EP0199625B1 - Source d'ions négatifs à résonance cyclotronique des électrons - Google Patents

Source d'ions négatifs à résonance cyclotronique des électrons Download PDF

Info

Publication number
EP0199625B1
EP0199625B1 EP86400726A EP86400726A EP0199625B1 EP 0199625 B1 EP0199625 B1 EP 0199625B1 EP 86400726 A EP86400726 A EP 86400726A EP 86400726 A EP86400726 A EP 86400726A EP 0199625 B1 EP0199625 B1 EP 0199625B1
Authority
EP
European Patent Office
Prior art keywords
enclosure
negative ion
ion source
ions
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86400726A
Other languages
German (de)
English (en)
Other versions
EP0199625A1 (fr
Inventor
Göran Hellblom
Claude Jacquot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0199625A1 publication Critical patent/EP0199625A1/fr
Application granted granted Critical
Publication of EP0199625B1 publication Critical patent/EP0199625B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/16Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation
    • H01J27/18Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation with an applied axial magnetic field
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/14Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using charge exchange devices, e.g. for neutralising or changing the sign of the electrical charges of beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/028Negative ion sources

Definitions

  • the present invention relates to a source of negative ions with electronic cyclotron resonance. It is advantageously applied in the production of high intensity H- ion beams (greater than 1 A) or of its D- or T- isotopes, these beams being mainly used for the production of beams of energetic neutral atoms ( intensity of several tens of amps and energy from 200 to 500 KeV) used in particular as efficient means of heating thermonuclear plasmas produced in fusion devices with magnetic confinement. Furthermore, high intensity H-, D- or T- ion beams can also be used in nuclear physics and in particular in accelerators of the Van de Graaf-Tandem type or in the medical field using accelerators of the type variable energy cyclotron.
  • volume ionization One of the techniques currently known for producing beams of negative ions and in particular of H-, D- and T- ions is volume ionization. This technique is based on the formation, from a gas or a vapor contained in a closed enclosure, of a plasma constituted mainly in the case of hydrogen of H-, H + ions and electrons .
  • This technique consists first of all of creating molecules of hydrogen, deuterium or tritium depending on the starting gas used, vibrational excited by hot or energetic electrons, that is to say whose kinetic energy is higher at 20 eV, according to the following reaction scheme (1), in the case of hydrogen:
  • H-, D- or T- ions are formed by the following dissociative attachment reaction (2), in the case of hydrogen:
  • the intermediate compound is unstable.
  • the effective cross-sections of attachment are high for so-called cold electrons having a kinetic energy at most equal to 1 eV.
  • This dissociative attachment phenomenon has in particular been described in an article by M. BA-CAL et al., Phys. Rev. Letters, 42, 1538 (1979).
  • the difficulty in such a technique for producing negative ions is to create in the closed enclosure of the ion source a population of energetic or hot electrons and a population of cold electrons, spatially separated so that the hot electrons do not destroy the negative ions formed by a collision in the case of hydrogen, of the type:
  • the destruction of the negative ions formed by reaction with the hot electrons of the plasma is relatively large, which is detrimental to the production of a beam of intense negative ions.
  • the number of negative ions constituting the plasma created in the enclosure represents only 10% of the number of positive ions.
  • the object of the present invention is precisely a source of negative ions making it possible to remedy the various drawbacks above.
  • it makes it possible to produce an intense negative ion beam, in particular of H-, D- or T- ions, using as physical phenomena the dissociative attachment technique as well as electronic cyclotron resonance.
  • This resonance phenomenon is generally used to produce multi-charged positive ions.
  • the European patent application No. 0,127,523 filed in the name of applicant describes a positive ion source operating on the principle of electron cyclotron resonance.
  • This condition of electronic cyclotron resonance makes it possible to create energetic or hot electrons, of kinetic energy greater than 20 eV, in a direction perpendicular to the magnetic field.
  • These hot electrons by collision on the molecules of gas or vapor contained in the source, generate other electrons which will also be accelerated by cyclotronic resonance.
  • the hot plasma of electrons thus formed makes it possible, according to the reaction mechanism (1), to excite the molecules of the gas or of the vapor.
  • the electrons formed by the interaction of the electromagnetic wave and gas or vapor molecules, have a lower energy, for example at most equal to 1 eV. These cold electrons interact with the unexcited neutral molecules of gas or vapor, creating positive ions and other cold electrons, thus forming a cold plasma of electrons. Given the profile of the amplitude of the magnetic field, this cold electron plasma is mainly located in the extraction zone of negative ions. According to the reaction mechanism (2), this cold plasma of electrons formed allows the formation of negative ions.
  • the source of negative ions according to the invention allows the formation of a hot electron plasma and a cold electron plasma well separated spatially, thus making it possible to form negative ions, and in particular H- ions, D- or T-, by dissociative attachment and by electronic cyclotron resonance, while avoiding the destruction of negative ions formed by collisions with energetic electrons, according to the reaction mechanism (3).
  • the negative ions thus formed and extracted from the plasma can advantageously be accelerated using appropriate means located downstream of the extraction means.
  • This final acceleration of the ions can for example be obtained by using an electrode, pierced with one or more openings to allow the passage of the ions, brought to a positive potential relative to that of the extraction means.
  • means for reducing the amplitude of the magnetic field at the level of the ion extraction means can be provided.
  • This local cancellation of the amplitude of the magnetic field can advantageously be carried out using as means of extraction of the negative ions an electrode or plate made of a ferromagnetic substance, pierced with slots or holes to allow the passage of the negative ions formed.
  • This cancellation of the amplitude of the magnetic field at the level of the extraction of the ions traps the electrons which have not reacted with the gas or vapor molecules, thus making it possible to avoid their acceleration between the means of extraction and of acceleration, and therefore their output from the source.
