EP0193976A1 - Apparatus for the pyrometallurgical treatment of fine-granular solid materials to obtain fused products - Google Patents

Apparatus for the pyrometallurgical treatment of fine-granular solid materials to obtain fused products Download PDF

Info

Publication number
EP0193976A1
EP0193976A1 EP86200140A EP86200140A EP0193976A1 EP 0193976 A1 EP0193976 A1 EP 0193976A1 EP 86200140 A EP86200140 A EP 86200140A EP 86200140 A EP86200140 A EP 86200140A EP 0193976 A1 EP0193976 A1 EP 0193976A1
Authority
EP
European Patent Office
Prior art keywords
discharge slot
opening
cyclone
discharge
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86200140A
Other languages
German (de)
French (fr)
Other versions
EP0193976B1 (en
Inventor
Edgar Prof. Dr. Muschelknautz
Ernst Becker
Adalbert Bartsch
Lars Kersten
Georg Dr. Gospos
Gerhard Berndt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aurubis AG
Original Assignee
Norddeutsche Affinerie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Norddeutsche Affinerie AG filed Critical Norddeutsche Affinerie AG
Publication of EP0193976A1 publication Critical patent/EP0193976A1/en
Application granted granted Critical
Publication of EP0193976B1 publication Critical patent/EP0193976B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/12Dry methods smelting of sulfides or formation of mattes by gases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/12Dry methods smelting of sulfides or formation of mattes by gases
    • C22B5/14Dry methods smelting of sulfides or formation of mattes by gases fluidised material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C1/00Apparatus in which the main direction of flow follows a flat spiral ; so-called flat cyclones or vortex chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • B04C3/06Construction of inlets or outlets to the vortex chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C7/00Apparatus not provided for in group B04C1/00, B04C3/00, or B04C5/00; Multiple arrangements not provided for in one of the groups B04C1/00, B04C3/00, or B04C5/00; Combinations of apparatus covered by two or more of the groups B04C1/00, B04C3/00, or B04C5/00

Definitions

  • the invention relates to a device for the pyrometallurgical treatment of fine-grained solids resulting in products which are molten at treatment temperatures.
  • the suspension formed which contains predominantly molten particles, is introduced into a horizontally arranged cyclone chamber.
  • hot gas with melting drops from the vertical cylindrical firing section enters tangentially at one end of the lying cylindrical cyclone chamber and centrally at the opposite end through a collar into a downstream secondary chamber.
  • the separated melt flows to the secondary chamber at the outlet end of the gas flow through a high, narrow slot, which is embedded below the collar in the vertical central plane of the end face.
  • Solid and preheated gas are blown into the cylindrical cyclone chamber from above along a secant without their own burning path. The entry is made over almost the entire length of the cyclone.
  • the gas flows to a secondary chamber through a collar inserted centrally in the end face.
  • the melt flows under the collar through a hole in the deepest part of the end wall also into the secondary chamber.
  • the object of the invention is to provide a device, in particular a cyclone chamber, for pyrometallurgical treatment of fine-grained solids, which avoids the disadvantages of known devices and in particular the aforementioned disadvantages.
  • the invention solves the problem with a device for the pyrometallurgical treatment of fine-grained solids suspended in oxygen-rich gases, with a horizontally arranged cylindrical vessel and the associated burner shaft opening vertically into the vessel, as well as with a gas discharge opening and discharge opening for melts.
  • a device of the type mentioned is designed according to the invention in such a way that the tangential opening of the combustion shaft is designed as a channel-like partial spiral opening into a discharge slot with the cylinder wall and the discharge slot in the lower jacket region of the essentially cylindrical vessel is essentially parallel to its longitudinal axis is arranged.
  • the measures of the invention are based on the knowledge that with a high solids load (melt particles) of the gas stream emerging from the combustion shaft, the melt particles are almost completely flung and in the first curve of the inlet bend against the container wall, where a closed and rapidly flowing film on the immediately steep cylinder wall.
  • the film's high flow rate drops to a fraction when the gradient in the lower area of the cyclone wall becomes smaller. That is, in such an undesirable case, the melt film is accumulated in waves in conventional cyclones, while a part of the gas flow on the waves or on the surge is deflected in the direct direction of the gas outlet as at a baffle. The part of the flow which is deflected upward by the surge then disadvantageously tears large drops from the liquid wave which, due to the dynamic pressure of the escaping gas flow, pulsates and bubbles considerably. The torn drops fly slowly and almost vertically upwards into the very restlessly rotating and oscillating vortex core of the cyclone flow, where they increasingly wobble axially towards the gas outlet. Faster and circling drops are just about to be separated, a part bakes in the gas outlet on the inner wall and a part is carried along with the flow through the gas outlet (Fig. 1 and 2).
  • the walls of the cyclone chamber are designed in a manner known per se as steam-cooled, pinned tube walls (17) lined with refractory material, a reliable wall protection being achieved by a thin layer of solidified melting products.
  • the wall surface (15) of the inlet spiral (14) runs flat, runs tangentially and forms the lower surface of the discharge slot (16).
  • This flat surface has a downward slope of approximately 20 to 45 ° to the horizontal.
  • the other (upper) surface delimiting the discharge slot starts at a point on the wall which lies on the continuation of the original wall spiral, which is interrupted by the discharge slot.
  • the discharge slot is generally equipped with parallel walls. However, at least one wall expediently diverges in the direction of the melt collecting container.
  • the burner shaft generally has a circular cross cut.
  • the cross section of the tangential opening of the combustion shaft into the cyclone chamber is expediently elliptical. In many cases, a rectangular cross section is advantageous. From the inlet cross-section, the inlet spiral expands steadily and reaches approximately the length of the discharge slot. The length of the discharge slot (in the direction of the cyclone axis) is approximately up to 3 times the width of the inlet of the spiral.
  • a groove is located in the lining of the cyclone jacket at the lowest point and starting in the area of the gas outlet opening.
  • This channel (Fig. 3a; 18) runs with increasing depth to the discharge slot and is a kind of return for the melt film, which comes from the remaining melt particles still separated from the main gas stream.
  • the return channel begins with increasing depth at a distance of approximately 1/3 to 2/3 of the diameter value of the gas outlet opening and ends at the discharge slot.
  • the channel end has a width "B" of approximately 1/4 to 1/2 the diameter of the gas outlet opening.
  • the depth "T" of the return channel corresponds approximately to the width "B".
  • part of the cylindrical cyclone arranged horizontally is angled upwards; that is, a cylindrical section of the cyclone can be angled upwards as a whole, or only the lower half of the jacket can be angled upwards, so that a cyclone section is in the form of an asymmetrical cone.
  • the upward angle (a1) of the longitudinal axis is approximately 15 to 30 °, and the length of the angled cyclone section corresponds approximately to the length of the return channel installed in the lower cyclone jacket.
  • the entire cyclone jacket can be designed conically in the region of the angled longitudinal axis towards the gas outlet.
  • a large number of solids can be treated pyrometallurgically in the device according to the invention.
  • Non-ferrous metal ore concentrates and sulfidic ores are particularly suitable.
  • the device according to the invention is also suitable for the treatment of oxidic, optionally pre-reduced iron ores or iron ore concentrates and also for the treatment of metallurgical intermediates.
  • the advantage of the device according to the invention can be seen in the fact that a large number of solids can be used at a high gas loading density and can be treated pyrometallurgically and that the melting particles in the cyclone can be separated practically completely and above 95%. At high throughput, the device according to the invention has practically no susceptibility to failure.
  • combustion shaft 1 and 2 of a cyclone of conventional design show in detail: the combustion shaft 1 with inlet cross-section 2, separation of the droplets 3 that are carried in the hot gas, wall film 4, melt surge 5, large drops 6 torn out of the surge, axially displaced partial flow 7, radially deflected main flow 8, gas outlet or collar 9, wall extension 10, secondary chamber 11, boiler tube wall 12 and central melt outlet 13.
  • the pre-invention Direction based on the processing of fine-grained solids resulting in molten products at pyrometallurgical treatment temperature and explained in more detail and example.
  • 7,000 kg / h of a complex copper concentrate according to the analysis below are fed to the burner (FIG. 8) from upstream bunker, drying, distributor and mixing systems with 390 m 3 primary air as carrier gas via a delivery pipeline.
  • the concentrate with a composition of a grain size between 0.5 and 100 / ⁇ m and a proportion of 53% in the range between 15 and 100 / ⁇ m has a residual moisture content of 0.1 to 0.3%.
  • Si0 2 is supplied in the form of sand in an amount of 1.3 t / h to the concentrate air stream before entering the burner in order to bind the iron oxide that forms in a slag.
  • sand with a residual moisture of 0.1% and a grain size of up to 0.7 mm is used.
  • the primary fluid flow consisting of 7,000 kg / h concentrate, 1,300 kg / h sand and 380 m 3 / h conveying air, is combined with a secondary flow mixture of 600 m 3 / h air and 1,800 m 3 / h oxygen.
  • the homogenized and vortex-free fluid jet is ignited after entering the vertical burner section (German patent application P 34 36 624).
  • the molten particles are practically separated from the gas flow on the spiral wall (4) in the first spiral section and almost completely transferred into the discharge slot (16).
  • the melt runs as a jet through the discharge slot (16) into a melt collecting container (19).
  • the walls of the cyclone chamber are designed in a manner known per se as steam-cooled, pinned and lined with refractory tube walls, a reliable wall protection being achieved by a thin layer of solidified melting products.
  • the process is autogenous.
  • fuel is additionally supplied in gaseous, liquid or solid form.
  • Copper stone and slag are removed together at a melting temperature of approx. 1,320 ° C through the slot discharge of the lying cyclone vessel.
  • the exhaust gas emerging from the cyclone vessel in the axial direction (FIGS. 3; 9) has a temperature of 1,320 ° C. and contains approx. 56 vol.% 5 0 2 .
  • the exhaust gas entrains oxidic-sulfatic fly dust of the following composition:
  • This flue dust is separated in the waste heat boiler and gas cleaning systems downstream of the cyclone system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cyclones (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

