EP0194163B1 - Self-controlled variable inductance with gaps, and electrical system having such an inductance - Google Patents

Self-controlled variable inductance with gaps, and electrical system having such an inductance Download PDF

Info

Publication number
EP0194163B1
EP0194163B1 EP86400011A EP86400011A EP0194163B1 EP 0194163 B1 EP0194163 B1 EP 0194163B1 EP 86400011 A EP86400011 A EP 86400011A EP 86400011 A EP86400011 A EP 86400011A EP 0194163 B1 EP0194163 B1 EP 0194163B1
Authority
EP
European Patent Office
Prior art keywords
variable inductor
limbs
direct current
limb
inductor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86400011A
Other languages
German (de)
French (fr)
Other versions
EP0194163A1 (en
Inventor
Léonard Bolduc
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydro Quebec
Original Assignee
Hydro Quebec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to IN1071/DEL/85A priority Critical patent/IN165679B/en
Application filed by Hydro Quebec filed Critical Hydro Quebec
Priority to AT86400011T priority patent/ATE44109T1/en
Publication of EP0194163A1 publication Critical patent/EP0194163A1/en
Application granted granted Critical
Publication of EP0194163B1 publication Critical patent/EP0194163B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/42Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/14Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/14Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
    • H01F2029/143Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias with control winding for generating magnetic bias
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/825Apparatus per se, device per se, or process of making or operating same
    • Y10S505/879Magnet or electromagnet

Definitions

  • the present invention relates to electrical power equipment, ie a variable inductor of the type comprising a magnetic core with three legs, an input or primary winding supplied with alternating current, and a DC control circuit.
  • Such a variable inductor is also provided with a control circuit comprising a winding wound around the central leg and subjected to a direct current which induces a direct current magnetic flux of the same intensity in the two external legs.
  • the alternating and continuous flows add up in one of the two external legs and oppose in the other, and vice versa according to the positive and negative alternations of the alternating current.
  • the function of the direct current magnetic flux induced in each of the two external legs is to saturate the magnetic core more or less deeply, thereby determining its permeability to alternating current magnetic flux and thereby the impedance of the winding. primary.
  • This impedance can therefore be varied by modifying the intensity of the direct current in the control circuit so as to modify the intensity of the direct current magnetic flux induced in the two external legs.
  • Several systems have been proposed for adjusting the intensity of this direct current so as to obtain a desired operating characteristic of the variable inductance.
  • FIGS. 5 and 6 of French patent FR-A-1 011 769 propose to rectify the alternating current in the two windings of the primary winding to supply the winding of the control circuit with this rectified current.
  • variable inductances of the prior art as discussed above have the disadvantage of having an operating characteristic which is very sensitive to any variation in the intrinsic properties of the material constituting the magnetic core and in the construction of this core, to heating or the slightest displacement in the magnetic core and also the effect linked to the frequency.
  • inductors of the prior art do not make it possible to obtain an operating characteristic for which an optimal variation range of the alternating current in the primary winding and therefore of the reactive power of the variable inductor in response would be possible. to a small variation in the voltage across the terminals of this primary winding at a given voltage level, which would be very useful for an application of the variable inductor, for example to AC voltage regulation.
  • the main object of the present invention is therefore to eliminate the various drawbacks listed above by introducing an air gap in each of the two legs of the magnetic core where the alternating and continuous magnetic fluxes add up or oppose each other.
  • the present invention relates to a variable inductor comprising (a) a magnetic core provided with three legs each having a first and a second end, these first ends being connected at a first common point of the magnetic core, and these second ends being connected at a second common point of this magnetic core, (b) a primary winding supplied by an alternating current, (c) a control winding, and (d) means for supplying the control winding with a direct current having an intensity which varies as a function of an electrical parameter related to the operation of the variable inductor, the primary winding and the control winding being arranged relative to the magnetic core so that the alternating and direct currents induce in a first of said three legs a alternating magnetic flux and a continuous magnetic flux which add up or oppose according to whether the alternating current passes through an altern positive or negative ance, respectively, and in one second of said three legs an alternating magnetic flux and a continuous magnetic flux which oppose or which add up depending on whether the alternating current passes through a positive or negative alternation, respectively,
  • the electrical parameter is the intensity of the alternating current supplying the primary winding
  • the direct current supply means comprise a diode bridge connecting in series the primary winding and the winding of control, thus rectifying the alternating current supplying the primary winding and supplying the control winding with this rectified current (self-checking operation).
  • the primary winding comprises a first winding and a second winding connected in series, wound around the first and second legs, respectively, and supplied by the alternating current so that this alternating current induces in the first leg a first alternating magnetic flux and in the second leg a second alternating magnetic flux, these first and second alternating magnetic flux being added in the third of said three legs
  • the control winding comprises a third winding superimposed on the first winding, and a fourth winding superimposed on the second winding, these third and fourth windings being connected in series, wound around the first and second legs, respectively, and supplied by the direct current of such so that this direct current induces a continuous magnetic flux circulating in a closed magnetic circuit defined by the first and second legs.
  • the first and third windings are arranged around the first leg so that the air gap of this first leg is found in the center of these first and third windings, and the second and fourth windings are also arranged around the second leg so that the air gap of this second leg is found in the center of these second and fourth windings.
  • variable inductance can also include a polarization winding mounted on the magnetic core and supplied with direct current, as well as a fixed value inductor connected in series with the control winding.
  • the invention further relates to an electrical system comprising an electrical load, a capacitive source for applying an alternating voltage to this load, and a variable inductance according to the invention connected in parallel with the electrical load to regulate the applied alternating voltage to this charge.
  • the variable inductor comprises, as illustrated in FIG. 1a) of the drawings, a magnetic core generally identified by the reference 1 and formed by a central leg 2 and two external legs 3 and 4, all three arranged substantially in the same plane so as to facilitate the construction of the magnetic core 1.
  • the three legs have their first ends connected at a first common point 34 and their second ends at a second common point 35.
  • the magnetic core is advantageously made up of overlapping sheets. to each other and parallel to the plane in which the three legs are located. These sheets are identified by the reference 20 in Figure 1 b) which represents the section of the legs 2 to 4 taken for example fines along the axis A-A of Figure 1 a).
  • the number and thickness of the sheets 20 forming the different legs of the magnetic core 1 can of course be chosen according to the usual design criteria for such magnetic cores.
  • the central leg 2 and the outer legs 3 and 4 have a cross-section of almost circular cross-section.
  • the section of the central leg 2 may have an area equal to or greater than that of the section of legs 3 and 4.
  • These three legs 2 to 4 can also have a square or rectangular section.
  • the sheets 20 of the magnetic core are made of magnetic steel or any other magnetic material having a magnetization curve with a pronounced knee.
  • the sheets must be joined by junctions at 45 ° and in at least three stages, as illustrated for example in 5 and 6 in FIG. 1 a).
  • the outer leg 3 of the core has at its center a gap 7 while the outer leg 4 has at its center a gap 8, these two gaps 7 and 8 having an identical length.
  • a first winding which should here be called primary winding is supplied with alternating current by an alternating electrical source 9 and comprises a first winding 10a disposed around the outer leg 3 and a second winding 10b disposed around the outer leg 4.
  • a control winding comprises a first winding 11 a superimposed on the winding 10a and a second winding 11 b superimposed on the winding bearing 10b.
  • the windings 10a and 10b having the same number of turns are connected in series, as well as the windings 11 a and 11b also having the same number of turns.
  • the windings 10a and 11a are positioned around the outer leg 3 so that the air gap 7 is found in their center.
  • the windings 1 Ob and 11 b are positioned around the outer leg 4 so that the air gap 8 is found in their center. This arrangement of the windings is advantageous in that it considerably reduces the leakage flows around the air gaps.
  • a full-wave rectifier bridge 12 formed by four diodes rectifies the alternating current flowing in the primary winding in order to supply the control winding with this rectified current which should be called direct current, thereby obtaining self-checking operation. variable inductance.
  • this rectification bridge 12 directly connects the primary and control windings directly in series between the terminals of the source 9 so that the alternating current of the primary winding can be rectified to supply the control winding.
  • the amplitude of the direct current flowing in the windings 11 a and 11 b connected in series is therefore a function of the amplitude of the alternating current flowing in the windings 10 a and 1 Ob also connected in series.
  • the direction of the windings 11 a and 11 b as well as their interconnection in series are chosen so that the direct current of the controlled winding induces a continuous magnetic flux which circulates in a closed magnetic circuit defined by the external legs 3 and 4. Therefore, no continuous magnetic flux results in the central leg.
  • the continuous magnetic flux generated by the windings 11 a and 11 b in the two external legs 3 and 4 is identified by the arrows 13 and 14, respectively.
  • the function of this induced magnetic flux is to saturate the magnetic core 1 more or less deeply, consequently resulting in a reduction in the impedance of the primary winding and an increase in the alternating current of this winding, and this up to a stable point.
  • the windings 10a and 10b respectively generate alternating magnetic fluxes identified by the arrows 15 and 16. These alternating fluxes 15 and 16 add up in the central leg 2 as illustrated in 17.
  • the continuous magnetic flux 13 opposes the alternating magnetic flux 15 to give the result of magnetic flux identified by the arrow 18.
  • the continuous 14 and alternating 16 magnetic fluxes add up. This addition of magnetic flux is illustrated by the arrows 19.
  • Figure 1 c shows the equivalent circuit of the self-controlled variable inductance with air gaps of Figure 1a).
  • the impedance of the primary circuit (comprising the windings 10a and 10b connected in series) can be represented by a resistor Rp in series with a reactive impedance ⁇ L P while the impedance of the control winding (windings 11 a and 11 b in series ) can be represented by a resistor R s in series with a reactive impedance ⁇ L s , where Lp represents the inductance value of the primary circuit comprising the windings 10a and 10b connected in series, L s the inductance value of the windings 11 a and 11 b in series, and ⁇ the angular frequency 2 ⁇ f at the frequency f of the alternating current of the primary winding.
  • the current ip is the alternating current which circulates in the primary winding and the current i s represents the direct current circulating in the control winding and coming from the rectification of the current ip by the rectifier bridge 12. It should be noted that the current i s always flows in the same direction since it corresponds to the rectified current delivered by the rectifying bridge 12.
  • the index p is associated with the primary winding while the index s is associated with the control winding.
  • the winding 11a of the control winding has a number of turns equal to n times the number of turns of the winding 10a of the primary winding, n being slightly greater than 1.
  • the winding 11 has a number of turns equal to n times the number of turns of the winding 1 Ob.
  • the magnetic flux resulting in each external leg 3 or 4 is always of the same polarity, that is to say the polarity imposed by the direct current i s by inducing a corresponding magnetic flux (see arrows 18 and 19 in FIG. 1 a), in the absence of polarization windings which can be added as will be seen below.
  • the magnetic circuit of the outer leg 3 being identical to that of the outer leg 4, the magnetic fluxes behave in the same way in one and the other of these two legs, but with an angular offset of 180 °. Since the magnetic flux evolves in each leg following a minor hysteresis cycle, the curve of the magnetic flux as a function of the current i effective in the variable inductance is not the same during the descent and during the ascent of this current. Figure 2 illustrates such a minor hysteresis cycle.
  • the magnetic flux f 1 (ni s + ip) in one of the external legs 3 and 4 decrease as that the alternating current ip will approach the value -i max '
  • the magnetic flux f 2 (ni s i p ) in the other of the external legs will increase according to a different portion of curve towards the value of magnetic flux f 2 [(n + 1) i max] .
  • the minor hysteresis cycle of FIG. 2 therefore evolves for current values i situated between (n-1) i max and (n + 1) i max .
  • i c represents the coercive current and f, the residual flux.
  • variable inductor An interesting characteristic of the operation of the variable inductor is a steady state its peak operating voltage V o as a function of the peak current i max .
  • resistances Rp and R s negligible compared to the reactive impedances ⁇ L P + 2 ⁇ L 2 and ⁇ L s + 2n 2 ⁇ L 2
  • the conduction voltages across the diodes negligible compared to the peak operating voltage V o of the variable inductance , the zero phase angle at the switch-on time, and the magnetic flux on the descent f 1 (ni s + i p ) identical to that on the rise f 2 (ni s -i p ), i.e.
  • the first linear section of the upper half-curve in Figure 4 for 0 ⁇ i max ⁇ i o / (n + 1) has a slope ( ⁇ L p + 2 ⁇ L l ).
  • the voltage V o therefore evolves as a function of this slope from zero to ( ⁇ L p + 2 ⁇ L l ) i o / (n + 1).
  • a third section of the half-curve of figure 4 has a slope ( ⁇ L p + 2 ⁇ L 2 ) according to which V o evolves as a function of i max.
  • the magnetic flux does not change according to the magnetization curve used as a model, but rather according to minor hysteresis cycles having their peak at (n + l) i max and their lower limit at (nI) i max .
  • the magnetic flux in an outer leg after going to a maximum which can correspond to a very deep saturation at (n + 1) i max , returns to a much smaller value, that where the current has the value (n-1) i max .
  • the magnetic flux in the other external leg rises passing from its value to (n-1) i max to its value to (n + l) i max .
  • FIG. 5 illustrates the new modified magnetization curve which takes account of the residual flux and the coercive field. We neglect here the effect due to the remanent flux which tends to continue to increase as a function of saturation, thus increasing the slope ⁇ L 1 .
  • Figures 6a) and 6b) show a polarization winding comprising windings 23a and 23b arranged around the outer legs 3 and 4, respectively.
  • These windings 23a and 23b are connected in series and wound around the legs 3 and 4 in the same way as the control windings 11a and 11b to generate a continuous magnetic flux in the closed magnetic circuit defined by the external legs 3 and 4 in response to a direct current of polarization i pol , and this in the same direction or in a opposite direction with respect to the continuous magnetic flux generated by the windings 11 a and 11 b, depending on the direction of the current i pol .
  • These windings 23a and 23b can be powered as in FIG.
  • FIG. 6a Another possibility illustrated in FIG. 6b) consists in placing on the magnetic core 1 an additional coil comprising two windings 26a and 26b wound around the legs 3 and 4 respectively and which produce a current rectified by the diodes 27 and 28 and applied to the windings 23a and 23b through an adjustable resistor 29 provided for regulating the intensity of this rectified current so as to supply these windings 23a and 23b with their direct current i pol .
  • a smoothing inductor 30 can also be added to provide a more constant direct current i pol .
  • This bias current i pol plays in the equations exactly the same role as the coercive current i e . As it can be of one or the other polarity, it can be used to level the effects of the coercive current i e , or in general to adjust the peak operating voltage V o to the required level.
  • the various windings are advantageously superimposed as in FIG. 7 on the legs 3 and 4 so that the air gaps are in their center.
  • the bias winding 23a is wound first on the leg 3 and, if necessary, the winding 26a and subsequently by order the primary winding 10a, and the control winding 11a.
  • the polarization winding 23b is wound first on the leg 4, then the winding 26b, if necessary, and subsequently by order the primary winding 10b, and the winding control 11 b.
  • the magnetization half-curve is represented by two straight line segments of slope ⁇ L 1 and ⁇ L 2 , which causes sudden changes in the representation of the voltage V o as a function of the current i max when (n + 1) i max crosses the current i o and thereafter when (n - 1) i max crosses the same value of the current.
  • the knee of the magnetization curve is always rounded. This results in a similar rounding when (n + I) i max passes from the slope ⁇ L 1 to the slope ⁇ L 2 .
  • (n-1) i max arrives in turn in this region, a rounding of inverse curvature occurs.
  • ⁇ L is the impedance of the winding wound on leg 3 or 4 of the core in ohms
  • N is the number of turns of the winding
  • a f is the useful section of the leg (3 or 4)
  • a is the length of the air gap in meters
  • i f is the length of the magnetic circuit seen on a leg (3 or 4) in meters
  • m is the angular frequency
  • ⁇ air is equal to 4 ⁇ ⁇ 10- 7
  • ⁇ f / ⁇ air is the relative permeability of the material forming the magnetic core.
  • Air gaps whose size has been well chosen will therefore hide the small diver sities due to variations in the mounting of the magnetic core 1 or in the quality of the sheets 20.
  • the gap inductance has the disadvantage of having a higher rate of harmonics in its current ip, unlike known machines.
  • the inductor of fixed value 22 (FIG. 6a) makes it possible to obtain an operating point where the current ip is sinusoidal. As already mentioned, filtration or a triangle connection in a three-phase system can reduce this harmonic rate.
  • the transient conditions that is to say the response time will be briefly discussed below.
  • the response time will be very rapid, of the order of a few half-cycles.
  • a fixed inductor 32, a capacitor 33, or a fixed inductor 36 in series with a capacitor 37 can be connected in parallel with the self-controlled variable inductor with air gaps according to the invention 31 so as to that the assembly gives a desired operating characteristic, as illustrated in FIGS. 8a) to 8c).
  • the self-controlled variable inductance with air gaps constitutes a relatively simple passive element of alternating voltage regulation by self-controlled absorption of reactive power, at a given voltage level V o situated on the section of slope curve m of FIG. 4 .
  • the self-controlled variable inductance with air gaps is therefore of significant interest for voltage regulation at a given level by self-controlled absorption of reactive power. It can be used as a variable shunt inductor, or even as a static compensator.
  • FIG. 9 represents such a capacitive source having for equivalent circuit a source 38 of voltage V (which, for example, can be a line for transporting electrical energy) and a set of capacitors 39 of value C.
  • V which, for example, can be a line for transporting electrical energy
  • C capacitors 39 of value C.
  • This source supplies a load resistive R.
  • a self-controlled variable inductor with air gaps according to the invention 31 is connected in parallel with the load R.
  • a current i c flows in the assembly 39, a current i L in the inductor 31 and a current i R in the load R.
  • a voltage V c appears at the terminals of the assembly 39 and a voltage V L at the terminals of the load R and of the inductor 31.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Treatment Devices (AREA)
  • Ac-Ac Conversion (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