  • the means for injecting the electromagnetic field comprise a waveguide whose end, mounted on the enclosure, is equipped with a window in a dielectric material.
  • the source of negative ions comprises a containment vacuum enclosure 2 constituting a resonant cavity which can be excited by a microwave electromagnetic field.
  • This enclosure 2 has an axis of symmetry Z, which in the case of a cylindrical enclosure represents the axis of revolution.
  • the electromagnetic wave produced by a source 4 such as a klystron is introduced into the resonant cavity 2 by means of a waveguide 6, of circular or rectangular section, comprising at its end mounted on the enclosure a window 8 made of a dielectric material such as A1 2 0 3 .
  • This wave can be continuous or pulsed and have a frequency between 1 and 100 GHz.
  • a pipe 10 makes it possible to introduce a gas or a vapor of a material inside the cavity 2 intended to form a plasma in said cavity.
  • this introduction of gas is carried out near the introduction of the electromagnetic wave.
  • the enclosure 2 can for example be filled with hydrogen, deuterium or tritium at a pressure of 1 to 10 mtorr (0.134 to 1.34 Pa).
  • Means not shown, such as a diffusion or cryogenic pump, mounted on the cavity 2 allow the maintenance of a high vacuum inside the cavity.
  • the cavity 2 is brought to an electrostatic potential -V with respect to the mass.
  • it is surrounded by two coils 12 and 14, the coil 12 being supplied in counter-field, making it possible to create a magnetic field of axial symmetry.
  • the axis of symmetry of this magnetic field can be merged with the axis of symmetry Z of the cavity 2.
  • the arrows 16 represent the field lines of the magnetic field. This magnetic field can be either continuous or pulsed.
  • the source of negative ions according to the invention further comprises means making it possible to extract the ions formed.
  • These means consist for example of a conductive plate 18 brought to a positive potential with respect to the enclosure 2, for example to a potential -V + AV. They are mounted on one end of the enclosure and isolated from them by means of an insulating ring 19.
  • These means 18 are equipped with at least one hole or a slot 20 allowing the passage of ions negative. This extrac orifice tion 20 is for example located on the axis of symmetry Z of the microwave cavity.
  • V and of V can be between -1500 V and -2000 V and A V between 5 and 20 volts.
  • the extraction electrode 18, negative ions can be followed by another electrode 22 brought to a positive potential with respect to the extraction electrode 18, and for example to the ground potential, in order to accelerate negative ions formed to their final value.
  • This electrode 22 is of course equipped with at least one opening 24, located in particular on the axis of symmetry Z of the cavity, allowing the exit of the negative ions formed, outside the source.
  • the positions of the extraction 18 and acceleration 20 electrodes are advantageously adjustable along the Z axis.
  • the electromagnetic waveguide 6 and the extraction 18 and acceleration 22 electrodes of the ion source are arranged at the two opposite ends of the resonant cavity 2; the axis of symmetry of the waveguide 6 and those of the openings 20 and 24, reciprocally made in the electrodes 18 and 22, coincide with the axis of symmetry Z of the cavity.
  • the coils 12 and 14 surrounding the cavity 2 make it possible, as shown in FIG. 2, to create a magnetic field of axial symmetry in the enclosure whose amplitude B increases from the window 8 of the injector of the electromagnetic wave at the extraction electrode 18.
  • This magnetic field has, at a point Z R taken on the axis of symmetry of the cavity 2, and approximately at the center of said cavity, an amplitude B R satisfying the condition of electronic cyclotronic resonance (4), thus allowing the formation of energetic electrons used for the vibrational excitation of the molecules of the gas contained in enclosure 2.
  • this magnetic field has a maximum amplitude B M just upstream of l extraction electrode 18, the position of which is marked by the dimension Z e .
  • the electrons acquire a strong kinetic energy, perpendicular to the magnetic field.
  • these electrons undergo a mirror effect and are subjected to a force.
  • being the magnetic moment of the electron. They are therefore accelerated towards window 8 of the electromagnetic injector; the direction of movement of these electrons is illustrated by the arrow F.
  • the energetic electrons entrain, by electrostatic or ambipolar effect, the positive ions such as H + , D + or T + formed during the ionization of the hydrogen gas, deuterium or tritium contained in the enclosure 2.
  • the positive ions such as H + , D + or T + formed during the ionization of the hydrogen gas, deuterium or tritium contained in the enclosure 2.
  • This more positive potential is responsible for the self-acceleration of the H- ions, represented by the arrow F ', these ions being created in the ion extraction zone, that is to say near and upstream of the electrode 18.
  • Negative ions and, for example, H-, D- or T- ions are created preferentially in the region of extraction of the ions, because the molecules of gas vibratively excited, equation (1), are insensitive to the magnetic field; they can therefore diffuse isotropically.
  • the amplitude of the magnetic field can advantageously cancel out at the level of the extraction electrode 18, that is to say at the Ze dimension, in order to carry out a trapping of the electrons of the plasma. thus making it possible to avoid their acceleration between the extraction electrode 18 and the electrode 22.
  • This cancellation of the magnetic field can for example be obtained by using an extraction electrode 18 made of a ferromagnetic substance.
  • the source of negative ions according to the invention allowed the production of a beam of H- ions having an energy of 2 KeV per nucleon and an intensity of 10 mA using an average microwave power of 1 kW, a cyclotronic frequency. 10 GHz electronics and a magnetic field whose amplitude increases from 0.2 to 0.45 T.
  • the ion source had a cylindrical cavity 10 cm in diameter and 15 cm in length; it was brought to a negative potential of -2000 volts and the extraction electrode 18 to a potential of 2 volts higher than that of the cavity, ie -1998 V.
  • the pressure of the hydrogen gas contained in the enclosure was 0 , 2 Pa.
  • the magnetic field with axial symmetry can be produced by ferrites instead of the use of two coils supplied in counter-field and surrounding the microwave cavity.
  • the cavity may have a shape other than a cylindrical shape, for example a parallelepiped shape.
  • the source according to the invention can produce other types of negative ions and in particular oxygen, sodium, lithium and iodine ions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Particle Accelerators (AREA)

