (en) 1988-08-15
US4937065A (en) 1990-06-26
DE3517019A1 (en) 1986-11-13
DE3517019C2 (en) 1987-03-26
DE3660412D1 (en) 1988-09-01
JPS61259683A (en) 1986-11-17
JPH0576313B2 (en) 1993-10-22

Similar Documents

Publication Publication Date Title
EP0204910B1 (en) Process for the chemical-thermal decomposition of halogenated hydrocarbons
EP0188718B1 (en) Process for the chemical-thermal decomposition of higher halogenated hydrocarbons
US4375986A (en) Process for treating liquids wastes possessing a strong acidity
US4822379A (en) Solid fuel composition from waste products
EP2016203B1 (en) Thermal process for separating off heavy metals from ash in agglomerated form
DE3243594C2 (en) Process for dumping liquid waste in salt deposits
USRE29783E (en) Process for treating aqueous chemical waste sludges and compositions produced thereby
EP0324753B1 (en) Process for manufacturing a calcium sulphate-containing solid secondary raw material
EP0369946B1 (en) Process for immobilizing wastes
DE3918716C1 (en)
DE4119390C2 (en) Process for the treatment and leaching-resistant solidification of filter dusts and reaction products from the flue gas cleaning of waste and sewage sludge incineration plants
DE1471600A1 (en) Process for converting the acidic, resinous residues resulting from the refining of hydrocarbons with sulfuric acid into flammable substances
AT512693B1 (en) Process for the inerting of heavy metals, chlorides and other salt formers as well as soluble solids and metallic contaminants
DE4230062C2 (en) Method and device for immobilizing and recovering heavy metals
DE3435622C1 (en) Process for the thermal treatment of waste materials with the addition of basic substances
DE4309493C2 (en) Process for the simultaneous utilization of halogenated and basic reacting residues
EP0135147A1 (en) Process and apparatus for preparing a dry, powdery fly ash derivative, and its uses
EP0041129A1 (en) Process for producing porous inorganic shaped glass bodies
DE19613376C2 (en) Process for recycling activated carbon loaded with organic compounds
DE3347375A1 (en) Process and apparatus for the production of a dry, pulverulent fly ash derivative and its uses
EP0666299A1 (en) Recovery of raw materials and energy form polymers and chlorinated hydrocarbons
JPH0230759B2 (en) TSUYOSANSEIEKITAIHAIKIBUTSUNOSHORIHO
DE3938885A1 (en) Consolidating ash - by using hardenable binder of water glass and aluminium phosphate hardener
DE19625770A1 (en) Destroying gaseous halogen-containing organic or inorganic materials
CA2114646A1 (en) Stabilizing inorganic substrates

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19860329

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19870721

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 35910

Country of ref document: AT

Date of ref document: 19880815

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3660412

Country of ref document: DE

Date of ref document: 19880901

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940214

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940217

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940222

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940309

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940310

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940321

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940330

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940331

Year of fee payment: 9

EAL Se: european patent in force in sweden

Ref document number: 86104351.1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950329

Ref country code: AT

Effective date: 19950329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950331

Ref country code: CH

Effective date: 19950331

Ref country code: BE

Effective date: 19950331

BERE Be: lapsed

Owner name: NUKEM G.M.B.H.

Effective date: 19950331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19951001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19951130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19951001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951201

EUG Se: european patent has lapsed

Ref document number: 86104351.1

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050329