Beschrieben wird eine Vorrichtung für die pyrometallurgische Behandlung von in sauerstoffreichen Gasen suspendierten feinkörnigen Feststoffen, mit horizontal angeordnetem zylindrischem Gefäss und damit verbundenem, vertikal in das Gefäss einmündendem Brennschacht, sowie mit Gasabzugsöffnung und Austragsöffnung für Schmelzen. Eine praktisch nahezu vollständige Abscheidung der Schmelzpartikel wird dadurch erreicht, dass die tangentiale Einmündung des Brennschachts als kanalartige, mit der Zylinderwand in einen Austragsschlitz einmündende Teilspirale ausgebildet ist und der Austragsschlitz im unteren Mantelbereich des im wesentlichen zylindrischen Gefässes im wesentlichen parallel zu dessen Längsachse angeordnet ist.A device is described for the pyrometallurgical treatment of fine-grained solids suspended in oxygen-rich gases, with a horizontally arranged cylindrical vessel and associated combustion shaft that opens vertically into the vessel, as well as with a gas discharge opening and discharge opening for melts. A practically almost complete separation of the melt particles is achieved in that the tangential opening of the combustion shaft is designed as a channel-like partial spiral opening into the discharge slot with the cylinder wall and the discharge slot in the lower jacket area of the essentially cylindrical vessel is arranged essentially parallel to its longitudinal axis.

Description

Die Erfindung betrifft eine Vorrichtung für die pyrometallurgische Behandlung von feinkörnigen, bei Behandlungstemperaturen schmelzflüssige Produkte ergebenden Feststoffen.The invention relates to a device for the pyrometallurgical treatment of fine-grained solids resulting in products which are molten at treatment temperatures.

Aus DE-PS 22 53 074 (= US-PS 3 915 692) ist ein Verfahren zur pyrometallurgischen Behandlung von feinkörnigen, bei Behandlungstemperaturen schmelzflüssige Produkte ergebenden Feststoffen bekannt, bei dem die in sauerstoffreichen Gasen suspendierten Feststoffe mit hoher und eine Rückzündung ausschließender Geschwindigkeit in einer vertikalen Brennstrecke zur Reaktion gebracht werden. Die gebildete, überwiegend schmelzflüssige Partikel enthaltende Suspension wird in eine horizontal angeordnete Zyklonkammer eingetragen. Bei der vorbekannten Anordnung tritt heißes Gas mit Schmelztropfen aus der vertikalen zylindrischen Brennstrecke direkt tangential an einem Ende der liegenden zylindrischen Zyklonkammer in diese ein und am entgegengesetzten Ende zentrisch durch einen Kragen in eine nachgeschaltete Sekundärkammer aus. Die abgeschiedene Schmelze fließt am Austrittsende der Gasströmung durch einen hohen schmalen Schlitz, der unterhalb des Kragens in der senkrechten Mittelebene der Stirnfläche eingelassen ist, zur Sekundärkammer.DE-PS 22 53 074 (= US Pat. No. 3,915,692) discloses a process for the pyrometallurgical treatment of fine-grained solids resulting in products which are molten at treatment temperatures, in which the solids suspended in oxygen-rich gases are at a high rate and prevent reignition in one vertical burning path to be reacted. The suspension formed, which contains predominantly molten particles, is introduced into a horizontally arranged cyclone chamber. In the previously known arrangement, hot gas with melting drops from the vertical cylindrical firing section enters tangentially at one end of the lying cylindrical cyclone chamber and centrally at the opposite end through a collar into a downstream secondary chamber. The separated melt flows to the secondary chamber at the outlet end of the gas flow through a high, narrow slot, which is embedded below the collar in the vertical central plane of the end face.

Die in einem aus DE-AS 20 10 872 (= CA-PS 926 631) vorbekannten ähnlichen Verfahren verwendete Schmelzzyklonkammer hat eine annähernd horizontale Achse, die gegenüber der Horizontalen um maximal etwa 30° abwärts geneigt ist. Feststoff und vorgewärmtes Gas werden ohne eigene Brennstrecke, jedoch von oben längs einer Sekante in die zylindrische Zyklonkammer eingeblasen. Der Eintrag erfolgt nahezu über die ganze Länge des Zyklons. Das Gas strömt durch einen zentrisch in der Stirnfläche eingelassenen Kragen zu einer Sekundärkammer. Die Schmelze fließt unter dem Kragen duch ein Loch an der tiefsten Stelle der Stirnwand ebenfalls in die Sekundärkammer.The melting cyclone chamber used in a similar process known from DE-AS 20 10 872 (= CA-PS 926 631) an approximately horizontal axis, which is inclined by a maximum of about 30 ° downwards from the horizontal. Solid and preheated gas are blown into the cylindrical cyclone chamber from above along a secant without their own burning path. The entry is made over almost the entire length of the cyclone. The gas flows to a secondary chamber through a collar inserted centrally in the end face. The melt flows under the collar through a hole in the deepest part of the end wall also into the secondary chamber.