Description

  • La présente invention a pour objet une source d'ions négatifs à résonance cyclotronique électronique. Elle s'applique avantageusement dans la production de faisceaux d'ions H- de forte intensité (supérieure à 1 A) ou de ses isotopes D- ou T-, ces faisceaux étant principalement utilisés pour la production de faisceaux d'atomes neutres énergétiques (intensité de plusieurs dizaines d'ampères et énergie de 200 à 500 KeV) employés notamment comme moyens efficaces de chauffage des plasmas thermonucléaires produits dans les dispositifs de fusion à confinement magnétique. Par ailleurs, les faisceaux d'ions H-, D- ou T- de forte intensité peuvent aussi être utilisés en physique nucléaire et en particulier, dans des accélérateurs du type Van de Graaf-Tandem ou dans le domaine médical utilisant des accélérateurs du type cyclotron à énergie variable.
  • L'une des techniques actuellement connue pour produire des faisceaux d'ions négatifs et en particulier des ions H-, D- et T- est l'ionisation en volume. Cette technique est basée sur la formation, à partir d'un gaz ou d'une vapeur contenu dans une enceinte fermée, d'un plasma constitué principalement dans le cas de l'hydrogène d'ions H-, H+ et d'électrons.
  • Cette technique consiste tout d'abord à créer des molécules d'hydrogène, de deutérium ou de tritium selon le gaz de départ utilisé, excitées vibrationnellement par des électrons chauds ou énergétiques, c'est-à-dire dont l'énergie cinétique est supérieure à 20 eV, selon le schéma réactionnel (1) suivant, dans le cas de l'hydrogène:
    Figure imgb0001
  • Ensuite, à partir de ces molécules excitées (H2 *) on forme des ions H-, D- ou T- par la réaction d'attachement dissociatif (2) suivante, dans le cas de l'hydrogène:
    Figure imgb0002
  • Dans ce schéma réactionnel, le composé intermédiaire est instable. Les sections efficaces d'attachement sont élevées pour des électrons, dits froids, présentant une énergie cinétique au plus égale à 1 eV. Ce phénomène d'attachement dissociatif a notamment été décrit dans un article de M. BA-CAL et al., Phys. Rev. Letters, 42, 1538 (1979).
  • La difficulté dans une telle technique de production d'ions négatifs est de créer dans l'enceinte fermée de la source d'ions une population d'électrons énergétiques ou chauds et une population d'électrons froids, séparées spatialement de façon que les électrons chauds ne détruisent pas les ions négatifs formés par une collision dans le cas de l'hydrogène, du type:
    Figure imgb0003
  • Or, dans les sources d'ions négatifs connues, fonctionnant sur le principe ci-dessus, la destruction des ions négatifs formés par réaction avec les électrons chauds du plasma est relativement importante, ce qui est néfaste à la production d'un faisceau d'ions négatifs intense. En général, le nombre d'ions négatifs constituant le plasma créé dans l'enceinte ne représente que 10% du nombre d'ions positifs.
  • Par ailleurs, dans les sources d'ions négatifs, créés à partir d'un plasma, il existe une autre difficulté liée à la technique d'extraction des ions négatifs par effet électrostatique ou ambipolaire. En effet, l'extraction ou la décharge par effet électrostatique de particules (ions positifs, électrons, etc...) dans une source de particules quelconque est toujours réalisée au moyen d'électrodes d'extraction portées à un potentiel positif par rapport aux parois de l'enceinte formée; ceci est dû à la grande mobilité des électrons du plasma. Or, si pour l'extraction d'ions positifs, ce potentiel positif aide à l'extraction, dans le cas d'extraction d'ions négatifs, ce potentiel empêche les ions négatifs de sortie et les confine électrostatiquement dans l'enceinte. Ceci est encore néfaste à la production d'un faisceau d'ions négatifs intense.
  • La présente invention a justement pour objet une source d'ions négatifs permettant de remédier aux différents inconvénients ci-dessus. Elle permet notamment de produire un faisceau d'ions négatifs intense notamment d'ions H-, D- ou T-, en utilisant comme phénomènes physiques la technique d'attachement dissociatif ainsi que la résonance cyclotronique électronique. Ce phénomène de résonance est généralement utilisé pour produire des ions positifs multichargés. La demande de brevet européenne n° 0 127 523 déposée au nom du demandeur décrit une source d'ions positifs fonctionnant sur le principe de la résonance cyclotronique électronique.
