EP0192048B1 - Reflector antenna with struts in the radiating area - Google Patents

Reflector antenna with struts in the radiating area Download PDF

Info

Publication number
EP0192048B1
EP0192048B1 EP86100586A EP86100586A EP0192048B1 EP 0192048 B1 EP0192048 B1 EP 0192048B1 EP 86100586 A EP86100586 A EP 86100586A EP 86100586 A EP86100586 A EP 86100586A EP 0192048 B1 EP0192048 B1 EP 0192048B1
Authority
EP
European Patent Office
Prior art keywords
struts
supporting part
strut
case
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86100586A
Other languages
German (de)
French (fr)
Other versions
EP0192048A1 (en
Inventor
Gerhard Dipl.-Ing. Schindler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT86100586T priority Critical patent/ATE51471T1/en
Publication of EP0192048A1 publication Critical patent/EP0192048A1/en
Application granted granted Critical
Publication of EP0192048B1 publication Critical patent/EP0192048B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/02Details
    • H01Q19/021Means for reducing undesirable effects
    • H01Q19/023Means for reducing undesirable effects for reducing the scattering of mounting structures, e.g. of the struts

Definitions

  • the invention relates to an antenna having a parabolic or approximately parabolic-shaped reflector with supports located in the beam path and serving to hold a primary radiator or an auxiliary reflector, each of which is curved in a plane determined by its two end points and the reflector axis (support plane) .
  • parabolic reflector antennas with a rotationally symmetrical design are often used, the exciters or auxiliary reflectors of which are supported by supports. These supports lie in the beam path of the emitted or received waves, so that they generate a secondary radiation which, in addition to a reduction in profits, results in rather high side lobes in certain angular ranges of the antenna pattern. In the case of directional and satellite radio connections, these secondary peaks interfere with neighboring radio links and must therefore be kept low.
  • the height and distribution of the side lobes in the radiation diagram of Cassegrain antennas, as they are primarily used in a rotationally symmetrical design for earth radio stations for satellite radio service, are significantly influenced by the scattered radiation from the support device of the catch reflector.
  • a special configuration of the support structure makes it possible to reduce this scattered radiation or to divert it into angular ranges that are not so critical with regard to compliance with the side lobe specification.
  • the resulting radiation distribution results from the superposition of the partial field coming from the main reflector and from the column arrangement originating. It is assumed that there is no interaction between the main reflector and the supports, i.e. the effect of the part of the column radiation that detects the main reflector is negligible. Although this is approximately permissible in the case of flat-shaped main reflectors, it can be assumed in the case of relatively deep reflectors that a substantial part of the column scattering radiation hits the main reflector again and changes the surface currents there. Because of the strong interaction between the two radiation sources, there is a limit to this physical view.
  • a parabolic reflector antenna which has arcuately curved supports for holding a primary radiator or a catch reflector in a Cassegrain antenna.
  • Such an arch-shaped column design also allows the linear phase profile to be changed such that the radiation scattered in the direction of reflection and laterally scattered is divided into a larger angular range.
  • straight-running supports are known from GB patent application 20 81 023, which have irregularly sawtooth-shaped sheets in the support plane, which also bring about an improvement in the scattered radiation behavior.
  • the object of the invention is to provide a support design for a reflector having a parabolic or approximately parabolic design, in particular for Cassegrain antennas with a deeply designed main reflector, which has an even more favorable scattering behavior with a simple technical construction possibility.
  • the reflection surfaces of the supports are each provided with a scattering structure, the height dimension of which is constant over the entire longitudinal course of the supports, while being perpendicular to the support plane regular wavy or meandering course, that the scattering structures are each mounted on a supporting part of the supports, that the supporting part of the supports each has an approximately rectangular cross-section, that the scattering structures on the inner, the reflecting surfaces of the supports forming the supporting surfaces Parts are attached and cover that the scattering structures either consist of two elongated Sheet metal parts or made of prefabricated molding material, which in the case of using the sheet metal parts enclose a space of approximately triangular cross section towards the supporting part of the support and are connected to one another at the edge facing away from the supporting part of the support, so that there is one for both sheets jointly tapering, sharp and wavy edge with a constant vertical distance from the supporting part of the support, and in the case of the use of molding material this has an approximately triangular
  • the regularity of the scattering structure according to the invention offers besides the electrical advantage, i.e. the better scattered radiation behavior, also the mechanical advantage that it can be broken down into many identical substructures.
  • the scattering structures designed according to the invention can be made of electrically conductive material, e.g. Metal, exist, but can also be realized by dielectric material.
  • FIG. 1 shows a schematic side view of a reflector antenna constructed according to the Cassegrain principle, as is often used for example in satellite radio technology. It is a rotationally symmetrical double mirror antenna. It has a primary radiator 10 designed as a groove homing, the phase center of which lies at the focal point of a shaped collecting reflector 9. The radiation emanating from the primary radiator 10 is deflected at the catch reflector 9 and reflected onto a main reflector 8 which is approximately in the form of a paraboloid of revolution, from which the radiation into the free space takes place. The catch reflector 9 is held on the main reflector 8 by means of a four-leg made of arcuately curved supports 1.
  • the supports 1 lie in the radiation field of the main reflector 8, which has an F / D ratio of approximately 0.25. At the supports 1 which are curved in the support plane, the plane wave emanating from the main reflector 8 excites secondary radiation, which results in an increase in the side lobes in the directional characteristic of the reflector antenna. In order to reduce the scattered radiation generated by the supports 1 or to divert them into angular ranges which are not critical with regard to compliance with the side lobe specification, scatter structures 2 are attached to the supports 1, the structure of which is explained below with reference to FIGS. 2 and 3.
  • the support 1 consists of an approximately rectangular supporting part 3 and of a scattering structure 2 made of electrically conductive or dielectric material attached to the reflection surface 4 of the part 3.
  • the dimension of the scattering structure 2 in the column plane i.e. that plane which is given by the two support end points and the main reflector axis of symmetry is constant over the entire longitudinal course of the support 1.
  • the scattering structures 2 have a regular undulating course perpendicular to the column plane.
  • the scattering structure 2 covering the reflection surface 4 of the supporting part 3 of the support 1 consists e.g.
  • the scattering structure 2 can also consist of a solid dielectric material which has the same outer shape as the two sheets 5 and 6 and is fastened on the supporting part 3 of the support 1.