La présente invention est relative à un appareillage électrique de puissance, soit une inductance variable du type comprenant un noyau magnétique à trois jambes, un bobinage d'entrée ou primaire alimenté en courant alternatif, et un circuit de contrôle à courant continu.The present invention relates to electrical power equipment, ie a variable inductor of the type comprising a magnetic core with three legs, an input or primary winding supplied with alternating current, and a DC control circuit.

Le brevet français FR-A-1 011 769 (Figure 1) et l'article «Direct-Current Controlled Reactors» par C.V. Aggers et W.E. Pakala, paru dans THE ELECTRIC JOURNAL, Vol. 34, Février 1937, pages 55-59, divulguent tous deux une inductance variable avec un noyau magnétique à trois jambes, c'est-à-dire comprenant une jambe centrale, ainsi que deux jambes externes situées de part et d'autre de la jambe centrale. Cette inductance variable comporte en outre un bobinage primaire formé de deux enroulements bobinés autour des deux jambes externes, respectivement, reliés en série, et alimentés en courant alternatif, lequel induit un flux magnétique alternatif circulant dans un circuit magnétique fermé défini par les deux jambes externes du noyau magnétique. Une telle inductance variable est aussi munie d'un circuit de contrôle comportant un enroulement bobiné autour de la jambe centrale et soumis à un courant continu qui induit un flux magnétique à courant continu de même intensité dans les deux jambes externes. Les flux alternatif et continu s'additionnent dans l'une des deux jambes externes et s'opposent dans l'autre, et vice versa selon les alternances positives et négatives du courant alternatif. La fonction du flux magnétique à courant continu induit dans chacune des deux jambes externes est de saturer plus ou moins profondément le noyau magnétique pour ainsi déterminer la perméabilité de celui-ci au flux magnétique à courant alternatif et par le fait même l'impédance du bobinage primaire. Cette impédance peut donc être variée en modifiant l'intensité du courant continu dans le circuit de contrôle de manière à modifier l'intensité du flux magnétique à courant continu induit dans les deux jambes externes. Plusieurs systèmes ont été proposés pour ajuster l'intensité de ce courant continu de manière à obtenir une caractéristique de fonctionnement désirée de l'inductance variable. Par exemple, les figures 5 et 6 du brevet français FR-A-1 011 769 proposent de redresser le courant alternatif dans les deux enroulements du bobinage primaire pour alimenter l'enroulement du circuit de contrôle avec ce courant redressé.French patent FR-A-1 011 769 (Figure 1) and the article "Direct-Current Controlled Reactors" by C.V. Aggers and W.E. Pakala, published in THE ELECTRIC JOURNAL, Vol. 34, February 1937, pages 55-59, both disclose a variable inductance with a three-legged magnetic core, that is to say comprising a central leg, as well as two external legs situated on either side of the central leg. This variable inductance further comprises a primary winding formed by two windings wound around the two external legs, respectively, connected in series, and supplied with alternating current, which induces an alternating magnetic flux flowing in a closed magnetic circuit defined by the two external legs. of the magnetic core. Such a variable inductor is also provided with a control circuit comprising a winding wound around the central leg and subjected to a direct current which induces a direct current magnetic flux of the same intensity in the two external legs. The alternating and continuous flows add up in one of the two external legs and oppose in the other, and vice versa according to the positive and negative alternations of the alternating current. The function of the direct current magnetic flux induced in each of the two external legs is to saturate the magnetic core more or less deeply, thereby determining its permeability to alternating current magnetic flux and thereby the impedance of the winding. primary. This impedance can therefore be varied by modifying the intensity of the direct current in the control circuit so as to modify the intensity of the direct current magnetic flux induced in the two external legs. Several systems have been proposed for adjusting the intensity of this direct current so as to obtain a desired operating characteristic of the variable inductance. For example, FIGS. 5 and 6 of French patent FR-A-1 011 769 propose to rectify the alternating current in the two windings of the primary winding to supply the winding of the control circuit with this rectified current.

Les inductances variables de l'art antérieur tel que discuté ci-dessus présentent le désavantage d'avoir une caractéristique de fonctionnement qui est très sensible à tout variation dans les propriétés intrinsèques du matériau constituant le noyau magnétique et dans la construction de ce noyau, à l'échauffement ou au moindre déplacement dans le noyau magnétique et aussi à l'effet lié à la fréquence. De plus, de telles inductances de l'art antérieur ne permettent pas d'obtenir une caractéristique de fonctionnement pour laquelle serait possible une plage de variation optimale du courant alternatif dans le bobinage primaire et donc de la puissance réactive de l'inductance variable en réponse à une faible variation de la tension aux bornes de ce bobinage primaire à un niveau de tension donné, ce qui serait très utile pour une application de l'inductance variable par exemple à la régulation de tension alternative.The variable inductances of the prior art as discussed above have the disadvantage of having an operating characteristic which is very sensitive to any variation in the intrinsic properties of the material constituting the magnetic core and in the construction of this core, to heating or the slightest displacement in the magnetic core and also the effect linked to the frequency. In addition, such inductors of the prior art do not make it possible to obtain an operating characteristic for which an optimal variation range of the alternating current in the primary winding and therefore of the reactive power of the variable inductor in response would be possible. to a small variation in the voltage across the terminals of this primary winding at a given voltage level, which would be very useful for an application of the variable inductor, for example to AC voltage regulation.

Le but principal de la présente invention est donc d'éliminer les différents inconvénients énumérés ci-dessus en introduisant un entrefer dans chacune des deux jambes du noyau magnétique où les flux magnétiques alternatif et continu s'additionnent ou s'opposent.The main object of the present invention is therefore to eliminate the various drawbacks listed above by introducing an air gap in each of the two legs of the magnetic core where the alternating and continuous magnetic fluxes add up or oppose each other.

Plus spécifiquement, la présente invention concerne une inductance variable comprenant (a) un noyau magnétique muni de trois jambes ayant chacune une première et une seconde extrémite, ces premières extremités etant reliés en un premier point commun du noyau magnétique, et ces secondes extrémités étant reliées en un second point commun de ce noyau magnétique, (b) un bobinage primaire alimenté par un courant alternatif, (c) un bobinage de contrôle, et (d) des moyens pour alimenter le bobinage de contrôle avec un courant continu ayant une intensité qui varie en fonction d'un paramètre électrique relié au fonctionnement de l'inductance variable, le bobinage primaire et le bobinage de contrôle étant disposés par rapport au noyau magnétique de manière à ce que les courants alternatif et continu induisent dans une première desdites trois jambes un flux magnétique alternatif et un flux magnétique continu qui s'additionnent ou qui s'opposent selon que le courant alternatif passe par une alternance positive ou négative, respectivement, et dans une seconde desdites trois jambes un flux magnétique alternatif et un flux magnétique continu qui s'opposent ou qui s'additionnent selon que le courant alternatif passe par une alternance positive ou négative, respectivement, le flux magnétique continu induit dans chacune des première et seconde jambes ayant une intensité qui varie avec l'intensité du courant continu pour ainsi varier l'impédance du bobinage primaire. Selon l'invention, la première jambe comporte un entrefer traversé par le flux magnétique résultant induit dans cette première jambe, et la seconde jambe comporte un entrefer traversé par le flux magnétique résultant induit dans cette seconde jambe.More specifically, the present invention relates to a variable inductor comprising (a) a magnetic core provided with three legs each having a first and a second end, these first ends being connected at a first common point of the magnetic core, and these second ends being connected at a second common point of this magnetic core, (b) a primary winding supplied by an alternating current, (c) a control winding, and (d) means for supplying the control winding with a direct current having an intensity which varies as a function of an electrical parameter related to the operation of the variable inductor, the primary winding and the control winding being arranged relative to the magnetic core so that the alternating and direct currents induce in a first of said three legs a alternating magnetic flux and a continuous magnetic flux which add up or oppose according to whether the alternating current passes through an altern positive or negative ance, respectively, and in one second of said three legs an alternating magnetic flux and a continuous magnetic flux which oppose or which add up depending on whether the alternating current passes through a positive or negative alternation, respectively, the magnetic flux continuous induced in each of the first and second legs having an intensity which varies with the intensity of the direct current to thereby vary the impedance of the primary winding. According to the invention, the first leg comprises an air gap traversed by the resulting magnetic flux induced in this first leg, and the second leg comprises an air gap traversed by the resulting magnetic flux induced in this second leg.