  • De façon plus précise, l'invention a pour objet une source d'ions négatifs comportant une enceinte fermée contenant un gaz ou une vapeur d'un matériau destiné à former un plasma, se caractérisant en ce qu'elle comprend:
    • - des moyens d'injection dans l'enceinte d'un champ électromagnétique de haute fréquence formant par ionisation du gaz ou de la vapeur des électrons,
    • - des moyens pour créer dans l'enceinte un champ magnétique de symétrie axiale dont l'amplitude croît le long de l'axe de symétrie, cette amplitude, maximale à proximité et en amont de la zone d'extraction des ions négatifs, présentant dans la région centrale de l'enceinte une valeur pour laquelle la condition de résonance cyclotronique électronique est satisfaite, et
    • - des moyens d'extraction des ions négatifs formés, portés à un potentiel positif par rapport à l'enceinte.
  • L'utilisation d'un champ électromagnétique de haute fréquence ou hyperfréquence permet d'ioniser les molécules de gaz ou de la vapeur contenues dans l'enceinte par transfert d'énergie. Les électrons ainsi formés sont soumis à l'action du champ magnétique de symétrie axiale et, grâce au mécanisme d'absorption cyclotronique, se trouvent fortement accélérés dans la région centrale de l'enceinte où le champ magnétique présente une amplitude BR définie par l'équation (4): BR = 2n-fm/e, dans laquelle e représente la charge de l'électron, m sa masse et f la fréquence du champ électromagnétique.
  • Cette condition de résonance cyclotronique électronique permet de créer des électrons énergétiques ou chauds, d'énergie cinétique supérieure à 20 eV, dans une direction perpendiculaire au champ magnétique. Ces électrons chauds, par collision sur les molécules du gaz ou de la vapeur contenues dans la source, engendrent d'autres électrons qui seront aussi accélérés par résonance cyclotronique. Le plasma chaud d'électrons ainsi formé permet, selon le mécanisme réactionnel (1), d'exciter les molécules du gaz ou de la vapeur.
  • En dehors de la zone de résonance, les électrons, formés par interaction de l'onde électromagnétique et des molécules de gaz ou de vapeur, présentent une énergie plus faible, par exemple au plus égale à 1 eV. Ces électrons froids interagissent avec les molécules neutres non excitées de gaz ou de vapeur créant ainsi des ions positifs et d'autres électrons froids formant ainsi un plasma froid d'électrons. Compte tenu du profil de l'amplitude du champ magnétique, ce plasma d'électrons froids est principalement localisé dans la zone d'extraction des ions négatifs. Ce plasma froid d'électrons formé permet, selon le mécanisme réactionnel (2) la formation des ions négatifs.
  • La source d'ions négatifs selon l'invention permet la formation d'un plasma d'électrons chaud et d'un plasma d'électrons froid bien séparés spatialement, permettant ainsi de former des ions négatifs, et en particulier des ions H-, D- ou T-, par attachement dissociatif et par résonance cyclotronique électronique, tout en évitant la destruction des ions négatifs formés par collisions avec les électrons énergétiques, selon le mécanisme réactionnel (3).
  • Les ions négatifs ainsi formés et extraits du plasma pourront avantageusement être accélérés en utilisant des moyens appropriés situés en aval des moyens d'extraction. Cette accélération finale des ions peut par exemple être obtenue en utilisant une électrode, percée d'une ou plusieurs ouvertures pour permettre le passage des ions, portée à un potentiel positif par rapport à celui des moyens d'extraction.
  • Selon un mode préféré de réalisation de la source d'ions selon l'invention, des moyens pour diminuer l'amplitude du champ magnétique au niveau des moyens d'extraction des ions peuvent être prévus. Cette annulation locale de l'amplitude du champ magnétique peut avantageusement être réalisée en utilisant comme moyens d'extraction des ions négatifs une électrode ou plaque réalisée en une substance ferromagnétique, percée de fentes ou de trous pour permettre le passage des ions négatifs formés.
  • Cette annulation de l'amplitude du champ magnétique au niveau de l'extraction des ions réalise un piégeage des électrons n'ayant pas réagi avec les molécules de gaz ou de vapeur, permettant ainsi d'éviter leur accélération entre les moyens d'extraction et d'accélération, et donc leur sortie de la source.
  • Selon un autre mode préféré de réalisation de la source d'ions de l'invention, les moyens d'injection du champ électromagnétique comportent un guide d'onde dont l'extrémité, montée sur l'enceinte, est équipée d'une fenêtre en un matériau diélectrique.