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

1. Parabolic reflector antenna having a reflector (8) of parabolic or approximately parabolic design, with struts (1), which are located in the radiating area, serve to mount a primary radiator or an auxiliary reflector (9), and are bent in the form of an arch in each case on a plane (strut plane) determined by its two end points and the reflector axis, characterized in that the reflective areas (4) of the struts (1) are provided in each case with a scatter structure (2), whose height dimension is constant over the entire longitudinal course of the struts while, vertical to the strut plane, it has a regular corrugated or meander-shaped course, in that the scatter structures are in each case attached to a supporting part (3) of the struts, in that the supporting part of the struts has in each case an approximately rectangular cross-section, in that the scatter structures are in each case attached to and cover the inner areas (4) of the supporting parts forming the reflective areas of the struts, in that the scatter structures are in each case made either of two oblong sheet-metal parts (5, 6) or of prefabricated moulding material, in the event of sheet-metal parts being used, the latter enclosing, towards the supporting part of the strut, a space of approximately triangular cross-section and being connected to one another at the edge facing away from the supporting part of the strut, so that a sharp and corrugated edge (7), with the two metal sheets tapering off jointly, is produced there with a constant vertical distance from the supporting part of the strut, and in the event of the use of moulding material, the latter having an approximately triangular cross-section and being provided on the side, facing away from the supporting part (3) of the strut (1), with a sharp and corrugated edge having a constant vertical distance from the supporting part of the strut.

Description

Die Erfindung bezieht sich auf eine einen parabolförmig oder angenähert parabolförmig ausgebildeten Reflektor aufweisende Antenne mit sich im Strahlengang befindenden, der Halterung eines Primärstrahlers oder eines Hilfsreflektors dienenden Stützen, die jeweils in einer durch ihre beiden Endpunkte und die Reflektorachse bestimmten Ebene (Stützenebene) bogenförmig gekrümmt sind.The invention relates to an antenna having a parabolic or approximately parabolic-shaped reflector with supports located in the beam path and serving to hold a primary radiator or an auxiliary reflector, each of which is curved in a plane determined by its two end points and the reflector axis (support plane) .

