EP0196370A1 - Method for the production of an overvoltage diversion utilizing a ZnO-based varistor, and overvoltage diversion thus produced - Google Patents

Method for the production of an overvoltage diversion utilizing a ZnO-based varistor, and overvoltage diversion thus produced Download PDF

Info

Publication number
EP0196370A1
EP0196370A1 EP85115554A EP85115554A EP0196370A1 EP 0196370 A1 EP0196370 A1 EP 0196370A1 EP 85115554 A EP85115554 A EP 85115554A EP 85115554 A EP85115554 A EP 85115554A EP 0196370 A1 EP0196370 A1 EP 0196370A1
Authority
EP
European Patent Office
Prior art keywords
resistance body
zno
resistance
compact
surge arrester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85115554A
Other languages
German (de)
French (fr)
Other versions
EP0196370B1 (en
Inventor
Günther Maier
Joseph Mosele
Roger Dr. Perkins
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Priority to AT85115554T priority Critical patent/ATE52633T1/en
Publication of EP0196370A1 publication Critical patent/EP0196370A1/en
Application granted granted Critical
Publication of EP0196370B1 publication Critical patent/EP0196370B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/105Varistor cores
    • H01C7/108Metal oxide
    • H01C7/112ZnO type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/102Varistor boundary, e.g. surface layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/12Overvoltage protection resistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49087Resistor making with envelope or housing

Definitions

  • the invention relates to a method for producing a ZnO-based surge arrester according to the preamble of claim 1 and a surge arrester according to the preamble of claim 4.
  • the ZnO-based resistance material plays an outstanding role here.
  • the conventional constructions generally use - from certain voltages upwards - stack-like bodies composed of individual disks made of voltage-dependent sintered resistance material (varistors). Such bodies are known from numerous publications (see, for example, US-A-4,335,417, DE-A-2,934,832, CH-A-626,758).
  • the height of the discs used is limited (e.g. to 60 mm) and the height to diameter ratio is generally less than 1.
  • the stack-like structure of a conventional surge arrester is - especially with higher voltages and powers - expensive and complex and also includes additional risks due to the numerous internal contact areas.
  • the invention has for its object to provide a method for manufacturing and a simplified construction of a surge arrester, which is not composed of individual disks and one self-supporting stable insulating body as a housing.
  • a surge arrester which is not composed of individual disks and one self-supporting stable insulating body as a housing.
  • expensive, brittle ceramic insulating housings (porcelain) should possibly be avoided.
  • the essence of the invention is to produce a single, self-supporting, monolithic resistance body and to encase it with an insulating material in various ways.
  • Fig. 1 the process is shown as a flow diagram in block form.
  • the individual points require no further explanation.
  • the mass which is in the form of granules and is filled into an elastic hollow mold (e.g. made of silicone rubber), can be pressed by the cold isostatic process (wet die) or more advantageously by the two-dimensional radial process (dry die).
  • FIG. 2 shows a simplified longitudinal section through an overvoltage arrester with a monolithic, essentially cylindrical active resistance body and with an insulating body designed as a jacket.
  • 1 shows the resistance body (varistor), which essentially has a smooth, cylindrical outer surface.
  • the resistance body 1 is made slightly corrugated at the ends in order to create better adhesive conditions in the adhesive joint 7.
  • 2 is the insulating body designed as a jacket, which advantageously consists of a castable plastic such as epoxy resin, polymer concrete, silicone material etc. However, a shrink tube or another suitable covering or in general any suitable coating by an insulating material can also be used for this. Glazing or painting are also suitable.
  • 3 is the metallized end face of the resistance body 1
  • 4 is the corresponding contact spring for the high-voltage electrode 5 or earth electrode 6.
  • an insulating body 2 is shown with a smooth cylindrical outer wall for the interior installation of the arrester, while the right half relates to a version with ribs or screens for outdoor installation.
  • FIG. 3 shows a longitudinal section through an overvoltage arrester with a monolithic, externally ribbed resistance body.
  • the insulating body 2 is designed as an additionally applied, comparatively thin coating of approximately constant thickness. All reference numerals correspond to those in FIG. 2.
  • the resistance body 1 has a central bore 8, in which the threaded pull rod 9 made of insulating material is located.
  • the electrodes 5 and 6 are pressed firmly onto the end faces of the resistance body 1 by means of the latter. All other reference numerals correspond to those in FIG. 2.
  • An overvoltage arrester was manufactured on the basis of Zn0, the active resistance body 1 of which had the following composition:
  • the slurry was then converted into a free-flowing, dry granulate in a spray dryer with counter-air flow.
  • the average size of the grains produced was about 100 ⁇ m, the remaining moisture was about 2% by weight.
  • the compact was removed from the mold and sintered at a temperature of 1200 ° C for 2 hours.
  • the organic binder was burned while passing through the temperature range of 200 to 600 ° C and the shrinkage was carried out in a short time in the range of 900 to 1050 ° C without deformation of the body.
  • the sintered resistance body 1 had a diameter of 35 mm with a length of 240 mm and a density of 5500 kg / m '(98% of the theoretical value).
  • the monolithic sintered body was contacted by flame spraying its end faces (3) with aluminum once.
  • the electrical transition was carried out by means of pressure contacts (contact springs 4).
  • the finished contacted sintered body was now provided with a 6 mm thick layer of a temperature-resistant organic material, in the present case an epoxy resin.
  • This hollow cylindrical, smooth jacket for the interior installation of the arrester was produced by encapsulating the resistance body 1.
  • the jacket can be provided with screens or ribs to enlarge the surface.
  • Example I An overvoltage arrester with a resistance body 1 of the same dimensions and composition as in Example I was produced. The process steps of mixing, grinding and drying the starting materials correspond to those of Example I.
  • the compact was then removed from the mold and sintered at a temperature of 1200 ° C. for 2 h in an analogous manner to that given in Example I.
  • the finished sintered body had a diameter of 35 mm with a length of 240 mm and a density of 5500 kg / m '(98% of the theoretical value).
  • the resistance body 1 was provided with a smooth shrink tube made of silicone material as an insulating body 2 (jacket).
  • the pressing method according to Example II has the advantage that the compact is defined better in its axial length, which is decisive for the operating voltage, and this can be easily changed, corrected and adjusted to the operating requirements by adjusting the piston at the end. This is particularly important in the present case of the manufacture of monolithic resistance bodies This is important because the adjustment to the operating voltage cannot - as is the case for conventional arresters consisting of a number of disks - be carried out retrospectively by varying the number of disks. This method is also more suitable for automation and mass production.
  • the continuous operating voltage of the arrester was 24 kV, the residual voltage under a shock wave of 10 kA, 8/20 ⁇ s 70 kV.
  • the invention is not restricted to the exemplary embodiments.
  • a compact of at least 40% density should be achieved during pre-compression and a sintered body of at least 90% density based on the theoretical value during sintering.
  • the height to diameter ratio of the resistance body can generally be> 1.
  • the resistance body can also have a cylindrical shape other than smooth (FIG. 1). He can e.g. be limited on the outside by ribs or grooves (FIG. 2) or have a bore (hollow cylinder according to FIG. 3).
  • the insulating body can be designed as a encapsulated mass in epoxy resin, polymer concrete, silicone resin or as a covering in the form of a shrink tube, a coating, a coat of paint or a glazing.
  • the arrester In the simplest case for indoor installation, the arrester consists only of a resistance body thinly coated with glass, lacquer or plastic with resilient metal contacts pressed onto the end face.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermistors And Varistors (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

A lightning arrester with a monolithic, active resistor core made of voltage-dependent resistance material based on ZnO is produced by mixing and grinding the base materials ZnO+metal oxides, producing pourable granules, filling into a silicone rubber tube and pressing cold-isostatically or radially into a moulding, sintering of the moulding into a self-supporting, monnolithic resistor core, converting the resistor core, with an insulator by casting around, coating or painting with an epoxy resin, silicone material or concrete polymer or by drawing over a shrink-fit tube or by glazing. The resultant lightning arrester has a simple configuration, good reproducibility, cost-effective mass production.