  • D'autres caractéristiques et avantages de l'invention ressortiront mieux de la description qui va suivre, donnée à titre illustratif et non limitatif, en référence aux figures annexées, dans lesquelles:
    • - la figure 1 représente, schématiquement, en coupe longitudinale une source d'ions négatifs conformément à l'invention,
    • - la figure 2 représente une courbe donnant l'amplitude B du champ magnétique régnant dans la source de la figure 1 en fonction de la distance Z prise sur l'axe de révolution de la source, et
    • - la figure 3 représente une courbe donnant les variations du potentiel électrique U à l'intérieur de la source de la figure 1 en fonction de la distance Z.
  • En se référant à la figure 1, la source d'ions négatifs selon l'invention comprend une enceinte à vide de confinement 2 constituant une cavité résonnante pouvant être excitée par un champ électromagnétique hyperfréquence. Cette enceinte 2 présente un axe de symétrie Z, qui dans le cas d'une enceinte cylindrique représente l'axe de révolution. L'onde électromagnétique produite par une source 4 telle qu'un klystron est introduite dans la cavité résonnante 2 au moyen d'un guide d'onde 6, à section circulaire ou rectangulaire, comportant à son extrémité montée sur l'enceinte une fenêtre 8 réalisée en un matériau diélectrique tel A1203. Cette onde peut être continue ou pulsée et présenter une fréquence comprise entre 1 et 100 GHz.
  • Une conduite 10 permet d'introduire un gaz ou une vapeur d'un matériau à l'intérieur de la cavité 2 destiné à former un plasma dans ladite cavité. Avantageusement, cette introduction de gaz est réalisée à proximité de l'introduction de l'onde électromagnétique. L'enceinte 2 peut par exemple être remplie d'hydrogène, de deutérium ou de tritium à une pression de 1 à 10 mtorr (0,134 à 1,34 Pa).
  • Des moyens non représentés, tels qu'une pompe à diffusion ou cryogénique, montés sur la cavité 2 permettent le maintien d'un vide poussé à l'intérieur de la cavité.
  • La cavité 2 est portée à un potentiel électrostatique -V par rapport à la masse. En outre, elle est entourée par deux bobines 12 et 14, la bobine 12 étant alimentée en contre-champ, permettant de créer un champ magnétique de symétrie axiale. En particulier, l'axe de symétrie de ce champ magnétique peut être confondu avec l'axe de symétrie Z de la cavité 2. Les flèches 16 représentent les lignes de champ du champ magnétique. Ce champ magnétique peut être soit continu, soit pulsé.
  • La source d'ions négatifs selon l'invention comprend de plus des moyens permettant d'extraire les ions formés. Ces moyens sont constitués par exemple d'une plaque conductrice 18 portée à un potentiel positif par rapport à l'enceinte 2, par exemple à un potentiel -V + AV. Ils sont montés sur l'une des extrémités de l'enceinte et isolés de celles-ci au moyen d'une bague isolante 19. Ces moyens 18 sont équipés d'au moins un trou ou d'une fente 20 permettant le passage des ions négatifs. Cet orifice d'extraction 20 est par exemple situé sur l'axe de symétrie Z de la cavité hyperfréquence.
  • Selon le gaz ou la vapeur utilisé, on choisira telle ou telle valeur de V et de àV. Par exemple pour de l'hydrogène ou ses isotopes V peut être compris entre -1500 V et -2000 V et AV compris entre 5 et 20 volts.
  • Selon l'invention, l'électrode d'extraction 18, des ions négatifs peut être suivie d'une autre électrode 22 portée à un potentiel positif par rapport à l'électrode d'extraction 18, et par exemple au potentiel de la masse, afin d'accélérer des ions négatifs formés à leur valeur finale. Cette électrode 22 est bien entendu équipée d'au moins une ouverture 24, située notamment sur l'axe de symétrie Z de la cavité, permettant la sortie des ions négatifs formés, hors de la source.
  • Les positions des électrodes d'extraction 18 et d'accélération 20 sont avantageusement réglables le long de l'axe Z.
  • Comme représenté sur la figure 1, le guide d'onde électromagnétique 6 et les électrodes d'extraction 18 et d'accélération 22 de la source d'ions sont disposées aux deux extrémités opposées de la cavité résonnante 2; l'axe de symétrie du guide d'onde 6 et ceux des ouvertures 20 et 24, pratiquées réciproquement dans les électrodes 18 et 22, sont confondus avec l'axe de symétrie Z de la cavité.