In der Richt- und Satellitenfunktechnik werden vielfach rotationssymmetrisch ausgebildete Parabolreflektorantennen eingesetzt, deren Erreger oder Hilfsreflektoren von Stützen getragen werden. Diese Stützen liegen im Strahlengang der ausgesendeten oder empfangenen Wellen, so daß sie eine Sekundärstrahlung erzeugen, die neben einer Gewinnminderung ziemlich hohe Nebenzipfel in bestimmten Winkelbereichen des Antennendiagramms zur Folge hat. Diese Nebenzipfel stören bei Richt-und Satellitenfunkverbindungen benachbarte Funkstrecken und müssen daher niedrig gehalten werden. Die Höhe und Verteilung der Nebenzipfel im Strahlungsdiagramm von Cassegrain-Antennen, wie sie vornehmlich in rotationssymmetrischer Ausführung bei Erdefunkstellen für den Satellitenfunkdienst in Gebrauch sind, werden wesentlich von der Streustrahlung der Stützvorrichtung des Fangreflektors beeinflußt. Durch eine besondere Ausgestaltung der Stützenstruktur ist es möglich, diese Streustrahlung zu reduzieren bzw. in Winkelbereiche umzuleiten, die bezüglich der Einhaltung der Nebenzipfelspezifikation nicht so kritisch sind.In directional and satellite radio technology, parabolic reflector antennas with a rotationally symmetrical design are often used, the exciters or auxiliary reflectors of which are supported by supports. These supports lie in the beam path of the emitted or received waves, so that they generate a secondary radiation which, in addition to a reduction in profits, results in rather high side lobes in certain angular ranges of the antenna pattern. In the case of directional and satellite radio connections, these secondary peaks interfere with neighboring radio links and must therefore be kept low. The height and distribution of the side lobes in the radiation diagram of Cassegrain antennas, as they are primarily used in a rotationally symmetrical design for earth radio stations for satellite radio service, are significantly influenced by the scattered radiation from the support device of the catch reflector. A special configuration of the support structure makes it possible to reduce this scattered radiation or to divert it into angular ranges that are not so critical with regard to compliance with the side lobe specification.

Ein verhältnismäßig zufriedenstellendes Strahlungsdiagramm ergibt sich bereits dann, wenn der Querschnitt der gerade verlaufenden Stützen ellipsenähnlich verrundet ist. Ein solcher Stützenaufbau ist aus dem Aufsatz von G.v.Trentini, K.P. Romeiser und W.Jatsch: "Dimensionierung und elektrische Eigenschaften der 25-m-Antenne der Erdefunkstelle Raisting für Nachrichtenverbindungen über Satelliten" aus der Zeitschrift "Frequenz", Band 19, 1965, Nr.12, Seiten 402-421, insbesondere Seite 412, bekannt.A relatively satisfactory radiation diagram is obtained when the cross section of the straight supports is rounded like an ellipse. Such a column structure is from the article by G.v. Trentini, K.P. Romeiser and W.Jatsch: "Dimensioning and electrical properties of the 25 m antenna of the Raisting earth station for communications via satellites" from the magazine "Frequency", Volume 19, 1965, No. 12, pages 402-421, in particular page 412, known.

In letzter Zeit sind jedoch die Nebenzipfelspezifikationen in der Richt- und Satellitenfunktechnik erheblich verschärft worden, so daß die Stützenkonfiguration wieder zu einem kritischen Entwurfsparameter beim Aufbau der Parabolreflektorantennen geworden ist. Zum Beispiel in dem in "NTG-Fachberichte", Band 78 "Antennen 82", VDE-Verlag, Berlin und Offenbach, Seiten 86-90 abgedruckten Vortragsmanuskript "Maßnahmen zur Verminderung der Störwirkung von Erregerstützen bei Spiegelantennen" von H. Thielen, V.Hombach und W.Busse wird das Problem der Reduzierung der von Erregerstützen hervorgerufenen Nebenzipfel behandelt. Physikalisch wird die einzelne Stütze als Linienquelle mit linearer Phasenverteilung im Nahfeld des Hauptreflektors angesehen. Die resultierende Strahlungsverteilung ergibt sich aus der Überlagerung des vom Hauptreflektor kommenden und des von der Stützenanordnung herrührenden Teilfeldes. Dabei ist angenommen, daß zwischen dem Hauptreflektor und den Stützen keine Wechselwirkung auftritt, d.h. der den Hauptreflektor erfassende Teil der Stützenstrahlung in seiner Wirkung vernachlässigbar ist. Dies ist bei flach ausgebildeten Hauptreflektoren zwar näherungsweise zulässig, bei relativ tiefen Reflektoren ist jedoch zu vermuten, daß ein wesentlicher Teil der Stützenstreustrahlung wieder auf den Hauptreflektor trifft und dort die Oberflächenströme verändert. Durch die starke Wechselwirkung zwischen beiden Strahlungsquellen ist daher dieser physikalischen Betrachtungsweise eine Grenze gesetzt.Recently, however, the side lobe specifications in directional and satellite radio technology have been tightened considerably, so that the column configuration has again become a critical design parameter in the construction of the parabolic reflector antennas. For example in the lecture manuscript printed in "NTG Technical Reports", volume 78 "Antennas 82", VDE-Verlag, Berlin and Offenbach, pages 86-90 "Measures to reduce the interference effect of excitation supports in mirror antennas" by H. Thielen, V. Hombach and W.Busse dealt with the problem of reducing the side lobes caused by pathogen supports. Physically, the individual column is regarded as a line source with a linear phase distribution in the near field of the main reflector. The resulting radiation distribution results from the superposition of the partial field coming from the main reflector and from the column arrangement originating. It is assumed that there is no interaction between the main reflector and the supports, i.e. the effect of the part of the column radiation that detects the main reflector is negligible. Although this is approximately permissible in the case of flat-shaped main reflectors, it can be assumed in the case of relatively deep reflectors that a substantial part of the column scattering radiation hits the main reflector again and changes the surface currents there. Because of the strong interaction between the two radiation sources, there is a limit to this physical view.