Selon un mode de réalisation préféré de l'invention, le paramètre électrique est l'intensité du courant alternatif alimentant le bobinage primaire, et les moyens d'alimentation en courant continu comportent un pont de diodes reliant en série le bobinage primaire et le bobinage de contrôle, pour ainsi redresser le courant alternatif alimentant le bobinage primaire et alimenter le bobinage de contrôle avec ce courant redressé (opération en autocontrôle).According to a preferred embodiment of the invention, the electrical parameter is the intensity of the alternating current supplying the primary winding, and the direct current supply means comprise a diode bridge connecting in series the primary winding and the winding of control, thus rectifying the alternating current supplying the primary winding and supplying the control winding with this rectified current (self-checking operation).

Selon un autre mode de réalisation préféré de l'invention, le bobinage primaire comporte un premier enroulement et un second enroulement connectés en série, enroulés autour des première et seconde jambes, respectivement, et alimentés par le courant alternatif de telle sorte que ce courant alternatif induise dans la première jambe un premier flux magnétique alternatitf et dans la seconde jambe un second flux magnétique alternatif, ces premier et second flux magnétiques alternatifs s'additionnant dans la troisième desdites trois jambes, et le bobinage de contrôle comprend un troisième enroulement superposé au premier enroulement, et un quatrième enroulement superposé au second enroulement, ces troisième et quatrième enroulements étant connectés en série, enroulés autour des première et seconde jambes, respectivement, et alimentés par le courant continu de telle sorte que ce courant continu induise un flux magnétique continu circulant dans un circuit magnétique fermé défini par les première et seconde jambes.According to another preferred embodiment of the invention, the primary winding comprises a first winding and a second winding connected in series, wound around the first and second legs, respectively, and supplied by the alternating current so that this alternating current induces in the first leg a first alternating magnetic flux and in the second leg a second alternating magnetic flux, these first and second alternating magnetic flux being added in the third of said three legs, and the control winding comprises a third winding superimposed on the first winding, and a fourth winding superimposed on the second winding, these third and fourth windings being connected in series, wound around the first and second legs, respectively, and supplied by the direct current of such so that this direct current induces a continuous magnetic flux circulating in a closed magnetic circuit defined by the first and second legs.

De préférence, les premier et troisième enroulements sont disposés autour de la première jambe de manière à ce que l'entrefer de cette première jambe se retrouve au centre de ces premier et troisième enroulements, et les second et quatrième enroulements sont également disposés autour de la seconde jambe de manière à ce que l'entrefer de cette seconde jambe se retrouve au centre de ces second et quatrième enroulements.Preferably, the first and third windings are arranged around the first leg so that the air gap of this first leg is found in the center of these first and third windings, and the second and fourth windings are also arranged around the second leg so that the air gap of this second leg is found in the center of these second and fourth windings.

L'inductance variable peut également comprendre un bobinage de polarisation monté sur le noyau magnétique et alimenté en courant continu, ainsi qu'une inductance de valeur fixe reliée en série avec le bobinage de contrôle.The variable inductance can also include a polarization winding mounted on the magnetic core and supplied with direct current, as well as a fixed value inductor connected in series with the control winding.

L'invention concerne en outre un système électrique comprenant une charge électrique, une source capacitive pour appliquer une tension alternative à cette charge, et une inductance variable selon l'invention reliée en parallèle avec la charge électrique pour réaliser une régulation de la tension alternative appliquée à cette charge.The invention further relates to an electrical system comprising an electrical load, a capacitive source for applying an alternating voltage to this load, and a variable inductance according to the invention connected in parallel with the electrical load to regulate the applied alternating voltage to this charge.

Les avantages et autres caractéristiques de la présente invention apparaîtront plus clairement à la lecture de la description qui suit d'un mode de réalisation préféré de celle-ci, donné à titre d'exemple non-limitatif seulement avec référence aux dessins annexés dans lesquels:

  • La figure 1a) représente une inductance variable autocontrôlée à entrefers selon l'invention, munie d'un noyau magnétique à trois jambes;
  • La figure 1 b) illustre une section possible pour les trois jambes du noyau magnétique de l'inductance de la figure 1 a);
  • La figure 1 c)est le circuit équivalent de l'inductance variable autocontrôlée à entrefers de la figure 1 a);
  • Les figures 2, 3, 4 et 5 montrent différentes courbes de fonctionnement, réelles ou idéales, de l'inductance variable de la figure 1 a);
  • Les figures 6a) et 6b) illustrent sous forme de circuits équivalents, l'addition de composants permettant un ajustement des caractéristiques de fonctionnement de l'inductance variable de la figure 1 a);
  • La figure 7 représente une superposition d'enroulements autour de deux jambes du noyau magnétique de l'inductance selon l'invention;
  • Les figures 8a), 8b) et 8c) montrent pour une application à la régulation de tension des façons de modifier les caractéristiques d'opération de l'inductance variable; et
  • La figure 9 illustre une application de l'inductance variable à la régulation de tension alternative dans le cas d'une alimentation par couplage capacitif, par exemple par fil de garde.
The advantages and other characteristics of the present invention will appear more clearly on reading the following description of a preferred embodiment thereof, given by way of non-limiting example only with reference to the accompanying drawings in which:
  • FIG. 1a) represents a self-controlled variable inductance with air gaps according to the invention, provided with a magnetic core with three legs;
  • Figure 1 b) illustrates a possible section for the three legs of the magnetic core of the inductor of Figure 1 a);
  • Figure 1 c) is the equivalent circuit of the self-controlled variable inductance with air gaps of Figure 1 a);
  • Figures 2, 3, 4 and 5 show different operating curves, real or ideal, of the variable inductance of Figure 1 a);
  • FIGS. 6a) and 6b) illustrate, in the form of equivalent circuits, the addition of components allowing an adjustment of the operating characteristics of the variable inductance of FIG. 1 a);
  • FIG. 7 represents a superposition of windings around two legs of the magnetic core of the inductor according to the invention;
  • FIGS. 8a), 8b) and 8c) show, for an application to voltage regulation, ways of modifying the operating characteristics of the variable inductance; and
  • FIG. 9 illustrates an application of the variable inductance to alternating voltage regulation in the case of a supply by capacitive coupling, for example by guard wire.

L'inductance variable comporte, tel qu'illustré à la figure 1a) des dessins, un noyau magnétique identifié de façon générale par la référence 1 et formé d'une jambe centrale 2 et de deux jambes externes 3 et 4, toutes trois disposées substantiellement dans un même plan de façon à faciliter la construction du noyau magnétique 1. Les trois jambes ont leurs premières extrémités reliées en un premier point commun 34 et leurs secondes extrémités en un second point commun 35. Le noyau magnétique est avantageusement constitué de tôles superposées les unes aux autres et parallèles au plan dans lequel sont situées les trois jambes. Ces tôles sont identifiées par la référence 20 sur la figure 1 b) qui représente la section des jambes 2 à 4 prise pour fines d'exemple selon l'axe A-A de la figure 1 a). Le nombre et l'épaisseur des tôles 20 formant les différentes jambes du noyau magnétique 1 peuvent bien entendu être choisis selon les critères habituels de conception de tels noyaux magnétiques.The variable inductor comprises, as illustrated in FIG. 1a) of the drawings, a magnetic core generally identified by the reference 1 and formed by a central leg 2 and two external legs 3 and 4, all three arranged substantially in the same plane so as to facilitate the construction of the magnetic core 1. The three legs have their first ends connected at a first common point 34 and their second ends at a second common point 35. The magnetic core is advantageously made up of overlapping sheets. to each other and parallel to the plane in which the three legs are located. These sheets are identified by the reference 20 in Figure 1 b) which represents the section of the legs 2 to 4 taken for example fines along the axis A-A of Figure 1 a). The number and thickness of the sheets 20 forming the different legs of the magnetic core 1 can of course be chosen according to the usual design criteria for such magnetic cores.

Tel que représenté à la figure 1 b), la jambe centrale 2 et les jambes externes 3 et 4 ont une section de même surface et cruciforme quasi circulaire.As shown in Figure 1 b), the central leg 2 and the outer legs 3 and 4 have a cross-section of almost circular cross-section.

Cependant, bien qu'il importe que la section des jambes externes 3 et 4 soit de même surface, la section de la jambe centrale 2 peut avoir une surface égale ou plus grande que celle de la section des jambes 3 et 4. Ces trois jambes 2 à 4 peuvent également avoir une section carrée ou rec- tangualire.However, although it is important that the section of the external legs 3 and 4 be of the same area, the section of the central leg 2 may have an area equal to or greater than that of the section of legs 3 and 4. These three legs 2 to 4 can also have a square or rectangular section.

Pour des raisons qui deviendront évidentes à la lecture de la description qui suit, il est important que les tôles 20 du noyau magnétique soient réalisées en un acier magnétique ou en tout autre matériau magnétique ayant une courbe de magnétisation avec un genou prononcé. Pour éviter les phénomènes de saturation partielle dans la région des jonctions de ces tôles 20, qui ont pour effet d'allonger le genou de la courbe de magnétisation, il faut réunir les tôles par des jonctions à 45° et en au moins trois paliers, tel qu'illustré par exemple en 5 et 6 sur la figure 1 a).For reasons which will become evident on reading the description which follows, it is important that the sheets 20 of the magnetic core are made of magnetic steel or any other magnetic material having a magnetization curve with a pronounced knee. To avoid the phenomena of partial saturation in the region of the junctions of these sheets 20, which have the effect of lengthening the knee of the magnetization curve, the sheets must be joined by junctions at 45 ° and in at least three stages, as illustrated for example in 5 and 6 in FIG. 1 a).

Se référant de nouveau à cette figure 1a), la jambe externe 3 du noyau comporte en son centre un entrefer 7 tandis que la jambe externe 4 a en son centre un entrefer 8, ces deux entrefers 7 et 8 ayant un longueur identique.Referring again to this FIG. 1a), the outer leg 3 of the core has at its center a gap 7 while the outer leg 4 has at its center a gap 8, these two gaps 7 and 8 having an identical length.

Un premier bobinage qu'il convient ici d'appeler bobinage primaire est alimenté en courant alternatif par une source électrique alternative 9 et comporte un premier enroulement 10a disposé autour de la jambe externe 3 et un second enroulement 10b disposé autour de la jambe externe 4. Un bobinage de contrôle comprend un premier enroulement 11 a superposé à l'enroulement 10a et un second enroulement 11 b superposé à l'enroulement 10b. Les enroulements 10a et 10b ayant un même nombre de tours sont reliés en série, ainsi que les enroulements 11 a et 11 b ayant aussi un même nombre de tours. D'une manière avantageuse, les enroulements 10a et 11 a sont positionnés autour de la jambe externe 3 pour que l'entrefer 7 se retrouve en leur centre. De la même façon, les enroulements 1 Ob et 11 b sont positionnés autour de la jambe externe 4 de façon à ce que l'entrefer 8 se retrouve en leur centre. Cette disposition des enroulements est avantageuse en ce qu'elle diminue considérablement les flux de fuite autour des entrefers.A first winding which should here be called primary winding is supplied with alternating current by an alternating electrical source 9 and comprises a first winding 10a disposed around the outer leg 3 and a second winding 10b disposed around the outer leg 4. A control winding comprises a first winding 11 a superimposed on the winding 10a and a second winding 11 b superimposed on the winding bearing 10b. The windings 10a and 10b having the same number of turns are connected in series, as well as the windings 11 a and 11b also having the same number of turns. Advantageously, the windings 10a and 11a are positioned around the outer leg 3 so that the air gap 7 is found in their center. In the same way, the windings 1 Ob and 11 b are positioned around the outer leg 4 so that the air gap 8 is found in their center. This arrangement of the windings is advantageous in that it considerably reduces the leakage flows around the air gaps.

Un pont de redressement 12 à double alternance formé de quatre diodes redresse le courant alternatif circulant dans le bobinage primaire afin d'alimenter le bobinage de contrôle avec ce courant redressé qu'il convient d'appeler courant continu, pour ainsi obtenir un fonctionnement en autocontrôle de l'inductance variable.A full-wave rectifier bridge 12 formed by four diodes rectifies the alternating current flowing in the primary winding in order to supply the control winding with this rectified current which should be called direct current, thereby obtaining self-checking operation. variable inductance.

En fait, ce pont de redressement 12 relie directement en série les bobinages primaire et de contrôle entre les bornes de la source 9 de sorte que le courant alternatif du bobinage primaire puisse être redressé pour alimenter le bobinage de contrôle. L'amplitude du courant continu circulant dans les enroulements 11 a et 11 b connectés en série est donc fonction de l'amplitude du courant alternatif circulant dans les enroulements 10a et 1 Ob aussi reliés en série.In fact, this rectification bridge 12 directly connects the primary and control windings directly in series between the terminals of the source 9 so that the alternating current of the primary winding can be rectified to supply the control winding. The amplitude of the direct current flowing in the windings 11 a and 11 b connected in series is therefore a function of the amplitude of the alternating current flowing in the windings 10 a and 1 Ob also connected in series.