  • Les bobines 12 et 14 entourant la cavité 2 permettent, comme représenté sur la figure 2, de créer un champ magnétique de symétrie axiale dans l'enceinte dont l'amplitude B croît de la fenêtre 8 de l'injecteur de l'onde électromagnétique à l'électrode d'extraction 18. Ce champ magnétique présente, en un point ZR pris sur l'axe de symétrie de la cavité 2, et approximativement au centre de ladite cavité, une amplitude BR satisfaisant à la condition de résonance cyclotronique électronique (4), permettant ainsi la formation d'électrons énergétiques e- servant à l'excitation vibrationnelle des molécules du gaz contenues dans l'enceinte 2. Par ailleurs, ce champ magnétique présente un maximum d'amplitude BM juste en amont de l'électrode d'extraction 18 dont la position est repérée par la cote Ze.
  • Etant donné le fort couplage entre l'onde électromagnétique et les électrons créés par ionisation au point ZR, les électrons acquièrent une forte énergie cinétique, perpendiculaire au champ magnétique. Dans le champ magnétique d'amplitude croissante vers l'électrode 18, ces électrons subissent un effet miroir et sont soumis à une force
    Figure imgb0004
    µ étant le moment magnétique de l'électron. Ils sont donc accélérés vers la fenêtre 8 de l'injecteur électromagnétique; le sens de déplacement de ces électrons est illustré par la flèche F.
  • Dans leur entraînement axial, les électrons énergétiques entraînent, par effet électrostatique ou ambipolaire, les ions positifs tels que H+, D+ ou T+ formés lors de l'ionisation du gaz hydrogène, deutérium ou tritium contenu dans l'enceinte 2. Il en résulte, comme représenté sur la figure 3, un potentiel dit de plasma plus positif vers l'électrode d'extraction 18 (cote Ze) que dans le centre de la cavité (cote ZR). Ce potentiel plus positif est responsable de l'autoaccélération des ions H-, représentée par la flèche F', ces ions étant créés dans la zone d'extraction des ions, c'est-à-dire à proximité et en amont de l'électrode 18.
  • Les ions négatifs et par exemple les ions H-, D-ou T- sont créés préférentiellement dans la région d'extraction des ions, du fait que les molécules de gaz excitées vibrationnellement, équation (1), sont insensibles au champ magnétique; elles peuvent donc diffuser de façon isotrope.
  • Etant donné la polarité très légèrement positive +AV de l'électrode d'extraction 18 par rapport à la cavité hyperfréquence 2, l'extraction du plasma des ions négatifs formés, par exemple H- pour l'hydrogène, sera facilitée.
  • Comme représenté sur la figure 2, l'amplitude du champ magnétique peut avantageusement s'annuler au niveau de l'électrode d'extraction 18, c'est-à-dire à la cote Ze, afin de réaliser un piégeage des électrons du plasma permettant ainsi d'éviter leur accélération entre l'électrode d'extraction 18 et l'électrode 22. Cette annulation du champ magnétique peut par exemple être obtenue en utilisant une électrode d'extraction 18 réalisée en une substance ferromagnétique.
  • La source d'ions négatifs selon l'invention a permis la production d'un faisceau d'ions H- ayant une énergie de 2 KeV par nucléon et une intensité de 10 mA en utilisant une puissance hyperfréquence moyenne de 1 kW, une fréquence cyclotronique électronique de 10 GHz et un champ magnétique dont l'amplitude croît de 0,2 à 0,45 T. La source d'ions présentait une cavité cylindrique de 10 cm de diamètre et de 15 cm de longueur; elle était portée à un potentiel négatif de -2000 volts et l'électrode d'extraction 18 à un potentiel de 2 volts supérieur à celui de la cavité, soit -1998 V. La pression du gaz hydrogène contenu dans l'enceinte était de 0,2 Pa.
  • La description donnée précédemment n'a bien entendu été donnée qu'à titre illustratif, toute modification, sans pour autant sortir du cadre de l'invention, pouvant être envisagée.
  • En particulier, il est possible d'utiliser des moyens distincts pour extraire les ions négatifs et pour annuler l'amplitude du champ magnétique au niveau de ces moyens d'extraction, au lieu d'utiliser un seul moyen pour réaliser ces deux fonctions. Par exemple, on peut utiliser des ferrites pour diminuer l'amplitude du champ magnétique.
  • Par ailleurs, le champ magnétique à symétrie axiale peut être produit par des ferrites à la place de l'utilisation de deux bobines alimentées en contre-champ et entourant la cavité hyperfréquence.
  • De même, la cavité peut présenter une autre forme qu'une forme cylindrique, par exemple une forme parallélépipédique.
  • Enfin, la description a été faite dans le cas d'une production d'ions H-, D- ou T-, mais bien entendu, la source selon l'invention peut produire d'autres types d'ions négatifs et en particulier des ions d'oxygène, de sodium, de lithium et d'iode.