Aufbauend auf diesem physikalischen Denkmodell sind bereits verschiedene Stützenanordnungen entwickelt worden. So ist z.B. aus DE-OS 30 47 964 eine Parabolreflektor-Antenne mit einem relativ flachen Hauptreflektor bekannt, bei der gerade verlaufende Stützen mit einer Vielfalt von Streustrukturen vorgesehen sind. Diese bekannte Antenne kann auch eine Cassegrain-Antenne sein, deren Fangreflektor mit den besonders ausgebildeten Stützen getragen wird. Soweit aus DE-OS 30 47 964 ersichtlich ist, werden zur Bildung der Streustrukturen Streukörper mit möglichst irregulärer Geometrie entlang der Stütze verwendet, wobei die entscheidende Abmessung jeweils in der Stützenebene liegt und variiert wird.Various pillar arrangements have already been developed based on this physical model of thinking. For example, from DE-OS 30 47 964 a parabolic reflector antenna with a relatively flat main reflector is known in which straight supports are provided with a variety of scattering structures. This known antenna can also be a Cassegrain antenna, the catch reflector of which is carried with the specially designed supports. As far as can be seen from DE-OS 30 47 964, scattering bodies with as irregular an geometry as possible along the column are used to form the scattering structures, the decisive dimension lying in the column plane and being varied.

Aus der DE-OS 31 00 855 ist eine Parabolreflektorantenne bekannt, die bogenförmig gekrümmte Stützen zur Halterung eines Primärstrahlers oder eines Fangreflektors bei einer Cassegrain-Antenne aufweist. Auch durch eine solche bogenförmige Stützenausbildung läßt sich der lineare Phasenverlauf so ändern, daß die in Reflexionsrichtung und seitlich gestreute Strahlung in einen größeren Winkeibereich aufgeteilt wird. Aus der GB-Patentanmeldung 20 81 023 sind bei einer direkt gespeisten, flachen Parabolreflektorantenne gerade verlaufende Stützen bekannt, welche in der Stützenebene unregelmäßig sägezahnförmig verlaufende Bleche aufweisen, welche ebenfalls eine Verbesserung des Streustrahlverhaltens mit sich bringen.From DE-OS 31 00 855 a parabolic reflector antenna is known which has arcuately curved supports for holding a primary radiator or a catch reflector in a Cassegrain antenna. Such an arch-shaped column design also allows the linear phase profile to be changed such that the radiation scattered in the direction of reflection and laterally scattered is divided into a larger angular range. In the case of a directly fed, flat parabolic reflector antenna, straight-running supports are known from GB patent application 20 81 023, which have irregularly sawtooth-shaped sheets in the support plane, which also bring about an improvement in the scattered radiation behavior.

Aufgabe der Erfindung ist es, für einen parabolförmig oder angenähert parabolförmig ausgebildeten Reflektor aufweisende Antennen, insbesondere für Cassegrain-Antennen mit tief ausgebildetem Hauptreflektor, eine Stützengestaltung zu schaffen, die ein noch günstigeres Streustrahlverhalten bei einfacher technischer Aufbaumöglichkeit aufweist.The object of the invention is to provide a support design for a reflector having a parabolic or approximately parabolic design, in particular for Cassegrain antennas with a deeply designed main reflector, which has an even more favorable scattering behavior with a simple technical construction possibility.