Die in den vorbekannten Verfahren verwendeten Zyklonkammern führen in vielen Fällen in Abhängigkeit von der Art der zu behandelnden Feststoffe zu Störungen des Betriebsablaufs. Bei höheren Durchsatzmengen kommt es zu starker Ansatzbildung in den Gasaustrittsöffnungen, da die Schmelzabscheidung innerhalb der Zyklonkammer nicht mehr genügt.The cyclone chambers used in the previously known processes lead in many cases, depending on the type of solids to be treated, to malfunctions in the operating sequence. At higher throughputs, there is a strong build-up in the gas outlet openings, since the melt separation within the cyclone chamber is no longer sufficient.

Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung, insbesondere Zyklonkammer, zur pyrometallurgischen Behandlung von feinkörnigen Feststoffen bereitzustellen, welche die Nachteile bekannter Vorrichtungen und insbesondere die vorgenannten Nachteile vermeidet.The object of the invention is to provide a device, in particular a cyclone chamber, for pyrometallurgical treatment of fine-grained solids, which avoids the disadvantages of known devices and in particular the aforementioned disadvantages.

Die Erfindung löst die Aufgabe mit einer Vorrichtung für die pyrometallurgische Behandlung von in sauerstoffreichen Gasen suspendierten feinkörnigen Feststoffen, mit horizontal angeordnetem zylindrischem Gefäß und damit verbundenem, vertikal in das Gefäß einmündendem Brennschacht, sowie mit Gasabzugsöffnung und Austragsöffnung für Schmelzen. Eine Vorrichtung der genannten Art wird gemäß der Erfindung in der Weise ausgestaltet, daß die tangentiale Einmündung des Brennschachts als kanalartige, mit der Zylinderwand in einen Austragsschlitz einmündende Teilspirale ausgebildet ist und der Austragsschlitz im unteren Mantelbereich des im wesentlichen zylindrischen Gefäßes im wesentlichen parallel zu dessen Längsachse angeordnet ist.The invention solves the problem with a device for the pyrometallurgical treatment of fine-grained solids suspended in oxygen-rich gases, with a horizontally arranged cylindrical vessel and the associated burner shaft opening vertically into the vessel, as well as with a gas discharge opening and discharge opening for melts. A device of the type mentioned is designed according to the invention in such a way that the tangential opening of the combustion shaft is designed as a channel-like partial spiral opening into a discharge slot with the cylinder wall and the discharge slot in the lower jacket region of the essentially cylindrical vessel is essentially parallel to its longitudinal axis is arranged.

Mit der erfindungsgemäßen Vorrrichtung wird eine praktisch vollständige Abscheidung der pyrometallurgisch behandelten Partikel aus der Gasphase (Gasstrom), insbesondere bei hohen Beladungen des Gasstromes von z.B. /u = 7 kg Schmelzpartikel pro kg Gas erzielt.With the device according to the invention, a practically complete separation of the pyrometallurgically treated particles from the gas phase (gas flow) is achieved, in particular when the gas flow is heavily loaded, e.g. / u = 7 kg of melt particles per kg of gas.

Die Maßnahmen der Erfindung beruhen auf der Erkenntnis, daß bei hoher Feststoffbeladung (Schmelzpartikel) des aus dem Brennschacht austretenden Gasstromes die Schmelzpartikel nahezu vollständig und schon in der ersten Krümmung des Einlaufbogens an die Behälterwand geschleudert werden, wo sofort ein geschlossener und schnell strömender Film an der steilen Zylinderwand entsteht.The measures of the invention are based on the knowledge that with a high solids load (melt particles) of the gas stream emerging from the combustion shaft, the melt particles are almost completely flung and in the first curve of the inlet bend against the container wall, where a closed and rapidly flowing film on the immediately steep cylinder wall.

Die hohe Fließgeschwindigkeit des Films fällt aber auf einen Bruchteil zurück, wenn das Gefälle im unteren Bereich der Zyklonwand geringer wird. Das heißt, in einem solchen unerwünschten Fall wird der Schmelzfilm in herkömmlichen Zyklonen wellenartig aufgestaut, während ein Teil des Gasstromes an den Wellen bzw. an dem Schwall wie an einer Schikane in direkter Richtung des Gasaustritts abgelenkt wird. Der über den Schwall nach oben abgelenkte Teil der Strömung reißt dann in nachteiliger Weise viele große Tropfen aus der Flüssigkeitswelle, die aufgrund des Staudrucks der austretenden Gasströmung erheblich pulsiert und brodelt. Die losgerissenen Tropfen fliegen langsam und fast senkrecht nach oben in den sehr unruhig drehenden und pendelnden Wirbelkern der Zyklonströmung, wo sie zunehmend axial in Richtung des Gasauslasses taumeln. Schneller werdende und kreisende Tropfen werden gerade noch abgeschieden, ein Teil backt im Gasaustritt an der Innenwand an und ein Teil wird mit der Strömung durch den Gasaustritt mitgerissen (Fig. 1 und 2).The film's high flow rate drops to a fraction when the gradient in the lower area of the cyclone wall becomes smaller. That is, in such an undesirable case, the melt film is accumulated in waves in conventional cyclones, while a part of the gas flow on the waves or on the surge is deflected in the direct direction of the gas outlet as at a baffle. The part of the flow which is deflected upward by the surge then disadvantageously tears large drops from the liquid wave which, due to the dynamic pressure of the escaping gas flow, pulsates and bubbles considerably. The torn drops fly slowly and almost vertically upwards into the very restlessly rotating and oscillating vortex core of the cyclone flow, where they increasingly wobble axially towards the gas outlet. Faster and circling drops are just about to be separated, a part bakes in the gas outlet on the inner wall and a part is carried along with the flow through the gas outlet (Fig. 1 and 2).

Mit der erfindungsgemäßen Anordnung wird nun in vorteilhafter Weise erreicht, daß in der tangentialen Einlaufspirale (14) praktisch im ersten Spiralabschnitt bzw. -bogen die schmelzflüssigen Partikel aus dem Gasstrom und an der Spiralwandung als Film (4) abgeschieden und nahezu vollständig in den Austragsschlitz bzw. schlitzartigen Austragskanal (16) überführt werden. Durch den Austragsschlitz läuft die Schmelze als Strahl in einen Schmelzsammelbehälter (19) (Fig. 3). Vom Sammelbehälter gelangt die Schmelze gegebenenfalls in einen Vorherd, wo gegebenenfalls die Trennung des Schmelzgemisches in die Komponenten erfolgt. Ein geringer Teil der Gasströmung kann bei entsprechender Anordnung - z.B. Abgasöffnung (20) im Schmelzsammelbehälter (19) - durch den Austragsschlitz (16) über den Schmelzsammelbehälter entweichen.With the arrangement according to the invention it is now advantageously achieved that in the tangential inlet spiral (14) practically in the first spiral section or arc, the molten particles are separated from the gas stream and on the spiral wall as film (4) and are almost completely transferred into the discharge slot or slot-like discharge channel (16). The melt runs as a jet through the discharge slot into a melt collecting container (19) (FIG. 3). If necessary, the melt reaches a forehearth from the collecting tank, where the melt mixture is separated into the components if necessary. A small part of the gas flow can escape through the discharge slot (16) through the melt collection container if the arrangement is appropriate - for example, exhaust opening (20) in the melt collection container (19).