Le sens des enroulements 11 a et 11 b ainsi que leur interconnexion en série sont choisis de sorte que le courant continu du bobinage à contrôle induise un flux magnétique continu qui circule dans un circuit magnétique fermé défini par les jambes externes 3 et 4. Donc, aucun flux magnétique continu ne résulte dans la jambe centrale. Le flux magnétique continu généré par les enroulements 11 a et 11 b dans les deux jambes externes 3 et 4 est identifié par les flèches 13 et 14, respectivement. La fonction de ce flux magnétique induit est de saturer plus ou moins profondément le noyau magnétique 1, entraînant en conséquence une diminution de l'impédance du bobinage primaire et une augmentation du courant alternatif de ce bobinage, et ce jusqu'à un point stable.The direction of the windings 11 a and 11 b as well as their interconnection in series are chosen so that the direct current of the controlled winding induces a continuous magnetic flux which circulates in a closed magnetic circuit defined by the external legs 3 and 4. Therefore, no continuous magnetic flux results in the central leg. The continuous magnetic flux generated by the windings 11 a and 11 b in the two external legs 3 and 4 is identified by the arrows 13 and 14, respectively. The function of this induced magnetic flux is to saturate the magnetic core 1 more or less deeply, consequently resulting in a reduction in the impedance of the primary winding and an increase in the alternating current of this winding, and this up to a stable point.

Durant chaque alternance positive du courant alternatif circulant dans le bobinage primaire, les enroulements 10a et 10b génèrent respectivement des flux magnétiques alternatifs identifiés par les flèches 15 et 16. Ces flux alternatifs 15 et 16 s'additionnent dans la jambe centrale 2 tel qu'illustré en 17.During each positive alternation of the alternating current flowing in the primary winding, the windings 10a and 10b respectively generate alternating magnetic fluxes identified by the arrows 15 and 16. These alternating fluxes 15 and 16 add up in the central leg 2 as illustrated in 17.

A l'intérieur de la jambe magnétique externe 3, le flux magnétique continu 13 s'oppose au flux magnétique alternatif 15 pour donner la résultante de flux magnétique identifié par la flèche 18. Au contraire, à l'intérieur de la jambe externe 4, les flux magnétiques continu 14 et alternatif 16 s'additionnent. Cette addition de flux magnétique est illustrée par les flèches 19.Inside the external magnetic leg 3, the continuous magnetic flux 13 opposes the alternating magnetic flux 15 to give the result of magnetic flux identified by the arrow 18. On the contrary, inside the external leg 4, the continuous 14 and alternating 16 magnetic fluxes add up. This addition of magnetic flux is illustrated by the arrows 19.

Bien entendu, la superposition de flux magnétiques alternatif et continu décrite ci-dessus se produit lors de chaque alternance positive du courant alternatif délivré par la source 9. Il peut être facilement déduit qu'un phénomène inverse se produit lors de chaque alternance négative du courant alternatif circulant dans les enroulements 10a et 1 Ob puisque dans ce cas, les flux magnétiques alternatifs induits par ces enroulements 10a et 10b dans les jambes externes 3 et 4, sont en sens contraire.Of course, the superimposition of alternating and continuous magnetic flux described above occurs during each positive alternation of the alternating current delivered by the source 9. It can be easily deduced that an inverse phenomenon occurs during each negative alternation of the current alternating circulating in the windings 10a and 1 Ob since in this case, the alternating magnetic fluxes induced by these windings 10a and 10b in the external legs 3 and 4, are in the opposite direction.

Il est à noter que même dans le cas où la jambe centrale 2 du noyau magnétique 1 a une section de même surface que chacune des deux jambes externes 3 et 4, elle ne peut se saturer dû à la répartition du flux magnétique décrite ci-haut, au flux rémanent et au fait que les autres jambes du noyau magnétique en se saturant autoriseront des flux du fuite qui ne parviendront pas à la jambe centrale 2.It should be noted that even in the case where the central leg 2 of the magnetic core 1 has a section with the same surface as each of the two external legs 3 and 4, it cannot be saturated due to the distribution of the magnetic flux described above. , to the remanent flow and to the fact that the other legs of the magnetic core by saturating will authorize flows of the leak which will not reach the central leg 2.

La figure 1 c) représente le circuit équivalent de l'inductance variable autocontrôlée à entrefers de la figure 1a). L'impédance du circuit primaire (comportant les enroulements 10a et 10b reliés en série) peut être représentée par une résistance Rp en série avec une impédance réactive ωLP tandis que l'impédance du bobinage de contrôle (enroulements 11 a et 11 b en série) peut être représentée par une résistance Rs en série avec une impédance réactive ωLs, où Lp représente la valeur d'inductance du circuit primaire comportant les enroulements 10a et 10b reliés en série, Ls la valeur d'inductance des enroulements 11 a et 11 b en série, et ω la fréquence angulaire 2ηf à la fréquence f du courant alternatif du bobinage primaire. Le courant ip est le courant alternatif qui circule dans le bobinage primaire et le courant is représente le courant continu circulant dans le bobinage de contrôle et provenant du redressement du courant ip par le pont de redressement 12. Il est à noter que le courant is circule toujours dans la même direction puisqu'il correspond au courant redressé délivré par le pont de redressement 12. Ici, l'indice p est associé au bobinage primaire tandis que l'indice s est associé au bobinage de contrôle.Figure 1 c) shows the equivalent circuit of the self-controlled variable inductance with air gaps of Figure 1a). The impedance of the primary circuit (comprising the windings 10a and 10b connected in series) can be represented by a resistor Rp in series with a reactive impedance ωL P while the impedance of the control winding (windings 11 a and 11 b in series ) can be represented by a resistor R s in series with a reactive impedance ωL s , where Lp represents the inductance value of the primary circuit comprising the windings 10a and 10b connected in series, L s the inductance value of the windings 11 a and 11 b in series, and ω the angular frequency 2 η f at the frequency f of the alternating current of the primary winding. The current ip is the alternating current which circulates in the primary winding and the current i s represents the direct current circulating in the control winding and coming from the rectification of the current ip by the rectifier bridge 12. It should be noted that the current i s always flows in the same direction since it corresponds to the rectified current delivered by the rectifying bridge 12. Here, the index p is associated with the primary winding while the index s is associated with the control winding.

Tel qu'illustré à la figure 1 c), l'enroulement 11 a du bobinage de contrôle a un nombre de tours égal à n fois le nombre de tours de l'enroulement 10a du bobinage primaire, n étant légèrement supérieur à 1. De la même façon, l'enroulement 11 b a un nombre de tours égal à n fois le nombre de tours de l'enroulement 1 Ob.As illustrated in FIG. 1 c), the winding 11a of the control winding has a number of turns equal to n times the number of turns of the winding 10a of the primary winding, n being slightly greater than 1. De the same way, the winding 11 has a number of turns equal to n times the number of turns of the winding 1 Ob.

Comme le rapport n du nombre de tours des enroulements 11 a et 11 b du bobinage de contrôle et du nombre de tours des enroulements 10a et 10b du bobinage primaire est légèrement plus grand que 1, et que le courant continu de contrôle is redressé circulant dans les enroulements 11 a et 11 b est toujours égal ou plus grand en module que le courant alternatif ip, le flux magnétique résultant dans chaque jambe externe 3 ou 4 est toujours de même polarité, soit de la polarité imposée par le courant continu is en induisant un flux magnétique correspondant (voir les flèches 18 et 19 de la figure 1 a), en l'absence d'enroulements de polarisation qui peuvent être ajoutés comme on le verra plus loin.As the ratio n of the number of turns of the windings 11a and 11b of the control winding and the number of turns of the windings 10a and 10b of the primary winding is slightly greater than 1, and the rectified direct current i s flowing in the windings 11 a and 11 b is always equal or greater in module than the alternating current ip, the magnetic flux resulting in each external leg 3 or 4 is always of the same polarity, that is to say the polarity imposed by the direct current i s by inducing a corresponding magnetic flux (see arrows 18 and 19 in FIG. 1 a), in the absence of polarization windings which can be added as will be seen below.

Le circuit magnétique de la jambe externe 3 étant identique à celui de la jambe externe 4, les flux magnétiques se comportent de la même façon dans l'une et l'autre de ces deux jambes, mais avec un décalage angulaire de 180°. Puisque le flux magnétique évolue dans chaque jambe suivant un cycle mineur d'hystérésis, la courbe du flux magnétique en fonction du courant i effectif dans l'inductance variable n'est pas la même au cours de la descente et au cours de la montée de ce courant. La figure 2 illustre un tel cycle mineur d'hystérésis.The magnetic circuit of the outer leg 3 being identical to that of the outer leg 4, the magnetic fluxes behave in the same way in one and the other of these two legs, but with an angular offset of 180 °. Since the magnetic flux evolves in each leg following a minor hysteresis cycle, the curve of the magnetic flux as a function of the current i effective in the variable inductance is not the same during the descent and during the ascent of this current. Figure 2 illustrates such a minor hysteresis cycle.

Si l'on part de is=ip=imax, imax étant la valeur crête du courant alternatif ip, le flux magnétique f1 (nis+ip) dans l'une des jambes externes 3 et 4 diminuer à mesure que le courant alternatif ip s'approchera de la valeur -imax' Pendant ce temps, le flux magnétique f2 (nis ip) dans l'autre des jambes externes augmentera selon une portion de courbe différente vers la valeur de flux magnétique f2[(n+1)imax]. Le cycle mineur d'hystérésis de la figure 2 évolue donc pour des valeurs de courant i situées entre (n-1)imax et (n+1)imax. ic représente le courant coercitif et f, le flux rémanent.If we start from i s = i p = i max , i max being the peak value of the alternating current ip, the magnetic flux f 1 (ni s + ip) in one of the external legs 3 and 4 decrease as that the alternating current ip will approach the value -i max ' During this time, the magnetic flux f 2 (ni s i p ) in the other of the external legs will increase according to a different portion of curve towards the value of magnetic flux f 2 [(n + 1) i max] . The minor hysteresis cycle of FIG. 2 therefore evolves for current values i situated between (n-1) i max and (n + 1) i max . i c represents the coercive current and f, the residual flux.

Dans les explications qui suivent, nous utiliserons des courbes modèles idéales sectionnelle- ment linéaires. Il sera aussi brièvement discuté de quelle manière corriger les résultats ainsi obtenus pour tenir compte des courbes réelles, c'est-à-dire du cycle mineur d'hystérésis et de l'arrondi du genou de la courbe de magnétisation.In the explanations that follow, we will use sectional linear ideal model curves. It will also be briefly discussed how to correct the results thus obtained to take into account the real curves, that is to say the minor hysteresis cycle and the rounding of the knee of the magnetization curve.

La figure 3 illustre une courbe de magnétisation sectionnelement linéaire représentant la tension f(i) en fonction du courant i, f(i) étant la tension crête à la fréquence f du courant alternatif ip requise pour atteindre un niveau d'induction B, selon la relation f(i)=NωBA, où ω a déjà été défini, N est le nombre de tours du bobinage portant le courant alternatif et A la section de noyau magnétique efficace qui porte le flux magnétique. Il est évidemment désirable d'obtenir une courbe se rapprochant le plus possible de celle de la figure 3 pour le fonctionnement de l'inductance variable autocontrôlée à entrefers. La première section linéaire de la demi-courbe supérieure de la figure 3 évolue de i=0 jusqu'à i=io selon une pente ωL1 . tandis que la seconde section linéaire a une pente ωL2 pour des courants i plus grand que io, le courant au genou de la demi-courbe de la figure 3.FIG. 3 illustrates a sectionally linear magnetization curve representing the voltage f (i) as a function of the current i, f (i) being the peak voltage at the frequency f of the alternating current ip required to reach an induction level B, according to the relation f (i) = NωBA, where ω has already been defined, N is the number of turns of the winding carrying the alternating current and A the effective magnetic core section which carries the magnetic flux. It is obviously desirable to obtain a curve as close as possible to that of FIG. 3 for the operation of the self-controlled variable inductance with air gaps. The first linear section of the upper half-curve in Figure 3 changes from i = 0 to i = i o according to a slope ωL 1 . while the second linear section has a slope ωL 2 for currents i greater than i o , the current at the knee of the semi-curve of figure 3.

Une caractéristique intéressante du fonctionnement de l'inductance variable est un régime permanent sa tension crête d'opération Vo en fonction du courant crête imax. En considérant les résistances Rp et Rs négligeables devant les impédances réactives ωLP+2ωL2 et ωLs+2n2ωL2, les tensions en conduction aux bornes des diodes négligeables devant la tension crête d'opération Vo de l'inductance variable, l'angle de phase nul au temps d'enclenchement, et le flux magnétique à la descente f1(nis+ip) identique à celui à la montée f2(nis-ip), c'est-à-dire sans cycle d'hystérésis, il peut être démontré mathématiquement qu'en régime permanent et dans le cas où la demi-courbe de magnétisation est formée de deux segments linéaires, comme à la figure 3, la courbe de la tension crête Vo en fonction du courant crête imax évolue sur trois segments linéaires de pentes différentes. La figure 4 illustre cette courbe de Vo en fonction de imax.An interesting characteristic of the operation of the variable inductor is a steady state its peak operating voltage V o as a function of the peak current i max . Considering the resistances Rp and R s negligible compared to the reactive impedances ωL P + 2ωL 2 and ωL s + 2n 2 ωL 2 , the conduction voltages across the diodes negligible compared to the peak operating voltage V o of the variable inductance , the zero phase angle at the switch-on time, and the magnetic flux on the descent f 1 (ni s + i p ) identical to that on the rise f 2 (ni s -i p ), i.e. - say without hysteresis cycle, it can be demonstrated mathematically that in steady state and in the case where the half-magnetization curve is formed of two linear segments, as in Figure 3, the curve of the peak voltage V o as a function of the peak current i max evolves over three linear segments with different slopes. FIG. 4 illustrates this curve of V o as a function of i max .