Gemäß der Erfindung, die sich auf eine Antenne der eingangs genannten Art bezieht, wird diese Aufgabe dadurch gelöst, daß die Reflexionsflächen der Stützen jeweils mit einer Streustruktur versehen sind, deren Höhenabmessung über den gesamten Längsverlauf der Stützen konstant ist, während sie senkrecht zur Stützebene einen regelmäßigen wellen- oder mäanderförmigen Verlauf aufweist, daß die Streustrukturen jeweils auf einem tragenden Teil der Stützen angebracht sind, daß der tragende Teil der Stützen jeweils einen etwa rechteckförmigen Querschnitt aufweist, daß die Streustrukturen jeweils auf den inneren, die Reflexionsflächen der Stützen bildenden Flächen der tragenden Teile angebracht sind und diese abdecken, daß die Streustrukturen jeweils entweder aus zwei länglichen Blechteilen oder aus vorgefertigtem Formmaterial bestehen, wobei im Falle der Verwendung der Blechteile diese zum tragenden Teil der Stütze hin einen Raum von etwa dreieckförmigem Querschnitt einschließen und an dem vom tragenden Teil der Stütze abgewandten Rand miteinander verbunden sind, so daß sich dort eine für beide Bleche gemeinsam auslaufende, scharfe und wellenförmige Kante mit konstantem senkrechten Abstand vom tragenden Teil der Stütze ergibt, und im Falle der Verwendung von Formmaterial dieses einen etwa dreieckförmigen Querschnitt aufweist und an der vom tragenden Teil der Stütze abgewandten Seite mit einer scharf ausgebildeten und wellenförmig verlaufenden Kante mit konstantem senkrechten Abstand vom tragenden Teil der Stütze versehen ist.According to the invention, which relates to an antenna of the type mentioned, this object is achieved in that the reflection surfaces of the supports are each provided with a scattering structure, the height dimension of which is constant over the entire longitudinal course of the supports, while being perpendicular to the support plane regular wavy or meandering course, that the scattering structures are each mounted on a supporting part of the supports, that the supporting part of the supports each has an approximately rectangular cross-section, that the scattering structures on the inner, the reflecting surfaces of the supports forming the supporting surfaces Parts are attached and cover that the scattering structures either consist of two elongated Sheet metal parts or made of prefabricated molding material, which in the case of using the sheet metal parts enclose a space of approximately triangular cross section towards the supporting part of the support and are connected to one another at the edge facing away from the supporting part of the support, so that there is one for both sheets jointly tapering, sharp and wavy edge with a constant vertical distance from the supporting part of the support, and in the case of the use of molding material this has an approximately triangular cross-section and with a sharply formed and wavy edge on the side facing away from the supporting part of the support constant vertical distance from the supporting part of the support.

Die Regelmäßigkeit der Streustruktur nach der Erfindung bietet außer dem elektrischen Vorteil, d.h. dem besseren Streustrahlverhalten, auch den mechanischen Vorteil, daß eine Zerlegung in viele identische Teilstrukturen möglich ist.The regularity of the scattering structure according to the invention offers besides the electrical advantage, i.e. the better scattered radiation behavior, also the mechanical advantage that it can be broken down into many identical substructures.

Die nach der Erfindung ausgebildeten Streustrukturen können aus elektrisch leitendem Werkstoff, also z.B. Metall, bestehen, aber auch durch dielektrisches Material realisiert werden.The scattering structures designed according to the invention can be made of electrically conductive material, e.g. Metal, exist, but can also be realized by dielectric material.

Die Erfindung wird im folgenden anhand eines vorteilhaften Ausführungsbeispiels, welches in drei Figuren dargestellt ist, erläutert.

  • Fig. 1 in einer schematischen Seitenansicht eine gemäß der Erfindung ausgebildete Parabolreflektorantenne nach dem Cassegrain-Prinzip.
  • Fig. 2 die Querschnittsansicht einer in der Cassegrain-Antenne nach Fig. 1 verwendeten Stütze,
  • Fig. 3 die perspektivische Ansicht eines Ausschnitts einer in der Cassegrain-Antenne nach Fig. 1 verwendeten Stütze.
The invention is explained below on the basis of an advantageous exemplary embodiment, which is shown in three figures.
  • Fig. 1 is a schematic side view of a parabolic reflector antenna designed according to the invention according to the Cassegrain principle.
  • 2 shows the cross-sectional view of a support used in the Cassegrain antenna according to FIG. 1,
  • Fig. 3 is a perspective view of a section of a support used in the Cassegrain antenna of FIG. 1.