Description

Die Erfindung geht aus von einem Verfahren zur Herstellung eines Ueberspannungsableiters auf ZnO-Basis nach der Gattung des Oberbegriffs des Anspruchs 1 und von einem Ueberspannungsableiter nach der Gattung des Oberbegriffs des Anspruchs 4.The invention relates to a method for producing a ZnO-based surge arrester according to the preamble of claim 1 and a surge arrester according to the preamble of claim 4.

In der Elektrotechnik werden mehr und mehr die früheren klassischen Ueberspannungsableiter auf Siliziumkarbid-Basis durch solche auf der Basis von Metalloxyden ersetzt. Dabei spielt das Widerstandsmaterial auf ZnO-Basis eine hervorragende Rolle. Die herkömmlichen Konstruktionen verwenden in der Regel - von bestimmten Spannungen an aufwärts - aus einzelnen Scheiben zusammengesetzte stapelartige Körper aus spannungsabhängigem gesintertem Widerstandsmaterial (Varistoren). Derartige Körper sind aus zahlreichen Veröffentlichungen bekannt (vergl. z.B. US-A-4 335 417, DE-A-2 934 832, CH-A-626 758). Die Höhe der verwendeten Scheiben ist begrenzt (z.B. auf 60 mm) und das Verhältnis Höhe zu Durchmesser ist im allgemeinen kleiner als 1.In electrical engineering, the earlier classic surge arresters based on silicon carbide are increasingly being replaced by those based on metal oxides. The ZnO-based resistance material plays an outstanding role here. The conventional constructions generally use - from certain voltages upwards - stack-like bodies composed of individual disks made of voltage-dependent sintered resistance material (varistors). Such bodies are known from numerous publications (see, for example, US-A-4,335,417, DE-A-2,934,832, CH-A-626,758). The height of the discs used is limited (e.g. to 60 mm) and the height to diameter ratio is generally less than 1.

Derartige, aus einzelnen Widerstandsscheiben zusammengesetzte Stapel sind naturgemäss nicht selbsttragend und müssen daher verspannt, in ein Isoliergehäuse eingepasst oder eingegossen oder sonst auf irgend eine Weise fixiert werden. Die im Betrieb entwickelte Wärme muss dabei durch das Isoliergehäuse nach aussen abgeführt werden.Such stacks composed of individual resistance disks are naturally not self-supporting and therefore have to be clamped, fitted into an insulating housing or cast in or otherwise fixed in some way. The heat developed during operation must be dissipated to the outside through the insulating housing.

Der stapelartige Aufbau eines herkömmlichen Ueberspannungsableiters ist - insbesondere bei höheren Spannungen und Leistungen - teuer und aufwendig und schliesst auch wegen der zahlreichen internen Kontaktflächen zusätzliche Risiken ein.The stack-like structure of a conventional surge arrester is - especially with higher voltages and powers - expensive and complex and also includes additional risks due to the numerous internal contact areas.

Es ist schon vorgeschlagen worden, einen gesinterten stabförmigen ZnO-Widerstandskörper in einer Porzellanmasse einzubetten und letztere bei relativ tiefer Temperatur zu einem festen und mit dem Widerstandskörper fest verbundenen Isolierkörper zu sintern. Eine derartige Verbindung zwischen Widerstands- und Isolierkörper kann ohne Radialspalt ausgeführt werden (vergl. EP-A-0 004 349). Dies stellt bereits eine Vereinfachung der Konstruktion gegenüber dem stapelartigen Aufbau üblicher Ableiter dar.It has already been proposed to embed a sintered rod-shaped ZnO resistance body in a porcelain mass and to sinter the latter at a relatively low temperature to form a solid insulating body which is firmly connected to the resistance body. Such a connection between the resistance and the insulating body can be carried out without a radial gap (see EP-A-0 004 349). This already simplifies the design compared to the stack-like structure of conventional arresters.

Es besteht jedoch das allgemeine Bedürfnis, den Aufbau und die Herstellung von auf Zn0-Uaristoren beruhenden Ueberspannungsableitern weiter zu vereinfachen und für eine Massenproduktion geeignet zu machen.However, there is a general need to further simplify the construction and manufacture of surge arresters based on ZnO uaristors and to make them suitable for mass production.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung sowie eine vereinfachte Konstruktion eines Ueberspannungsableiters anzugeben, welcher nicht aus einzelnen Scheiben zusammengesetzt ist und einen selbsttragenden stabilen Isolierkörper als Gehäuse überflüssig macht. Insbesondere sollen teure, spröde keramische Isoliergehäuse (Porzellan) womöglich vermieden werden.The invention has for its object to provide a method for manufacturing and a simplified construction of a surge arrester, which is not composed of individual disks and one self-supporting stable insulating body as a housing. In particular, expensive, brittle ceramic insulating housings (porcelain) should possibly be avoided.

Diese Aufgabe wird durch die im kennzeichnenden Teil des Anspruchs 1 sowie des Anspruchs 4 angegebenen Merkmale gelöst.This object is achieved by the features specified in the characterizing part of claim 1 and claim 4.

Der Kern der Erfindung besteht darin, einen einzigen, selbsttragenden monolithischen Widerstandskörper herzustellen und diesen auf verschiedene Art und Weise mit einem Isoliermaterial zu ummanteln.The essence of the invention is to produce a single, self-supporting, monolithic resistance body and to encase it with an insulating material in various ways.

Die Erfindung wird anhand der nachfolgenden, durch Figuren näher erläuterten Ausführungsbeispiele beschrieben.The invention is described on the basis of the following exemplary embodiments which are explained in more detail by means of figures.

Dabei zeigt:

  • Fig. 1 ein Fliessbild des Verfahrens in Blockdarstellung,
  • Fig. 2 einen Längsschnitt durch einen Ueberspannungsableiter mit monolithischem, im wesentlichen zylindrischen aktiven Widerstandskörper (Varistor) und mit Isolierkörper als glatten oder gerippten Mantel,
  • Fig. 3 einen Längsschnitt durch einen Ueberspannungsableiter mit monolithischem, aussen gerippten Widerstandskörper und mit Isolierkörper als aufgebrachte Beschichtung,
  • Fig. 4 einen Längsschnitt durch einen Ueberspannungsableiter mit monolithischem hohlzylindrischen Widerstandskörper, mit zentraler Zugstange und mit Isolierkörper als glattem Mantel.
It shows:
  • 1 is a flow diagram of the method in block diagram,
  • 2 shows a longitudinal section through an overvoltage arrester with a monolithic, essentially cylindrical active resistance body (varistor) and with an insulating body as a smooth or ribbed jacket,
  • 3 shows a longitudinal section through an overvoltage arrester with a monolithic, externally ribbed resistance body and with an insulating body as the applied coating,
  • Fig. 4 shows a longitudinal section through an overvoltage arrester with a monolithic hollow cylindrical resistance body, with a central tie rod and with an insulating body as a smooth jacket.