La première section linéaire de la demi-courbe supérieure de la figure 4 pour 0 ≤ imax ≤ io/(n+1) a une pente (ωLp+2ωLl). La tension Vo évolue donc en fonction de cette pente de zéro jusqu'à (ωLp+2ωLl)io/(n+1).The first linear section of the upper half-curve in Figure 4 for 0 ≤ i max ≤ i o / (n + 1) has a slope (ωL p + 2ωL l ). The voltage V o therefore evolves as a function of this slope from zero to (ωL p + 2ωL l ) i o / (n + 1).

La seconde section linéaire de la demi-courbe de la figure 4 pour io/(n+1) ≤ imax ≤io/(n-1) a une pente:

Figure imgb0001
The second linear section of the half-curve in Figure 4 for i o / (n + 1) ≤ i max ≤i o / (n-1) has a slope:
Figure imgb0001

La valeur de la tension crête d'opération Vo évolue donc linéairement de Vo - (ω Lp + 2ωL1)io/(n+1) jusqu'à Vo = (ωLp + 2ωL2) io/ (n-I), lorsque le courant imax varie de io/(n+1) à io/(n-1), selon cette pente m.The value of the peak operating voltage V o therefore changes linearly from V o - (ω Lp + 2ωL 1 ) i o / (n + 1) to V o = (ωL p + 2ωL 2 ) i o / ( nI), when the current i max varies from i o / (n + 1) to i o / (n-1), according to this slope m.

Dans la région où le courant imax ≥ io/(n-1), une troisième section de la demi-courbe de la figure 4 a une pente (ω Lp+2ωL2) selon laquelle évolue Vo en fonction de i max.In the region where the current i max ≥ i o / (n-1), a third section of the half-curve of figure 4 has a slope (ω L p + 2ωL 2 ) according to which V o evolves as a function of i max.

Les différentes pentes des sections linéaires de la demi-courbe de la figure 4 démontrent que la tension crête d'opération de l'inductance Vo dépend de l'impédance réactive d'entrée du bobinage primaire (ωLp) et non de l'impédance réactive du bobinage de contrôle ωLs. Cette conclusion est tout à fait générale et s'applique aussi bien à une courbe de magnétisation modèle telle qu'illustrée à la figure 3, qu'à un cycle mineur d'hystérésis tel qu'illustré à la Figure 2.The different slopes of the linear sections of the half-curve in FIG. 4 demonstrate that the peak operating voltage of the inductance V o depends on the reactive input impedance of the primary winding (ωL p ) and not on the reactive impedance of the control winding ωL s . This conclusion is quite general and applies as well to a model magnetization curve as illustrated in Figure 3, as to a minor hysteresis cycle as illustrated in Figure 2.

A partir de l'expression de la pente m, on peut déduire qu'un choix judicieux du rapport de tours n permet de modifier comme on le désire la pente de la tension Vo en fonction du courant pour les valeurs de imax situées entre io/(n+1) et io/(n-1).From the expression of the slope m, it can be deduced that a judicious choice of the ratio of revolutions n makes it possible to modify as desired the slope of the voltage V o as a function of the current for the values of i max situated between i o / (n + 1) and i o / (n-1).

En effet, pour

Figure imgb0002
c'est-à-dire pour:
Figure imgb0003
la pente m est nulle et on obtiendra une valeur de la tension constante en fonction du courant imax pour la section linéaire centrale de la demi-courbe de la figure 4, soit Vo = (ωL1 - ω LZ) io.Indeed, for
Figure imgb0002
that is to say for:
Figure imgb0003
the slope m is zero and we will obtain a value of the constant voltage as a function of the current i max for the central linear section of the half-curve of Figure 4, ie V o = (ωL 1 - ω L Z ) i o .

Il est à noter que la valeur de la tension Vo = (ωL1 -ωL2)io correspond sur la courbe de la figure 3 au point d'intersection de l'axe verticale f(i) avec le prolongement de la section de pente ωL2.It should be noted that the value of the voltage V o = (ωL 1 -ωL 2 ) i o corresponds on the curve of Figure 3 to the point of intersection of the vertical axis f (i) with the extension of the section slope ωL 2 .

Lorsque l'on désire obtenir une pente m positive ou négative, il suffit de modifier de façon appropriée le rapport de nombre de tours n. La pente m est d'autant plus sensible à la valeur de n, que (ωLp + 2ωL2) / (ωLp + 2ωL1) est petit. Même en modifiant la pente m, l'on constate que le point d'intersection 21 entre l'axe vertical Vo et le prolongement de la section linéaire centrale de la demi-courbe de la figure 4 est toujours le même. Il est à noter que le même phénomène se produit sur la demi-courbe inférieure de la figure 4.When it is desired to obtain a positive or negative slope m, it suffices to modify the ratio of number of turns n appropriately. The slope m is all the more sensitive to the value of n, as (ωL p + 2ωL 2 ) / (ωL p + 2ωL 1 ) is small. Even by modifying the slope m, it can be seen that the point of intersection 21 between the vertical axis V o and the extension of the central linear section of the de mid-curve in Figure 4 is always the same. It should be noted that the same phenomenon occurs on the lower half-curve of Figure 4.

En utilisant le modèle de la figure 3 et en procédant au développement en séries de Fourier d'expressions obtenues mathématiquement pour représenter le courant alternatif ip dans le bobinage primaire de l'inductance variable, il est possible de retrouver le contenu harmonique de ce courant ip. Aux deux extrémités de la plage de courant ip, soit pour 0 ≤ imax ≤ io/(n+1), et imax ≤ io/(n-1), ip est sinusoïdal et ne contient donc que la fondamentale. C'est donc dans l'intervalle entre ces deux extrêmes qu'il y a lieu de procéder à l'analyse harmonique du courant iµ. Une telle analyse nous démontre que le courant ip a un fort contenu harmonique sauf lorsque sa crête atteint une valeur donnée par l'expression:

Figure imgb0004
By using the model of Figure 3 and proceeding to the development in Fourier series of expressions obtained mathematically to represent the alternating current ip in the primary winding of the variable inductance, it is possible to find the harmonic content of this current ip . At the two ends of the current range ip, i.e. for 0 ≤ i max ≤ i o / (n + 1 ), and i max ≤ i o / (n-1), i p is sinusoidal and therefore contains only the fundamental. It is therefore in the interval between these two extremes that it is necessary to proceed to the harmonic analysis of the current i µ . Such an analysis shows us that the current ip has a strong harmonic content except when its peak reaches a value given by the expression:
Figure imgb0004

Il est alors parfaitement sinusoïdal. Ces résultats sont importants. En effet, alors que pour un courant crête imaX donné, l'amplitude de la tension Vo est indépendante de ωLs tel que vu précédemment, il est possible de modifier la forme du courant pour la rendre sinusoïdale en ajustant précisément cette valeur de ωLs. Ceci peut s'avérer particulièrement utile quand on ne veut pas avoir trop d'harmoniques à un courant imax et à une tension Va pré-établis, par exemple en régime normal ou nominal. Cette valeur de l'impédance réactive ωLs peut être ajustée en introduisant une inductance 22 de valeur fixe dans le circuit de contrôle, c'est-à-dire en série avec les enroulements 11 a et 11 b, tel que représenté à la figure 6a). Si ceci n'est pas suffisant, on peut utiliser de la filtration. Dans un système triphasé, on pourra bénéficier de l'avantage de certains types de raccordement, par exemple un raccordement en traingle de trois inductances variables autocontrôlées à entrefers selon l'invention.It is then perfectly sinusoidal. These results are important. Indeed, while for a given peak current i maX , the amplitude of the voltage V o is independent of ωL s as seen previously, it is possible to modify the shape of the current to make it sinusoidal by precisely adjusting this value of ωL s . This can be particularly useful when one does not want to have too many harmonics at a current i max and at a pre-established voltage Va, for example in normal or nominal regime. This value of the reactive impedance ωL s can be adjusted by introducing an inductor 22 of fixed value in the control circuit, that is to say in series with the windings 11 a and 11 b, as shown in the figure. 6a). If this is not enough, filtration can be used. In a three-phase system, one can benefit from the advantage of certain types of connection, for example a rod connection of three self-controlled variable inductors with air gaps according to the invention.

Comme il ne sera jamais possible de réaliser précisément la courbe de magnétisation utilisée comme modèle et illustrée en figure 3, ainsi que la courbe de la tension Vo en fonction du courant imax de la figure 4, il y a lieu de discuter brièvement des corrections à apporter à la théorie pour qu'elle s'adapte mieux à la réalité.As it will never be possible to precisely produce the magnetization curve used as a model and illustrated in FIG. 3, as well as the curve of the voltage V o as a function of the current i max of FIG. 4, it is necessary to briefly discuss the corrections to be made to the theory so that it adapts better to reality.

Tel que précisé auparavant, le flux magnétique n'évolue pas selon la courbe de magnétisation utilisée comme modèle, mais plutôt selon des cycles mineurs d'hystérésis ayant leur sommet à (n+l) imax et leur limite inférieure à (n-I) imax. Le flux magnétique dans une jambe externe après être allé vers un maximum qui peut correspondre à une saturation très profonde à (n+1)imax, revient vers une valeur beaucoup plus petite, celle où le courant a la valeur (n-1)imax. Pendant ce temps, le flux magnétique dans l'autre jambe externe remonte en passant de sa valeur à (n-1)imax à sa valeur à (n+l) imax. De cette façon, même si on peut considérer sans grande erreur que le flux magnétique à (n+l) imax appartient à la courbe de magnétisation modèle, il n'en est pas du tout de même pour le flux à (n-1)imax qui, lui, appartient plutôt à la courbe de descente du flux magnétique sur le cycle d'hystérésis à la fréquence du courant alternatif ip ayant son sommet à (n+l) imax. La prévision du flux magnétique à (n-1)imax devient de ce fait très difficile, puisque, très sensible à l'arrangement des tôles 20 du noyau 1, à la qualité du matériau magnétique, à tout déplacement même produit par l'échauffement des bobinages et au flux atteint à (n+1)imax, en plus de l'effet lié à la fréquence. Comme il sera discuté plus en détail ci-après, c'est pour réduire ces différents inconvénients et pour augmenter la plage de régulation en tension à un niveau de tension déterminé que les entrefers 7 et 8 ont été introduite dans les deux jambes externes 3 et 4 du noyau magnétique. En réduisant la pente ωL1, par l'introduction d'un entrefer, on fait sinon disparaître du moins diminuer considérablement l'influence des phénomènes énumérés ci-dessus. Il reste à tenir compte du courant coercitif ic, à la fréquence du courant ip, pour un certain degré de saturation atteint, et du flux rémanent qui en résulte sous la pente ωL1, quand il y a un entrefer. Sous une forme simplifiée, la figure 5 illustre la nouvelle courbe de magnétisation modifiée qui tient compte du flux rémanent et du champ coercitif. Nous négligeons ici l'effet dû au flux rémanent qui a tendance à continuer à augmenter en fonction de la saturation, augmentant ainsi la pente ωL1.As stated before, the magnetic flux does not change according to the magnetization curve used as a model, but rather according to minor hysteresis cycles having their peak at (n + l) i max and their lower limit at (nI) i max . The magnetic flux in an outer leg after going to a maximum which can correspond to a very deep saturation at (n + 1) i max , returns to a much smaller value, that where the current has the value (n-1) i max . During this time, the magnetic flux in the other external leg rises passing from its value to (n-1) i max to its value to (n + l) i max . In this way, even if we can consider without great error that the magnetic flux at (n + l) i max belongs to the model magnetization curve, it is not at all the same for the flux at (n-1 ) i max which belongs to the downward curve of the magnetic flux on the hysteresis cycle at the frequency of the alternating current ip having its peak at (n + l) imax. Prediction of the magnetic flux at (n-1) i max therefore becomes very difficult, since, very sensitive to the arrangement of the sheets 20 of the core 1, to the quality of the magnetic material, to any displacement even produced by the heating of the windings and the flux reached at (n + 1) i max , in addition to the effect linked to the frequency. As will be discussed in more detail below, it is to reduce these various drawbacks and to increase the voltage regulation range to a determined voltage level that the air gaps 7 and 8 have been introduced into the two external legs 3 and 4 of the magnetic core. By reducing the slope ωL 1 , by introducing an air gap, we make if not disappear at least considerably reduce the influence of the phenomena listed above. It remains to take into account the coercive current i c , at the frequency of the current ip, for a certain degree of saturation reached, and the residual flux which results under the slope ωL 1 , when there is an air gap. In a simplified form, FIG. 5 illustrates the new modified magnetization curve which takes account of the residual flux and the coercive field. We neglect here the effect due to the remanent flux which tends to continue to increase as a function of saturation, thus increasing the slope ωL 1 .