In Fig. 1 ist in einer schematischen Seitendarstellung eine nach dem Cassegrain-Prinzip aufgebaute Reflektorantenne dargestellt, wie sie beispielsweise in der Satellitenfunktechnik häufig eingesetzt wird. Es handelt sich hierbei um eine rotationssymmetrisch aufgebaute Doppelspiegelantenne. Sie weist einen als Rillenhom ausgebildeten Primärstrahler 10 auf, dessen Phasenzentrum im Brennpunkt eines geformten Fangreflektors 9 liegt. Die vom Primärstrahler 10 ausgehende Strahlung wird am Fangreflektor 9 umgelenkt und auf einen näherungsweise als Rotationsparaboloid ausgebildeten Hauptreflektor 8 reflektiert, von dem aus die Abstrahlung in den freien Raum erfolgt. Der Fangreflektor 9 wird am Hauptreflektor 8 mittels eines Vierbeins aus bogenförmig gekrümmten Stützen 1 gehalten. Die Stützen 1 liegen im Strahlungsfeld des Hauptreflektors 8, der ein F/D-Verhältnis von etwa 0,25 aufweist. An den in der Stützebene gekrümmten Stützen 1 wird durch die vom Hauptreflektor 8 ausgehende ebene Welle eine Sekundärstrahlung angeregt, die sich in einer Erhöhung der Nebenzipfel in der Richtcharakteristik der Reflektor-Antenne auswirkt. Zur Reduzierung der von den Stützen 1 erzeugten Streustrahlung bzw. zu deren Umleitung in Winkelbereiche, die bezüglich der Einhaltung der Nebenzipfelspezifikation unkritisch sind, sind auf den Stützen 1 Streustrukturen 2 angebracht, deren Aufbau im folgenden anhand der Figuren 2 und 3 erläutert wird.1 shows a schematic side view of a reflector antenna constructed according to the Cassegrain principle, as is often used for example in satellite radio technology. It is a rotationally symmetrical double mirror antenna. It has a primary radiator 10 designed as a groove homing, the phase center of which lies at the focal point of a shaped collecting reflector 9. The radiation emanating from the primary radiator 10 is deflected at the catch reflector 9 and reflected onto a main reflector 8 which is approximately in the form of a paraboloid of revolution, from which the radiation into the free space takes place. The catch reflector 9 is held on the main reflector 8 by means of a four-leg made of arcuately curved supports 1. The supports 1 lie in the radiation field of the main reflector 8, which has an F / D ratio of approximately 0.25. At the supports 1 which are curved in the support plane, the plane wave emanating from the main reflector 8 excites secondary radiation, which results in an increase in the side lobes in the directional characteristic of the reflector antenna. In order to reduce the scattered radiation generated by the supports 1 or to divert them into angular ranges which are not critical with regard to compliance with the side lobe specification, scatter structures 2 are attached to the supports 1, the structure of which is explained below with reference to FIGS. 2 and 3.

In einer Querschnittsansicht bzw. in einer perspektivischen Ausschnittsansicht zeigen Fig. 2 und 3 den Aufbau einer Stütze 1 nach der Erfindung. Die Stütze 1 besteht aus einem etwa rechteckförmig ausgebildeten tragenden Teil 3 und aus einer auf der Reflexionsfläche 4 des Teils 3 angebrachten Streustruktur 2 aus elektrisch leitendem oder aus dielektrischem Material. Die Abmessung der Streustruktur 2 in der Stützenebene, d.h. derjenigen Ebene, die durch die beiden Stützenendpunkte und die Hauptreflektorsymmetrieachse gegeben ist, ist über den gesamten Längsverlauf der Stütze 1 konstant. Dagegen haben die Streustrukturen 2 senkrecht zur Stützenebene einen regelmäßigen wellenförmigen Verlauf. Die die Reflexionsfläche 4 des tragenden Teils 3 der Stütze 1 abdeckende Streustruktur 2 besteht z.B. aus zwei länglichen Blechteilen 5 und 6, die zum tragenden Teil 3 der Stütze 1 hin einen Raum von etwa dreieckförmigem Querschnitt einschließen und an dem vom tragenden Teil 3 der Stütze 1 abgewandten Rändern miteinander verbunden sind. An diesen Rändern ergibt sich eine für beide Bleche 5 und 6 gemeinsam auslaufende, scharfe und wellenförmige Kante 7 mit einem konstanten senkrechten Abstand vom tragenden Teil 3 der Stütze 1.2 and 3 show the construction of a support 1 according to the invention. The support 1 consists of an approximately rectangular supporting part 3 and of a scattering structure 2 made of electrically conductive or dielectric material attached to the reflection surface 4 of the part 3. The dimension of the scattering structure 2 in the column plane, i.e. that plane which is given by the two support end points and the main reflector axis of symmetry is constant over the entire longitudinal course of the support 1. In contrast, the scattering structures 2 have a regular undulating course perpendicular to the column plane. The scattering structure 2 covering the reflection surface 4 of the supporting part 3 of the support 1 consists e.g. from two elongated sheet metal parts 5 and 6, which enclose a space of approximately triangular cross section towards the load-bearing part 3 of the support 1 and are connected to one another at the edges facing away from the load-bearing part 3 of the support 1. At these edges, there is a sharp and wavy edge 7 that runs out jointly for both sheets 5 and 6 with a constant vertical distance from the supporting part 3 of the support 1.