Die Wände der Zyklonkammer sind in an sich bekannter Weise als dampfgekühlte, bestiftete und mit Feuerfestmaterial ausgekleidete Rohrwände (17) ausgeführt, wobei durch eine dünne Schicht erstarrter Schmelzprodukte ein sicherer Wandschutz erzielt wird.The walls of the cyclone chamber are designed in a manner known per se as steam-cooled, pinned tube walls (17) lined with refractory material, a reliable wall protection being achieved by a thin layer of solidified melting products.

Im unteren Bereich der Zyklonkammer verläuft die Wandfläche (15) der Einlaufspirale (14) eben, läuft tangential aus und bildet die untere Fläche des Austragsschlitzes (16). Diese ebene Fläche hat eine abwärts gerichtete Neigung von etwa 20 bis 45° gegen die Horizontale. Die andere (obere), den Austragsschlitz begrenzende Fläche setzt an einem Punkt der Wandung an, der auf der Fortsetzung der ursprünglichen, aber durch den Austragsschlitz unterbrochenen Wandungsspirale liegt.In the lower area of the cyclone chamber, the wall surface (15) of the inlet spiral (14) runs flat, runs tangentially and forms the lower surface of the discharge slot (16). This flat surface has a downward slope of approximately 20 to 45 ° to the horizontal. The other (upper) surface delimiting the discharge slot starts at a point on the wall which lies on the continuation of the original wall spiral, which is interrupted by the discharge slot.

Der Austragsschlitz ist im allgemeinen mit parallel verlaufenden Wandungen ausgerüstet. Zweckmäßig verläuft jedoch mindestens eine Wandung in Richtung des Schmelzsammelbehälters divergierend.The discharge slot is generally equipped with parallel walls. However, at least one wall expediently diverges in the direction of the melt collecting container.

Der Brennschacht besitzt im allgemeinen kreisfömigen Querschnitt. In der erfindungsgemäßen Vorrichtung ist der Querschnitt der tangentialen Einmündung des Brennschachtes in die Zyklonkammer zweckmäßig elliptisch gestaltet. In vielen Fällen ist ein rechteckiger Querschnitt vorteilhaft. Vom Eintrittsquerschnitt ab erweitert sich die Einlaufspirale stetig und erreicht etwa die Länge des Austragsschlitzes. Die Länge des Austragsschlitzes (in Richtung Zyklonachse) beträgt das etwa bis zu 3-fache der Breite des Einlaufs der Spirale.The burner shaft generally has a circular cross cut. In the device according to the invention, the cross section of the tangential opening of the combustion shaft into the cyclone chamber is expediently elliptical. In many cases, a rectangular cross section is advantageous. From the inlet cross-section, the inlet spiral expands steadily and reaches approximately the length of the discharge slot. The length of the discharge slot (in the direction of the cyclone axis) is approximately up to 3 times the width of the inlet of the spiral.

Nach einer vorteilhaften Ausführungsform der erfindungsgemäßen Vorrichtung befindet sich in der Auskleidung des Zyklonmantels an der tiefsten Stelle und beginnend im Bereich der Gasaustrittsöffnung eine Rinne. Diese Rinne (Fig. 3a; 18) verläuft mit zunehmender Tiefe zum Austragsschlitz und ist eine Art Rücklauf für den Schmelzfilm, der von den restlichen, noch aus dem Haupgasstrom abgeschiedenen Schmelzpartikeln stammt. Die Rücklaufrinne beginnt mit zunehmender Tiefe in einem Abstand von etwa 1/3 bis 2/3 des Durchmesserwertes der Gasaustrittsöffnung und endet an dem Austragsschlitz. Das Rinnenende hat eine Breite "B" von etwa 1/4 bis 1/2 des Durchmesserwertes der Gasaustrittsöffnung. Dabei entspricht die Tiefe "T" der Rücklaufrinne etwa der Breite "B". Mit dieser Anordnung wird eine sichere Abscheidung der letzten Anteile schmelzflüssiger Partikel aus dem Gasstrom und eine völlige Rückführung der abgeschiedenen Schmelzbestandteile durch die Rinne in den Austragsschlitz gewährleistet.According to an advantageous embodiment of the device according to the invention, a groove is located in the lining of the cyclone jacket at the lowest point and starting in the area of the gas outlet opening. This channel (Fig. 3a; 18) runs with increasing depth to the discharge slot and is a kind of return for the melt film, which comes from the remaining melt particles still separated from the main gas stream. The return channel begins with increasing depth at a distance of approximately 1/3 to 2/3 of the diameter value of the gas outlet opening and ends at the discharge slot. The channel end has a width "B" of approximately 1/4 to 1/2 the diameter of the gas outlet opening. The depth "T" of the return channel corresponds approximately to the width "B". With this arrangement, a reliable separation of the last portions of molten particles from the gas stream and a complete return of the separated melt components through the channel into the discharge slot is ensured.

Gemäß einer besonders vorteilhaften Ausführungsform der erfindungsgemäßen Vorrichtung wird ein Teil des liegend angeordneten zylindrischen Zyklons nach oben abgewinkelt; das heißt, ein zylindrisches Teilstück des Zyklons kann als ganzes nach oben abgewinkelt werden oder aber es kann auch nur die untere Mantelhälfte nach oben abgewinkelt werden, so daß ein Zyklonabschnitt in Form eines asymmetrischen Konus vorliegt. Die Abwinkelung (al)der Längsachse nach oben beträgt etwa 15 bis 30°, und die Länge des abgewinkelten Zyklonabschnitts entspricht etwa der Länge der im unteren Zyklonmantel angebrachten Rücklaufrinne. Schließlich kann der gesamte Zyklonmantel im Bereich der abgewinkelten Längsachse konisch zum Gasaustritt hin gestaltet sein.According to a particularly advantageous embodiment of the device according to the invention, part of the cylindrical cyclone arranged horizontally is angled upwards; that is, a cylindrical section of the cyclone can be angled upwards as a whole, or only the lower half of the jacket can be angled upwards, so that a cyclone section is in the form of an asymmetrical cone. The upward angle (a1) of the longitudinal axis is approximately 15 to 30 °, and the length of the angled cyclone section corresponds approximately to the length of the return channel installed in the lower cyclone jacket. Finally, the entire cyclone jacket can be designed conically in the region of the angled longitudinal axis towards the gas outlet.