Un développement mathématique approprié démontre que la tension d'opération crête Vo de l'inductande variable à entrefers fonction de imax est réduite de (ωL1 - ωL2)ic en raison du champ coercitif. Il en est de même de la plage intermédiaire de courant de la demi-courbe supérieure de la figure 4 qui devient (io - ic)/(n + I) ≤ imax ≤ (io - ic)/(n - I), ainsi que pour toutes les autres expressions dans lesquelles io est remplacé par (io- ic). On ne tient pas compte ici de la modification apportée à la forme du courant par le fait que la machine opère suivant des cycles mineurs d'hystérésis.An appropriate mathematical development shows that the peak operating voltage V o of the variable inductance with air gaps as a function of i max is reduced by (ωL 1 - ωL 2 ) i c due to the coercive field. It is the same for the intermediate current range of the upper half-curve of Figure 4 which becomes (i o - i c ) / (n + I) ≤ imax ≤ (i o - i c ) / (n - I), as well as for all the other expressions in which i o is replaced by (i o - i c ). The modification made to the shape of the current by the fact that the machine operates according to minor hysteresis cycles is not taken into account here.

Les figures 6a) et 6b) montrent un bobinage de polarisation comprenant des enroulements 23a et 23b disposés autour des jambes externes 3 et 4, respectivement. Ces enroulements 23a e 23b sont raccordés en série et enroulés autour des jambes 3 et 4 de la même façon que les enroulements de contrôle 11 a et 11 b pour générer un flux magnétique continu dans le circuit magnétique fermé défini par les jambes externes 3 et 4 en réponse à un courant continu de polarisation ipol, et ce dans le même sens ou dans un sens contraire par rapport au flux magnétique continu généré par les enroulements 11 a et 11 b, selon le sens du courant ipol. Ces enroulements 23a et 23b peuvent être alimentés comme à la figure 6a) par une source de courant continu réglable 24 ou une source de tension continue réglable à travers une résistance 25. Il y a intérêt à ajouter dans ce circuit une inductance de lissage. Une autre possibilité illustrée à la figure 6b) consiste à disposer sur le noyau magnétique 1 un bobinage supplémentaire comprenant deux enroulements 26a et 26b enroulés autour des jambes 3 et 4 respectivement et qui produisent un courant redressé par les diodes 27 et 28 et appliqué aux enroulements 23a et 23b à travers une résistance ajustable 29 prévue pour régler l'intensité de ce courant redressé pour ainsi fournir à ces enroulements 23a et 23b leur courant continu ipol. Une inductance de lissage 30 peut aussi être ajoutée pour fournir un courant continu ipol plus constant. Ce courant de polarisation ipol joue dans les équations exactement le même rôle que le courant coercitif ie. Comme il peut être de l'une ou l'autre polarité, il peut servir à niveler les effets du courant coercitif ie, ou de façon générale à ajuster la tension crête d'opération Vo au niveau requis.Figures 6a) and 6b) show a polarization winding comprising windings 23a and 23b arranged around the outer legs 3 and 4, respectively. These windings 23a and 23b are connected in series and wound around the legs 3 and 4 in the same way as the control windings 11a and 11b to generate a continuous magnetic flux in the closed magnetic circuit defined by the external legs 3 and 4 in response to a direct current of polarization i pol , and this in the same direction or in a opposite direction with respect to the continuous magnetic flux generated by the windings 11 a and 11 b, depending on the direction of the current i pol . These windings 23a and 23b can be powered as in FIG. 6a) by an adjustable direct current source 24 or a direct voltage source adjustable through a resistor 25. There is interest in adding a smoothing inductance to this circuit. Another possibility illustrated in FIG. 6b) consists in placing on the magnetic core 1 an additional coil comprising two windings 26a and 26b wound around the legs 3 and 4 respectively and which produce a current rectified by the diodes 27 and 28 and applied to the windings 23a and 23b through an adjustable resistor 29 provided for regulating the intensity of this rectified current so as to supply these windings 23a and 23b with their direct current i pol . A smoothing inductor 30 can also be added to provide a more constant direct current i pol . This bias current i pol plays in the equations exactly the same role as the coercive current i e . As it can be of one or the other polarity, it can be used to level the effects of the coercive current i e , or in general to adjust the peak operating voltage V o to the required level.

Pour améliorer la forme d'onde, les différents enroulements sont avantageusement superposés comme à la figure 7 sur les jambes 3 et 4 afin que les entrefers soient en leur centre. L'enroulement de polarisation 23a est bobiné en premier lieu sur la jambe 3 et, s'il y a lieu, l'enroulement 26a et par la suite par ordre l'enroulement primaire 10a, et l'enroulement de contrôle 11 a. De la même façon, l'enroulement de polarisation 23b est bobiné en premier lieu sur la jambe 4, puis l'enroulement 26b, s'il y a lieu, et par la suite par ordre l'enroulement primaire 10b, et l'enroulement de contrôle 11 b.To improve the waveform, the various windings are advantageously superimposed as in FIG. 7 on the legs 3 and 4 so that the air gaps are in their center. The bias winding 23a is wound first on the leg 3 and, if necessary, the winding 26a and subsequently by order the primary winding 10a, and the control winding 11a. In the same way, the polarization winding 23b is wound first on the leg 4, then the winding 26b, if necessary, and subsequently by order the primary winding 10b, and the winding control 11 b.

Dans le modèle utilisé de la figure 3, la demi-courbe de magnétisation est représentée par deux segments de droite de pente ωL1 et ωL2, ce qui entraîne des changements brusques dans la représentation de la tension Vo fonction du courant imax lorsque (n + 1)imax traverse le courant io et par la suite quand (n - 1)imax traverse la même valeur du courant. En réalité, le genou de la courbe de magnétisation est toujours arrondi. Il en résulte un arrondi similaire quand (n + I) imax passe de la pente ωL1 à la pente ωL2. Lorsque (n-1)imax arrive à son tour dans cette région, il se produit un arrondi de courbure inverse. De plus, la courbure de ce dernier arrondi sera beaucoup plus faible puisque (n-1)imax, pour n légèrement plus grand que ne progresse que lentement par rapport au courant imax. Ces deux arrondis et particulièrement le dernier ont pour effet de réduire la plage de variation du courant imax en fonction de la tension Vo mise en évidence par la section intermédiaire de pente m de la demi-courbe de la figure 4. C'est justement pour cette raison qu'il y a intérêt, tel que mentionné auparavant, à utiliser des matériaux magnétiques qui présentent un genou de magnétisation abrupte. Il y a surtout intérêt à construire le noyau 1, et à joindre ses tôles 20 de façon à ne pas allonger ce genou.In the model used in FIG. 3, the magnetization half-curve is represented by two straight line segments of slope ωL 1 and ωL 2 , which causes sudden changes in the representation of the voltage V o as a function of the current i max when (n + 1) i max crosses the current i o and thereafter when (n - 1) i max crosses the same value of the current. In reality, the knee of the magnetization curve is always rounded. This results in a similar rounding when (n + I) i max passes from the slope ωL 1 to the slope ωL 2 . When (n-1) i max arrives in turn in this region, a rounding of inverse curvature occurs. In addition, the curvature of this latter rounding will be much smaller since (n-1) i max , for n slightly larger than only progresses slowly compared to the current i max . These two rounding and particularly the last have the effect of reducing the range of variation of the current i max as a function of the voltage V o highlighted by the intermediate section of slope m of the half-curve of FIG. 4. It is precisely for this reason that it is advantageous, as mentioned before, to use magnetic materials which have an abrupt magnetization knee. There is especially interest in building the core 1, and joining its sheets 20 so as not to lengthen this knee.

Examinons maintenant plus en détail les effets des entrefers 7 et 8. L'introduction d'un entrefer identique dans chacune des deux jambes externes 3 et 4 a pour effet de diminuer les pentes ωL1 et ωL2 de la courbe de magnétisation de la figure 3 et du cycle mineur d'hystérésis illustré à la figure 2, particulièrement celle de pente élevée rencontrée à bas niveau d'induction, soit ωL1. La formule approximative utilisable est la suivante:

Figure imgb0005
où ωL est l'impédance de l'enroulement bobiné sur la jambe 3 ou 4 du noyau en ohms, N est le nombre de tours de l'enroulement, Af est la section utile de la jambe (3 ou 4), a est la longueur de l'entrefer en mètres, if est la longueur du circuit magnétique vu sur une jambe (3 ou 4) en mètres, m est la fréquence angulaire, µair est égal à 4π×10-7, et µfair est la perméabilité relative du matériau formant le noyau magnétique.Let us now examine in more detail the effects of air gaps 7 and 8. The introduction of an identical air gap in each of the two external legs 3 and 4 has the effect of reducing the slopes ωL 1 and ωL 2 of the magnetization curve of the figure. 3 and the minor hysteresis cycle illustrated in FIG. 2, particularly that of the high slope encountered at low induction level, ie ωL 1 . The approximate formula that can be used is as follows:
Figure imgb0005
where ωL is the impedance of the winding wound on leg 3 or 4 of the core in ohms, N is the number of turns of the winding, A f is the useful section of the leg (3 or 4), a is the length of the air gap in meters, i f is the length of the magnetic circuit seen on a leg (3 or 4) in meters, m is the angular frequency, µ air is equal to 4π × 10- 7 , and µ f / µ air is the relative permeability of the material forming the magnetic core.

En saturation très profonde, c'est plutôt l'impédance de la bobine dans l'air qui est apparente. Cette impédance dans le cas d'un solénoïde peut être évaluée par la formule approximative:

Figure imgb0006
où ωL est l'impédance de l'enroulement dans l'air en ohms, Dm est le diamètre moyen de l'enroulement en mètres, i est la longueur de l'enroulement (solénoïde) en mètres, et les autres paramètres sont tels que définis plus haut. Une formule de calcul plus précise peut parfois s'avérer nécessaire.In very deep saturation, it is rather the impedance of the coil in the air which is apparent. This impedance in the case of a solenoid can be evaluated by the approximate formula:
Figure imgb0006
where ωL is the impedance of the winding in air in ohms, D m is the average diameter of the winding in meters, i is the length of the winding (solenoid) in meters, and the other parameters are such as defined above. A more precise calculation formula may sometimes be necessary.

C'est en fait cette dernière impédance qui sert à calculer l'évolution de la tension Vo en fonction de imax pour imax ≥ io/(n-1) alors que c'est la première expression qui servira dans la région imax ≤ io/ (n+I).It is in fact this last impedance which is used to calculate the evolution of the voltage V o as a function of imax for i max ≥ i o / (n-1) whereas it is the first expression which will be used in the region i max ≤ i o / (n + I).

L'introduction d'un entrefer a l'avantage de réduire considérablement la sensibilité de l'inductance à toute modification du cycle mineur d'hystérésis. En effet, à pente très abrupte, le flux magnétique à (n-1)imax peut changer grandement sous la moindre variation de courbe. Puisque l'impédance ωL est réduite de façon importante par les entrefers, ce phénomène est atténué. De même, l'ajustement sur n pour obtenir un statisme donné deviendra moins critique comme on peut le voir à partir des équations (1 ) et (2). L'introduction d'entrefers dans les jambes extrêmes 3 et 4 permet donc de maîtriser les caractéristiques d'opération de l'inductance autocontrôlée et par conséquent de construire des inductances à caractéristiques similiaires et les ajuster de façon à obtenir une plage de variation beaucoup plus importante du courant et donc de la puissance réactive que l'inductance peut absorber pour une faible variation de tension et ce, à un niveau de tension préétabli. Le principal problème rencontré par le passé était justement le trop grand degré d'incertitude quant à ce niveau d'opération en tension.The introduction of an air gap has the advantage of considerably reducing the sensitivity of the inductor to any modification of the minor hysteresis cycle. Indeed, at a very steep slope, the magnetic flux at (n-1) i max can change greatly under the slightest variation in the curve. Since the impedance ωL is reduced significantly by the air gaps, this phenomenon is attenuated. Likewise, the adjustment to n to obtain a given droop will become less critical as can be seen from equations (1) and (2). The introduction of air gaps in the extreme legs 3 and 4 therefore makes it possible to control the operating characteristics of the self-controlled inductor and therefore to build inductors with similar characteristics and adjust them so as to obtain a much greater variation range. significant current and therefore reactive power that the inductor can absorb for a small voltage variation at a preset voltage level. The main problem encountered in the past was precisely the too great degree of uncertainty as to this level of voltage operation.

Des entrefers dont la dimension a été bien choisie permettront donc de masquer les petites diversités dues à des variantes dans le montage du noyau magnétique 1 ou dans la qualité des tôles 20.Air gaps whose size has been well chosen will therefore hide the small diver sities due to variations in the mounting of the magnetic core 1 or in the quality of the sheets 20.

L'inductance à entrefers a cependant l'inconvénient d'avoir un plus haut taux d'harmoniques dans son courant ip à la différence de machines connues. Cependant, l'inductance de valeur fixe 22 (figure 6a) permet d'obtenir un point d'opération où le courant ip est sinusoïdal. Tel que déjà mentionné, la filtration ou encore un raccordement en triangle dans un système triphasé pourra diminuer ce taux d'harmoniques.The gap inductance has the disadvantage of having a higher rate of harmonics in its current ip, unlike known machines. However, the inductor of fixed value 22 (FIG. 6a) makes it possible to obtain an operating point where the current ip is sinusoidal. As already mentioned, filtration or a triangle connection in a three-phase system can reduce this harmonic rate.

Il est à noter ici que les résistances demeurent faibles devant les impédances réactives, même en saturation, et par conséquent l'influence des résistances sera négligeable ainsi que celle de leur augmentation due à l'échauffement des bobinages.It should be noted here that the resistances remain low compared to the reactive impedances, even in saturation, and consequently the influence of the resistances will be negligible as well as that of their increase due to the heating of the windings.