Die Streustruktur 2 kann auch aus einem dielektrischen Vollmaterial bestehen, welches die gleiche Außenform wie die beiden Bleche 5 und 6 aufweist und auf dem tragenden Teil 3 der Stütze 1 befestigt ist.The scattering structure 2 can also consist of a solid dielectric material which has the same outer shape as the two sheets 5 and 6 and is fastened on the supporting part 3 of the support 1.

Aufgrund der Regelmäßigkeit des Wellenverlaufs der Streustrukturen 2 ergibt sich außer dem elektrischen Vorteil auch der mechanische Vorteil, daß eine solche Streustruktur 2 aus mehreren identischen Teilstrukturen zusammengesetzt werden kann.Due to the regularity of the wave shape of the scattering structures 2 there is, in addition to the electrical advantage, the mechanical advantage that such a scattering structure 2 can be composed of several identical substructures.

Claims (5)

1. Parabolic reflector antenna having a reflector (8) of parabolic or approximately parabolic design, with struts (1), which are located in the radiating area, serve to mount a primary radiator or an auxiliary reflector (9), and are bent in the form of an arch in each case on a plane (strut plane) determined by its two end points and the reflector axis, characterized in that the reflective areas (4) of the struts (1) are provided in each case with a scatter structure (2), whose height dimension is constant over the entire longitudinal course of the struts while, vertical to the strut plane, it has a regular corrugated or meander-shaped course, in that the scatter structures are in each case attached to a supporting part (3) of the struts, in that the supporting part of the struts has in each case an approximately rectangular cross-section, in that the scatter structures are in each case attached to and cover the inner areas (4) of the supporting parts forming the reflective areas of the struts, in that the scatter structures are in each case made either of two oblong sheet-metal parts (5, 6) or of prefabricated moulding material, in the event of sheet-metal parts being used, the latter enclosing, towards the supporting part of the strut, a space of approximately triangular cross-section and being connected to one another at the edge facing away from the supporting part of the strut, so that a sharp and corrugated edge (7), with the two metal sheets tapering off jointly, is produced there with a constant vertical distance from the supporting part of the strut, and in the event of the use of moulding material, the latter having an approximately triangular cross-section and being provided on the side, facing away from the supporting part (3) of the strut (1), with a sharp and corrugated edge having a constant vertical distance from the supporting part of the strut.
2. Antenna according to Claim 1, characterized in that the scatter structures (2) are made of electrically conductive material.
3. Antenna according to Claim 1, characterized in that the scatter structures (2) are made of dielectric material.
4. Antenna according to one of the preceding claims, characterized in that the scatter structures (2) are composed in each case of a plurality of identical partial structures.
5. Antenna according to one of the preceding claims, characterized by the use for a Cassegrain antenna with a deep main reflector (8), to which the struts (1) for mounting the subreflector (9) are attached.
EP86100586A 1985-01-21 1986-01-17 Reflector antenna with struts in the radiating area Expired - Lifetime EP0192048B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86100586T ATE51471T1 (en) 1985-01-21 1986-01-17 REFLECTOR ANTENNA WITH SUPPORTS IN THE BEAM PATH.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3501825 1985-01-21
DE3501825 1985-01-21

Publications (2)

Publication Number Publication Date
EP0192048A1 EP0192048A1 (en) 1986-08-27
EP0192048B1 true EP0192048B1 (en) 1990-03-28

Family

ID=6260326

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86100586A Expired - Lifetime EP0192048B1 (en) 1985-01-21 1986-01-17 Reflector antenna with struts in the radiating area

Country Status (3)