In Fig. l ist das Verfahren als Fliessbild in Blockdarstellung wiedergegeben. Die einzelnen Punkte bedürfen keiner weiteren Erläuterung. Das Pressen der in Form eines Granulats vorliegenden, in eine elastische Hohlform (z.B. aus Silikongummi) abgefüllten Masse kann nach dem kaltisostatischen Verfahren (Nassmatrize) oder vorteilhafter nach dem zweidimensionalen Radial-Verfahren (Trockenmatrize) erfolgen.In Fig. 1 the process is shown as a flow diagram in block form. The individual points require no further explanation. The mass, which is in the form of granules and is filled into an elastic hollow mold (e.g. made of silicone rubber), can be pressed by the cold isostatic process (wet die) or more advantageously by the two-dimensional radial process (dry die).

Fig. 2 zeigt einen vereinfachten Längsschnitt durch einen Ueberspannungsableiter mit monolithischem, im wesentlichen zylindrischen aktiven Widerstandskörper und mit als Mantel ausgebildetem Isolierkörper. 1 stellt den Widerstandskörper (Varistor) dar, der im wesentlichen eine glatte, zylindrische Mantelfläche aufweist. An den Enden ist der Widerstandskörper 1 im vorliegenden Fall leicht gewellt ausgeführt, um in der Klebefuge 7 bessere Haftbedingungen zu schaffen. 2 ist der als Mantel ausgebildete Isolierkörper, welcher vorteilhafterweise aus einem giessfähigen Kunststoff wie Epoxydharz, Polymerbeton, Silikonmaterial etc. besteht. Es kann dafür aber auch ein Schrumpfschlauch oder eine andere geeignete Umhüllung oder ganz allgemein irgend eine passende Beschichtung durch ein Isoliermaterial verwendet werden. Fernerhin kommen dafür Verglasungen oder Anstriche in Frage. 3 ist die metallisierte Stirnfläche des Widerstandskörpers 1, 4 die entsprechende Kontaktfeder zur Hochspannungselektrode 5 bzw. Erdelektrode 6.FIG. 2 shows a simplified longitudinal section through an overvoltage arrester with a monolithic, essentially cylindrical active resistance body and with an insulating body designed as a jacket. 1 shows the resistance body (varistor), which essentially has a smooth, cylindrical outer surface. In the present case, the resistance body 1 is made slightly corrugated at the ends in order to create better adhesive conditions in the adhesive joint 7. 2 is the insulating body designed as a jacket, which advantageously consists of a castable plastic such as epoxy resin, polymer concrete, silicone material etc. However, a shrink tube or another suitable covering or in general any suitable coating by an insulating material can also be used for this. Glazing or painting are also suitable. 3 is the metallized end face of the resistance body 1, 4 is the corresponding contact spring for the high-voltage electrode 5 or earth electrode 6.

In der linken Hälfte der Figur ist ein Isolierkörper 2 mit glatter zylindrischer Aussenwand für Innenraumaufstellung des Ableiters dargestellt, während sich die rechte Hälfte auf eine Ausführung mit Rippen bzw. Schirmen für Freiluftaufstellung bezieht.In the left half of the figure, an insulating body 2 is shown with a smooth cylindrical outer wall for the interior installation of the arrester, while the right half relates to a version with ribs or screens for outdoor installation.

Fig. 3 stellt einen Längsschnitt durch einen Ueberspannungsableiter mit monolithischem, aussen gerippten Widerstandskörper dar. Der Isolierkörper 2 ist als zusätzlich aufgebracht, vergleichsweise dünne Beschichtung ungefähr konstanter Dicke ausgeführt. Alle Bezugszeichen entsprechen denjenigen der Figur 2.3 shows a longitudinal section through an overvoltage arrester with a monolithic, externally ribbed resistance body. The insulating body 2 is designed as an additionally applied, comparatively thin coating of approximately constant thickness. All reference numerals correspond to those in FIG. 2.

In Fig. 4 ist ein Längsschnitt eines Ueberspannungsableiters mit einem monolithischen hohlzylindrischen Widerstandskörper dargestellt. Der widerstandskörper 1 weist eine zentrale Bohrung 8 auf, in welcher sich die mit einem Gewinde versehene Zugstange 9 aus Isoliermaterial befindet. Mittels letzterer werden die Elektroden 5 und 6 fest auf die Stirnflächen des Widerstandskörpers 1 gepresst. Alle übrigen Bezugszeichen entsprechen denjenigen der Figur 2.4 shows a longitudinal section of an overvoltage arrester with a monolithic hollow cylindrical resistance body. The resistance body 1 has a central bore 8, in which the threaded pull rod 9 made of insulating material is located. The electrodes 5 and 6 are pressed firmly onto the end faces of the resistance body 1 by means of the latter. All other reference numerals correspond to those in FIG. 2.

Ausführungsbeispiel I:Embodiment I:

Auf der Basis von Zn0 wurde ein Ueberspannungsableiter hergestellt, dessen aktiver Widerstandskörper 1 folgende Zusammensetzung hatte:

Figure imgb0001
Figure imgb0002
Figure imgb0003
Figure imgb0004
Figure imgb0005
Figure imgb0006
An overvoltage arrester was manufactured on the basis of Zn0, the active resistance body 1 of which had the following composition:
Figure imgb0001
Figure imgb0002
Figure imgb0003
Figure imgb0004
Figure imgb0005
Figure imgb0006

Diese Ausgangsstoffe wurden in einer mit Achatkugeln bestückten Kugelmühle während 10 h unter destilliertem Wasser gemischt und gemahlen, wobei eine homogene Pulvermischung mit einem Partikeldurchmesser von 1 bis 5 µm erzeugt wurde. Die Pulvermischung wurde in destilliertem Wasser derart aufgeschlämmt, dass der Feststoffanteil 60 Gew.-% betrug. Zwecks Erniedrigung der Viskosität wurde der Suspension ein handelsüblicher alkaliarmer Verflüssiger in einer Menge von ca. 1 °/oo bezogen auf das Feststoffgewicht beigefügt. Ausserdem wurde zur Verbesserung der Plastizität der späteren Trockenmasse ein alkaliarmer Polyvinylalkohol in einer Menge von ca. l % bezogen auf das Feststoffgewicht hinzugegeben. Dieser Zusatz verbessert die nachfolgende Verarbeitbarkeit der Masse und wirkt gleichzeitig als Bindemittel. Es wird dadurch insbesondere die homogene fehlerfreie Verdichtung der Masse und eine hohe Festigkeit und Formbeständigkeit des daraus hergestellten Presslings gewährleistet.These starting materials were mixed and ground under distilled water in a ball mill equipped with agate balls for 10 hours, a homogeneous powder mixture having a particle diameter of 1 to 5 μm being produced. The powder mixture was slurried in distilled water in such a way that the solids content was 60% by weight. In order to lower the viscosity, a commercially available low-alkali plasticizer was added to the suspension in an amount of about 1 ° / oo based on the weight of the solid. In addition, in order to improve the plasticity of the subsequent dry mass, a low-alkali polyvinyl alcohol was added in an amount of about 1% based on the weight of the solid. This additive improves the subsequent workability of the mass and at the same time acts as a binder. This ensures in particular the homogeneous, error-free compaction of the mass and the high strength and dimensional stability of the compact produced therefrom.