In der erfindungsgemäßen Vorrichtung kann eine Vielzahl von Feststoffen pyrometallurgisch behandelt werden. Besonders eignen sich NE-Metallerzkonzentrate und sulfidische Erze. Die erfindungsgemäße Vorrichtung eignet sich aber ebenfalls für die Behandlung oxidischer, gegebenenfalls vorreduzierter Eisenerze oder Eisenerzkonzentrate sowie auch für die Behandlung metallurgischer Zwischenprodukte.A large number of solids can be treated pyrometallurgically in the device according to the invention. Non-ferrous metal ore concentrates and sulfidic ores are particularly suitable. However, the device according to the invention is also suitable for the treatment of oxidic, optionally pre-reduced iron ores or iron ore concentrates and also for the treatment of metallurgical intermediates.

Der Vorteil der Vorrichtung gemäß der Erfindung ist darin zu sehen, daß eine Vielzahl von Feststoffen bei hoher Gasbelastungsdichte eingesetzt und pyrometallurgisch behandelt werden kann und eine praktisch vollständige und über 95 % liegende Abscheidung der Schmelzpartikel im Zyklon gelingt. Bei hoher Durchsatzleistung besitzt die erfindungsgemäße Vorrichtung praktisch keine Störanfälligkeit.The advantage of the device according to the invention can be seen in the fact that a large number of solids can be used at a high gas loading density and can be treated pyrometallurgically and that the melting particles in the cyclone can be separated practically completely and above 95%. At high throughput, the device according to the invention has practically no susceptibility to failure.

Die Erfindung wird anhand der Zeichnungen und der Beispiele näher erläutert.The invention is explained in more detail with reference to the drawings and the examples.

Es veranschaulichen:

  • Fig. 1 einen Schnitt durch eine liegende Zyklonkammer herkömmlicher Bauart.
  • Fig. 2 einen Längsschnitt durch die Zyklonkammer der Fig. 1 entlang der Schnittlinie A-A'-A".
  • Fig. 3 einen Schnitt durch eine Zyklonkammer gemäß Erfindung mit nachgeschaltetem Schmelzenbehälter.
  • Fig. 3a einen Schnitt gemäß Fig. 3, jedoch mit Rücklaufrinne und Öffnungen zur Sekundärkammer.
  • Fig. 4 einen Längsschnitt durch die Zyklonkammer der Fig. 3 bzw. 3a entlang der Schnittlinie B-C-D.
  • Fig. 4a einen Schnitt gemäß Fig. 4, jedoch mit Rücklaufrinne.
  • Fig. 5 einen Schnitt durch eine Zyklonkammer mit abgewinkelter Längsachse, in Richtung Gasaustritt gesehen.
  • Fig. 6 einen Längsschnitt durch die Zyklonkammer der Fig. 5 entlang der Schnittlinie E-F-G-H.
  • Fig. 7 einen Längsschnitt durch die Zyklonkammer der Fig. 5 entlang der Schnittlinie I-K.
  • Fig. 8 einen Schnitt durch einen Brennschacht mit Einmündung in den Zyklon gemäß Erfindung.
It illustrates:
  • Fig. 1 shows a section through a horizontal cyclone chamber of conventional design.
  • Fig. 2 shows a longitudinal section through the cyclone chamber of Fig. 1 along the section line A-A'-A ".
  • Fig. 3 shows a section through a cyclone chamber according to the invention with a downstream melt container.
  • 3a shows a section according to FIG. 3, but with a return channel and openings to the secondary chamber.
  • Fig. 4 shows a longitudinal section through the cyclone chamber of Fig. 3 or 3a along the section line BCD.
  • 4a shows a section according to FIG. 4, but with a return gutter.
  • Fig. 5 seen a section through a cyclone chamber with an angled longitudinal axis, in the direction of the gas outlet.
  • Fig. 6 shows a longitudinal section through the cyclone chamber of Fig. 5 along the section line EFGH.
  • Fig. 7 shows a longitudinal section through the cyclone chamber of Fig. 5 along the section line IK.
  • Fig. 8 shows a section through a combustion shaft with a confluence with the cyclone according to the invention.

In den Figuren 1 und 2 eines Zyklons herkömmlicher Bauart ist im einzelnen dargestellt: Der Brennschacht 1 mit Eintrittsquerschnitt 2, Abscheidung der im Heißgas mitfliegenden Tröpfchen 3, Wandfilm 4, Schmelzenschwall 5, aus dem Schwall herausgerissene große Tropfen 6, axial abgedrängte Teilströmung 7, radial umgelenkte Hauptströmung 8, Gasauslaß oder Kragen 9, Wandansatz 10, Sekundärkammer 11, Kesselrohrwand 12 und zentra- ler Schmelzauslaß 13.1 and 2 of a cyclone of conventional design show in detail: the combustion shaft 1 with inlet cross-section 2, separation of the droplets 3 that are carried in the hot gas, wall film 4, melt surge 5, large drops 6 torn out of the surge, axially displaced partial flow 7, radially deflected main flow 8, gas outlet or collar 9, wall extension 10, secondary chamber 11, boiler tube wall 12 and central melt outlet 13.

In Fig. 3 und 3a bedeuten:

  • 1 Brennschacht, 2 Eintrittsquerschnitt, 9 Gasaustritt, 14 Halbspirale, 4 schneller Schmelzfilm auf der Wand, 15 die schräge, zum Austragsschlitz 16 führende Ebene, 17 Kesselrohrwand des Zyklons, 18 die Rücklaufrinne, 19 den Schmelzsammelbehälter mit Öffnungen 20 und anschließenden Kanälen zur Sekundärkammer.
3 and 3a mean:
  • 1 burner shaft, 2 inlet cross-section, 9 gas outlet, 14 half-spiral, 4 fast melt film on the wall, 15 the inclined plane leading to the discharge slot 16, 17 boiler tube wall of the cyclone, 18 the return channel, 19 the melt collector container with openings 20 and subsequent channels to the secondary chamber.

In Fig. 4 und 4a zeigen:

  • 22 die Kontur des in seiner Breite laufend veränderten Spiralkanals in der Draufsicht, 18 die Rücklaufrinne, ebenfalls in der Draufsicht, 2 den Eintrittsquerschnitt des Brennschachts, 9 den Gasaustritt, 17 die Kesselrohrwand des Zyklons.
4 and 4a show:
  • 22 the contour of the spiral channel, which is continuously changed in width, in plan view, 18 the return channel, also in plan view, 2 the inlet cross section of the combustion shaft, 9 the gas outlet, 17 the boiler tube wall of the cyclone.

In Fig-. 5 bedeuten:

  • 6 Austragsschlitz, 15 der zum Austragsschlitz 6 führende ebene Wandteil, 21 die Gasaustrittsöffnung am Ende der asymmetrisch konisch verengten Zyklonkammer, 19 Schmelzbehälter mit Öffnungen 20 für Gasaustritt, 18 Rücklaufrinne.
In Fig. 5 mean:
  • 6 discharge slot, 15 the flat wall part leading to the discharge slot 6, 21 the gas outlet opening at the end of the asymmetrically conically narrowed cyclone chamber, 19 melting tanks with openings 20 for gas outlet, 18 return channel.

In Fig. 6 bedeuten:

  • 21 die Gasaustrittsöffnung am Endes des konischen Zyklongehäuses und 22 die Konturen des beidseitig verbreiterten Spiralkanals, von der Einmündung 2 des Brennschachts verlaufend, 17 Kesselrohrwand, 18 Rücklaufrinne.
6 mean:
  • 21 the gas outlet opening at the end of the conical cyclone housing and 22 the contours of the spiral channel widened on both sides, running from the mouth 2 of the combustion shaft, 17 boiler tube wall, 18 return channel.