Country Link
EP (1) EP0192048B1 (en)
AT (1) ATE51471T1 (en)
DE (1) DE3669958D1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048941A1 (en) 2009-10-21 2011-04-28 三菱電機株式会社 Antenna device
FR2968848A1 (en) * 2010-12-14 2012-06-15 Alcatel Lucent PARABOLIC REFLECTOR ANTENNA
RU2464677C1 (en) * 2011-09-27 2012-10-20 Константин Павлович Харченко Method of generating surface electromagnetic process on conical antenna component
RU2464678C1 (en) * 2011-10-27 2012-10-20 Константин Павлович Харченко Method of achieving ultrabandwidth of linearly polarised antennae

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2081023B (en) * 1980-06-03 1985-05-22 Mitsubishi Electric Corp Reflector antenna
DE3047964A1 (en) * 1980-12-19 1982-07-29 Deutsche Bundespost, vertreten durch den Präsidenten des Fernmeldetechnischen Zentralamtes, 6100 Darmstadt Reflector antenna with main side lobe reduced - by distributing irregular bodies along support struts
DE3100855A1 (en) * 1981-01-14 1982-08-05 Deutsche Bundespost, vertreten durch den Präsidenten des Fernmeldetechnischen Zentralamtes, 6100 Darmstadt Reflector antenna having supports in the beam path which produce secondary radiation
DE3307548A1 (en) * 1983-03-03 1984-09-06 Deutsche Bundespost, vertreten durch den Präsidenten des Fernmeldetechnischen Zentralamtes, 6100 Darmstadt Mirror antenna having supports, in the beam part, which generate secondary radiation

Also Published As

Publication number Publication date
DE3669958D1 (en) 1990-05-03
ATE51471T1 (en) 1990-04-15
EP0192048A1 (en) 1986-08-27

Similar Documents

Publication Publication Date Title
EP0817311A2 (en) Feed assembly with a dielectric radiator for a parabolic reflector antenna
DE60107939T2 (en) REFLECTOR ANTENNA WITH COMMON APERTURE AND IMPROVED FEEDING DRAFT
DE3217437A1 (en) MICROWAVE DIRECTIONAL ANTENNA FROM A DIELECTRIC LINE
DE2812903C2 (en) Antenna with a primary radiator, a main reflector and an auxiliary reflector eccentric to this
DE2610506A1 (en) ANTENNA
EP0192048B1 (en) Reflector antenna with struts in the radiating area
DE2319731C3 (en) Eccentric Cassegrain antenna
EP0021252B1 (en) Pillbox type radar antenna with integrated iff antenna
DE1441642A1 (en) Antenna with parabolic reflector
DE2139216B2 (en) Directional aerial system with curved main reflector mirror - has dipole group with background thin, dielectric reflector plate with wires in dipole polarisation direction
DE1303670B (en)
EP0573970B1 (en) Omnidirectional antenna
DE2416541C3 (en) Cassegrain antenna
DE60120909T2 (en) Double reflector antenna with deflector
DE3638461A1 (en) ANTENNA SYSTEM FOR MULTIPLE USE OF THE SPECTRUM BY ORTHOGONAL POLARISATION
EP0097932B1 (en) Directional radio microwave antenna
DE2645700A1 (en) VHF aerial array with low noise and loss characteristics - has auxiliary reflector on rod frame producing constant lobes
DE60037563T2 (en) Sector lobe antenna with scattering component
DE2806495C2 (en) Two reflector antenna
DE3608413C2 (en)
DE3047964A1 (en) Reflector antenna with main side lobe reduced - by distributing irregular bodies along support struts
DE3728976A1 (en) Cassegrain antenna for the microwave band
DE3219365C1 (en) End-fire array directional antenna
DE3100855A1 (en) Reflector antenna having supports in the beam path which produce secondary radiation
DE923441C (en) VHF broadband antenna consisting of one or more full-wave dipoles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19870223

17Q First examination report despatched

Effective date: 19880712

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 51471

Country of ref document: AT

Date of ref document: 19900415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3669958

Country of ref document: DE

Date of ref document: 19900503

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19901217

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19901219

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19910114

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910121

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910124

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910125

Year of fee payment: 6

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910131

Ref country code: CH

Effective date: 19910131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910131

Year of fee payment: 6

26N No opposition filed
EPTA Lu: last paid annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19920117

Ref country code: GB

Effective date: 19920117

Ref country code: AT

Effective date: 19920117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19920131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920325

Year of fee payment: 7

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 19920131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: GB

Ref legal event code: PCNP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19931001

EUG Se: european patent has lapsed

Ref document number: 86100586.6

Effective date: 19920806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050117