Les conditions transitoires, c'est-à-dire le temps de réponse sera brièvement discuté ci-après.The transient conditions, that is to say the response time will be briefly discussed below.

Pour la plage de courant imax ≤ io/(n+1), il peut être démontré mathématiquement que si l'inductance opère à une tension crête Vo et que son courant crête initial est alors imax < lo (n+1) et que soudainement il se produit une augmentation de tension △V, le courant après un demi-cycle, si ωL1 est grand et n légèrement plus grand que 1, ne sera pas éloigné de la valeur finale.For the current range i max ≤ i o / (n + 1), it can be demonstrated mathematically that if the inductance operates at a peak voltage V o and its initial peak current is then i max <l o (n + 1) and that suddenly there is an increase in voltage △ V, the current after half a cycle, if ωL 1 is large and n slightly greater than 1, will not be far from the final value.

Concernant la plage de io/(n+1) ≤ imax ≤ io/ (n-I) le temps de réponse est d'autant plus rapide que (ωLs + ωLp + 4ωL2) est petit. On constate également qu'une grande valeur de ωLs ralentit la transition. Donc, l'introduction de l'inductance de valeur fixe 22 (voir figure 6a) augmentera le temps de réponse qui demeurera quand même rapide.Regarding the range of i o / (n + 1) ≤ i max ≤ i o / (nI) the response time is all the faster the smaller (ωL s + ωL p + 4ωL 2 ) is. We also note that a large value of ωL s slows down the transition. Therefore, the introduction of the fixed value inductor 22 (see FIG. 6a) will increase the response time which will nevertheless remain rapid.

En dernier lieu, pour la plage de courant imax ≥ io/(n-1), le temps de réponse sera d'autant plus rapide que (ωLs + 2n2 ωL2) se rapproche de (ωLp + 2ωL2).Finally, for the current range i max ≥ i o / (n-1), the response time will be all the faster as (ωL s + 2n 2 ωL 2 ) approaches (ωL p + 2ωL 2 ).

Dans tous les cas, le temps de réponse sera très rapide, de l'ordre de quelques demi-cycles.In all cases, the response time will be very rapid, of the order of a few half-cycles.

Il convient ici de mentionner que dans certaines applications une inductance fixe 32, un condensateur 33, ou une inductance fixe 36 en série avec un condensateur 37 peuvent être reliés en parallèle avec l'inductance variable autocontrôlée à entrefers selon l'invention 31 de manière à ce que l'ensemble donne une caractéristique de fonctionnement désirée, tel qu'illustrée aux figures 8a) à 8c).It should be mentioned here that in certain applications a fixed inductor 32, a capacitor 33, or a fixed inductor 36 in series with a capacitor 37 can be connected in parallel with the self-controlled variable inductor with air gaps according to the invention 31 so as to that the assembly gives a desired operating characteristic, as illustrated in FIGS. 8a) to 8c).

L'inductance variable autocontrôlée à entrefers selon l'invention constitue un élément passif relativement simple de régulation de tension alternative par absorption autocontrôlée de puissance réactive, à un niveau de tension Vo donné situé sur la section de courbe de pente m de la figure 4.The self-controlled variable inductance with air gaps according to the invention constitutes a relatively simple passive element of alternating voltage regulation by self-controlled absorption of reactive power, at a given voltage level V o situated on the section of slope curve m of FIG. 4 .

L'inductance variable autocontrôlée à entrefers présente donc un intérêt marquant pour la régulation de tension à un niveau donné par absorption autocontrôlée de puissance réactive. Elle peut être utilisée comme inductance shunt variable, ou encore comme compensateur statique.The self-controlled variable inductance with air gaps is therefore of significant interest for voltage regulation at a given level by self-controlled absorption of reactive power. It can be used as a variable shunt inductor, or even as a static compensator.

Une application particulièrement intéressante est la régulation de la tension alternative de charge dans l'alimentation par fil de garde, ou de façon plus générale dans l'alimentation par source capacitive (couplage capacitif). La figure 9 représente une telle source capacitive ayant pour circuit équivalent une source 38 de tension V (qui, par exemple, peut être une ligne de transport d'énergie électrique) et un ensemble de condensateurs 39 de valeur C. Cette source alimente une charge résistive R. Une inductance variable autocontrôlée à entrefers selon l'invention 31 est reliée en parallèle avec la charge R. Un courant ic circule dans l'ensemble 39, un courant iL dans l'inductance 31 et un courant iR dans la charge R. Une tension Vc apparaît aux bornes de l'ensemble 39 et une tension VL aux bornes de la charge R et de l'inductance 31.A particularly interesting application is the regulation of the alternating charge voltage in the power supply by ground wire, or more generally in the power supply by capacitive source (capacitive coupling). FIG. 9 represents such a capacitive source having for equivalent circuit a source 38 of voltage V (which, for example, can be a line for transporting electrical energy) and a set of capacitors 39 of value C. This source supplies a load resistive R. A self-controlled variable inductor with air gaps according to the invention 31 is connected in parallel with the load R. A current i c flows in the assembly 39, a current i L in the inductor 31 and a current i R in the load R. A voltage V c appears at the terminals of the assembly 39 and a voltage V L at the terminals of the load R and of the inductor 31.

La théorie démontre qu'en variant convenablement la valeur de l'inductance 31 en fonction de la valeur de la charge R, il est possible de maintenir constante la tension Vl aux bornes de la charge R dans une plage donnée. Avec l'inductance variable autocontrôlée à entrefers décrite ci-dessus, il est possible de maintenir constante la valeur de Vl en choisissant la pente m (voir figure 4) nulle. Il est même possible, en modifiant de façon appropriée la pente m (voir figure 4) par un ajustement du nombre de tours des enroulements de contrôle 11 a et 11 b (figure 1 a)), de permettre une régulation positive de la tension Vl en fonction de la charge (tension aux bornes de la charge R qui augmente avec cette charge), pour ainsi obtenir un transfert de puissance active optimale de la source 38 à la charge R.The theory shows that by suitably varying the value of the inductance 31 as a function of the value of the load R, it is possible to maintain constant the voltage V l at the terminals of the load R in a given range. With the self-controlled variable inductance with air gaps described above, it is possible to keep the value of V l constant by choosing the zero slope m (see FIG. 4). It is even possible, by appropriately modifying the slope m (see FIG. 4) by adjusting the number of turns of the control windings 11 a and 11 b (FIG. 1 a)), to allow positive regulation of the voltage V l as a function of the load (voltage at the terminals of the load R which increases with this load), thereby obtaining an optimal active power transfer from the source 38 to the load R.

Claims (30)

1. Variable inductor comprising a) a magnetic core (1) provided with three limbs (2, 3, 4) each having a first end and a second end, the said first ends being interconnected through a first common point (34) of the magnetic core (1), and the said second ends being interconnected through a second common point (35) of this magnetic core (1), b) a primary winding (10a, 10b) supplied with an alternating current (ip), c) a control winding (11 a, 11 b) and d) means (12) for supplying the control winding (11 a, 11 b) with a direct current (is) having an intensity which varies in relation to an electric parameter (ip) related to the operation of the variable inductor, the said primary winding (1 Oa, 10b) and the said control winding (11 a, 11 b) being so disposed with respect to the magnetic core (1) that the said alternating (ip) and direct (is) currents induce in a first (4) of the said three limbs an alternating magnetic flux (16) and a direct current magnetic flux (14) which assist each other or which are in oppostion with respect to each other when the sait alternating current (ip) has a positive or negative value, respectively, and in a second (3) of the said three limbs an alternating magnetic flux (15) and a direct current magnetic flux (13) which are in opposition with respect to each other or which assist each other when the said direct current (ip) has a positive or negative value, respectively, the direct current magnetic flux (14, 13) induced in each of the said first (4) and second (3) limbs having a density which varies with the intensity of the said direct current (is) for thereby varying the impedance of the primary winding (10a, 10b), variable inductor characterized in that the said first limb (4) comprises a gap (8) traversed by the resultant magnetic flux (19) induced in this first limb (4), and the said second limb (3) comprises a gap (7) traversed by the resultant magnetic flux (18) induced in this second limb (3).
2. Variable inductor according to claim 1, characterized in that the said three limbs (2, 3, 4) are located substantially in a same plane and include two outer limbs (3, 4) as well as a center limb (2) disposed between the two outer limbs (3, 4).
3. Variable inductor according to claim 2, characterized in that the said first (4) and second (3) limbs of the magnetic core (1) are constituted by the said two outer limbs.
4. Variable inductor according to claim 2, characterized in that the magnetic core (1) is formed with stacked sheet elements (20) parallel to the said plane and joined together through 45° joints (5, 6) having at least three stages for thereby preventing any partial saturation of the magnetic core (1 ).
5. Variable inductor according to claim 1, characterized in that the said three limbs (2, 3, 4) of the magnetic core (1) each have a cross section having a same shape and a same area.
6. Variable inductor according to claim 1, characterized in that the said first (4) and second (3) limbs of the magnetic core (1) have a same length, in that the first (4) and second (3) limbs each have a cross section having a same area, and in that the gaps (8, 7) of these first (4) and second (3) limbs have a same length.
7. Variable inductor according to claim 1, characterized in that the gap (8) of the said first limb (4) is located in this first limb (4) half-way between the said first (34) and second (35) common points of the magnetic core (1), and in that the gap (7) of the said second limb (3) is located on this second limb (3) half-way between the said first (34) and second (35) common points of the magnetic core (1).
8. Variable inductor according to claim 1, characterized in that the said three limbs (2, 3, 4) all have a cruciform cross section which is almost circular.
9. Variable inductor according to claim 1, characterized in that the said magnetic core (1) is made of a magnetic material having a magnetization curve with a pronounced knee.
10. Variable inductor according to claim 1, characterized in that the said electric parameter is the intensity of the alternating current (ip) supplying the primary winding (1 Oa, 10b)
11. Variable inductor according to claim 10, characterized in that the said direct current supplying means comprises means (12) for rectifying the alternating current (ip) supplying the primary winding (10a, 10b) and for supplying the control winding (11 a, 11 b) with the said rectified current (is).
12. Variable inductor according to claim 11, characterized in that the rectifying and supplying means comprises a diode bridge (12) interconnecting the primary winding (10a, 10b) in series with the control winding (11 a, 11 b)
13. Variable inductor according to claim 1, characterized in that the primary winding comprises a first coil (10b) and a second coil (10a) connected in series, wrapped around the said first (4) and second (3) limbs, respectively, and supplied with the said alternating current (ip) so that this alternatig current induces in the first limb (4) a first alternating magnetic flux (16) and in the second limb (3) a second alternating magnetic flux (15), these first (16) and second (15) alternating magnetic fluxes assisting each other in the third (2) of the said three limbs.
14. Variable inductor according to claim 1, characterized in that the control winding comprises a first coil (11 b) and a second coil (11 a) connected in series, wrapped around the said first (4) and second (3) limbs, respectively, and supplied with the said direct current (is) so that this direct current induces a direct current magnetic flux (13, 14) flowing through a closed magnetic circuit defined by the said first (4) and second (3) limbs.
15. Variable inductor according to claim 13, characterized in that the control winding comprises a third coil (11 b) and a fourth coil (11 a) connected in series, wrapped around the first (4) and second (3) limbs, respectively, and supplied with the said direct current (is) so that this direct current induces a direct current magnetic flux (13, 14) flowing through a closed magnetic circuit defined by the said first (4) and second (3) limbs.
16. Variable inductor according to claim 15, characterized in that the said electric parameter is the intensity of the alternating current (ip) supplying the said first (10b) and second (10a) coils connected in series, and in that the said direct current supplying means comprises means (12) for rectifying this alternating current (ip). and for supplying with the said rectified current in the third (11 b) and fourth (11 a) coils connected in series.
17. Variable inductor according to claim 15, characterized in that the first (10b) and third (11 b) coils are superposed, in that the second (1 Oa) and fourth (11 a) coils are also superposed, in that the first (1 Ob) and third (11 b) coils are so disposed around the said first limb (4) that the gap (8) of this first limb is located in the center of these first (1 Ob) and third (11 b) coils, and in that the second (10a) and fourth (11 a) coils are so disposed around the said second limb (3) that the gap (7) of this second limb is located in the center of these second (1 Oa) and fourth (11 a) coils.
18. Variable inductor according to claim 1, characterized in that it comprises an inductor (22) having a fixed value and connected in series with the said control winding (11 a, 11 b).
19. Variable inductor according to claim 1, characterized in that the control winding comprises a first coil (11 a) and a second coil (11 b) connected in series, and in that the said variable inductor comprises an inductor having a fixed value (22) which is connected in series with the said first (11 a) and second (11 b) coils of the control winding.
20. Variable inductor according to claim 1, characterized in that it comprises a bias winding (23a, 23b) mounted on the magnetic core (1) and supplied with direct current (ipol).
21. Variable inductor according to claim 20, characterized in that the said bias winding (23a, 23b) is supplied by a direct current source (24).
22. Variable inductor according to claim 20, characterized in that the said bias winding (23a. 23b) is supplied with direct current (ipol) by an additional winding (26a, 26b) mounted on the magnetic core (1), the said additional winding (26a, 26b) supplying the bias winding (23a, 23b) through rectifying means (27, 28) and means (29) for adjusting the intensity of the direct current (ipol) supplying this bias winding (23a, 23b).
23. Variable inductor according to claim 15, characterized in that it comprises a fifth coil (23b) and a sixth coil (23a) connected in series, wrapped around the said first (4) and second (3) limbs, respectively, and supplied with direct current (ipol) so that these fifth (23b) and sixth (23a) coils generate a biasing magnetic flux which flows in the closed magnetic circuit defined by the said first (4) and second (3) limbs.
24. Variable inductor according to claim 23, characterized in that the said first (10b), third (11 b) and fifth (23b) coils are superposed, in that the said second (10a), fourth (11 a) and sixth (23a) coils are also superposed, in that the said first (10b), third (11b) and fifth (23b) coils ares so disposed around the said first limb (4) that the gap (8) of this first limb is located in the center of these first (1 Ob), third (11 b) and fifth (23b) coils, and in that the said second (10a), fourth (11 a) and sixth (23a) coils are so disposed around the said second limb (3) that the gap (7) of this second limb is located in the center of these second (1 Oa), fourth (11 a) and sixth (23a) coils.
25. Variable inductor according to claim 15, characterized in that the third coil (11 b) has a number of turns equal to n times the number of turns of the first coil (10b), and the fourth coil (11 a) has a number of turns equal to n times the number of turns of the second coil (1 Oa), n being slightly greater than 1.
26. An electric system comprising an electric load (R), a capacitive source (38, 39) for supplying an alternating voltage (VL) to the said load (R), and a variable inductor (31) connected in parallel with the electric load (R) for carrying out a regulation of the alternating voltage (VL) supplied to this load (R), the said variable inductor (31 ) comprising a) a magnetic core provided with three limbs (2, 3, 4) each having a first end and a second end, the said first ends being interconnected through a first common point (34) of the magnetic core (1), and the said second ends being interconnected through a second common point (35) fo this magnetic core (1), b) a primary winding (10a, 10b) supplied with an alternating current (ip) delivered from the said capacitive source (38, 39), c) a control winding (11 a, 11 b) and d) means (12) for supplying the control winding with a direct current (is) having an intensity which varies in relation to an electric parameter (ip) related to the operation of the variable inductor (31), the said primary winding (10a, 10b) and the said control winding (11 a, 11 b) being so disposed with respect to the magnetic core (1) that the said alternating (ip) and direct (is) currents induce in a first (4) of the said three limbs an alternating magnetic flux (16) and. direct current magnetic flux (14) which assist each other or which are in opposition with respect to each other when the said alternating current (ip) has a positive or negative value, respectively, and in a second (3) of the said three limbs an alternating magnetic flux (15) and a direct current magnetic flux (13) which are in opposition with respect to each other or which assist each other when the said alternating current (ip) has a positive or negative value, respectively, the direct current magnetic flux (14, 13) induced in each of the said first (4) and second (3) limbs having a density which varies with the intensity of the said direct current (is) for thereby varying the impedance of the primary winding (1 Oa, 10b), the said variable inductor (31 ) being characterized in that the said first limb (4) comprises a gap (8) traversed by the resultant magnetic flux (19) induced in this first limb (4), and the said second limb (3) comprises a gap (7) traversed by the resultant magnetic flux (18) induced in this second limb (3).
27. Variable inductor according to claim 1, characterized in that a reactive impedance (32; 33; 36, 37) is connected in parallel with the said variable inductor (31 ) in order to obtain a desired operating characteristic given by the said reactive impedance (32; 33; 36, 37) and the said variable inductor (31 ) connected in parallel.
28. Variable inductor according to claim 27, characterized in that the reactive impedance comprises a capacitor (33).
29. Variable inductor according to claim 27, characterized in that the reactive impedance comprises an inductor (32).
30. Variable inductor according to claim 27, characterized in that the reactive impedance comprises a capacitor (37) connected in series with an inductor (36).
EP86400011A 1985-01-16 1986-01-06 Self-controlled variable inductance with gaps, and electrical system having such an inductance Expired EP0194163B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
IN1071/DEL/85A IN165679B (en) 1985-01-16 1985-12-17
AT86400011T ATE44109T1 (en) 1985-01-16 1986-01-06 SELF-CONTROLLED AIR GAP VARIABLE INDUCTOR AND ELECTRICAL ARRANGEMENT USING SUCH INDUCTOR.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA000472204A CA1229381A (en) 1985-01-16 1985-01-16 Self-controlled variable inductance with gaps
CA472204 1985-01-16