In Fig. 7 bedeuten:

  • 22 die abgewinkelte ( )Zyklonachse, 23 den asymmetrisch konisch zulaufenden Teil der Zyklonkammer, 20 Gasauslaß des Schmelzenbehälters, 21 Gasauslaß für den Hauptgasstrom, 18 Rücklaufrinne.
7 mean:
  • 22 the angled () cyclone axis, 23 the asymmetrically tapered part of the cyclone chamber, 20 gas outlet of the melt container, 21 gas outlet for the main gas flow, 18 return channel.

In Fig. 8

  • ist ein Schnitt durch einen Brennschacht 1 mit Eintrittsquerschnitt 2 sowie Brennern dargestellt. Der Brennschacht mündet in den Zyklon gemäß Erfindung. Mit 16 ist der Austragsschlitz bezeichnet, aus dem die Schmelze 4 auf der Wandung der Halbspirale 14 austritt. 17 bezeichnet die Kesselrohrwand des Zyklons und 9 den Gasaustritt.
In Fig. 8
  • a section through a combustion shaft 1 with an inlet cross section 2 and burners is shown. The burning shaft opens into the cyclone according to the invention. With 16 the discharge slot is designated, from which the melt 4 emerges on the wall of the semi-spiral 14. 17 denotes the boiler tube wall of the cyclone and 9 the gas outlet.

In dem nachstehenden Beispiel wird die erfindungsgemäße Vorrichtung anhand der Verarbeitung feinkörniger, bei pyrometallurgischer Behandlungstemperatur schmelzflüssige Produkte ergebendender Feststoffe näher und beispielhaft erläutert.In the example below, the pre-invention Direction based on the processing of fine-grained solids resulting in molten products at pyrometallurgical treatment temperature and explained in more detail and example.

Beispielexample

7.000 kg/h eines komplexen Kupferkonzentrates nachstehender Analyse werden aus vorgeschalteten Bunker-, Trocknungs-, Zuteiler- und Mischanlagen mit 390 m3 Primärluft als Trägergas über eine Förder-Rohrleitung dem Brenner (Fig. 8) zugeführt. Das Konzentrat mit einer Zusammensetzung von

Figure imgb0001
einer Korngröße zwischen 0,5 und 100 /um und einem Anteil von 53 % im Bereich zwischen 15 und 100 /um besitzt eine Restfeuchte von 0,1 bis 0,3 %. Als Schlackenbildner wird Si02 in Form von Sand in einer Menge von 1,3 t/h dem Konzentrat-Luftstrom vor Eintritt in den Brenner zugeführt, um das sich bildende Eisenoxid in einer Schlacke abzubinden. Hierzu wird Sand mit einer Restfeuchte von 0,1 % und einer Korngröße bis 0,7 mm verwendet. Der Primär-Fluidstrom, bestehend aus 7.000 kg/h Konzentrat, 1.300 kg/h Sand und 380 m3/h Förderluft, wird mit Sekundärstromgemisch aus 600 m3/h Luft und 1.800 m3/h Sauerstoff zusammengeführt. Der homogenisierte und wirbelfreie Fluidstrahl wird nach dem Eintritt in die vertikale Brennerstrecke gezündet (deutsche Patentanmeldung P 34 36 624).7,000 kg / h of a complex copper concentrate according to the analysis below are fed to the burner (FIG. 8) from upstream bunker, drying, distributor and mixing systems with 390 m 3 primary air as carrier gas via a delivery pipeline. The concentrate with a composition of
Figure imgb0001
a grain size between 0.5 and 100 / µm and a proportion of 53% in the range between 15 and 100 / µm has a residual moisture content of 0.1 to 0.3%. As a slag former, Si0 2 is supplied in the form of sand in an amount of 1.3 t / h to the concentrate air stream before entering the burner in order to bind the iron oxide that forms in a slag. For this, sand with a residual moisture of 0.1% and a grain size of up to 0.7 mm is used. The primary fluid flow, consisting of 7,000 kg / h concentrate, 1,300 kg / h sand and 380 m 3 / h conveying air, is combined with a secondary flow mixture of 600 m 3 / h air and 1,800 m 3 / h oxygen. The homogenized and vortex-free fluid jet is ignited after entering the vertical burner section (German patent application P 34 36 624).

Bei fortschreitender Reaktion steigt die Temperatur schnell an und erreicht am Ende des zylindrischen Teils der Brennerstrecke (1) die maximale Temperatur von ca. 1.640 °C (Fig. 8). Der mit Schmelzpartikeln beladene Gasstrom wird durch die tangentiale Einlaufspirale (14) in den Zyklon eingeführt (Fig.As the reaction progresses, the temperature rises quickly and at the end of the cylindrical part of the burner section (1) reaches the maximum temperature of approx. 1,640 ° C (Fig. 8). The gas stream loaded with melt particles is introduced into the cyclone through the tangential inlet spiral (14) (Fig.

3). Die schmelzflüssigen Partikel werden praktisch im ersten Spiralabschnitt aus dem Gasstrom an der Spiralwandung (4) abgeschieden und nahezu vollständig in den Austragsschlitz (16) überführt. Durch den Austragsschlitz (16) läuft die Schmelze als Strahl in einen Schmelzensammelbehälter (19). Die Wände der Zyklonkammer sind in an sich bekannter Weise als dampfgekühlte, bestiftete und mit Feuerfestmaterial ausgekleidete Rohrwände ausgeführt, wobei durch eine dünne Schicht erstarrter Schmelzprodukte ein sicherer Wandschutz erzielt wird.3). The molten particles are practically separated from the gas flow on the spiral wall (4) in the first spiral section and almost completely transferred into the discharge slot (16). The melt runs as a jet through the discharge slot (16) into a melt collecting container (19). The walls of the cyclone chamber are designed in a manner known per se as steam-cooled, pinned and lined with refractory tube walls, a reliable wall protection being achieved by a thin layer of solidified melting products.

Im vorliegenden Beispiel verläuft der Prozeß autogen. In Fällen der Verarbeitung von weniger Reaktionswärme liefernden Mischungen wird zusätzlich Brennstoff in gasförmiger, flüssiger bzw. fester Form zugeführt.In the present example, the process is autogenous. In the case of processing mixtures which provide less heat of reaction, fuel is additionally supplied in gaseous, liquid or solid form.

Aus der-über die gekühlten Wandungen der Reaktoranlage abgeführten Reaktionswärme ergibt sich eine Dampfproduktion von ca. 1 t Dampf (60 bar) je t Konzentrat.The heat of reaction removed via the cooled walls of the reactor system results in a steam production of approx. 1 t steam (60 bar) per t concentrate.

Die aus dem Zyklongefäß abgeführten Produkte sind:

  • Kupferstein der Zusammensetzung
    Figure imgb0002
    Schlacke mit Gehalten von
    Figure imgb0003
The products discharged from the cyclone are:
  • Copper stone of the composition
    Figure imgb0002
    Slag with a content of
    Figure imgb0003

Kupferstein und Schlacke werden zusammen bei einer Schmelztemperatur von ca. 1.320 °C durch den Schlitzaustrag des liegenden Zyklongefäßes abgeführt.Copper stone and slag are removed together at a melting temperature of approx. 1,320 ° C through the slot discharge of the lying cyclone vessel.