Die Aufschlämmung wurde nun in einem Sprühtrockner mit Gegenluftströmung in ein rieselfähiges trockenes Granulat übergeführt. Die durchschnittliche Grösse der dabei erzeugten Körner lag bei ca. 100 µm, die restliche Feuchtigkeit bei ca. 2 Gew.-%.The slurry was then converted into a free-flowing, dry granulate in a spray dryer with counter-air flow. The average size of the grains produced was about 100 µm, the remaining moisture was about 2% by weight.

Ca. 1,3 kg des Granulats wurden hierauf in eine Silikongummiform abgefüllt und nach dem Nassmatrizenverfahren kalt-isostatisch zu einem Pressling verdichtet. Die hohlzylindrische Form (Durchmesser 59 mm, Füllhöhe 404 mm) wurde dabei mit einem Deckel verschlossen und in ein Oelbad eingesetzt, auf welches dann ein Druck von 100 MPa ausgeübt wurde. Dieser pflanzte sich allseitig auf die Gummiform fort, so dass ein Pressling mit einer Dichte von 2950 kg/m' (53 % des theoretischen Wertes) erreicht wurde. Der Pressling hatte einen Durchmesser von 43 mm bei einer Höhe von 295 mm.Approx. 1.3 kg of the granules were then filled into a silicone rubber mold and cold-isostatically compacted into a compact by the wet matrix process. The hollow cylindrical shape (diameter 59 mm, filling height 404 mm) was closed with a lid and placed in an oil bath, to which a pressure of 100 MPa was then applied. This propagated on all sides on the rubber mold, so that a compact with a density of 2950 kg / m '(53% of the theoretical value) was reached has been. The compact had a diameter of 43 mm and a height of 295 mm.

Der Pressling wurde aus der Form genommen und bei einer Temperatur von 1200°C während einer Zeit von 2 h gesintert. Dabei wurde das organische Bindemittel beim Durchlaufen des Temperaturbereiches von 200 bis 600°C verbrannt und die Schwindung ohne Verformung des Körpers im Bereich von 900 bis 1050°C in kurzer Zeit durchgeführt. Der fertig gesinterte Widerstandskörper 1 hatte einen Durchmesser von 35 mm bei einer Länge von 240 mm und einer Dichte von 5500 kg/m' (98 % des theoretischen Wertes).The compact was removed from the mold and sintered at a temperature of 1200 ° C for 2 hours. The organic binder was burned while passing through the temperature range of 200 to 600 ° C and the shrinkage was carried out in a short time in the range of 900 to 1050 ° C without deformation of the body. The sintered resistance body 1 had a diameter of 35 mm with a length of 240 mm and a density of 5500 kg / m '(98% of the theoretical value).

Die Kontaktierung des monolithischen Sinterkörpers erfolgte durch einmaliges Flammspritzen seiner Stirnflächen (3) mit Aluminium. Der elektrische Uebergang erfolgte mittels Druckkontakten (Kontaktfedern 4). Der fertige kontaktierte Sinterkörper wurde nun mit einer 6 mm dicken Schicht eines temperaturbeständigen organischen Materials, im vorliegenden Fall eines Epoxydharzes versehen. Dieser hohlzylindrische glatte Mantel für Innenraumaufstellung des Ableiters wurde durch Umgiessen des Widerstandskörpers 1 hergestellt. Für Freiluftaufstellung kann der Mantel mit Schirmen bzw. Rippen zwecks Vergrösserung der Oberfläche versehen werden.The monolithic sintered body was contacted by flame spraying its end faces (3) with aluminum once. The electrical transition was carried out by means of pressure contacts (contact springs 4). The finished contacted sintered body was now provided with a 6 mm thick layer of a temperature-resistant organic material, in the present case an epoxy resin. This hollow cylindrical, smooth jacket for the interior installation of the arrester was produced by encapsulating the resistance body 1. For outdoor installation, the jacket can be provided with screens or ribs to enlarge the surface.

Ausführungsbeispiel II:Working example II:

Es wurde ein Ueberspannungsableiter mit einem Widerstandskörper 1 gleicher Abmessungen und Zusammensetzung wie in Beispiel I hergestellt. Die Verfahrensschritte des Mischens, Mahlens und Trocknens der Ausgangsstoffe entsprechen denjenigen des Beispiels I.An overvoltage arrester with a resistance body 1 of the same dimensions and composition as in Example I was produced. The process steps of mixing, grinding and drying the starting materials correspond to those of Example I.

Ca. 1,3 kg des Granulats wurden nun in eine hohlzylindrische Silikongummiform abgefüllt und nach dem Trockenmatrizenverfahren (Radialpressverfahren) kalt-isostatisch zu einem Pressling verdichtet. Die hohlzylindrische Form hatte einen Innendurchmesser von 69 mm bei einer Füllhöhe von 295 mm. Sie wurde stirnseitig durch einen Kolben abgeschlossen. Die von aussen eingeleiteten hydraulischen Kräfte wirkten dabei ausschliesslich radial (zweidimensional), während in axialer Richtung lediglich die Reaktionskräfte ausgeübt wurden, ohne eine Stauchung der Masse in dieser Richtung zu bewirken. Der hydrostatische Druck betrug 100 MPa. Der Pressling hatte eine Dichte von 2950 kg/m3 (53 % des theoretischen Wertes), einen Durchmesser von 43 mm und eine Höhe von 295 mm.Approx. 1.3 kg of the granules were then filled into a hollow cylindrical silicone rubber mold and cold-isostatically compressed to a compact by the dry matrix process (radial press process). The hollow cylindrical shape had an inner diameter of 69 mm with a filling height of 295 mm. It was closed at the end by a piston. The hydraulic forces introduced from the outside had an exclusively radial (two-dimensional) effect, while in the axial direction only the reaction forces were exerted without causing the mass to compress in this direction. The hydrostatic pressure was 100 MPa. The compact had a density of 2950 kg / m 3 (53% of the theoretical value), a diameter of 43 mm and a height of 295 mm.

Der Pressling wurde nun aus der.Form genommen und bei einer Temperatur von 1200°C während 2 h in analoger Weise wie unter Beispiel I angegeben, gesintert. Der fertige Sinterkörper hatte einen Durchmesser von 35 mm bei einer Länge von 240 mm und einer Dichte von 5500 kg/m' (98 % des theoretischen Wertes).The compact was then removed from the mold and sintered at a temperature of 1200 ° C. for 2 h in an analogous manner to that given in Example I. The finished sintered body had a diameter of 35 mm with a length of 240 mm and a density of 5500 kg / m '(98% of the theoretical value).