Claims (7)

1. Source d'ions négatifs comportant une enceinte fermée (2) contenant un gaz ou une vapeur d'un matériau destiné à former un plasma, caractérisée en ce qu'elle comprend:
- des moyens d'injection (6, 8) dans l'enceinte (2) d'un champ électromagnétique de haute fréquence formant par ionisation du gaz ou de la vapeur des électrons,
- des moyens (12, 14) pour créer dans l'enceinte (2) un champ magnétique de symétrie axiale dont l'amplitude (B) croît le long de l'axe de symétrie (Z), cette amplitude, maximale (BM) à proximité et en amont de la zone d'extraction des ions négatifs, présentant dans la région centrale (ZR) de l'enceinte (2) une valeur (BR) pour laquelle la condition de résonance cyclotronique électronique est satisfaite, et
- des moyens d'extraction (18) des ions négatifs formés, portés à un potentiel positif (+àV) par rapport à l'enceinte (2).
2. Source d'ions négatifs selon la revendication 1, caractérisée en ce qu'elle comprend en aval des moyens d'extraction (18) des moyens d'accélération (22) des ions négatifs formés.
3. Source d'ions négatifs selon la revendication 1 ou 2, caractérisée en ce qu'elle comprend des moyens d'annulation (18) de l'amplitude du champ magnétique au niveau des moyens d'extraction (18) des ions.
4. Source d'ions négatifs selon la revendication 3, caractérisée en ce que les moyens d'annulation et les moyens d'extraction étant confondus, ces moyens (18) sont formés d'une plaque en matériau ferromagnétique percée d'au moins une ouverture (20) pour permettre le passage des ions.
5. Source d'ions négatifs selon l'une quelconque des revendications 2 à 4, caractérisée en ce que les moyens d'accélération (22) sont formés d'une électrode portée à un potentiel positif par rapport à celui des moyens d'extraction, munie d'au moins une ouverture (24) pour permettre le passage des ions.
6. Source d'ions négatifs selon l'une quelconque des revendications 1 à 5, caractérisée en ce que les moyens d'injection (6, 8) du champ électromagnétique comportent un guide d'onde (6) dont l'extrémité montée sur l'enceinte (2) est équipée d'une fenêtre (8) en un matériau diélectrique.
7. Source d'ions négatifs selon l'une quelconque des revendications 1 à 6, caractérisée en ce que le gaz est l'hydrogène ou ses isotopes.
EP86400726A 1985-04-11 1986-04-04 Source d'ions négatifs à résonance cyclotronique des électrons Expired EP0199625B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8505461A FR2580427B1 (fr) 1985-04-11 1985-04-11 Source d'ions negatifs a resonance cyclotronique des electrons
FR8505461 1985-04-11

Publications (2)

Publication Number Publication Date
EP0199625A1 EP0199625A1 (fr) 1986-10-29
EP0199625B1 true EP0199625B1 (fr) 1989-03-22

Family

ID=9318132

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86400726A Expired EP0199625B1 (fr) 1985-04-11 1986-04-04 Source d'ions négatifs à résonance cyclotronique des électrons

Country Status (5)