Das in axialer Richtung aus dem Zyklongefäß austretende Abgas (Fig. 3; 9) hat eine Temperatur von 1.320 °C und enthält ca. 56 Vol.-% 50 2.The exhaust gas emerging from the cyclone vessel in the axial direction (FIGS. 3; 9) has a temperature of 1,320 ° C. and contains approx. 56 vol.% 5 0 2 .

Mit dem Abgas wird oxidisch-sulfatischer Flugstaub folgender Zusammensetzung mitgeführt:

Figure imgb0004
The exhaust gas entrains oxidic-sulfatic fly dust of the following composition:
Figure imgb0004

Dieser Flugstaub wird in den der Zyklonanlage nachgeschalteten Abhitzekessel- und Gasreinigungsanlagen abgeschieden.This flue dust is separated in the waste heat boiler and gas cleaning systems downstream of the cyclone system.

Die gegenüber Zyklonen herkömmlicher Bauart ohne Schlitzaustrag überlegene Arbeitsweise des erfindungsgemäßen Zyklons geht aus folgendem Vergleich metallurgischer Daten hervor (Arbeitsweise wie vorbeschrieben).

Figure imgb0005
The method of operation of the cyclone according to the invention, which is superior to conventional cyclones without a slot discharge, can be seen from the following comparison of metallurgical data (method of operation as described above).
Figure imgb0005

Claims (9)

1. Vorrichtung für die pyrometallurgische Behandlung von in sauerstoffreichen Gasen suspendierten feinkörnigen Feststoffen, mit horizontal angeordnetem zylindrischem Gefäß und damit verbundenem, vertikal in das Gefäß einmündendem Brennschacht, sowie mit Gasabzugsöffnung und Austragsöffnung für Schmelzen, dadurch gekennzeichnet, daß die tangentiale Einmündung des Brennschachts als kanalartige, mit der Zylinderwand in einen Austragsschlitz einmündende Teilspirale ausgebildet ist und der Austragsschlitz im unteren Mantelbereich des im wesentlichen zylindrischen Gefäßes im wesentlichen parallel zu dessen Längsachse angeordnet ist.1. Device for the pyrometallurgical treatment of fine-grained solids suspended in oxygen-rich gases, with a horizontally arranged cylindrical vessel and the associated, vertically opening into the combustion chamber, as well as with gas discharge opening and discharge opening for melts, characterized in that the tangential opening of the combustion chamber as a channel-like , is formed with the cylinder wall in a discharge slot partial spiral and the discharge slot is arranged in the lower jacket area of the substantially cylindrical vessel substantially parallel to its longitudinal axis. 2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die untere Schlitzfläche von der mit einer Neigung von 20 bis 40° (gegen die Horizontale) eben und tangential auslaufenden unteren Mantelfläche der Einlaufspirale gebildet ist.2. Device according to claim 1, characterized in that the lower slot surface of the with an inclination of 20 to 40 ° (against the horizontal) and tangentially tapering lower surface of the inlet spiral is formed. 3. Vorrichtung nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, daß die Länge des Austragsschlitzes (in Zylinderlängsachse) im wesentlichen der Breite der Einlaufspirale entspricht.3. Device according to claims 1 to 2, characterized in that the length of the discharge slot (in the cylinder longitudinal axis) corresponds substantially to the width of the inlet spiral. 4. Vorrichtung nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß der Eintrittsquerschnitt der tangentialen Einmündung des Brennschachts elliptisch bis rechteckig ausgebildet ist.4. Device according to claims 1 to 3, characterized in that the inlet cross section of the tangential junction of the combustion shaft is elliptical to rectangular. 5. Vorrichtung nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß die Breite der Einlaufspirale stetig auf die Länge des Austragsschlitzes erweitert ist und diese Länge das etwa bis zu 3-fache der Breite des Einlaufs der Spirale beträgt.5. Device according to claims 1 to 4, characterized in that the width of the inlet spiral is continuously expanded to the length of the discharge slot and this length is approximately up to 3 times the width of the inlet of the spiral. 6. Vorrichtung nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß der untere Mantelbereich des Gefäßes eine Rücklaufrinne zur Schmelzenaufnahme aufweist, die von der Gasaustrittsöffnung mit zunehmender Tiefe zum Austragsschlitz verläuft.6. Device according to claims 1 to 5, characterized in that the lower jacket region of the vessel has a return channel for melt absorption, which runs from the gas outlet opening with increasing depth to the discharge slot. 7. Vorrichtung nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß die Rücklaufrinne in einem Abstand von 1/3 bis 2/3 des Durchmessers "D" der Gasaustrittsöffnung beginnt und an dem Austragsschlitz endet, wobei das Rinnenende eine Breite "B" von D/4 bis D/2 und eine Tiefe "T" von T = B besitzt.7. Device according to claims 1 to 6, characterized in that the return channel begins at a distance of 1/3 to 2/3 of the diameter "D" of the gas outlet opening and ends at the discharge slot, the channel end having a width "B" of D / 4 to D / 2 and has a depth "T" of T = B. 8. Vorrichtung nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß der Zyklonabschnitt im Bereich der Länge der Rücklaufrinne nach oben abgewinkelt ist, wobei die Abwinkelung der Längsachse etwa 15 bis 30° gegen die Horizontale beträgt.8. Device according to claims 1 to 7, characterized in that the cyclone section is angled upward in the region of the length of the return channel, the bending of the longitudinal axis being approximately 15 to 30 ° relative to the horizontal. 9. Vorrichtung nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, daß die, die Rücklaufrinne aufweisende untere Mantelhälfte des Zyklons zur Gasaustrittsöffnung hin asymmetrisch konisch verläuft.9. Device according to claims 1 to 8, characterized in that the, the return channel having the lower jacket half of the cyclone to the gas outlet opening is asymmetrically conical.
EP86200140A 1985-03-02 1986-02-01 Apparatus for the pyrometallurgical treatment of fine-granular solid materials to obtain fused products Expired EP0193976B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3507371 1985-03-02
DE19853507371 DE3507371A1 (en) 1985-03-02 1985-03-02 DEVICE FOR THE PYROMETALLURGICAL TREATMENT OF FINE-GRINED, MELT-LIQUID PRODUCTS OF RESULTING SOLIDS

Publications (2)

Publication Number Publication Date
EP0193976A1 true EP0193976A1 (en) 1986-09-10
EP0193976B1 EP0193976B1 (en) 1988-08-10

Family

ID=6263982

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86200140A Expired EP0193976B1 (en) 1985-03-02 1986-02-01 Apparatus for the pyrometallurgical treatment of fine-granular solid materials to obtain fused products

Country Status (15)