Zusätzlich zur stirnseitigen Metallisierung wurden zwecks Verstärkung auf den Stirnseiten des Widerstandskörpers 1 metallische Kontakte aufgelötet. Schliesslich wurde der Widerstandskörper 1 mit einem glatten Schrumpfschlauch aus Silikonmaterial als Isolierkörper 2 (Mantel) versehen.In addition to the metallization on the end face, 1 metal contacts were soldered onto the end faces of the resistance body for reinforcement. Finally, the resistance body 1 was provided with a smooth shrink tube made of silicone material as an insulating body 2 (jacket).

Das Pressverfahren nach Beispiel II hat den Vorteil, dass der Pressling in seiner für die Betriebsspannung massgebenden axialen Länge besser definiert ist und diese durch Verstellen des stirnseitigen Kolbens leicht geändert, korrigiert und den Betriebsbedürfnissen angepasst werden kann. Dies ist im vorliegenden Fall der Fertigung monolithischer Widerstandskörper von besonderer Bedeutung, da die Anpassung an die Betriebsspannung nicht - wie für herkömmliche, aus einer Anzahl Scheiben bestehende Ableiter - nachträglich durch Variation der Scheibenzahl erfolgen kann. Auch eignet sich dieses Verfahren besser zur Automatisation und Massenproduktion.The pressing method according to Example II has the advantage that the compact is defined better in its axial length, which is decisive for the operating voltage, and this can be easily changed, corrected and adjusted to the operating requirements by adjusting the piston at the end. This is particularly important in the present case of the manufacture of monolithic resistance bodies This is important because the adjustment to the operating voltage cannot - as is the case for conventional arresters consisting of a number of disks - be carried out retrospectively by varying the number of disks. This method is also more suitable for automation and mass production.

Im Falle der Beispiele I und 11 betrug die Dauerbetriebsspannung des Ableiters 24 kV, die Restspannung unter einer Stosswelle von 10 kA, 8/20 µs 70 kV.In the case of Examples I and 11, the continuous operating voltage of the arrester was 24 kV, the residual voltage under a shock wave of 10 kA, 8/20 µs 70 kV.

Die Erfindung ist nicht auf die Ausführungsbeispiele beschränkt. Beim Vorverdichten soll im allgemeinen ein Pressling von mindestens 40 % Dichte und beim Sintern ein Sinterkörper von mindestens 90 % Dichte bezogen auf den theoretischen Wert erreicht werden. Das Höhen- zu Durchmesserverhältnis des Widerstandskörpers kann allgemein > 1 sein. Der Widerstandskörper kann auch eine andere als glatte Zylinderform (Fig. 1) aufweisen. Er kann z.B. aussen durch Rippen bzw. Rillen begrenzt sein (Fig. 2) oder eine Bohrung besitzen (Hohlzylinder nach Fig. 3).The invention is not restricted to the exemplary embodiments. In general, a compact of at least 40% density should be achieved during pre-compression and a sintered body of at least 90% density based on the theoretical value during sintering. The height to diameter ratio of the resistance body can generally be> 1. The resistance body can also have a cylindrical shape other than smooth (FIG. 1). He can e.g. be limited on the outside by ribs or grooves (FIG. 2) or have a bore (hollow cylinder according to FIG. 3).

Der Isolierkörper (Mantel) kann als umgossehe Masse in Epoxydharz, Polymerbeton, Silikonharz oder als Umhüllung in Form eines Schrumpfschlauches, einer Beschichtung, eines Anstrichs oder einer Verglasung ausgeführt werden.The insulating body (jacket) can be designed as a encapsulated mass in epoxy resin, polymer concrete, silicone resin or as a covering in the form of a shrink tube, a coating, a coat of paint or a glazing.

Im einfachsten Fall für Innenraumaufstellung besteht der Ableiter lediglich aus einem mit Glas, Lack oder Kunststoff dünn beschichteten Widerstandskörper mit stirnseitig angepressten federnden Metallkontakten.In the simplest case for indoor installation, the arrester consists only of a resistance body thinly coated with glass, lacquer or plastic with resilient metal contacts pressed onto the end face.

Dank monolithischer Ausführung des Widerstandskörpers (Varistorkörper) ist der konstruktiven Gestaltung des Ueberspannungsableiters praktisch keine Grenze gesetzt.Thanks to the monolithic design of the resistance body (varistor body), there are practically no limits to the structural design of the surge arrester.

Claims (7)