Country Link
US (1) US4757237A (fr)
EP (1) EP0199625B1 (fr)
JP (1) JPS61239546A (fr)
DE (1) DE3662576D1 (fr)
FR (1) FR2580427B1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859908A (en) * 1986-09-24 1989-08-22 Matsushita Electric Industrial Co., Ltd. Plasma processing apparatus for large area ion irradiation
US4845364A (en) * 1988-02-29 1989-07-04 Battelle Memorial Institute Coaxial reentrant ion source for surface mass spectroscopy
JPH0216732A (ja) * 1988-07-05 1990-01-19 Mitsubishi Electric Corp プラズマ反応装置
US5107170A (en) * 1988-10-18 1992-04-21 Nissin Electric Co., Ltd. Ion source having auxillary ion chamber
US5051557A (en) * 1989-06-07 1991-09-24 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Microwave induced plasma torch with tantalum injector probe
US5106570A (en) * 1990-08-02 1992-04-21 The United States Of America As Represented By The Secretary Of The Air Force Intense negative ion source
FR2668642B1 (fr) * 1990-10-25 1993-11-05 Commissariat A Energie Atomique Source d'ions fortement charges a sonde polarisable et a resonance cyclotronique electronique.
US5306921A (en) * 1992-03-02 1994-04-26 Tokyo Electron Limited Ion implantation system using optimum magnetic field for concentrating ions
JP2693899B2 (ja) * 1992-10-09 1997-12-24 栄電子工業株式会社 Ecrプラズマ加工方法
US6335535B1 (en) * 1998-06-26 2002-01-01 Nissin Electric Co., Ltd Method for implanting negative hydrogen ion and implanting apparatus
US6441569B1 (en) 1998-12-09 2002-08-27 Edward F. Janzow Particle accelerator for inducing contained particle collisions

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2475798A1 (fr) * 1980-02-13 1981-08-14 Commissariat Energie Atomique Procede et dispositif de production d'ions lourds fortement charges et une application mettant en oeuvre le procede
US4447773A (en) * 1981-06-22 1984-05-08 California Institute Of Technology Ion beam accelerator system
US4486665A (en) * 1982-08-06 1984-12-04 The United States Of America As Represented By The United States Department Of Energy Negative ion source
FR2546358B1 (fr) * 1983-05-20 1985-07-05 Commissariat Energie Atomique Source d'ions a resonance cyclotronique des electrons
US4602161A (en) * 1985-03-04 1986-07-22 The United States Of America As Represented By The United States Department Of Energy Negative ion source with low temperature transverse divergence optical system

Also Published As

Publication number Publication date
JPS61239546A (ja) 1986-10-24
FR2580427B1 (fr) 1987-05-15
FR2580427A1 (fr) 1986-10-17
DE3662576D1 (en) 1989-04-27
US4757237A (en) 1988-07-12
EP0199625A1 (fr) 1986-10-29

Similar Documents

Publication Publication Date Title
EP0209469B1 (fr) Procédé et dispositif d'excitation d'un plasma par micro-ondes à la résonance cyclotronique électronique
EP0238397B1 (fr) Source d'ions à résonance cyclotronique électronique à injection coaxiale d'ondes électromagnétiques
EP0199625B1 (fr) Source d'ions négatifs à résonance cyclotronique des électrons
FR2475798A1 (fr) Procede et dispositif de production d'ions lourds fortement charges et une application mettant en oeuvre le procede
EP0145586B1 (fr) Source d'ions multicharges a plusieurs zones de resonance cyclotronique electronique
FR2726729A1 (fr) Dispositif de production d'un plasma permettant une dissociation entre les zones de propagation et d'absorption des micro-ondes
EP0127523A1 (fr) Source d'ions à résonance cyclotronique des électrons
EP0184475B1 (fr) Procédé et dispositif d'allumage d'une source d'ions hyperfréquence
EP2873306A1 (fr) Applicateur micro-onde coaxial pour la production de plasma
EP2044816A2 (fr) Dispositif et procédé de production et/ou de confinement d'un plasma
EP0722651B1 (fr) Dispositif et procede pour former un plasma par application de micro-ondes
EP0532411B1 (fr) Source d'ions à résonance cyclotronique électronique et à injection coaxiale d'ondes électromagnétiques
EP2311061B1 (fr) Dispositif générateur d'ions à résonance cyclotronique électronique
EP0527082B1 (fr) Source d'ions multicharges à résonance cyclotronique électronique de type guide d'ondes
EP0483004B1 (fr) Source d'ions fortement chargés à sonde polarisable et à résonance cyclotronique électronique
EP0232651B1 (fr) Source d'ions à résonance cyclotronique électronique
FR2526582A1 (fr) Procede et appareil pour produire des micro-ondes
EP0374011B1 (fr) Procédé et dispositif utilisant une source RCE pour la production d'ions lourds fortement chargés
EP0122186B1 (fr) Générateur d'ondes radioélectriques pour hyperfréquences
Badareu et al. Contributions to the study of hollow cathode effect
EP0813223A1 (fr) Dispositif pour engendrer un champ magnétique et source ecr comportant ce dispositif
EP1080613A1 (fr) Dispositif destine a creer un champ magnetique a l'interieur d'une enceinte
Tuchin Some features of the influence of discharge-current fluctuations on the output radiation of an He–Cd+ laser

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE GB IT NL

17P Request for examination filed

Effective date: 19870401

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

17Q First examination report despatched

Effective date: 19880518

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE GB IT NL

REF Corresponds to:

Ref document number: 3662576

Country of ref document: DE

Date of ref document: 19890427

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920401

Year of fee payment: 7

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920430

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930324

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930330

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19931101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930404

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19940430

BERE Be: lapsed

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

Effective date: 19940430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050404