Country Link
US (1) US4871147A (en)
EP (1) EP0193976B1 (en)
JP (1) JPS61217537A (en)
KR (1) KR860007392A (en)
CN (1) CN1013055B (en)
AU (1) AU576671B2 (en)
BR (1) BR8600878A (en)
CA (1) CA1272020A (en)
DE (2) DE3507371A1 (en)
ES (1) ES8705926A1 (en)
FI (1) FI80478C (en)
PL (1) PL145099B1 (en)
PT (1) PT82122B (en)
YU (1) YU44281B (en)
ZA (1) ZA861472B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4871147A (en) * 1985-03-02 1989-10-03 Norddeutsche Affinerie Aktiengesellschaft Apparatus for the pyrometallurgical processing of fine-grained solids
EP0464436A2 (en) * 1990-07-02 1992-01-08 Forschungszentrum Jülich Gmbh Cyclonic burner with cylindrical combustion chamber

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4415342C1 (en) * 1994-05-02 1995-09-07 Messer Griesheim Gmbh Method for burning refuse
US6119607A (en) * 1997-05-09 2000-09-19 Corporation De L'ecole Polytechnique Granular bed process for thermally treating solid waste in a flame
WO2009019070A1 (en) * 2007-08-07 2009-02-12 Polysius Ag Device and method for performing chemical and/or physical reactions between a solid material and a gas and plant for producing cement
KR100926449B1 (en) 2008-03-24 2009-11-13 건국대학교 산학협력단 Apparatus for regenerating spentcatalysts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE534727C (en) * 1927-10-14 1931-10-01 Adrien Dawans Device and method for melting dust-like masses, in particular blast furnace dust
DE2010872A1 (en) * 1970-03-07 1971-09-16 Babcock & Wilcox Ag Sulphide iron ore conversion oxidation to iron - oxide
DE2253074A1 (en) * 1972-10-28 1974-05-16 Babcock & Wilcox Ag PROCESS FOR PYROMETALLURGICAL TREATMENT OF SOLIDS
DE3203498A1 (en) * 1981-02-05 1982-08-12 Anton Piller GmbH & Co KG, 3360 Osterode Vortex chamber filter for removing solids from a gas stream

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3436624A1 (en) * 1984-10-05 1986-04-10 Norddeutsche Affinerie AG, 2000 Hamburg DEVICE FOR GENERATING FLAMMABLE SOLID / GAS SUSPENSIONS
DE3507371A1 (en) * 1985-03-02 1986-09-04 Norddeutsche Affinerie AG, 2000 Hamburg DEVICE FOR THE PYROMETALLURGICAL TREATMENT OF FINE-GRINED, MELT-LIQUID PRODUCTS OF RESULTING SOLIDS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE534727C (en) * 1927-10-14 1931-10-01 Adrien Dawans Device and method for melting dust-like masses, in particular blast furnace dust
DE2010872A1 (en) * 1970-03-07 1971-09-16 Babcock & Wilcox Ag Sulphide iron ore conversion oxidation to iron - oxide
DE2253074A1 (en) * 1972-10-28 1974-05-16 Babcock & Wilcox Ag PROCESS FOR PYROMETALLURGICAL TREATMENT OF SOLIDS
DE3203498A1 (en) * 1981-02-05 1982-08-12 Anton Piller GmbH & Co KG, 3360 Osterode Vortex chamber filter for removing solids from a gas stream

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4871147A (en) * 1985-03-02 1989-10-03 Norddeutsche Affinerie Aktiengesellschaft Apparatus for the pyrometallurgical processing of fine-grained solids
EP0464436A2 (en) * 1990-07-02 1992-01-08 Forschungszentrum Jülich Gmbh Cyclonic burner with cylindrical combustion chamber
EP0464436A3 (en) * 1990-07-02 1992-03-25 Forschungszentrum Juelich Gmbh Cyclonic burner with cylindrical combustion chamber

Also Published As

Publication number Publication date
FI80478C (en) 1990-06-11
FI80478B (en) 1990-02-28
PL145099B1 (en) 1988-08-31
DE3660496D1 (en) 1988-09-15
KR860007392A (en) 1986-10-10
YU29586A (en) 1988-10-31
JPS61217537A (en) 1986-09-27
FI860808A (en) 1986-09-03
FI860808A0 (en) 1986-02-25
CN86100416A (en) 1986-10-01
US4871147A (en) 1989-10-03
PT82122B (en) 1992-10-30
PT82122A (en) 1986-03-01
CA1272020A (en) 1990-07-31
AU576671B2 (en) 1988-09-01
BR8600878A (en) 1986-11-11
EP0193976B1 (en) 1988-08-10
PL258160A1 (en) 1987-03-09
ES8705926A1 (en) 1987-05-16
CN1013055B (en) 1991-07-03
ZA861472B (en) 1987-10-28
AU5423886A (en) 1986-09-04
ES552533A0 (en) 1987-05-16
DE3507371A1 (en) 1986-09-04
YU44281B (en) 1990-04-30

Similar Documents

Publication Publication Date Title
EP0177090B1 (en) Device for the production of inflammable solid/gas suspensions
DE3405462C2 (en) Levitation melting process with supply of additional gas into the reaction shaft
DE2322338C2 (en) Method and device for cleaning exhaust gases in steel production
DE2750746C2 (en) Method and device for premelting the batch for glass production
DE2659735C2 (en) Desulfurization lance
EP0111275B1 (en) Device for separating fine powder at a fluidzed-bed reactor
DE2637536B2 (en) Method and apparatus for making fibers from a heat-softening material
AT411363B (en) DEVICE FOR MELTING DUST
EP0193976B1 (en) Apparatus for the pyrometallurgical treatment of fine-granular solid materials to obtain fused products
DE4091460C2 (en) Zinc vapour absorption in molten lead
DE3412964C2 (en) Device for melting scrap metal and / or coarse
DE19854390C2 (en) Device and method for pearlite production
DE3335859C2 (en)
DE2926346A1 (en) VERTICAL STOVE FOR MELTING METAL PIECES, IN PARTICULAR COPPER PIECES
EP0001404B1 (en) Apparatus for heat treatment of fine-grained solid materials
EP4348142A1 (en) Device for processing iron oxide-containing and phosphate-containing process materials
DE2716082A1 (en) METHOD FOR THE THERMAL TREATMENT OF SOLIDS
DE2934590A1 (en) CYCLONE SEPARATOR
DE60130792T2 (en) DEVICE FOR FEEDING A SUSPENSION MELTING FIBER WITH SOLID MATERIAL
DE60017410T2 (en) METHOD FOR COOLING THE GAS STREAM IN A MELTING OVEN
DE2707726A1 (en) DEVICE FOR SEPARATING A MIXTURE OF COMPONENTS, IN PARTICULAR MOLTEN METALS, METAL COMPOUNDS AND / OR METALLIC SLAGS IN A CENTRIFUGAL FIELD
DE19500962A1 (en) Method and appts. for high-temperature treatment of fine-grained solids in a melting cyclone
DE3330836C2 (en)
DE19504082A1 (en) Method and device for the thermal treatment of solids
DE10029724C2 (en) Vermiculite blowing procedure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT SE

17P Request for examination filed

Effective date: 19861016

17Q First examination report despatched

Effective date: 19870819

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT SE

REF Corresponds to:

Ref document number: 3660496

Country of ref document: DE

Date of ref document: 19880915

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900131

Year of fee payment: 5

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900308

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900313

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19901214

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19901217

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19910228

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19911101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19921030

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 86200140.1

Effective date: 19920904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050201