1. Verfahren zur Herstellung eines Ueberspannungsableiters unter Verwendung eines aktiven Widerstandskörpers (1) aus einem spannungsabhängigen Widerstandsmaterial auf ZnO-Basis, wobei ZnO-Pulver mit zusätzlichen Metalloxydpulvern gemischt, einer Wärmebehandlung unterworfen und kalt vorverdichtet und der auf diese Weise erzeugte Pressling einem Sinterprozess unterworfen, der Sinterkörper mechanisch bearbeitet, kontaktiert und mit den übrigen Bauelementen wie Isolierkörper, Armaturen und Stromzuführungen zusammengebaut wird, dadurch gekennzeichnet, dass eine Zn0-und weitere Metalloxydpulver enthaltende Pulvermischung in ein rieselfähiges Granulat übergeführt und letzteres in eine hochelastische, möglichst der Endform des Widerstandskörpers (1) ähnliche Hohlform abgefüllt und kalt, isostatisch oder radial zu einem einzigen monolithischen, der Endform des Widerstandskörpers entsprechenden kompakten Pressling mit mindestens 40 % der theoretischen Dichte gepresst und dieser vorverdichtete Pressling in einem nachfolgenden Sinterprozess auf eine Dichte von mindestens 90 % des theoretischen Wertes zu einem einzigen monolithischen Widerstandskörper (1) mit beliebigen Endabmessungen dichtgesintert wird und dass der gesinterte Widerstandskörper (1) abschliessend an seinen beiden Stirnseiten mechanisch bearbeitet und kontaktiert und durch Umhüllen oder Beschichten mit einem Isolierkörper (2) in Form eines Mantels versehen wird und mit allen übrigen Bauelementen zu einem fertigen Körper zusammengebaut wird.1. A method for producing a surge arrester using an active resistance body (1) made of a voltage-dependent resistance material based on ZnO, wherein ZnO powder is mixed with additional metal oxide powders, subjected to heat treatment and cold pre-compacted, and the compact produced in this way is subjected to a sintering process, the sintered body is mechanically processed, contacted and assembled with the other components such as the insulating body, fittings and power supply lines, characterized in that a powder mixture containing ZnO and other metal oxide powders is converted into a free-flowing granulate and the latter into a highly elastic, possibly the final shape of the resistance body (1 ) similar hollow form filled and cold, isostatically or radially pressed into a single monolithic compact compact corresponding to the final shape of the resistance body with at least 40% of the theoretical density and this pre-compressed Pr in a subsequent sintering process to a density of at least 90% of the theoretical value to form a single monolithic resistance body (1) with any final dimensions and that the sintered resistance body (1) is then mechanically processed and contacted on its two end faces and by wrapping or coating is provided with an insulating body (2) in the form of a jacket and is assembled with all other components to form a finished body. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein aktiver Widerstandskörper (1) von säulenförmigen Abmessungen mit einem Höhen- zu Durchmesserverhältnis von (1) vorverdichtet wird.2. The method according to claim 1, characterized in that an active resistance body (1) of columnar dimensions with a height to diameter ratio of (1) is pre-compressed. 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Isolierkörper (2) als ein den aktiven Widerstandskörper (1) umgebender Mantel ausgeführt wird, dergestalt, dass der Widerstandskörper (1) mit einem Kunststoff, bestehend aus Epoxydharz oder Polymerbeton oder Silikonharz oder -Elastomer umgossen oder mit einem Schrumpfschlauch aus Kunststoff überzogen oder mit einem Anstrich aus einem Kunststoff versehen oder mit einem Glas beschichtet wird.3. The method according to claim 1, characterized in that the insulating body (2) is designed as a jacket surrounding the active resistance body (1), in such a way that the resistance body (1) with a plastic consisting of epoxy resin or polymer concrete or silicone resin or - Pour over the elastomer or cover it with a plastic shrink tube or coat it with a plastic coating or coat it with a glass. 4. Ueberspannungsableiter bestehend aus einem aktiven Widerstandskörper (1) aus einem spannungsabhängigen Widerstandsmaterial auf ZnO-Basis, einem Isolierkörper (2) sowie als Elektroden (5, 6) dienenden Anschlussstücken für die elektrischen Verbindungen, dadurch gekennzeichnet, dass der aktive Widerstandskörper (1) unabhängig von der anzulegenden Betriebsspannung aus einem einzigen, kompakten, monolithischen, beliebige Abmessungen und beliebige Form aufweisenden Werkstück besteht, welches insgesamt nur 2, an gegenüberliegenden Stirnflächen (3) aufgebrachte Kontaktflächen besitzt.4. surge arrester consisting of an active resistance body (1) made of a voltage-dependent resistance material based on ZnO, an insulating body (2) and connecting pieces for the electrical connections serving as electrodes (5, 6), characterized in that the active resistance body (1) Regardless of the operating voltage to be applied, it consists of a single, compact, monolithic workpiece of any dimensions and shape, which has a total of only 2 contact surfaces applied to opposite end faces (3). 5. Ueberspannungsableiter nach Anspruch 4, dadurch gekennzeichnet, dass der Widerstandskörper (1) im wesentlichen eine zylindrische oder eine hohlzylindrische Form mit einem Verhältnis Höhe zu Durchmesser 1 besitzt.5. surge arrester according to claim 4, characterized in that the resistance body (1) has a substantially cylindrical or a hollow cylindrical shape with a ratio of height to diameter 1. 6. Ueberspannungsableiter nach Anspruch 5, dadurch gekennzeichnet, dass der Widerstandskörper (1) an jeder stirnseitigen Endpartie mindestens je eine ringförmige Nut zur Verbesserung der Haftung gegenüber der benachbarten Elektrode (5, 6) besitzt.6. surge arrester according to claim 5, characterized in that the resistance body (1) has at each end portion at least one annular groove to improve the adhesion to the adjacent electrode (5, 6). 7. Ueberspannungsableiter nach Anspruch 4, dadurch gekennzeichnet, dass der Isolierkörper (2) aus einem im Innern im wesentlichen durch eine Zylinderfläche begrenzten Mantel aus einem Giessharz oder einem Schrumpfschlauch oder einem Anstrich oder einem Glas besteht.7. surge arrester according to claim 4, characterized in that the insulating body (2) consists of an inside essentially delimited by a cylindrical surface jacket made of a casting resin or a shrink tube or a paint or a glass.
EP85115554A 1985-02-07 1985-12-06 Method for the production of an overvoltage diversion utilizing a zno-based varistor, and overvoltage diversion thus produced Expired - Lifetime EP0196370B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85115554T ATE52633T1 (en) 1985-02-07 1985-12-06 PROCESS FOR MANUFACTURING A OVERVOLTAGE ARRESTER USING A ZNO-BASED VARISTOR AND THEN MANUFACTURED OVERVOLTAGE ARRESTER.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH551/85 1985-02-07
CH55185 1985-02-07

Publications (2)

Publication Number Publication Date
EP0196370A1 true EP0196370A1 (en) 1986-10-08
EP0196370B1 EP0196370B1 (en) 1990-05-09

Family

ID=4189608

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85115554A Expired - Lifetime EP0196370B1 (en) 1985-02-07 1985-12-06 Method for the production of an overvoltage diversion utilizing a zno-based varistor, and overvoltage diversion thus produced

Country Status (8)

Country Link
US (3) US4729053A (en)
EP (1) EP0196370B1 (en)
JP (1) JPH0630288B2 (en)
AT (1) ATE52633T1 (en)
BR (1) BR8505988A (en)
DE (2) DE3508030A1 (en)
IN (2) IN166508B (en)
ZA (1) ZA859752B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0274674A1 (en) * 1986-12-12 1988-07-20 Sediver, Societe Europeenne D'isolateurs En Verre Et Composite Process for manufacturing a lightning arrester, and lightning arrester obtained by this process
EP0280189A1 (en) * 1987-02-23 1988-08-31 Asea Brown Boveri Ab Surge arrester
EP0281945A1 (en) * 1987-03-06 1988-09-14 Sediver, Societe Europeenne D'isolateurs En Verre Et Composite Manufacturing process for a lightning arrester
EP0334647A1 (en) * 1988-03-23 1989-09-27 Ngk Insulators, Ltd. Lightning arrestor insulator and method of producing the same
AU616441B2 (en) * 1987-11-12 1991-10-31 Kabushiki Kaisha Meidensha Material for resistor body and non-linear resistor made thereof
DE4319986A1 (en) * 1993-06-11 1994-12-15 Siemens Ag Surge arresters
DE19701243A1 (en) * 1997-01-16 1998-07-23 Asea Brown Boveri Column-shaped, high-current-resistant resistor, in particular varistor based on a metal oxide, and method for producing such a resistor
EP0974984A1 (en) * 1998-07-20 2000-01-26 Harris Ireland Development Company Limited Manufacture of varistors
WO2013103494A1 (en) * 2011-12-14 2013-07-11 Tyco Electronics Corporation High amperage surge arresters comprising monlithic bars varistor and heat sink thermal transfert system