Publications (2)

Publication Number Publication Date
EP0194163A1 EP0194163A1 (en) 1986-09-10
EP0194163B1 true EP0194163B1 (en) 1989-06-14

Family

ID=4129587

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86400011A Expired EP0194163B1 (en) 1985-01-16 1986-01-06 Self-controlled variable inductance with gaps, and electrical system having such an inductance

Country Status (11)

Country Link
US (1) US4620144A (en)
EP (1) EP0194163B1 (en)
JP (1) JPH07112350B2 (en)
KR (1) KR900000432B1 (en)
CN (1) CN86100229B (en)
AU (1) AU576137B2 (en)
BR (1) BR8506473A (en)
CA (1) CA1229381A (en)
DE (1) DE3664016D1 (en)
ES (1) ES8705992A1 (en)
MX (1) MX159950A (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1258881A (en) * 1987-04-15 1989-08-29 Leonard Bolduc Self-regulated transformer with gaps
US5179489A (en) * 1990-04-04 1993-01-12 Oliver Bernard M Method and means for suppressing geomagnetically induced currents
US5136453A (en) * 1990-04-04 1992-08-04 Oliver Bernard M Method and means for suppressing geomagnetically induced currents
US5343381A (en) * 1993-02-25 1994-08-30 Hydro-Quebec Electrical dampening circuit for dampening resonance of a power signal in a power distribution network
US5523673A (en) * 1994-03-04 1996-06-04 Marelco Power Systems, Inc. Electrically controllable inductor
US5426409A (en) * 1994-05-24 1995-06-20 The United States Of America As Represented By The Secretary Of The Navy Current controlled variable inductor
US5999077A (en) * 1998-12-10 1999-12-07 The United States Of America As Represented By The Secretary Of The Navy Voltage controlled variable inductor
CN1093682C (en) * 1999-06-28 2002-10-30 邓忠宪 Magnetic core with continuously adjustable air gap
US6392521B1 (en) 2000-10-12 2002-05-21 Clinton Instrument Company Variable inductance transformer with electronic control
US20040032315A1 (en) * 2002-08-19 2004-02-19 Lewis Illingworth Variable inductor responsive to AC current level
US7378828B2 (en) * 2004-11-09 2008-05-27 The Boeing Company DC-DC converter having magnetic feedback
CN101278457B (en) * 2005-09-29 2012-06-06 Abb研究有限公司 Induction regulator for controlling energy flow used in alternating current transmission network, and method for controlling the network
DE102008064640A1 (en) * 2008-05-21 2009-12-03 Sew-Eurodrive Gmbh & Co. Kg Inductance and arrangement
CN102176369A (en) * 2011-01-28 2011-09-07 武汉市泛科变电检修设备制造有限公司 Adjustable long-clearance reactor capable of working for long time
CN102184766B (en) * 2011-02-21 2012-11-14 山东大学 Low-noise saturable reactor
CN102290200B (en) * 2011-04-25 2012-12-26 山东大学 Controllable saturable reactor
CN103827765B (en) * 2011-09-30 2016-09-07 英特尔公司 The inductor of switching between coupling and decoupled state
WO2015171560A1 (en) * 2014-05-05 2015-11-12 Hubbell Incorporated Adjustable inductor
CN104376967B (en) * 2014-11-28 2016-11-02 山东大学 The quick direct-curent saturable reactor of a kind of reaction
CN106911316A (en) * 2015-12-23 2017-06-30 群光电能科技股份有限公司 Filtration module
EP3699936A1 (en) 2017-01-12 2020-08-26 Delta Electronics (Thailand) Public Co., Ltd. Integrated magnetic component and switched mode power converter
DE102017121078A1 (en) * 2017-09-12 2019-03-14 Maschinenfabrik Reinhausen Gmbh TEST SYSTEM FOR CARRYING OUT A HIGH VOLTAGE TEST
WO2019178642A1 (en) * 2018-03-21 2019-09-26 Faraday Grid Limited An electrical power control apparatus and process
CN111105925B (en) * 2018-10-27 2021-12-28 杨勇 High-voltage direct-current transmission line induction energy-taking device and method based on demagnetizing inductor filtering magnetic circuit
CN117095914B (en) * 2023-09-01 2024-05-14 苏州吴变电气科技有限公司 Three-phase three-column parallel magnetic valve type reactor with three-phase independent magnetic regulating loop

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1813409A (en) * 1928-11-21 1931-07-07 Ward Leonard Electric Co Alternating current controlling apparatus
FR1011769A (en) * 1949-03-16 1952-06-26 Onera (Off Nat Aerospatiale) Moving Magnet Self-Exciting Transducers
US2686292A (en) * 1951-03-09 1954-08-10 Servo Corp Variable reluctance amplifier
US2743152A (en) * 1953-03-26 1956-04-24 Westinghouse Electric Corp Voltage reference network
DE1044262B (en) * 1954-02-27 1958-11-20 Siemens Ag Three-phase choke coil, adjustable by direct current pre-magnetization
US2957086A (en) * 1957-08-21 1960-10-18 Westinghouse Electric Corp Arc welding apparatus
US3373347A (en) * 1965-01-21 1968-03-12 Basic Products Corp Ac power regulator with magnetic amplifier
DE1638407B2 (en) * 1967-08-24 1974-10-03 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Arrangement for the static generation of controllable sinusoidal reactive currents
CH483708A (en) * 1968-12-05 1969-12-31 Oerlikon Maschf Controllable choke coil
AU5029285A (en) * 1984-11-23 1986-05-29 Royal Melbourne Institute Of Technology Limited Electrically variable inductor
US4591819A (en) * 1985-03-28 1986-05-27 Rca Corporation Inductance adjustment for transformers

Also Published As

Publication number Publication date
MX159950A (en) 1989-10-13
KR900000432B1 (en) 1990-01-30
DE3664016D1 (en) 1989-07-20
EP0194163A1 (en) 1986-09-10
ES8705992A1 (en) 1987-05-16
ES550602A0 (en) 1987-05-16
CA1229381A (en) 1987-11-17
JPH07112350B2 (en) 1995-11-29
JPS61167698A (en) 1986-07-29
CN86100229A (en) 1986-07-16
AU576137B2 (en) 1988-08-11
AU5171785A (en) 1986-07-24
BR8506473A (en) 1986-09-02
US4620144A (en) 1986-10-28
KR860006121A (en) 1986-08-18
CN86100229B (en) 1988-12-07

Similar Documents

Publication Publication Date Title
EP0194163B1 (en) Self-controlled variable inductance with gaps, and electrical system having such an inductance
CA1118509A (en) Inductance variable
CA1258881A (en) Self-regulated transformer with gaps
EP1555745B1 (en) 12 Pulse converter with filtering inductance being integrated in the rectifier.
EP1902513B1 (en) Method and device for supply to a magnetic coupler
FR2577728A1 (en) STABILIZED POWER SUPPLY DEVICE
FR3010852A1 (en) METHOD OF REDUCING COMMON MODE CURRENT
FR2486328A1 (en) IMPROVED ENERGY SAVING DEVICE FOR INDUCTION MOTORS
EP2562903B1 (en) Reactive power compensator comprising N inverters in parallel, N banks of capacitor(s) and a means for connecting the banks via passive electrical components
EP0865679B1 (en) Method and device for compensating for magnetic pull in a discoidal machine
FR2477702A1 (en) INDUCTIVE DISPLACEMENT INDICATOR
FR2744529A1 (en) Measurement of low value continuous current in conductor
CA1084995A (en) Induction control circuit for current transformer
FR2868844A1 (en) Direct current measurement device for battery operation controlling device, has electrical circuit with inductor and node that distributes predetermined fraction of current in branch formed by secondary coil of transformer
BE483325A (en)
BE447092A (en)
EP0040142A1 (en) Measured current-dependent, by this current powered signal generator, and application to current relays
BE475379A (en)
BE495834A (en)
EP0600809A1 (en) AC dynamic compensator
FR2757709A1 (en) INDUCTION MOTOR REGULATOR
WO1990015965A1 (en) Process and device for measuring the cross-section or the diameter of long cylindrical products made of conductive material
FR2801736A1 (en) Filter for harmonics generated by a load in a variable frequency single or multi-phase electrical network, uses magnetic control with control winding coupled to inductance
CH369199A (en) Voltage stabilizer transformer
EP0174227A1 (en) Contactless displacement detector

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19860715

17Q First examination report despatched

Effective date: 19880415

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HYDRO-QUEBEC

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 44109

Country of ref document: AT

Date of ref document: 19890615

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3664016

Country of ref document: DE

Date of ref document: 19890720

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 86400011.2

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19961220

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19961231

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970130

Year of fee payment: 12

Ref country code: FR

Payment date: 19970130

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970131

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970203

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970205

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970217

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980106

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980131

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980131

BERE Be: lapsed

Owner name: HYDRO-QUEBEC

Effective date: 19980131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980106

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981001

EUG Se: european patent has lapsed

Ref document number: 86400011.2

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050106