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3508030A1 (en) * 1985-02-07 1986-08-07 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Process for producing a surge arrestor using an active resistor core made from a voltage-dependent resistance material based on ZnO, and surge arrestor manufactured according to the process
CA1263162A (en) * 1986-12-23 1989-11-21 Guy St-Jean Electrical device casing, namely a lightning arrester, incorporating a moulded insulating enveloppe
CA2010336C (en) * 1989-02-27 1996-11-19 Atsunori Sano Process for producing pyrido[1,2-a]pyrimidine derivative
JPH0812813B2 (en) * 1989-03-14 1996-02-07 日本碍子株式会社 Method of manufacturing voltage non-linear resistor
US5008772A (en) * 1990-09-24 1991-04-16 Porta Systems Corp. Telephone circuit protector module having plural circuit grounding means
DE4031231A1 (en) * 1990-10-04 1992-04-09 Kuebler Heinrich Measuring probe esp. for liq. level pick=up - supports vertical row of magnetically operated switches with assigned resistors forming potentiometer
DE4390682T1 (en) * 1992-02-27 1994-04-28 Mitsubishi Materials Corp Locking electrode and its use in surge protection
JP3146910B2 (en) * 1995-03-08 2001-03-19 株式会社日立製作所 Substation with lightning arrester
FR2735898B1 (en) * 1995-06-20 1997-08-01 Gec Alsthom T & D Sa PROCESS FOR MANUFACTURING A COMPOSITE MATERIAL INSULATOR
US5680289A (en) * 1996-06-27 1997-10-21 Raychem Corporation Surge arrester
US5757604A (en) * 1996-06-27 1998-05-26 Raychem Corporation Surge arrester having grooved and ridged terminals
US5712757A (en) * 1996-06-27 1998-01-27 Raychem Corporation Surge arrester having ridged terminals
SE509270C2 (en) * 1997-04-14 1998-12-21 Asea Brown Boveri Variable electrical resistance and method for increasing and changing the resistance of an electrical resistance respectively
US5930102A (en) * 1997-10-08 1999-07-27 Joslyn Manufacturing Co. Surge arrester having single surge arresting block
DE19821239C5 (en) * 1998-05-12 2006-01-05 Epcos Ag Composite material for dissipation of overvoltage pulses and method for its production
US6018453A (en) * 1998-06-18 2000-01-25 Cooper Industries, Inc. Surge arrester protection system and method
US6519129B1 (en) 1999-11-02 2003-02-11 Cooper Industries, Inc. Surge arrester module with bonded component stack
US6279811B1 (en) 2000-05-12 2001-08-28 Mcgraw-Edison Company Solder application technique
US6657128B2 (en) 2001-01-29 2003-12-02 Mcgraw-Edison Company Hydrophobic properties of polymer housings
US7015786B2 (en) * 2001-08-29 2006-03-21 Mcgraw-Edison Company Mechanical reinforcement to improve high current, short duration withstand of a monolithic disk or bonded disk stack
US6657842B2 (en) 2002-01-22 2003-12-02 Hubbell Incorporated Disconnector assembly for an arrestor
US7436283B2 (en) * 2003-11-20 2008-10-14 Cooper Technologies Company Mechanical reinforcement structure for fuses
US8117739B2 (en) * 2004-01-23 2012-02-21 Cooper Technologies Company Manufacturing process for surge arrester module using pre-impregnated composite
US7075406B2 (en) * 2004-03-16 2006-07-11 Cooper Technologies Company Station class surge arrester
US7633737B2 (en) * 2004-04-29 2009-12-15 Cooper Technologies Company Liquid immersed surge arrester
DE102005007146A1 (en) * 2005-02-11 2006-08-24 Siemens Ag Method for sheathing a varistor block with an electrically insulating sheath and varistor block for a surge arrester
US8174132B2 (en) * 2007-01-17 2012-05-08 Andrew Llc Folded surface capacitor in-line assembly
DE102017221783A1 (en) * 2017-12-04 2019-06-06 Siemens Aktiengesellschaft Arrangement and method for switching high voltages with a switching device and exactly one resistance stack
CN114613563A (en) * 2020-12-08 2022-06-10 西安西电避雷器有限责任公司 Lightning arrester and processing method thereof
CN113363034B (en) * 2021-06-29 2022-11-18 西安西电避雷器有限责任公司 Nonlinear metal oxide rod resistor and preparation method thereof
US11894166B2 (en) 2022-01-05 2024-02-06 Richards Mfg. Co., A New Jersey Limited Partnership Manufacturing process for surge arrestor module using compaction bladder system
CN114898956B (en) * 2022-05-26 2022-12-02 国网安徽省电力有限公司青阳县供电公司 Lightning arrester for power distribution network power supply line based on wisdom platform district

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3806765A (en) * 1972-03-01 1974-04-23 Matsushita Electric Ind Co Ltd Voltage-nonlinear resistors
DE2526137A1 (en) * 1975-06-10 1976-12-30 Siemens Ag Prodn. of varistor for medium and high voltage uses - from zinc oxide and dopant, by mixing uniform powder fractions, moulding and sintering
US4069465A (en) * 1976-07-12 1978-01-17 Allen-Bradley Company Cylindrical varistor and method of making the same
EP0004349A1 (en) * 1978-03-18 1979-10-03 Mitsubishi Denki Kabushiki Kaisha A process for manufacturing a surge arrester
US4377541A (en) * 1978-08-21 1983-03-22 General Electric Company Process for preparing low voltage varistors

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE896386C (en) * 1940-10-30 1953-11-12 Aeg Voltage-dependent resistance body, especially for surge arresters
US3753198A (en) * 1969-09-19 1973-08-14 Denki Onkyo Co Ltd Varistors
CA986235A (en) * 1972-07-26 1976-03-23 Takeshi Masuyama Voltage-nonlinear resistors
US4010440A (en) * 1975-02-10 1977-03-01 American Components Inc. Electrical resistor component assembly which is hermetically sealed
DE2620245A1 (en) * 1975-05-12 1976-12-02 Gen Electric Nonlinear resistor element made from ceramic material - used as overvoltage suppressor has surface coating of bonded refractory filler and clay suspension
US4092694A (en) * 1977-03-16 1978-05-30 General Electric Company Overvoltage surge arrester having laterally biased internal components
US4364021A (en) * 1977-10-07 1982-12-14 General Electric Company Low voltage varistor configuration
JPS5919448B2 (en) * 1978-03-03 1984-05-07 株式会社日立製作所 Lightning arrester
US4335417A (en) * 1978-09-05 1982-06-15 General Electric Company Heat sink thermal transfer system for zinc oxide varistors
JPS6015127B2 (en) * 1980-04-07 1985-04-17 株式会社日立製作所 Voltage nonlinear resistor and its manufacturing method
JPS6070702A (en) * 1983-09-26 1985-04-22 株式会社日立製作所 Explosion preventive zinc oxide arrester
DE3508030A1 (en) * 1985-02-07 1986-08-07 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Process for producing a surge arrestor using an active resistor core made from a voltage-dependent resistance material based on ZnO, and surge arrestor manufactured according to the process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3806765A (en) * 1972-03-01 1974-04-23 Matsushita Electric Ind Co Ltd Voltage-nonlinear resistors
DE2526137A1 (en) * 1975-06-10 1976-12-30 Siemens Ag Prodn. of varistor for medium and high voltage uses - from zinc oxide and dopant, by mixing uniform powder fractions, moulding and sintering
US4069465A (en) * 1976-07-12 1978-01-17 Allen-Bradley Company Cylindrical varistor and method of making the same
EP0004349A1 (en) * 1978-03-18 1979-10-03 Mitsubishi Denki Kabushiki Kaisha A process for manufacturing a surge arrester
US4377541A (en) * 1978-08-21 1983-03-22 General Electric Company Process for preparing low voltage varistors

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4833438A (en) * 1986-12-12 1989-05-23 Ceraver Method of manufacturing a lightning arrester, and a lightning arrester obtained by the method
EP0274674A1 (en) * 1986-12-12 1988-07-20 Sediver, Societe Europeenne D'isolateurs En Verre Et Composite Process for manufacturing a lightning arrester, and lightning arrester obtained by this process
AU592246B2 (en) * 1986-12-12 1990-01-04 Societe Anonyme Dite Ceraver A method of manufacturing a lightning arrester, and a lightning arrester obtained by the method
EP0280189A1 (en) * 1987-02-23 1988-08-31 Asea Brown Boveri Ab Surge arrester
US4853670A (en) * 1987-02-23 1989-08-01 Asea Brown Boveri Ab Surge arrester
EP0281945A1 (en) * 1987-03-06 1988-09-14 Sediver, Societe Europeenne D'isolateurs En Verre Et Composite Manufacturing process for a lightning arrester
US4825188A (en) * 1987-03-06 1989-04-25 Ceraver Method of manufacturing a lightning arrester, and a lightning arrester obtained by the method
AU616441B2 (en) * 1987-11-12 1991-10-31 Kabushiki Kaisha Meidensha Material for resistor body and non-linear resistor made thereof
EP0518386A2 (en) * 1988-03-23 1992-12-16 Ngk Insulators, Ltd. Lightning arrester insulator and method of making the same
US5012383A (en) * 1988-03-23 1991-04-30 Ngk Insulators, Ltd. Lightning arrestor insulator and method of producing the same
EP0334647A1 (en) * 1988-03-23 1989-09-27 Ngk Insulators, Ltd. Lightning arrestor insulator and method of producing the same
EP0518386A3 (en) * 1988-03-23 1993-11-10 Ngk Insulators Ltd Lightning arrester insulator and method of making the same
DE4319986A1 (en) * 1993-06-11 1994-12-15 Siemens Ag Surge arresters
DE19701243A1 (en) * 1997-01-16 1998-07-23 Asea Brown Boveri Column-shaped, high-current-resistant resistor, in particular varistor based on a metal oxide, and method for producing such a resistor
EP0859377A2 (en) * 1997-01-16 1998-08-19 Asea Brown Boveri AG Pillar-like, high current stable resistor, especially varistor based on metal oxide, and manufacturing process of such a resistor
EP0859377A3 (en) * 1997-01-16 1998-12-09 Asea Brown Boveri AG Pillar-like, high current stable resistor, especially varistor based on metal oxide, and manufacturing process of such a resistor
US6342828B1 (en) * 1997-01-16 2002-01-29 Asea Brown Boveri Ag Resistor which is designed in the form of a column and is resistant to high current in particular a varistor on a metal-oxide base, and method for producing such a resistor
EP0974984A1 (en) * 1998-07-20 2000-01-26 Harris Ireland Development Company Limited Manufacture of varistors
WO2013103494A1 (en) * 2011-12-14 2013-07-11 Tyco Electronics Corporation High amperage surge arresters comprising monlithic bars varistor and heat sink thermal transfert system
US8629751B2 (en) 2011-12-14 2014-01-14 Tyco Electronics Corporation High amperage surge arresters

Also Published As

Publication number Publication date
ZA859752B (en) 1986-08-27
ATE52633T1 (en) 1990-05-15
EP0196370B1 (en) 1990-05-09
IN166508B (en) 1990-05-19
JPH0630288B2 (en) 1994-04-20
DE3508030A1 (en) 1986-08-07
DE3577616D1 (en) 1990-06-13
US4729053A (en) 1988-03-01
US4811478A (en) 1989-03-14
BR8505988A (en) 1986-12-09
IN167087B (en) 1990-08-25
US4816959A (en) 1989-03-28
JPS61183903A (en) 1986-08-16

Similar Documents

Publication Publication Date Title
EP0196370B1 (en) Method for the production of an overvoltage diversion utilizing a zno-based varistor, and overvoltage diversion thus produced
DE3404081C2 (en)
EP1056690B1 (en) Method for producing a pin heater
DE10224738B4 (en) Current-carrying element for a DC motor in a fuel pump, method of manufacturing the same and fuel pump
DE3023572A1 (en) METHOD FOR PRODUCING A METAL OXIDE VARISTOR
DE2701411A1 (en) CERAMIC CONNECTIONS WITH HIGH DIELECTRICITY CONSTANTS
DE1665135B1 (en) NONLINEAR RESISTORS
DE102015115746A1 (en) A method of manufacturing a spark plug ignition electrode and spark plug made therewith
DE60122100T2 (en) insulator
DE2021983B2 (en) VOLTAGE DEPENDENT RESISTANCE
DE10142314A1 (en) Resistor with non-linear voltage characteristic
EP1355327B1 (en) Surge voltage arrester and method to produce such a surge voltage arrester
EP0428539B1 (en) Process for manufacturing a radial bearing
DE3625463C2 (en)
DE2342172C3 (en) Voltage-dependent resistor with zinc oxide as the main component
EP0217021B1 (en) Overvoltage diverter and method of manufacturing it
DE3942421C2 (en) Connected ceramic body
EP0658527B1 (en) Process for making a castable ceramic
DE10042349C1 (en) Production of a ceramic body comprises forming particles of a sort A and a sort B, forming a particle mixture by mixing the different sorts of particles, producing a blank by pressing the particle mixture, and sintering
DE2459599C3 (en) Process for the production of a resistance body based on zirconium oxide which is voltage-dependent due to the composition of its mass
EP0462473B1 (en) Moulded ceramic products with hollow cavities
DE2554464B2 (en) Electrical resistance
DE1902994C3 (en) Fuel element for gas-cooled high-temperature power reactors and process for its manufacture
DE2264609C3 (en) Process for the production of prismatic graphite moldings for high-temperature fuel elements
AT229388B (en) Post insulator made up of two or more partial insulators placed one on top of the other

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB LI SE

17P Request for examination filed

Effective date: 19861212

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BBC BROWN BOVERI AG

17Q First examination report despatched

Effective date: 19880708

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB LI SE

REF Corresponds to:

Ref document number: 52633

Country of ref document: AT

Date of ref document: 19900515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3577616

Country of ref document: DE

Date of ref document: 19900613

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19921123

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19931207

EUG Se: european patent has lapsed

Ref document number: 85115554.9

Effective date: 19940710

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ABB ASEA BROWN BOVERI LTD

Free format text: ABB PARTICIPATION AG##5401 BADEN (CH) -TRANSFER TO- ABB ASEA BROWN BOVERI LTD#AFFOLTERNSTRASSE 44#8050 ZUERICH (CH)

Ref country code: CH

Ref legal event code: PFA

Owner name: ABB PARTICIPATION AG

Free format text: BBC BROWN BOVERI AG##5401 BADEN (CH) -TRANSFER TO- ABB PARTICIPATION AG##5401 BADEN (CH)

Ref country code: CH

Ref legal event code: NV

Representative=s name: ABB SCHWEIZ AG INTELLECTUAL PROPERTY (CH-LC/IP)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031126

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20031201

Year of fee payment: 19

Ref country code: AT

Payment date: 20031201

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031205

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20031209

Year of fee payment: 19

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: ABB SCHWEIZ HOLDING AG

Free format text: ABB ASEA BROWN BOVERI LTD#AFFOLTERNSTRASSE 44#8050 ZUERICH (CH) -TRANSFER TO- ABB SCHWEIZ HOLDING AG#BROWN BOVERI STRASSE 6#5400 BADEN (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041206

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041206

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST