EP0191923A2 - Method and device for the controlling of and regulation method for the operating parameters of a combustion engine - Google Patents

Method and device for the controlling of and regulation method for the operating parameters of a combustion engine Download PDF

Info

Publication number
EP0191923A2
EP0191923A2 EP85115451A EP85115451A EP0191923A2 EP 0191923 A2 EP0191923 A2 EP 0191923A2 EP 85115451 A EP85115451 A EP 85115451A EP 85115451 A EP85115451 A EP 85115451A EP 0191923 A2 EP0191923 A2 EP 0191923A2
Authority
EP
European Patent Office
Prior art keywords
factor
map
control
value
global
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85115451A
Other languages
German (de)
French (fr)
Other versions
EP0191923B1 (en
EP0191923A3 (en
Inventor
Rolf Dipl.-Ing. Kohler
Peter Jürgen Dipl.-Ing. Schmidt
Manfred Dipl.-Ing. Schmitt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OFFERTA DI LICENZA AL PUBBLICO
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0191923A2 publication Critical patent/EP0191923A2/en
Publication of EP0191923A3 publication Critical patent/EP0191923A3/en
Application granted granted Critical
Publication of EP0191923B1 publication Critical patent/EP0191923B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2477Methods of calibrating or learning characterised by the method used for learning

Definitions

  • the invention relates to a method and a device for controlling operating parameters of an internal combustion engine according to the type of the main claim and the first device claim.
  • the invention is an addition to the subject of the previous application P 3 408 215.9 by the applicant, which relates to the possibility of changing in a generic method values stored in a map and selected as a function of operating parameters of the internal combustion engine in accordance with a learning process so that not just a single predetermined map value, but also that in its Respective map values depending on the change in the respective map value concerned are additionally modified.
  • an integral controller continuously multiplies the current value of the engine during the current operation of the engine, but at the same time the multiplicative correction factor of the controller is averaged and when leaving the catchment area of a specific support point in the map, which is in a predetermined number of support points is subdivided, and at which intermediate values are calculated by a linear interpolation, as a result of which the mentioned catchment area is defined around each support point, this mean value is worked into the corresponding support point.
  • Such a learning control system contains, for example, values for the injection stored in a characteristic diagram, which can then be transferred to a read-write memory each time the machine is started.
  • the characteristic maps result in a very quickly reacting pilot control, for example for the injection quantity or generally for fuel metering or also for other variables to be adapted as quickly as possible to the changing operating conditions of an internal combustion engine, including the ignition timing, exhaust gas recirculation rate and the like.
  • the individual map values can be corrected depending on the operating parameters and written into the respective memory.
  • Self-optimizing injection systems or other systems for controlling and regulating operating parameters have a map, here for the injection time, with the input variables (addresses), rotation number and, for example, throttle valve position, and the map is divided, for example, into the areas of idling, part load, full load and thrust.
  • the idle speed is regulated, in the partial load range, for example, the minimum fuel consumption and in the full load range, the maximum output.
  • the fuel is cut off in the overrun, whereby by adapting the map to the values undertaken by the controller in general, a learning procedure for the fast control range (self-adapting pilot control) is introduced.
  • the controller mentioned repeatedly whose output variable for the area of the current control has a multiplicative influence on the value given by the map depending on the addresses controlling it (e.g. speed and throttle valve position or load) and, preferably via an averaged control factor in the learning area of the pilot control (map ) intervenes, can evaluate any suitable actual value of the controlled system as an input variable; If the controlled system is an internal combustion engine, as in the present application, the machine variable evaluated as the actual value can be the output signal of a lambda or other suitable probe in the exhaust gas duct, or the speed of the internal combustion engine if certain regulated operating characteristics are determined by an extreme value control (wobble) ( Injection time period ti, air volume and the like) is set to minimum fuel consumption or maximum output - such control methods are also described in detail in the main application.
  • the machine variable evaluated as the actual value can be the output signal of a lambda or other suitable probe in the exhaust gas duct, or the speed of the internal combustion engine if certain regulated operating characteristics are determined by an extreme value
  • the present invention is therefore based on the object Reasons to improve the learning process for self-adapting maps and to shorten the duration of the adaptive takeover significantly by introducing additional options, in particular to react as quickly as possible to those influencing factors in map changes that affect extensive map areas in the same way.
  • a further advantageous embodiment of the present invention consists in that a division into a basic map and into a self-adaptation (adaptive learning) factor map the interpolation usually to be carried out in the area of the basic map cannot exert any disruptive influences on the learning process, the self-adapting map (factor map)
  • the self-adapting map factor map
  • FIG. 1 shows a highly schematic block diagram of the basic principle of a combined control and regulating method for operating an internal combustion engine, with the current regulation also derived in the area of fast pilot control to achieve a relatively slow self-adjustment in this pilot control
  • a first exemplary embodiment which immediately indicates a combination of preferred learning methods, is shown as a block diagram, with a representation of the possibilities of how the self-adjustment area can act on the pilot control value of the operating parameter in question
  • FIG. 3 4 shows curves for reaching the final value of the global factor as a function of an influencing factor serving to calculate it
  • FIGS. 5 and 5 a more detailed exemplary embodiment for determining a global factor that additionally influences the input control variable output by the characteristic diagram, with a possible control method being based on extreme value control and 6 the course of the transient response of the global factor as a function of
  • FIG. 7 likewise the settling behavior of the global factor with a different value of the influencing factor
  • FIG. 8 a further exemplary embodiment of a self-adapting feedforward control, the self-adaptation being carried out with the aid of a factor map
  • Fig. 9 in a three-dimensional representation the dependency here in particular on fuel injection pulses from throttle valve position and speed (area pilot control - t.-map)
  • Fig. 10 at a) an extract from the basic map with driving curve and representation of the catchment area for a current support point and at b) the course of the control factor over time, showing the time of the takeover for the adjustment of the base
  • FIG. 9 in a three-dimensional representation the dependency here in particular on fuel injection pulses from throttle valve position and speed (area pilot control - t.-map)
  • Fig. 10 at a) an extract from the basic map with driving curve and representation of the catchment area for a current support point and at b) the course of the control factor over time, showing the time of the takeover
  • FIG. 11 shows in the form of a block diagram a first exemplary embodiment for determining the global factor from the control factor
  • FIG. 12 shows as a second exemplary embodiment the determination of the global factor from an additional factor map and the interaction of the individual variables to influence the output pilot value.
  • FIG. 1 shows a combined control and regulating system for the operation of an internal combustion engine, namely spark-ignition gasoline engine or self-igniting diesel engine, each with intermittent or continuous injection by a fuel injection system or by supplying the fuel by any fuel metering means (controlled carburetor),
  • an internal combustion engine namely spark-ignition gasoline engine or self-igniting diesel engine
  • any fuel metering means controlled carburetor
  • the following remarks deal essentially with the fuel metering, more precisely with the creation of fuel injection pulses ti to be determined in their duration, but the combined control and regulating method can also be used for the creation and measurement of other operating parameters, in particular an internal combustion engine with preference , for example in the ignition timing control, the boost pressure control, the determination of the exhaust gas recirculation rate or the idle control.
  • the block diagram of Fig. 1 can be divided into a (pre) control area 10 for the rapid creation of a pre-control value te for fuel injection and a control area 11 superimposed on the control, which is the address given by the map as a function of the operating parameters depend, the respective map value created is multiplied by 13.
  • the pilot control area 10 is additionally designed, as already described in the main application, in such a way that a block 15 is provided for adaptive learning from the controller output value which allows the characteristic map sizes for the respective operating points to be self-adjusted causes so that the mismatch of the basic map 12, which is normally corrected as quickly as possible, becomes increasingly smaller.
  • the main application explains in detail how The adaptive corrections of the respective map values are effected with the stipulation that additional map values (catchment area) falling in the environment of respectively changed map values are additionally modified, preferably weighted, in dependence on the change in the respective map value, so that a quick and precise adjustment is possible of the map to the current operating conditions of the internal combustion engine 16.
  • FIG. 2 is then completed by the control loop, formed by the above-mentioned controller 23, which is controlled by a suitable measuring device 26, the output variable to be treated as the actual value of the control system 'internal combustion engine' (lambda value, speed , more precisely, fluctuations in speed in an extreme value control to be explained or the like) are detected.
  • the two aspects of the factor map and the global factor also have an inventive meaning separately and can of course be used independently of one another and in the illustration of FIG. 2 only for gain a better understanding of the overall concept according to the invention in their mutual influence
  • the global factor GF has a multiplicative and / or additive effect on each of the input control values output by the characteristic diagram; the factor F originating from the factor map 21 acts locally only to this extent. Therefore also the parallel control with the same input addresses as for the basic map 20.
  • a mean value formation block 28 is provided for the control factor RF from the output of the controller 23; the global factor can then be derived from the averaged control factor RF or from the factor map.
  • FIG. 3 shows in more detail the generation of a fuel injection pilot control value with superimposed control of an internal combustion engine, this control, in contrast to the exemplary embodiment of FIG. 3, being designed specifically as an extreme value control.
  • the respective components or blocks if they have the same structure and perform the same functions, bear identical reference numerals; if they differ only slightly in both, then they also have a comma at the top.
  • the fuel quantity to be metered to the internal combustion engine 27 as a controlled system is controlled via a map 12, to which the speed n and the throttle valve position D K (which can also be specified as angle a) are in turn supplied as input variables (addresses).
  • the throttle valve 29 is controlled by an accelerator pedal 30.
  • the injection time t i stored in the map is converted into a corresponding fuel quantity Q K via injection valves 31; this amount of fuel and the determined position of the throttle air flow Q L are supplied to the internal combustion engine 27, wherein in dependence on the lambda value of the air-fuel mixture a certain D rehmo- element M is effected.
  • the controlled system internal combustion engine 27 can be approximated by its integrator effect represented by the block 27a.
  • the output variable (speed n) of the internal combustion engine then serves, in addition to the throttle valve position, as a control variable for the characteristic diagram 12.
  • the controller 35 which is preferably in the form of an integrator, is followed by a block 36 for averaging the control factor, which, with its output RF, influences individual map or reference point values of the map 12 via a switch S1.
  • the influencing can take place as explained in detail in the main application, in particular with decreasing weighting in the environment of the map or reference point value concerned in each case.
  • a block 37 area detection which is controlled in parallel by the input variables or addresses of the map 12, serves to actuate the switch S1 and further switches S2 and S3, by means of which the mean value generator 36 and the controller 35 can be reset to respective initial values.
  • the area detection 37 determines in which area (also idling, partial load, full load and thrust) or the feed area of a support point (1/2 support point distance) that the characteristic data from the input data D K and n Field 12 defined driving curve is located and accordingly releases the incorporation of the respectively averaged correction value RF into the last activated support point of the map 12 and, via a cross connection 38, to a block 39 for global factor formation; with simultaneous resetting of controller 35 and averager 36 to their initial values.
  • the output variable GF of the block 39 for the global factor formation and the control factor RF as the output of the controller 35 do not act separately on the pilot control value te from the characteristic diagram 12 via respective multiplicative influence points, but are at a separate multiplier - Or also adding point 40 merged and then influence together at the multiplying point 41 the respective te value in the sense of an overall correction. Therefore, in the exemplary embodiment shown in FIG. 3, the global factor GF is determined from the value of the averaged control factor, specifically as explained in more detail below.
  • changes to the values of the target map can be caused by influences, which are preferably multiplicative, which is the main part of the map changes at all, but which can also have an additive effect on the entire map, or which change the structure of the map.
  • K ennfeldverschiebung for example, by changing air pressure, and temperature. Like. occur. If such a "global change" is also included in the map after the start until the global factor is newly determined, it cannot be ruled out that this will result in a falsification of a map structure that has already been correctly adjusted.
  • the invention therefore provides means for only determining the global factor for a certain time after the start, which can be done via the area detection block 37, and only then, when the new value of the global factor has been recorded, for the map to be closed again To update. So that, on the other hand, it can be avoided that the global factor is determined anew even if the vehicle has only been parked for a short time, the function of determining the global factor described above is activated only after the internal combustion engine has warmed up.
  • control value taken from the map is additionally multiplied by the new global factor: where SS is the control or support point value from the map.
  • the global factor can be calculated approximately according to the following regulation 5) in order to reduce the computational effort. (Good approximation with GF - 1) to 4):
  • the influencing factor 'a' is chosen to be very small: a «1. Therefore, with a good approximation to 1, it can be neglected, and one obtains: as mentioned earlier.
  • the run generator generates the address of the current support point of the map; the quotient of the target and actual support point is used directly as a correction factor and is distributed from the respective learning strategy to the global factor and the map.
  • the process continues until the system has stabilized, ie until the global factor no longer changes. If you vary with different parameters, for example the influencing factor, the number of active support points controlled by the run generator, the size and structure of the deviation of the target map from the actual map, the type of run (sequential, random), then the result in FIGS. 7 recorded curve profiles, FIG.
  • the curves in FIGS. 5, 6 and 7 show the different stages of two simulation runs.
  • the diagrams show the sequential characteristic curve (nodes 1-8) and the values of the nodes and the global factor during a cycle from SS1 to SS8.
  • a 0.5
  • the final value depends on the PRODUCT of the influencing factor and the active support points. (Double 'a' and half the SS number result in the same final value.)
  • the final value depends on the ratio of the points to be corrected to the total number of active points. (If only 1/4 of the active reference points are corrected, the global factor is only 1/4 of the possible final value.)
  • the settling time is shorter for large influencing factors (a> 1/3), while the settling time is longer for small influencing factors.
  • the global factor is determined as follows: and there are lower final values than with additive calculation according to equation 5).
  • the factor is:
  • the manipulated variable interpolated from the map is not additionally multiplied by the global factor, but the control factor and global share are added before the multiplication with the interpolated map value.
  • Map adjustment A division is therefore required to calculate the new base. As with the multiplicative combination of control factor and global factor, this complex calculation process can be approximated by equation 6).
  • FIG. 8 shows the basic principle of a self-adapting map (learning pilot control) in a schematically simplified block diagram representation; the map area is subdivided into a basic map 20, preferably in the form of a read-only memory (ROM), in which corresponding data are stored in the form of reference points, intermediate values being able to be calculated by a linear interpolation.
  • the number of interpolation points and interpolated intermediate values are determined in accordance with the required quantization for the respective control process;
  • the quantization can be selected such that the map comprises 16 * 16 reference points, each with 15 intermediate values.
  • the self-adaptation takes place with the aid of a second or separate, so-called factor map 21, which is preferably designed as a read-write memory (RAM) and in which the self-adaptation values are stored.
  • the basic map is divided into areas, each area being assigned a factor of the factor map 21.
  • the interpolated output value of the basic characteristic diagram 20 is then multiplied in each case by the associated factor or by a value interpolated from several factors, specifically at the multiplication point 22 in the exemplary embodiment in FIG. 8.
  • 8 * 8 factors are provided for the factor characteristic diagram. which each have the initial values "1.0" and undergo corresponding changes in the course of the adaptation process.
  • the final injection value is then obtained by multiplying the basic value t K issued by the basic map, the factor F from the factor map 21 and the current control factor RF from the control loop (downstream multiplication point 25) as well as a further, possibly correction factor to:
  • control factor RF is averaged and the associated factor F is changed via the interposed block 40 learning method for the factor map.
  • the adjustment process for a factor then runs like this 10, as shown schematically in FIG. 10, the diagram at a) in FIG. 10 indicating an extract from the basic characteristic map 20 with a drawn driving curve and the respective catchment area for the selected (one) factor.
  • the driving curve comes into this catchment area, and at B the catchment area is left again by the driving curve.
  • the course of the control factor RF over time is shown at b) in FIG. 10.
  • the control factor is averaged after a predetermined settling delay, which can be determined, whereby a predetermined minimum averaging period must be observed, which is also indicated in the illustration in FIG. 10.
  • the averaged control factor RF is then included in the factor F according to the formula just given earlier.
  • the specified settling delay and the minimum averaging time distinguish between stationary and dynamic operating points; it has already been mentioned above that the adjustment is only sensible in the stationary area, this being additionally prevented during warm-up, post-start, thrust cutting and during acceleration enrichment; Tasks that can also be performed by the area recognition block 37 of FIG. 3, with an understandable assessment of the proviso that corresponding functional and operational sequences are also partially or completely, for example in the form of programs, can be carried out by means of suitable computer systems, microcomputers or the like and can be implemented to this extent.
  • FIG. 11 shows in greater detail the determination of the global factor value already mentioned at the beginning, whereby this first determination method consists in switching the control factor subjected to averaging at block 28 ′ to two parallel attenuator blocks 41, 42 via a double switch S4 separate application of the from the Darstel 8 already known factor map 21 and block 24 'for the global factor, which, like the factor map, can be designed as a read-write memory (RAM).
  • the averaging of the control factor RF takes place as long as the operating points lie in a respectively specified feed range of the basic map 20.
  • the corresponding factor F is adjusted, as explained, in predetermined time intervals or when this feed area is left, the global factor GF being changed only when the feed area changes.
  • the adjustment for the new factor F of the factor map and the respective new global factor follows the formulas given below, so that part of the mean control deviation is always incorporated into the associated factor and another part into the global factor.
  • an additional, i.e. second factor map II is provided and is designated by the reference symbol 21 * , which is also parallel to the basic map 20 and the first factor map I (reference symbol 21 ') from the same input data (in this case the speed and Last) is controlled as addresses and also has a multiplicative effect on the basic map, with a first multiplication point at 43 and a second multiplication point at 44, at which a total correction factor then acts on the respective te value output by the basic map 20.
  • the factor map II is set to "1.0" at the start of the internal combustion engine and then continuously adjusted.
  • the factor map I and the global factor do not initially change.
  • a flag map shows which factors are controlled.
  • the factor map II is then evaluated in predetermined larger time periods, the deviation of the mean value of all factors from the initial value "1.0” being incorporated into the global factor (connecting line 45 via a switch 46), while the remaining “structural” deviation from "1.0" in the factor map I is incorporated, whereby only the controlled factors are taken into account. Thereafter, the factor map II is reset to "1.0" and a new adjustment process begins in the same way.
  • the formulas for this after the Method II resulting determination of the global factor are valid are given below:
  • a corresponding program for this investigation II consists of two parts.
  • the second part is an additional subroutine of method I and is shown as a flowchart on page 38 with corresponding information in circles where the insertion is to be made.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Verfahren und Einrichtung zur Steuerung/Regelung von Betriebskenngrößen einer Brennkraftmaschine, wobei zur Herausgabe eines unkorrigierten Vorsteuerwerts ein Kennfeld durch Zuführung vorgegebener Betriebskenngrößen als Adressen adressiert und bei gleichzeitig überlagerter Regelung ein gemittelter Wert des Regelfaktors zur Bewirkung eines adaptiven Lernvorgangs dem Vorsteuerbereich zugeführt wird. Dabei wird aus dem gemittelten Regelfaktor entweder ein auf das gesamte Grundkennfeld multiplikativ einwirkender globaler Faktor definiert, insbesondere zur Berücksichtigung von multiplikativen Störeinflüssen, wobei ferner durch eine Aufteilung des selbstanpassenden Kennfeldes in ein nichtveränderbares Grundkennfeld und in mindestens ein weiteres, dazugehöriges, veränderbares Faktorkennfeld jeder Grundwert innerhalb vorgegebener Einzugsbereiche durch den zugeorgneten Faktor des Faktorkennfeldes multipliziert wird, wodurch überwiegend additive Störeinflüsse berücksichtigt werden. Globaler Faktor und der jeweilige Faktor aus dem Faktorkennfeld können kombiniert auf den vom Grundkennfeld herausgegebenen Steuerwert einwirken.Method and device for the control / regulation of operating parameters of an internal combustion engine, in order to output an uncorrected pilot control value, a map addresses addresses by supplying predetermined operating parameters and, with simultaneously superimposed control, an average value of the control factor for effecting an adaptive learning process is fed to the pilot control area. From the averaged control factor, either a global factor that has a multiplicative effect on the entire basic map is defined, in particular to take multiplicative interference into account, further dividing the self-adapting map into an unchangeable basic map and at least one additional, associated, changeable factor map within each basic value predefined catchment areas is multiplied by the assigned factor of the factor map, whereby predominantly additive interference is taken into account. The global factor and the respective factor from the factor map can act in combination on the tax value issued by the basic map.

Description

Die Erfindung geht aus von einem Verfahren und einer Einrichtung zur Regelung von Betriebskenngrößen einer Brennkraftmaschine nach der Gattung des Hauptanspruchs bzw. des ersten Vorrichtungsanspruchs. Die Erfindung ist ein Zusatz zu dem Gegenstand der früheren Anmeldung P 3 408 215.9 der Anmelderin, die sich auf die Möglichkeit bezieht, bei einem gattungsgemäßen Verfahren jeweils in einem Kennfeld gespeicherte und in Abhängigkeit von Betriebskenngrößen der Brennkraftmaschine angewählte Werte entsprechend einem Lernvorgangso zu verändern, daß nicht nur lediglich ein einziger vorgegebener Kennfeldwert, sondern auch die in seiner Umgebung liegenden jeweiligen Kennfeldwerte in Abhängigkeit zur Änderung des jeweils betroffenen Kennfeldwertes zusätzlich modifiziert werden. Im einzelnen kann dabei so vorgegangen werden, daß ein Integralregler fortlaufend multiplikativ während des aktuellen Betriebs der Brennkraftmaschine den aus dem Kennfeld ausgelesenen Wert beeinflußt, gleichzeitig aber der multiplikative Korrekturfaktor des Reglers gemittelt wird und beim Verlassen des Einzugsbereichs einer bestimmten Stützstelle im Kennfeld, welches in eine vorgegebene Anzahl von Stützstellen unterteilt ist, und bei welchem Zwischenwerte durch eine lineare Interpolation berechnet werden, wodurch um jede Stützstelle der erwähnte Einzugsbereich definiert ist, dieser Mittelwert in die entsprechende Stützstelle eingearbeitet wird. Es gelingt auf diese Weise, einerseits das Kennfeld durch Änderung der Stützstellen an die vom Regler vorgegebenen Werte anzupassen, so daß der gesamte Bereich der Vorsteuerung adaptiv lernt, andererseits aber zu vermeiden, daß überhaupt nur bestimmte Bereiche des Kennfeldes lernen können, was sonst bei einer Einzelwertanpassung der Fall wäre. Daher wird durch den Gegenstand der Hauptanmeldung,zu der die vorliegende Anmeldung ein Zusatz ist, das Problem beseitigt, daß insbesondere der relativ fein unterteilten Kennfeldern einzelne Werte nur sehr selten oder nie angewählt und daher auch nicht angepaßt werden, wodurch das gesamte, der Vorsteuerung entsprechender Betriebskenngrößen dienende Kennfeld im Laufe der Zeit eine erhebliche Verzerrung erfahren würde.The invention relates to a method and a device for controlling operating parameters of an internal combustion engine according to the type of the main claim and the first device claim. The invention is an addition to the subject of the previous application P 3 408 215.9 by the applicant, which relates to the possibility of changing in a generic method values stored in a map and selected as a function of operating parameters of the internal combustion engine in accordance with a learning process so that not just a single predetermined map value, but also that in its Respective map values depending on the change in the respective map value concerned are additionally modified. In particular, it can be done so that an integral controller continuously multiplies the current value of the engine during the current operation of the engine, but at the same time the multiplicative correction factor of the controller is averaged and when leaving the catchment area of a specific support point in the map, which is in a predetermined number of support points is subdivided, and at which intermediate values are calculated by a linear interpolation, as a result of which the mentioned catchment area is defined around each support point, this mean value is worked into the corresponding support point. In this way it is possible, on the one hand, to adapt the map to the values specified by the controller by changing the interpolation points, so that the entire area of the pilot control learns adaptively, but on the other hand to avoid that only certain areas of the map can learn at all, which otherwise with a Individual value adjustment would be the case. Therefore, the subject of the main application, to which the present application is an addendum, eliminates the problem that, in particular, the relatively finely divided characteristic maps, very rarely or never, individual values are selected and therefore not adapted, so that the whole, corresponding to the pilot control Operating characteristic map would experience considerable distortion over time.

Allgemein ist es in diesem Zusammenhang bekannt (DE-OS 28 47 021, GB-PS 20 34 930B), Gemischzumeßsysteme so auszubilden, daß die Dosierung oder Zumessung des Kraftstoffs beispielsweise über sogenannte lernende Regelsysteme erfolgt. Ein solches lernendes Regelsystem enthält in einem Kennfeld abgelegt beispielsweise Werte für die Einspritzung, die dann jeweils beim Starten der Maschine in einen Schreib-LeseSpeicher übertragen werden können. Durch die Kennfelder ergibt sich eine sehr schnell reagierende Vorsteuerung beispielsweise für die Einspritzmenge oder generell für die Kraftstoffzumessung oder auch für andere, möglichst schnell den sich ändernden Betriebsbedingungen einer Brennkraftmaschine anzupassende Größen, auch Zündzeitpunkt, Abgasrückführrate u. dgl. Um hierbei zu lernenden Regelsystemen zu gelangen, können die einzelnen Kennfeldwerte betriebskenngrößenabhängig korrigiert und in den jeweiligen Speicher eingeschrieben werden.It is generally known in this context (DE-OS 28 47 021, GB-PS 20 34 930B) to design mixture metering systems so that the metering or metering of the fuel takes place, for example, via so-called learning control systems. Such a learning control system contains, for example, values for the injection stored in a characteristic diagram, which can then be transferred to a read-write memory each time the machine is started. The characteristic maps result in a very quickly reacting pilot control, for example for the injection quantity or generally for fuel metering or also for other variables to be adapted as quickly as possible to the changing operating conditions of an internal combustion engine, including the ignition timing, exhaust gas recirculation rate and the like. In order to get control systems to be learned, the individual map values can be corrected depending on the operating parameters and written into the respective memory.

Die folgenden Erläuterungen, die im übrigen mindestens teilweise und aus Gründen einer Vermeidung von Wiederholungen auf denAusführungen und Feststellungen in der Patentanmeldung P 3 408 215.9 basieren, die hiermit voll inhaltlich auch zum Gegenstand der Offenbarung dieser Anmeldung gemacht werden, beziehen sich auf weitere Verbesserungen im Regelverhalten von selbstanpassenden Kennfeldern.The following explanations, which are based at least in part and for the sake of avoiding repetitions on the explanations and findings in patent application P 3 408 215.9, which are hereby fully incorporated in the content of the disclosure of this application, relate to further improvements in control behavior of self-adapting maps.

Dabei besitzen selbstoptimierende Einspritzsysteme oder andere Systeme zur Steuerung und Regelung von Betriebskenngrößen ein Kennfeld, hier für die Einspritzzeit, mit den Eingangsgrößen (Adressen), Drehzahl und beispielsweise Drosselklappenstellung, und das Kennfeld ist z.B.in die Bereiche Leerlauf, Teillast, Vollast und Schub unterteilt. Im Leerlauf wird die Drehzahl geregelt, im Teillastbereich wird beispielsweise auf minimalen Kraftstoffverbrauch und im Volllastbereich auf maximale Leistung geregelt. Im Schub wird der Kraftstoff abgeschnitten, wobei durch die Anpassung des Kennfeldes an die jeweils vom Regler vorgenommenen Werte allgemein ein Lernverfahren für den schnellen Steuerungsbereich (selbstanpassende Vorsteuerung) eingeführt wird. Der wiederholt erwähnte Regler, dessen Ausgangsgröße für den Bereich der aktuellen Regelung den jeweils vom Kennfeld in Abhängigkeit zu den ihn ansteuernden Adressen (beispielsweise Drehzahl und Drosselklappenstellung oder Last) herausgegebenen Wert multiplikativ beeinflußt und, vorzugsweise über einen gemittelten Regelfaktor in den Lernbereich der Vorsteuerung (Kennfeld) eingreift, kann jede beliebige, geeignete Istwertgröße der Regelstrecke als Eingangsgröße auswerten; ist die Regelstrecke eine Brennkraftmaschine, wie beim vorliegenden Anwendungsfall, dann kann die als Istwert jeweils ausgewertete Maschinenvariable das Ausgangssignal einer Lambda- oder einer sonstigen geeigneten Sonde im Abgaskanal sein, oder die Drehzahl der Brennkraftmaschine, wenn durch eine Extremwertregelmng (Wobbelung) bestimmter geregelter Betriebskenngriilen (Einspritzzeitdauer ti, Luftmenge u. dgl.) auf minimalen Kraftstoffverbrauch oder maximale Leistung abgestellt wird - solche Regelverfahren sind in der Hauptanmeldung ebenfalls umfassend beschrieben.Self-optimizing injection systems or other systems for controlling and regulating operating parameters have a map, here for the injection time, with the input variables (addresses), rotation number and, for example, throttle valve position, and the map is divided, for example, into the areas of idling, part load, full load and thrust. The idle speed is regulated, in the partial load range, for example, the minimum fuel consumption and in the full load range, the maximum output. The fuel is cut off in the overrun, whereby by adapting the map to the values undertaken by the controller in general, a learning procedure for the fast control range (self-adapting pilot control) is introduced. The controller mentioned repeatedly, whose output variable for the area of the current control has a multiplicative influence on the value given by the map depending on the addresses controlling it (e.g. speed and throttle valve position or load) and, preferably via an averaged control factor in the learning area of the pilot control (map ) intervenes, can evaluate any suitable actual value of the controlled system as an input variable; If the controlled system is an internal combustion engine, as in the present application, the machine variable evaluated as the actual value can be the output signal of a lambda or other suitable probe in the exhaust gas duct, or the speed of the internal combustion engine if certain regulated operating characteristics are determined by an extreme value control (wobble) ( Injection time period ti, air volume and the like) is set to minimum fuel consumption or maximum output - such control methods are also described in detail in the main application.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, das Lernverfahren bei selbstanpassenden Kennfeldern zu verbessern und durch die Einführung zusätzlicher Möglichkeiten die Dauer der adaptiven Übernahme entscheidend zu verkürzen, insbesondere möglichst schnell auf solche Einflußfaktoren bei Kennfeldänderungen zu reagieren, die ausgedehnte Kennfeldbereiche in der gleichen Weise beeinflussen.The present invention is therefore based on the object Reasons to improve the learning process for self-adapting maps and to shorten the duration of the adaptive takeover significantly by introducing additional options, in particular to react as quickly as possible to those influencing factors in map changes that affect extensive map areas in the same way.

Vorteile der ErfindungAdvantages of the invention

Diese Aufgabe wird durch die kennzeichnenden Merkmale der übergeordneten Verfahrensansprüche sowie der nebengeordneten Einrichtungsansprüche gelöst mit dem Vorteil, daß gerade bei den Hauptanteil der Kennfeldänderungen ausmachenden, multiplikativ und/oder addtriv wirkenden Störgrößen das gesamte Kennfeld über die Einführung eines sogenannten globalen Faktors wesentlich schneller angepaßt werden kann als über eine, wenn auch den jeweiligen Einzugsbereich miterfassende Anpassung der jeweiligen Einzelwerte oder Stützstellen. Ferner ergibt sich auch eine schnellere und entsprechend genaue Anpassung solcher Kennfeldbereiche, die nur selten oder sehr selten angesteuert werden.This object is achieved by the characterizing features of the superordinate method claims and the subordinate device claims, with the advantage that the entire map can be adapted much more quickly by introducing a so-called global factor, especially in the case of the major part of the map changes which are multiplicative and / or additive effects than through an adaptation of the respective individual values or reference points, although this also includes the respective catchment area. Furthermore, there is also a faster and correspondingly precise adaptation of those characteristic map areas which are only rarely or very rarely activated.

Eine weitere vorteilhafte Ausgestaltung vorliegender Erfindung besteht darin, daß durch eine Unterteilung in ein Grundkennfeld und in ein die Selbstanpassung (das adaptive Lernen) realisierendes Faktorkennfeld die üblicherweise im Bereich des Grundkennfelds durchzuführende Interpolation keine störenden Einflüsse auf das Lernverfahren ausüben kann, wobei das selbstanpassende Kennfeld (Faktorkennfeld)
vor allem die Berücksichtigung von additiven Einflüssen und Störgrößen ermöglicht, während multiplikative Einflüsse, die einen gleichförmigen Anteil der Störeinflüsse üblicherweise bilden, durch eine Kombination mit dem weiter vorn schon erwähnten globalen Faktor berücksichtigt werden können, so daß sich insgesamt eine schnelle und optimale Anpassung unter Berücksichtigung additiver und multiplikativer Einflüsse realisieren läßt.
A further advantageous embodiment of the present invention consists in that a division into a basic map and into a self-adaptation (adaptive learning) factor map the interpolation usually to be carried out in the area of the basic map cannot exert any disruptive influences on the learning process, the self-adapting map (factor map)
Above all, the consideration of additive influences and disturbance variables enables, while multiplicative influences, which usually form a uniform proportion of the disturbance influences, can be taken into account by a combination with the global factor already mentioned above, so that overall a quick and optimal adjustment can be taken into account additive and multiplicative influences can be realized.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der in den Hauptansprüchen und nebengeordneten Ansprüchen angegebenen Aspekte vorliegender Erfindung möglich.The measures listed in the subclaims enable advantageous developments and improvements of the aspects of the present invention specified in the main claims and the subordinate claims.

Zeichnungdrawing

Ausführungsbeispiele der Erfindung sind in der Zeichiming ükargestellt und werden in der nachfolgenden Besdaneibung näher erläutert. Es zeigen Fig. 1 stark schematisiert als Blockschaltbild das Grundprinzip eines kombinierten Steuer- und Regelverfahrens zum Betrieb einer Brennkraftmaschine, wobei von der aktuellen Regelung abgeleitet auch in den Bereich der schnellen Vorsteuerung zur Erzielung einer relativ langsam verlaufenden Selbstanpassung des bei dieser Vorsteuerung beispielsweise vorgesehenen Kennfeldes eingegriffen wird (adaptives Lernen), Fig. 2 ein erstes, sofort eine Kombination bevorzugter Lernverfahren angebendes Ausführungsbeispiel als Blockschaltbild, mit einer Darstellung der Möglichkeiten, wie vom Selbstanpassungsbereich auf den Vorsteuerwert der jeweils betroffenen Betriebskenngröße eingewirkt werden kann, Fig. 3 ein detaillierteres Ausführungsbeispiel zur Ermittlung eines globalen Faktors, der die vom Kennfeld ausgegebene Vorsteuergröße ergänzend beeinflußt, wobei als ein mögliches Regelverfahren eine Extremwertregelung zugrundegelegt ist, Fig. 4 Kurvenverläufe zur Erreichung des Endwerts des globalen Faktors in Abhängigkeit zu einem dessen Berechnung dienendem Einflußfaktor, die Figuren 5 und 6 den Verlauf des Einschwingverhaltens des globalen Faktors in Abhängigkeit zurExemplary embodiments of the invention are shown in the drawing and are explained in more detail in the following description. 1 shows a highly schematic block diagram of the basic principle of a combined control and regulating method for operating an internal combustion engine, with the current regulation also derived in the area of fast pilot control to achieve a relatively slow self-adjustment in this pilot control 2, a first exemplary embodiment, which immediately indicates a combination of preferred learning methods, is shown as a block diagram, with a representation of the possibilities of how the self-adjustment area can act on the pilot control value of the operating parameter in question, FIG. 3 4 shows curves for reaching the final value of the global factor as a function of an influencing factor serving to calculate it, FIGS. 5 and 5, a more detailed exemplary embodiment for determining a global factor that additionally influences the input control variable output by the characteristic diagram, with a possible control method being based on extreme value control and 6 the course of the transient response of the global factor as a function of

Anzahl der jeweiligen Durchläufe bei einem zugrundegelegten Rechnungsverfahren und einem vorgegebenen Wert des Einflußfaktors, Fig. 7 ebenfalls das Einschwingverhalten des globalen Faktors bei einem anderen Wert des Einflußfaktors, Fig. 8 ein weiteres Ausführungsbeispiel einer selbstanpassenden Vorsteuerung, wobei die Selbstanpassung mit Hilfe eines Faktorkennfeldes durchgeführt wird, Fig. 9 in dreidimensionaler Darstellung die Abhängigkeit hier speziell von Kraftstoffeinspritzimpulsen von Drosselklappenstellung und Drehzahl (Bereich Vorsteuerung - t.-Kennfeld), Fig. 10 bei a) einen Auszug aus dem Grundkennfeld mit Fahrkurve und Darstellung des Einzugsgebiets für eine aktuelle Stützstelle und bei b) den Verlauf des Regelfaktors über der Zeit mit Darstellung des Ubernahmezeitpunktes zur Stützstellenanpassung, Fig. 11 zeigt in Form eines Blockschaltbildes ein erstes Ausführungsbeispiel zur Ermittlung des globalen Faktors aus dem Regelfaktor,und Fig. 12 zeigt als zweites Ausführungsbeispiel die Ermittlung des globalen Faktors aus einem zusätzlichen Faktorkennfeld und das Zusammenwirken der einzelnen Größen zur Beeinflussung des ausgegebenen Vorsteuerwerts.Number of the respective runs with an underlying calculation method and a predefined value of the influencing factor, FIG. 7 likewise the settling behavior of the global factor with a different value of the influencing factor, FIG. 8 a further exemplary embodiment of a self-adapting feedforward control, the self-adaptation being carried out with the aid of a factor map , Fig. 9 in a three-dimensional representation the dependency here in particular on fuel injection pulses from throttle valve position and speed (area pilot control - t.-map), Fig. 10 at a) an extract from the basic map with driving curve and representation of the catchment area for a current support point and at b) the course of the control factor over time, showing the time of the takeover for the adjustment of the base, FIG. 11 shows in the form of a block diagram a first exemplary embodiment for determining the global factor from the control factor, and FIG. 12 shows as a second exemplary embodiment the determination of the global factor from an additional factor map and the interaction of the individual variables to influence the output pilot value.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Die verschiedenen Formen und Varianten der vorliegenden Erfindung ergänzen den in der Hauptanmeldung ausführlich erläuterten Grundgedanken in zwei verschiedenen, wesentlichen Aspekten, nämlich einmal, vereinfacht ausgedrückt, durch Aufteilung des selbstanpassenden Kennfeldes in ein nicht veränderbares Grundkennfeld und in ein dazugehöriges, veränderbares Faktorkennfeld, wobei der jeweils ausgelesene, bestimmten Eingangsadressen zugeordnete Grundwert und der aus dem Faktorkennfeld gewonnene, den gleichen Eingangsadressen zugeordnete Faktor miteinander multipliziert werden, sowie, als zweiten Aspekt, die Möglichkeit, einen auf das gesamte Kennfeld wirkenden, vorzugsweise multiplikativ und/oder additiv wairkenden globalen Faktor zu definieren. Zum umfassenden Verständnis der vorliegenden Erfindung ist es daher erforderlich, den Gegenstand der Hauptanmeldung zu kennen, der hier vorausgesetzt wird mit der ausdrücklichen Feststellung, daß sämtliche Ausführungen und Feststellungen in der Hauptanmeldung auch in dieser Zusatzanmeldung und für diese gültig offenbart sind. Ferner wird darauf hingewiesen, daß die in den Zeichnungen jeweils dargestellten, die Erfindung und deren verschiedene Aspekte anhand diskreter Schaltstufen oder Blöcke angebenden Mittel die Erfindung nicht einschränken, sondern insbesondere dazu dienen, deren funktionelle Grundwirkungen zu veranschaulichen und spezielle Funktionsabläufe in einer möglichen Realisierungsform anzugeben. Es versteht sich, daß einzelne Bausteine, Komponenten oder Blöcke in analoger, digitaler oder auch hybrider Technik aufgebaut sein können, oder auch, ganz oder teilweise zusammengefaßt, entsprechende Bereiche von programmgesteuerten digitalen Systemen oder Programmen sein können, beispielsweise also realisiert werden können durch Mikroprozessoren, Mikrorechner, digitale Logikschaltungen u. dgl. Die im folgenden angegebene Beschreibung der Erfindung ist daher lediglich als bevorzugtes Ausführungsbeispiel bezüglich des funktionellen Gesamt- und Zeitablaufs, der durch die jeweiligen besprochenen Blöcke erzielten Wirkungsweise und bezüglich des jeweiligen Zusammenwirkens der durch die einzelnen Komponenten dargestellten Teilfunktionen zu werten, wobei die Hinweise auf die Schaltungsblöcke aus Gründen eines besseren Verständnisses erfolgen.The various forms and variants of the present invention supplement the basic idea explained in detail in the main application in two different, essential aspects, namely, to put it simply, by dividing the self-adapting map into a non-changeable basic map and into an associated, changeable factor map, each of which read basic value assigned to certain input addresses and the factor obtained from the factor map, assigned to the same input addresses, and, as a second aspect, the possibility of defining a global factor that acts on the entire map, preferably multiplicative and / or additive. For a comprehensive understanding of the present invention, it is therefore necessary to know the subject matter of the main application, which is a prerequisite here with the express determination that all statements and findings in the main application are also disclosed in this additional application and are valid for this. Furthermore, it is pointed out that the means shown in the drawings, which specify the invention and its various aspects with the aid of discrete switching stages or blocks, do not restrict the invention, but in particular serve to illustrate their functional basic effects and to indicate special functional sequences in a possible form of implementation. It goes without saying that individual building blocks, components or blocks can be constructed using analog, digital or hybrid technology, or can also be, in whole or in part, corresponding areas of program-controlled digital systems or programs, for example can be implemented by microprocessors, Microcomputers, digital logic circuits and. The following description of the invention is therefore only to be evaluated as a preferred exemplary embodiment with regard to the overall functional and time sequence, the mode of operation achieved by the respective blocks discussed and with regard to the respective interaction of the sub-functions represented by the individual components, the references to the circuit blocks are made for better understanding.

Fig. 1 zeigt ein kombiniertes Steuer- und Regelsystem für den Betrieb einer Brennkraftmaschine, nämlich fremdgezündeter Otto-Motor oder selbstzündender Dieselmotor, jeweils mit intermittierender oder kontinuierlicher Einspritzung durch eine Kraftstoffeinspritzanlage oder durch Zuführung des Kraftstoffs durch beliebige Kraftstoffzumeßmittel (gesteuerter Vergaser), wobei die folgenden Ausführungen sich im wesentlichen mit der Kraftstoffzumessung, noch genauer mit der Erstellung von in ihrer Dauer jeweils zu bestimmenden Kraftstoffeinspritzimpulsen t i beschäftigen, das kombinierte Steuer- und Regelverfahren aber auch für die Erstellung und Bemessung anderer Betriebskenngrößen insbesondere einer Brennkraftmaschine mit Vorzug Anwendung finden kann, beispielsweise bei der Zündzeitpunktregelung, der Ladedruckregelung, der Bestimmung der Abgasrückführungsrate oder auch der Leerlaufregelung.1 shows a combined control and regulating system for the operation of an internal combustion engine, namely spark-ignition gasoline engine or self-igniting diesel engine, each with intermittent or continuous injection by a fuel injection system or by supplying the fuel by any fuel metering means (controlled carburetor), The following remarks deal essentially with the fuel metering, more precisely with the creation of fuel injection pulses ti to be determined in their duration, but the combined control and regulating method can also be used for the creation and measurement of other operating parameters, in particular an internal combustion engine with preference , for example in the ignition timing control, the boost pressure control, the determination of the exhaust gas recirculation rate or the idle control.

Das Blockschaltbild der Fig. 1 läßt sich in einen (Vor)Steuerungsbereich 10 für die schnelle Erstellung hier eines Vorsteuerwertes te für die Kraftstoffeinspritzung und in einen die Steuerung überlagernden Regelungsbereich 11 unterteilen, der den vom Kennfeld in Abhängigkeitder zugeführten Adressen, die ihrerseits wieder von Betriebsgrößen abhängen, erstellten jeweiligen Kennfeldwert bei 13 multiplikativ beeinflußt. Da der Regler 14 allerdings in jedem Arbeitspunkt neu einschwingen muß, ist, wie schon in der Hauptanmeldung beschrieben, der Vorsteuerbereich 10 ergänzend so ausgelegt, daß ein Block 15 für adaptives Lernen aus dem Reglerausgangswert vorgesehen ist, der eine Selbstanpassung der Kennfeldgrößen für die jeweiligen Betriebspunkte bewirkt, so daß die durch den Regler 14 normalerweise so schnell wie möglich ausgeregelte Fehlanpassung des Grundkennfeldes 12 zunehmend geringer wird.The block diagram of Fig. 1 can be divided into a (pre) control area 10 for the rapid creation of a pre-control value te for fuel injection and a control area 11 superimposed on the control, which is the address given by the map as a function of the operating parameters depend, the respective map value created is multiplied by 13. However, since the controller 14 has to settle anew at each operating point, the pilot control area 10 is additionally designed, as already described in the main application, in such a way that a block 15 is provided for adaptive learning from the controller output value which allows the characteristic map sizes for the respective operating points to be self-adjusted causes so that the mismatch of the basic map 12, which is normally corrected as quickly as possible, becomes increasingly smaller.

In der Hauptanmeldung ist im einzelnen erläutert, wie die adaptiven Korrekturen der jeweiligen Kennfeldwerte bewirkt werden mit der Maßgabe, in die Umgebung von jeweils geänderten Kennfeldwerten fallende weitere Kennfeldwerte (Einzugsbereich) in Abhängigkeit zu der Änderung des jeweiligen Kennfeldwertes zusätzlich zu modifizieren, vorzugsweise gewichtet zu modifizieren, so daß sich eine schnelle und genaue Anpassung des Kennfeldes an die aktuellen Betriebsbedingungen der Brennkraftmaschine 16 ergibt.The main application explains in detail how The adaptive corrections of the respective map values are effected with the stipulation that additional map values (catchment area) falling in the environment of respectively changed map values are additionally modified, preferably weighted, in dependence on the change in the respective map value, so that a quick and precise adjustment is possible of the map to the current operating conditions of the internal combustion engine 16.

Um eine schnelle Optimierung der Kennfeld-Selbstanpassung sicherzustellen bei Berücksichtigung sowohl von additiven als auch multiplikativen Störeinflüssen, schlägt die vorliegende Erfindung entsprechend Fig. 2 im wesentlichen die beiden, weiter vorn schon genannten, unterschiedliche Aspekte der Erfindung wiedergebenden Ausgestaltungen vor, nämlich den Block 15 für das adaptive Lernen der Vorsteuerung, also des Kennfeldes, so auszubilden, daß, wie am Beispiel der in Fig. 2 gezeigten elektronischen Benzineinspritzung mit überlagerter Lambda-Regelung, Extremwertregelung o.dgl. dargestellt, das Lernverfahren für das Kennfeld eine Spezialisierung erfährt, wie folgt:

  • 1. Die Einspritzzeit wird, wie bisher auch, durch ein Grundkennfeld 20 dargestellt, welches bevorzugt ein Nur-Lesespeicher (ROM) ist, der durch zugeführte Betriebsgrößen, bei dem dargestellten Ausführungsbeispiel der Drehzahl n und einer Lastgröße (QL oder Drosselklappenstellung a) adressiert wird und, je nach Anzahl der in ihm vorhandenen Stützstellen und Anzahl der Interpolationsschritte in der entsprechend gewünschten Quantisierung einen Vorsteuerwert (tK) der zu diesen Adressen jeweils gehörenden Kraftstoffmenge ausgibt.
  • 2. Die Selbstanpassung (das adaptive Lernen) erfolgt mit Hilfe eines separaten sog. Faktorkennfelds 21, welches bevorzugt ein Schreiblesespeicher (RAM) ist und der ebenfalls und daher parallel von den gleichen Adressen (hier Drehzahl n und Last) angesteuert ist, wie das Grundkennfeld 20 auch. Vorzugsweise wird hierzu das Grundkennfeld 20 in bestimmte Bereiche vorgegebener Größe eingeteilt, wobei jedem Bereich ein Faktor aus dem Faktorkennfeld zugeordnet wird. Innerhalb dieser Bereiche wird dann die Ausgangsgröße tK des Grundkennfeldes mit dem jeweiligen, vom Faktorkennfeld ausgegebenen Faktor F an einer Einwirkungsstelle 22, vorzugsweise Multiplizierstelle,multipliziert.
  • 3. Dabei erfolgt die Anpassung durch das Faktorkennfeld nur in stationären Betriebspunkten.
  • 4. Der zweite grundlegende erfindungsgemäße Aspekt, der in Fig. 2 gleich mitangegeben ist, besteht darin, daß hauptsächlich zur Berücksichtigung multiplikativ einwirkender Störgrößen, also Störgrößen, die gleichförmig das gesamte Kennfeld beeinflussen können, durch einen sog. globalen Faktor berücksichtigt werden, der das gesamte Grundkennfeld 20 multiplikativ beeinflußt. Die Bildung des globalen Faktors kann dabei entweder abgeleitet werden aus dem gemittelten Wert des vom Regler 23 stammenden Regelfaktors RF oder aus dem schon erwähnten Faktorkennfeld 21, wobei der globale Faktor als Block 24 dargestellt ist und seine multiplikative Einwirkungsstelle auf den durch den jeweiligen Faktor F schon korrigierten Kennfeldwert tK bei 25 hat.
In order to ensure a rapid optimization of the map self-adaptation while taking into account both additive and multiplicative interference, the present invention essentially proposes the two embodiments which represent different aspects of the invention, namely the block 15 for FIG the adaptive learning of the precontrol, that is, the characteristic diagram, should be designed such that, as in the example of the electronic gasoline injection shown in FIG. 2 with superimposed lambda control, extreme value control or the like. shown, the learning process for the map is specialized as follows:
  • 1. The injection time is, as previously, represented by a basic map 20, which is preferably a read-only memory (ROM), which is addressed by supplied operating variables, in the illustrated embodiment the speed n and a load variable (Q L or throttle valve position a) and, depending on the number of support points available in it and the number of interpolation steps in the correspondingly desired quantization Output pilot value (t K ) of the fuel quantity associated with these addresses.
  • 2. The self-adaptation (adaptive learning) takes place with the aid of a separate so-called factor map 21, which is preferably a read-write memory (RAM) and which is also and therefore controlled in parallel by the same addresses (here speed n and load) as the basic map 20 too. For this purpose, the basic map 20 is preferably divided into specific areas of a predetermined size, each area being assigned a factor from the factor map. Within these ranges, the output variable t K of the basic map is then multiplied by the respective factor F output by the factor map at an action point 22, preferably a multiplication point.
  • 3. the adaptation by the factor characteristic field only in stationary operation This is done unkten p.
  • 4. The second basic aspect of the invention, which is also given in Fig. 2, consists in the fact that mainly to take into account multiplicative disturbance variables, i.e. disturbance variables that can influence the entire map, are taken into account by a so-called global factor that entire basic map 20 is influenced multiplicatively. The formation of the global factor can either be derived from the averaged value of the control factor RF originating from the controller 23 or from the already mentioned factor map 21, the global factor being shown as block 24 and its multiplicative point of action on the respective one Factor F has already corrected map value tK at 25.

Die Ausführungsform der Fig. 2 vervollständigt sich dann-noch durch die Regelschleife, gebildet von dem schon erwähnten Regler 23, der von einer geeigneten Meßeinrichtung 26 angesteuert ist, die eine als Istwert der Regelstrecke 'Brennkraftmaschine' zu behandelnde Ausgangsgröße (Lambda-Wert, Drehzahl, genauer gesagt Drehzahlschwankungen bei einer noch zu erläuternden Extremwertregelung oder dergleichen) erfaßt. Demnach ergibt sich entsprechend der Gesamtdarstellung der Fig. 2 - es versteht sich, daß die beiden Aspekte Faktorkennfeld und globaler Faktor auch für sich getrennt jeweils erfinderische Bedeutung haben, und selbstverständlich unabhängig voneinander eingesetzt werden können und in der Darstellung der Fig. 2 lediglich zur Gewinnung eines besseren Verständnisses für die erfindungsgemäße Gesamtkonzeption in ihrer gegenseitigen EinwirkungThe embodiment of FIG. 2 is then completed by the control loop, formed by the above-mentioned controller 23, which is controlled by a suitable measuring device 26, the output variable to be treated as the actual value of the control system 'internal combustion engine' (lambda value, speed , more precisely, fluctuations in speed in an extreme value control to be explained or the like) are detected. 2 - it goes without saying that the two aspects of the factor map and the global factor also have an inventive meaning separately and can of course be used independently of one another and in the illustration of FIG. 2 only for gain a better understanding of the overall concept according to the invention in their mutual influence

auf die Beeinflussung des Vorsteuerwerts dargestellt sind - die endgültige Einspritzzeit ti entsprechend Fig. 2 nach der folgenden Formel

Figure imgb0001
are shown on the influence of the pilot control value - the final injection time t i according to FIG. 2 according to the following formula
Figure imgb0001

Der globale Faktor GF wirkt multiplikativ und/oder additiv auf jeden der vom Kennfeld ausgegebenen Vorsteuerwerte; der aus dem Faktorkennfeld 21 herrührende Faktor F wirkt nur insoweit lokal. Deshalb auch
die parallele Ansteuerung mit den gleichen Eingangsadressen wie beim Grundkennfeld 20. Neben der mit 27 in Fig. 2 bezeichneten, die Regelstrecke bildenden Brennkraftmaschine ist noch ein Mittelwert-Bildungsblock 28 für den Regelfaktor RF vom Ausgang des Reglers 23 vorgesehen; dabei kann dann der globale Faktor aus dem jeweils gemittelten Regelfaktor RF oder aus dem Faktorkennfeld abgeleitet werden.
The global factor GF has a multiplicative and / or additive effect on each of the input control values output by the characteristic diagram; the factor F originating from the factor map 21 acts locally only to this extent. Therefore also
the parallel control with the same input addresses as for the basic map 20. In addition to the 27 strength in F. 2 designated, the controlled system internal combustion engine, a mean value formation block 28 is provided for the control factor RF from the output of the controller 23; the global factor can then be derived from the averaged control factor RF or from the factor map.

Im folgenden wird anhand der Darstellung der Fig. 3 genauer auf ein bevorzugtes Ausführungsbeispiel eines selbstanpassenden Kennfeldes mit Korrektur durch den globalen Faktor GF eingegangen sowie auf ein erstes mögliches Bestimmungs- oder Rechenverfahren für den Wert des globalen Faktors. Dabei zeigt die Darstellung der Fig. 3 detaillierter die Erzeugung eines Kraftstoffeinspritz-Vorsteuerwerts mit überlagerter Regelung einer Brennkraftmaschine, wobei diese Regelung, anders als beim Ausführungsbeispiel der Fig. 3 speziell als Extremwertregelung ausgebildet ist. Es sei noch bemerkt, daß in den Zeichnungen die jeweiligen Komponenten oder Blöcke dann, wenn sie von gleichem Aufbau sind und gleiche Funktionen erfüllen, identische Bezugszeichen tragen; unterscheiden sie sich in beiden lediglich geringfügig, dann weisen sie zusätzlich einen Beistrich oben auf. In Fig. 3 erfolgt die Steuerung der der Brennkraftmaschine 27 als Regelstrecke zuzumessenden Kraftstoffmenge über ein Kennfeld 12, dem wiederum als Eingangsgrößen (Adressen) die Drehzahl n und die Drosselklappenstellung DK (auch als Winkel a angebbar) zugeführt werden. Die Drosselklappe 29 ist von einem Fahrpedal 30 angesteuert. Die im Kennfeld abgespeicherte Einspritzzeit ti wird über Einspritzventile 31 in eine entsprechende Kraftstoffmenge QK umgesetzt; diese Kraftstoffmenge sowie die von der Drosselklappenstellung bestimmte Luftmenge QL werden der Brennkraftmaschine 27 zugeführt, wobeiin Abhängigkeit vom Lambda-Wert des Luftkraftstoffgemisches ein gewisses Drehmo- ment M bewirkt wird. Die Regelstrecke Brennkraftmaschine 27 kann dabei angenähert durch ihre durch den Block 27a dargestellte Integratorwirkung angenähert werden. Die Ausgangsgröße (Drehzahl n)der Brennkraftmaschine dient dann neben der Drosselklappenstellung wieder als Ansteuergröße für das Kennfeld 12.In the following, a preferred embodiment of a self-adapting map with correction by the global factor GF and a first possible determination or calculation method for the value of the global factor are discussed in more detail with reference to the illustration in FIG. 3. 3 shows in more detail the generation of a fuel injection pilot control value with superimposed control of an internal combustion engine, this control, in contrast to the exemplary embodiment of FIG. 3, being designed specifically as an extreme value control. It should also be noted that in the drawings, the respective components or blocks, if they have the same structure and perform the same functions, bear identical reference numerals; if they differ only slightly in both, then they also have a comma at the top. In FIG. 3, the fuel quantity to be metered to the internal combustion engine 27 as a controlled system is controlled via a map 12, to which the speed n and the throttle valve position D K (which can also be specified as angle a) are in turn supplied as input variables (addresses). The throttle valve 29 is controlled by an accelerator pedal 30. The injection time t i stored in the map is converted into a corresponding fuel quantity Q K via injection valves 31; this amount of fuel and the determined position of the throttle air flow Q L are supplied to the internal combustion engine 27, wherein in dependence on the lambda value of the air-fuel mixture a certain D rehmo- element M is effected. The controlled system internal combustion engine 27 can be approximated by its integrator effect represented by the block 27a. The output variable (speed n) of the internal combustion engine then serves, in addition to the throttle valve position, as a control variable for the characteristic diagram 12.

Dieses bisher beschriebene, reine Steuerungsverfahren wird durch eine auf dem Grundprinzip einer Extremwertregelung basierenden Regelung überlagert (es ist schon darauf hingewiesen worden, daß hier auch mit anderen Brennkraftmaschinen-Istwertausgangsgrößen gearbeitet werden kann, etwa Zusammensetzung des Abgases, Laufunruhe o. dgl.). Bei dem dargestellten Ausführungsbeispiel einer Extremwertregelung werden entweder die Luftmenge QL (beispielsweise über einen Bypass) mit einem vorgegebenen Hub AQL oder die Einspritzzeit ti mit einem Hub Ati gewobbelt. Hierzu notwendige Testsignale werden von einem Testsignalgenerator 32 erzeugt, wobei diese,je nach Art der Extremwertregelung,entweder auf die Kraftstoff- oder die Luftmenge wirkt, mit einer Wobbelfrequenz, die konstant oder aber drehzahlabhängig gewählt werden kann. Durch diese jeweiligen periodischen Änderungen von Luftmenge QL oder der der Brennkraftmaschine zugeführten Kraftstoffmenge ergeben sich, wie ohne weiteres einzusehen, Drehmomentänderungen, die auch als Drehzahländerungen durch eine Meßeinrichtung 33 erfaßt werden können, die diese Drehzahländerungen analysiert und in geeigneter Weise durch Amplituden und/oder Phasenauswertung auf die Wobbelfrequenzen und den Wobbeleinfluß bezieht. Der Meßeinrichtung 33 ist eine Sollwert-Istwertvergleichsstelle 34 nachgeschaltet, deren Ausgang mit einem Regler 35 verbunden ist, der einenRegelfaktor RF erzeugt, der unmittelbar für die Beeinflussung der vom Kennfeld ausgegebenen Werte dienen kann. Bei dem dargestellten Ausführungsbeispiel wird allerdings unterschiedlich verfahren, worauf gleich noch eingegangen wird.This pure control method described so far is overlaid by a control based on the basic principle of extreme value control (it has already been pointed out that other internal combustion engine actual value output variables can also be used here, such as the composition of the exhaust gas, uneven running or the like). In the exemplary embodiment of an extreme value control shown, either the air quantity Q L (for example via a bypass) is wobbled with a predetermined stroke AQ L or the injection time t i with a stroke At i . Test signals required for this are generated by a test signal generator 32, which, depending on the type of extreme value control, acts either on the fuel or the air quantity, with a wobble frequency which can be selected to be constant or depending on the speed. As a result of these respective periodic changes in the air quantity Q L or the fuel quantity supplied to the internal combustion engine, there are torque changes which can also be detected as a speed change by a measuring device 33 NEN, which analyzes these speed changes and appropriately relates to the wobble frequencies and the wobble influence by means of amplitudes and / or phase evaluation. The measuring device 33 is followed by a setpoint-actual value comparison point 34, the output of which is connected to a controller 35 which generates a control factor RF which can be used directly to influence the values output by the characteristic diagram. In the illustrated embodiment, however, the procedure is different, which will be discussed in a moment.

Dem vorzugsweise als Integrator ausgebildeten Regler 35 ist ein Block 36 zur Mittelwertbildung des Regelfaktors nachgeschaltet, der mit seinem Ausgang RF über einen Schalter S1 einzelne Kennfeld- bzw. Stützstellenwerte des Kennfeldes 12 beeinflußt. Die Beeinflussung kann dabei so erfolgen, wie in der Hauptanmeldung ausführlich erläutert, insbesondere also mit abnehmender Gewichtung im Umfeld des jeweils betroffenen Kennfeld- oder Stützstellenwerts.The controller 35, which is preferably in the form of an integrator, is followed by a block 36 for averaging the control factor, which, with its output RF, influences individual map or reference point values of the map 12 via a switch S1. The influencing can take place as explained in detail in the main application, in particular with decreasing weighting in the environment of the map or reference point value concerned in each case.

Ein Block 37 Bereichserkennung, der parallel von den Eingangsgrößen oder Adressen des Kennfeldes 12 angesteuert ist, dient zur Betätigung des Schalters S1 und weiterer Schalter S2 und S3, durch welche der Mittelwertbildner 36 und der Regler 35 auf jeweilige Anfangswerte zurückgesetzt werden können. Die Bereichserkennung 37 stellt fest, in welchem Bereich (auch Leerlauf, Teillast, Vollast und Schub) oder Einzugsbereich einer Stützstelle (1/2 Stützstellenabstand) sich die durch die Eingangsdaten DK und n zum Kennfeld 12 definierte Fahrkurve befindet und gibt dementsprechend die Einarbeitung des jeweils gemittelten Korrekturwerts RF in die zuletzt angesteuerte Stützstelle des Kennfeldes 12 und, über eine Querverbindung 38,zu einem Block 39 für die globale Faktorbildung, frei; bei gleichzeitiger Rücksetzung von Regler 35 und Mittelwertbildner 36 auf ihre Anfangswerte.A block 37 area detection, which is controlled in parallel by the input variables or addresses of the map 12, serves to actuate the switch S1 and further switches S2 and S3, by means of which the mean value generator 36 and the controller 35 can be reset to respective initial values. The area detection 37 determines in which area (also idling, partial load, full load and thrust) or the feed area of a support point (1/2 support point distance) that the characteristic data from the input data D K and n Field 12 defined driving curve is located and accordingly releases the incorporation of the respectively averaged correction value RF into the last activated support point of the map 12 and, via a cross connection 38, to a block 39 for global factor formation; with simultaneous resetting of controller 35 and averager 36 to their initial values.

Bei dem in Fig. 3 gezeigten Ausführungsbeispiel wirken die Ausgangsgröße GF des Blocks 39 für die globale Faktorbildung und der Regelfaktor RF als Ausgang des Reglers 35 nicht getrennt über jeweilige multiplikative Einflußstellen auf den Vorsteuerwert te aus dem Kennfeld 12 ein, sondern sind an einer gesonderten Multiplizier- oder auch Addierstelle 40 zusammengeführt und beeinflussen dann gemeinsam an der Multiplizierstelle 41 den jeweiligen te-Wert im Sinne einer Gesamtkorrektur. Daher erfolgt bei dem in Fig. 3 dargestellten Ausführungsbeispiel die Ermittlung des globalen Faktors GF aus dem Wert des gemittelten Regelfaktors, und zwar so, wie im folgenden im einzelnen genauer erläutert.In the exemplary embodiment shown in FIG. 3, the output variable GF of the block 39 for the global factor formation and the control factor RF as the output of the controller 35 do not act separately on the pilot control value te from the characteristic diagram 12 via respective multiplicative influence points, but are at a separate multiplier - Or also adding point 40 merged and then influence together at the multiplying point 41 the respective te value in the sense of an overall correction. Therefore, in the exemplary embodiment shown in FIG. 3, the global factor GF is determined from the value of the averaged control factor, specifically as explained in more detail below.

Verfahren I zur Ermittlung des globalen Faktors GFMethod I for determining the global factor GF

Bei Auftreten einer Kennfeldänderung wird festgestellt, in welchem Maß das Kennfeld verändert worden ist, wobei ein wählbarer, also vorgebbarer Prozentsatz dieser Änderung in den globalen FaktorGF übernommen wird. Jeder aus dem Kenfeld gewonnene oder interpolierte Steuerwert wird dann mit diesem globalen FaktorGF (über die Einfluß- oder Multiplizierstellen 40, 41) multipliziert, so daß der Faktor wie eine multiplikative Verschiebung aller Stützstellen wirkt.If a map change occurs, the extent to which the map has been changed is determined, with a selectable, that is to say a predetermined percentage of this change being adopted in the global factor GF. Each control value obtained or interpolated from the characteristic field is then multiplied by this global factor GF (via the influencing or multiplying points 40, 41), so that the factor is like a multiplicative tive shift of all support points works.

Entsprechend der Darstellung der Fig. 3 bildet der I-Regler 35 aus der Regeldifferenz den Regelfaktor RF, der über 40, 41 fortlaufend die aus dem Kennfeld interpolierte Stellgröße multiplikativ beeinflußt, wobei zunächst, nämlich zur Kennfeldadaption, bei einer Änderung der Motordrehzahl bzw. der Drosselklappenstellung und einem hierdurch bewirkten Verlassen des Einzugsbereichs einer Stützstelle der gemittelte Regelfaktor RF in das Kennfeld eingearbeitet wird, was nach der folgenden Formel geschieht

Figure imgb0002
mit SS = StützstellenwertAccording to the representation in FIG. 3, the I controller 35 forms the control factor RF from the control difference, which continuously and multiply influences the manipulated variable interpolated from the map via 40, 41, firstly, namely for map adaptation, when the engine speed or the engine speed changes Throttle valve position and a resultant leaving the catchment area of a support point, the averaged control factor R F is incorporated into the map, which is done according to the following formula
Figure imgb0002
with SS = support point value

Auf die Herleitung dieser Formel wird weiter unten eingegangen; gleichzeitig wird ein Teil dieser Korrektur auch in den globalen Faktor GF übernommen, wobei der Block 39 für die globale Faktorbildung entsprechend ausgebildet ist, beispielsweise auch als Mikroprozessor oder Mikrocomputer, um die entsprechenden Rechenarbeiten durchzuführen. Der globale Faktor wird dabei nach der folgenden Näherungsformel bestimmt:

Figure imgb0003

  • mit a = Einflußfaktor Auch diese Formel wird weiter unten noch genauer erläutert; der globale Faktor erhält demnach ein Integratorverhalten mit einer großen Zeitkonstante. Da eine Veränderung des globalen Faktors nur jeweils beim Kennfeldangleich durchgeführt wird, ist auch sichergestellt, daß ein größerer Kennfeldbereich zur Ermittlung des globalen Faktors herangezogen wird. Der globale Faktor und der Regelfaktor werden multiplikativ, wie in Fig. 3 bei 40 gezeigt, zu einer Gesamtkorrekturgröße verknüpft, die dann ebenfalls (bei 41) multiplikativ auf den aus dem Kennfeld interpolierten Steuerwert einwirkt.
The derivation of this formula is discussed below; At the same time, part of this correction is also adopted in the global factor GF, the block 39 being designed accordingly for the global factor formation, for example also as a microprocessor or microcomputer, in order to carry out the corresponding computing work. The global factor is determined using the following approximation:
Figure imgb0003
  • with a = influencing factor This formula is also explained in more detail below; the global factor therefore receives an integrator behavior with a large time constant. Since the global factor is only changed each time the map is adjusted, it is also ensured that a larger map area is available for determination global factor. The global factor and the control factor are multiplicatively linked, as shown in FIG. 3 at 40, to form an overall correction quantity, which then also acts (at 41) multiplicatively on the control value interpolated from the characteristic diagram.

Allgemein können Änderungen auf die Werte des Sollkennfeldes durch Einflüsse hervorgerufen werden, die vorzugsweise multiplikativ, was nämlich den Hauptanteil der Kennfeldänderungen überhaupt ausmacht, die aber auch additiv auf das gesamte Kennfeld wirken können, oder die die Struktur des Kennfeldes verändern.In general, changes to the values of the target map can be caused by influences, which are preferably multiplicative, which is the main part of the map changes at all, but which can also have an additive effect on the entire map, or which change the structure of the map.

Untersuchungen haben ergeben, daß, obwohl die beiden Einflußgrößen nur zum Teil getrennt werden können, eine optimale Korrektur der beiden Einflüsse durch das Nachführen der Stützstellen und des globalen Faktors vorgenommen werden kann. Dabei wird allerdings, je vollständiger eine multiplikative Beeinflussung des Kennfeldes durch den globalen Faktor erfaßt wird, die Einschwingzeit umso größer. Es ist daher sinnvoll, einen Kompromiß bei einer etwa 50 %igen multiplikativen Beeinflussung durch den globalen Faktor vorzunehmen, während der Rest durch Änderung der Stützstellen Berücksichtigung findet. Man erzielt daher durch die Einführung des globalen Faktors zusätzlich zu der Stützstellen-Adaption eine wesentlich bessere Kennfeldanpassung.Studies have shown that although the two influencing factors can only be partially separated, an optimal correction of the two influences can be made by tracking the reference points and the global factor. However, the more completely a multiplicative influence on the characteristic diagram is recorded by the global factor, the greater the settling time. It therefore makes sense to make a compromise in the case of an approximately 50% multiplicative influence by the global factor, while the rest is taken into account by changing the reference points. The introduction of the global factor therefore achieves a much better map adaptation in addition to the base point adaptation.

Wird das Fahrzeug über längere Zeiträume abgestellt, dann kann während dieser Zeit eine relativ starke Kennfeldverschiebung, beispielsweise durch veränderten Luftdruck, Temperatur u. dgl. auftreten. Wird eine solche "globale Änderung" nach dem Start teilweise auch in das Kennfeld mitübernommen, bis der globale Faktor neu ermittelt ist, dann ist nicht auszuschließen, daß sich hierdurch eine Verfälschung einer bereits richtig angeglichenen Kennfeldstruktur ergibt. Die Erfindung sieht daher Mittel vor, während einer gewissen Zeit nach dem Start ausschließlich den globalen Faktor zu ermitteln, was über dem Block Bereichserkennung 37 erfolgen kann, und erst dann, wenn der neue Wert des globalen Faktors erfaßt worden ist, auch das Kennfeld wieder zu aktualisieren. Damit andererseits vermieden werden kann, daß der globale Faktor auch dann neu ermittelt wird, wenn das Fahrzeug nur kurzfristig abgestellt worden ist, wird die weiter oben beschriebene Funktion der Ermittlung des globalen Faktors nur nach dem Warmlauf der Brennkraftmaschine aktiviert.If the vehicle is parked for long periods of time, a relatively strong one can occur during this time K ennfeldverschiebung, for example, by changing air pressure, and temperature. Like. occur. If such a "global change" is also included in the map after the start until the global factor is newly determined, it cannot be ruled out that this will result in a falsification of a map structure that has already been correctly adjusted. The invention therefore provides means for only determining the global factor for a certain time after the start, which can be done via the area detection block 37, and only then, when the new value of the global factor has been recorded, for the map to be closed again To update. So that, on the other hand, it can be avoided that the global factor is determined anew even if the vehicle has only been parked for a short time, the function of determining the global factor described above is activated only after the internal combustion engine has warmed up.

Die Ermittlung und Berechnung des globalen Faktors GF kann nach dem folgenden Grundprinzip durchgeführt werden:

  • Bei jedem Kennfeldangleich wird ein wählbarer Prozentsatz a des Regelfaktors in den globalen Faktor übernommen, nach folgender Formel oder Vorschrift:
    Figure imgb0004
    mit der Forderung, daß bei 1/a maliger Anwendung der Vorschrift 1) der gesamte (gemittelte) Regelfaktor übernommen werden soll.
    Figure imgb0005
    bzw.
    Figure imgb0006
    d.h. der globale Faktor wird bei jedem Angleich mit RFa multipliziert
    Figure imgb0007
The determination and calculation of the global factor GF can be carried out according to the following basic principle:
  • Each time a map is adjusted, a selectable percentage a of the control factor is adopted in the global factor, using the following formula or rule:
    Figure imgb0004
    with the requirement that the entire (averaged) control factor should be adopted if the regulation 1) is applied once.
    Figure imgb0005
    respectively.
    Figure imgb0006
    ie the global factor is multiplied by RFa with each adjustment
    Figure imgb0007

Der dem Kennfeld entnommene Steuerwert wird nach der Interpolation zusätzlich mit dem neuen globalen Faktor multipliziert:

Figure imgb0008
wobei SS der Steuer- oder Stützstellenwert aus dem Kennfeld ist.After the interpolation, the control value taken from the map is additionally multiplied by the new global factor:
Figure imgb0008
where SS is the control or support point value from the map.

Um einen Stellgrößensprung zu vermeiden, darf deshalb nicht der gesamte Regelfaktor in das Kennfeld eingearbeitet werden.In order to avoid a jump in the manipulated variable, the entire control factor must not be incorporated into the map.

Forderung: Stellgröße alt = Stellgröße neu bzw.

Figure imgb0009
Figure imgb0010
Figure imgb0011
zu 3):Requirement: manipulated variable old = manipulated variable new or
Figure imgb0009
Figure imgb0010
Figure imgb0011
to 3):

Der globale Faktor kann bei einer Realisierung im Kraftfahrzeug näherungsweise nach folgender Vorschrift 5) berechnet werden, um den Rechenaufwand zu reduzieren. (Gute Näherung bei GF - 1)

Figure imgb0012
zu 4) :When implemented in a motor vehicle, the global factor can be calculated approximately according to the following regulation 5) in order to reduce the computational effort. (Good approximation with GF - 1)
Figure imgb0012
to 4):

Der Einflußfaktor 'a' wird in der Praxis sehr klein gewählt: a « 1. Deshalb kann er mit guter Näherung gegen 1 vernachlässigt werden, und man erhält:

Figure imgb0013
wie weiter vorn erwähnt.In practice, the influencing factor 'a' is chosen to be very small: a «1. Therefore, with a good approximation to 1, it can be neglected, and one obtains:
Figure imgb0013
as mentioned earlier.

Weitere Untersuchungen haben ergeben, daß der gleichförmige Anteil einer Kennfeldkorrektur bei der soeben angegebenen Art der Berechnung nur zum Teil im globa- len Faktor erfaßt wird, weil dieser Anteil solange, wie der globale Faktor seinen Endwert noch nicht erreicht hat, ins Kennfeld übernommen wird.Further investigation revealed that the uniform percentage is detected a map correction in just given type of calculation only partly in g loba- len factor because this proportion is as long as the global factor has not yet reached its final value, transferred to the map .

Die nachfolgend anhand der Darstellung der Fig. 4-7 ungegebenen Diagrammverläufe, die Endwert und Einschwingverhalten des globalen Faktors (bei Fig. 7 mit unterschiedlichem Einflußfaktor) betreffen, ergeben sich aus weiteren Messungen und Untersuchungen, die durchgeführt worden sind zur Klärung, wie sich eine gleichförmige Änderung in der Praxis auf den globalen Faktor und das Kennfeld verteilt. Zu diesem Zweck wurde ein Istkennfeld (entspricht dem Kennfeld des Regelgeräts), ein Sollkennfeld (entspricht den Idealwerten für den Motor), ein Durchlaufgenerator (entspricht der vom Fahrer erzeugten Fahrkurve) definiert und die in den weiter vorn in den Vorschriften 5) und 6) angegebene Lernstrategie zugrundegelegt. Die Überprüfung kann durch eine Rechnersimulation realisiert werden, wobei, ohne daß hierdurch die Aufteilung des gleichförmigen Anteils der Kennfeldkorrektur beeinflußt wird, ein möglicher Kennfelddurchlauf auf einen Kennliniendurchlauf reduzierbar ist. Der Durchlaufgenerator erzeugt die Adresse der aktuellen Stützstelle des Kennfeldes; der Quotient aus Soll- und Iststützstelle wird direkt als Korrekturfaktor verwendet und von der jeweiligen Lernstrategie auf den globalen Faktor und das Kennfeld verteilt. Dabei wird der Ablauf (die Simulation) solange fortgeführt, bis das System sich stabilisiert hat, d.h. bis der globale Faktor sich nicht mehr ändert. Variiert man mit verschiedenen Parametern, beispielsweise des Einflußfaktors, der Anzahl der vom Durchlaufgenerator angesteuerten aktiven Stützstellen, der Größe und Struktur der Abweichung des Sollkennfeldes vom Istkennfeld, der Art des Durchlaufs (sequentiell, zufällig), dann ergeben sich die in den Fig. 4-7 niedergelegten Kurvenverläufe, wobei die Fig. 4 den in den globalen Faktor übernommenen Anteil der gleichförmigen Abweichung, normiert auf die Gesamtabweichung des Sollkennfeldes, in Abhängigkeit zum Einflußfaktor a darstellt; der Einflußfaktor a ist logarithmisch aufgetragen. Dabei bezieht sich der Kennlinienverlauf I der Fig. 4 auf acht aktive Stützstellen bei

Figure imgb0014
die Kennlinie II auf 16 aktive Stützstellen bei gleichen Bedingungen; die Kennlinie III auf eine Näherung ohne Multiplikation, Division mit Abweichung = 20 % und die Kennlinie IV auf eine Abweichung = 100 %.The diagram curves, which are given below with reference to the representation of FIGS. 4-7 and relate to the final value and transient behavior of the global factor (in FIG. 7 with a different influencing factor), result from further measurements and examinations which have been carried out to clarify how a uniform change in practice distributed over the global factor and the map. For this purpose, a Actual map (corresponds to the map of the control device), a target map (corresponds to the ideal values for the engine), a continuous flow generator (corresponds to the driving curve generated by the driver) and is based on the learning strategy specified in regulations 5) and 6) above. The check can be carried out by means of a computer simulation, it being possible for a possible map run to be reduced to one run without influencing the distribution of the uniform portion of the map correction. The run generator generates the address of the current support point of the map; the quotient of the target and actual support point is used directly as a correction factor and is distributed from the respective learning strategy to the global factor and the map. The process (the simulation) continues until the system has stabilized, ie until the global factor no longer changes. If you vary with different parameters, for example the influencing factor, the number of active support points controlled by the run generator, the size and structure of the deviation of the target map from the actual map, the type of run (sequential, random), then the result in FIGS. 7 recorded curve profiles, FIG. 4 depicting the proportion of the uniform deviation adopted in the global factor, normalized to the total deviation of the target characteristic map, as a function of the influencing factor a; the influencing factor a is plotted logarithmically. The course of the characteristic curve I in FIG. 4 relates to eight active support points
Figure imgb0014
the characteristic curve II to 16 active support points under the same conditions; the characteristic curve III on an approximation without multiplication, division with deviation = 20% and the characteristic curve IV on a deviation = 100%.

Die Kurvenverläufe in den Fig. 5, 6 und 7 zeigen die verschiedenen Stadien zweier Simulationsläufe. Die Diagramme zeigen die sequentiell durchlaufene Kennlinie (Stützstellen 1-8) und die Werte der Stützstellen und des globalen Faktors während eines Durchlaufs von SS1 nach SS8. Bei großem Einflußfaktor a = 0,5 (Fig. 5 und 6) wird zwar ein Großteil der Änderung vom globalen Faktor erfaßt (Endwert nach dem 20. Durchlauf = 80 %); das System stabilisiert sich aber wesentlich langsamer (20 Durchläufe bei a = 0,5, verglichen mit 4 Durchläufen bei a = 0,0625), und der Einschwingvorgang verläuft unruhiger.The curves in FIGS. 5, 6 and 7 show the different stages of two simulation runs. The diagrams show the sequential characteristic curve (nodes 1-8) and the values of the nodes and the global factor during a cycle from SS1 to SS8. With a large influencing factor a = 0.5 (FIGS. 5 and 6), a large part of the change is recorded by the global factor (final value after the 20th run = 80%); however, the system stabilizes much more slowly (20 runs at a = 0.5, compared to 4 runs at a = 0.0625), and the settling process is more restless.

Die folgenden Berechnungen betreffen den sich jeweils ergebenden Endwert, der von verschiedenen Einflußgrößen abhängig ist:

Figure imgb0015
mit
Figure imgb0016
Figure imgb0017
The following calculations relate to the resulting final value, which depends on various influencing factors:
Figure imgb0015
With
Figure imgb0016
Figure imgb0017

Der Endwert ist vom PRODUKT des Einflußfaktors und der aktiven Stützstellen abhängig. (Doppeltes 'a' und halbe SS-Anzahl ergeben denselben Endwert.)The final value depends on the PRODUCT of the influencing factor and the active support points. (Double 'a' and half the SS number result in the same final value.)

Diese Abhängigkeit ist allerdings nur im linearen Teil der Kennlinien der Fig. 4 (bei Endwert = 50 %, Wendepunkt) erfüllt.

Figure imgb0018
Figure imgb0019
Figure imgb0020
However, this dependency is only fulfilled in the linear part of the characteristic curves in FIG. 4 (at final value = 50%, turning point).
Figure imgb0018
Figure imgb0019
Figure imgb0020

Der maximal erreichbare Endwert ist direkt von der Anzahl der aktiven Stützstellen abhängig. Er beträgt bei SSA = 8 87,5 % der gleichförmigen Kennfeldänderung, bei SSA = 16 93,75 %, bei SSA = 20 95 % etc.

Figure imgb0021
für unendliche SS-Anzahl
Figure imgb0022
mit SSK = Anzahl der zu korrigierenden StützstellenThe maximum attainable end value is directly dependent on the number of active support points. With SSA = 8 it is 87.5% of the uniform map change, with SSA = 16 93.75%, with SSA = 20 95% etc.
Figure imgb0021
for infinite number of SS
Figure imgb0022
with SSK = number of support points to be corrected

Der Endwert ist vom Verhältnis der zu korrigierenden Stützstellen zur Gesamtzahl der aktiven Stützstellen abhängig. (Ist nur 1/4 der aktiven Stützstellen mit einer Korrektur beaufschlagt, beträgt der globale Faktor auch nur 1/4 des möglichen Endwerts.)The final value depends on the ratio of the points to be corrected to the total number of active points. (If only 1/4 of the active reference points are corrected, the global factor is only 1/4 of the possible final value.)

Allgemein:

  • Variiert der Betrag der Korrektur von Stützstelle zu Stützstelle, so kann zur Berechnung des Endwerts des globalen Faktors der Mittelwert aller Korrekturen herangezogen werden.
    Figure imgb0023
    mit ΣKorr.i = Summe der individuell unterschiedlichen-.Stützstellenkorrek- tur
General:
  • If the amount of the correction varies from point to point, the mean of all corrections can be used to calculate the final value of the global factor.
    Figure imgb0023
    with ΣCorr.i = sum of the individually different -. support point correction

h) Der Endwert ist unabhängig von der Art des Durchlaufs.h) The final value is independent of the type of run.

Allerdings ist die Einschwingdauer unterschiedlich. (Bei sequentiellem Durchlauf: SS1 → SS8, SS1 + ... ergibt sich eine kleinere Einschwingdauer als bei sequentiellem VOR/RÜCK-Durchlauf: SS1 → SS8, SS8 → SS1, SS1 + ....However, the settling time is different. (With sequential run: SS1 → SS8, SS1 + ... there is a shorter settling time than with sequential FORWARD / BACK run: SS1 → SS8, SS8 → SS1, SS1 + ....

Bei Adreßvorgabe durch einen Pseudozufallsgenerator ergibt sich für große Einflußfaktoren (a > 1/3) eine kürzere Einschwingdauer, während für kleine Einflußfaktoren längere Einschwingdauer auftritt.If the address is specified by a pseudo-random generator, the settling time is shorter for large influencing factors (a> 1/3), while the settling time is longer for small influencing factors.

Bei multiplikativer Berechnung des globalen Faktors nach der vorne angegebenen Formel 3) bestimmt sich der globale Faktor zu:

Figure imgb0024
und es ergeben sich niedrigere Endwerte als bei additiver Berechnung nach Gleichung 5). Der Faktor beträgt:
Figure imgb0025
With multiplicative calculation of the global factor using the formula 3) given above, the global factor is determined as follows:
Figure imgb0024
and there are lower final values than with additive calculation according to equation 5). The factor is:
Figure imgb0025

Der Verlauf der Endwertkennlinie entspricht (um E = 0,5) dem Verlauf bei additiver Berechnung. Die Einschwingdauer ist nahezu identisch.The course of the end value characteristic curve (around E = 0.5) corresponds to the course with additive calculation. The settling time is almost identical.

Bei der Anwendung im Kraftfahrzeug ist aus Rechenzeitgründen ein Verfahren, das ohne Multiplikation und Division auskommt, besser geeignet. In diesem Fall wird die aus dem Kennfeld interpolierte Stellgröße nicht zusätzlich mit dem globalen Faktor multipliziert, sondern Regelfaktor und globaler Anteil werden vor der Multiplikation mit dem interpolierten Kennfeldwert addiert.

Figure imgb0026
When used in a motor vehicle, for reasons of computing time, there is a method that can be used without multiplication and Di vision gets along, more suitable. In this case, the manipulated variable interpolated from the map is not additionally multiplied by the global factor, but the control factor and global share are added before the multiplication with the interpolated map value.
Figure imgb0026

Kennfeldanpassung:

Figure imgb0027
Figure imgb0028
Zur Berechnung der neuen Stützstelle ist damit eine Division nötig. Dieser aufwendige Rechenvorgang kann, wie schon bei der multiplikativen Verknüpfung von Regelfaktor und globalem Faktor durch Gleichung 6) angenähert werden.
Figure imgb0029
Map adjustment:
Figure imgb0027
Figure imgb0028
A division is therefore required to calculate the new base. As with the multiplicative combination of control factor and global factor, this complex calculation process can be approximated by equation 6).
Figure imgb0029

Es ergeben sich hierbei dieselben Endwerte wie bei der Stützstellenberechnung mit Division. Die Einschwingdauer ist sogar erheblich kürzer.This results in the same final values as in the calculation of base points with division. The settling time is even considerably shorter.

Allerdings ist bei additiver Berechnung der Endwert generell von der Größe der erforderlichen Stützstellenkorrektur abhängig. Bei großer Korrektur und großem Einflußfaktor ergeben sich wesentlich höhere Werte für den globalen Faktor als nach Fig. 4, Kennlinie I zu erwarten. (Vergl. Kennlinie III und VI.)However, in the case of additive calculation, the final value generally depends on the size of the required point correction. With a large correction and a large influencing factor, significantly higher values for the global factor than in FIG. 4, characteristic curve I result expect. (Compare characteristic curves III and VI.)

Bei einer Kennfeldverschiebung von +100 % ergeben sich ab einem Einflußfaktor von a = 0,14 sogar negative Werte für den globalen Faktor. Außerdem verlängert sich die Einschwingdauer erheblich.With a map shift of +100%, an influence factor of a = 0.14 even results in negative values for the global factor. In addition, the settling time is extended considerably.

Der Einflußfaktor sollte bei einem derartigen Verfahren nicht größer als a = 0,1 gewählt werden, falls Kennfeldverschiebungen >20 % auftreten können.With such a method, the influencing factor should not be chosen to be greater than a = 0.1 if map changes> 20% can occur.

Selbstanpassung mit Faktor-KennfeldSelf-adjustment with factor map

In dem Blockschaltbild der Fig. 8 ist das Grundprinzip eines selbstanpassenden Kennfeldes (lernende Vorsteuerung) in schematisiert vereinfachter Blockbilddarstellung angegeben; der Kennfeldbereich ist in ein Grundkennfeld 20, vorzugsweise in Form eines Festwertspeichers (ROM) unterteilt, in welchem entsprechende Daten in Form von Stützstellen abgespeichert sind, wobei Zwischenwerte durch eine lineare Interpolation berechnet werden können. Die Anzahl der Stützstellen und interpolierten Zwischenwerte werden entsprechend der geforderten Quantisierung für das jeweils betroffene Steuer/Regelverfahren festgelegt; bei der Bestimmung von Kraftstoffeinspritzwerten, die auch bei diesem Ausführungsbeispiel der Erläuterung der Erfindung dienen, kann die Quantisierung so gewählt werden, daß das Kennfeld 16 * 16 Stützstellen umfaßt, mit jeweils 15 Zwischenwerten.The block principle of FIG. 8 shows the basic principle of a self-adapting map (learning pilot control) in a schematically simplified block diagram representation; the map area is subdivided into a basic map 20, preferably in the form of a read-only memory (ROM), in which corresponding data are stored in the form of reference points, intermediate values being able to be calculated by a linear interpolation. The number of interpolation points and interpolated intermediate values are determined in accordance with the required quantization for the respective control process; When determining fuel injection values, which also serve to explain the invention in this exemplary embodiment, the quantization can be selected such that the map comprises 16 * 16 reference points, each with 15 intermediate values.

Die Selbstanpassung erfolgt mit Hilfe eines zweiten oder separaten, sogenannten Faktorkennfeldes 21, welches vorzugsweise als Schreiblesespeicher (RAM) ausgebildet ist und in welchem die Selbstanpassungswerte abgelegt werden. Dabei ist das Grundkennfeld in Bereiche unterteilt, wobei jedem Bereich ein Faktor des Faktorkennfeldes 21 zugeordnet ist. Der interpolierte Ausgangswert des Grundkennfeldes 20 wird dann jeweils mit dem dazugehörigen Faktor oder mit einem aus mehreren Faktoren interpolierten Wert multipliziert, und zwar an der Multiplikationsstelle 22 bei dem Ausführungsbeispiel der Fig. 8. Bei diesem Ausführungsbeispiel sind für das Faktorkennfeld 8 * 8 Faktoren vorgesehen, die jeweils die Ausgangswerte "1.0" haben und im Laufe des Anpassungsvorgangs entsprechende Änderungen erfahren.The self-adaptation takes place with the aid of a second or separate, so-called factor map 21, which is preferably designed as a read-write memory (RAM) and in which the self-adaptation values are stored. The basic map is divided into areas, each area being assigned a factor of the factor map 21. The interpolated output value of the basic characteristic diagram 20 is then multiplied in each case by the associated factor or by a value interpolated from several factors, specifically at the multiplication point 22 in the exemplary embodiment in FIG. 8. In this exemplary embodiment, 8 * 8 factors are provided for the factor characteristic diagram. which each have the initial values "1.0" and undergo corresponding changes in the course of the adaptation process.

Der endgültige Einspritzwert entsteht dann durch eine Multiplikation des vom Grundkennfeld herausgegebenen Grundwerts tK, des Faktors F aus dem Faktorkennfeld 21 und des jeweils aktuellen Regelfaktors RF aus der Regelschleife (nachgeschaltete Multiplikationsstelle 25) sowie eines weiteren, evtl. Korrekturfaktors zu:

Figure imgb0030
The final injection value is then obtained by multiplying the basic value t K issued by the basic map, the factor F from the factor map 21 and the current control factor RF from the control loop (downstream multiplication point 25) as well as a further, possibly correction factor to:
Figure imgb0030

Beim Wechsel des Arbeitspunktes in einen anderen Bereich mit einem anderen Faktor F des Faktorkennfelds 21 tritt in der Ausgangsgröße ein Sprung auf, der, wenn dieser störend sein sollte, durch ein entsprechendes Setzen des Regelfaktors RF vermieden werden kann. Es kann auch sinnvoll sein, zwischen den einzelnenWhen the operating point changes to another area with a different factor F of the factor map 21, a jump occurs in the output variable, which, if this should be disruptive, can be avoided by correspondingly setting the control factor RF. It can also be useful between individuals

Faktoren F im Faktorkennfeld 21 zu interpolieren; auf den Einfluß einer solchen Interpolation auf das Lernverfahren wird weiter unten noch eingegangen. Die Anpassung der im Faktorkennfeld 21 abgelegten Faktoren erfolgt nach der folgenden Formel:

Figure imgb0031
Interpolate factors F in the factor map 21; the influence of such an interpolation on the learning process will be discussed further below. The factors stored in factor map 21 are adjusted using the following formula:
Figure imgb0031

Solange daher ein Bereich im Grundkennfeld 20 angesteuert wird, wird der Regelfaktor RF gemittelt und der dazugehörige Faktor F über den zwischengeschalteten Block 40 Lernverfahren für das Faktorkennfeld verändert.Therefore, as long as an area in the basic map 20 is controlled, the control factor RF is averaged and the associated factor F is changed via the interposed block 40 learning method for the factor map.

Hierbei wird zunächst auf die Darstellung der Fig. 9 verwiesen, der ein mögliches Grundkennfeld 20 mit seinen 16 * 16 Stützstellen entnommen werden kann, in numerischen Werten zeigt dieses Grundkennfeld die jeweilige Dauer von Kraftstoffeinspritzimpulsen t i in Abhängigkeit zur Drosselklappenstellung DK (= Y) und zur Drehzahl n (= X). In dem Kennfeld der Fig. 9 sind Gebiete mit und ohne Schraffur dargestellt; wobei diese Gebiete mit und ohne Schraffur (insgesamt also 64 Bereiche) den jeweiligen Einzugbereich andeuten, für die dann ein (gemeinsamer) Faktor im Faktorkennfeld 21 abgespeichert ist. Wie schon erwähnt, verfügt in diesem vorliegenden Fall das Faktorkennfeld dann über 8 * 8 Faktoren, und es versteht sich, daß die Einteilung der in Fig. 9 dargestellten Einzugsbereiche beliebig wählbar ist.Here, reference is first made to the illustration in FIG. 9, from which a possible basic map 20 with its 16 * 16 reference points can be found; in numerical values, this basic map shows the respective duration of fuel injection pulses ti as a function of the throttle valve position DK (= Y) and for Speed n (= X). Areas with and without hatching are shown in the map of FIG. 9; these areas with and without hatching (a total of 64 areas) indicate the respective catchment area, for which a (common) factor is then stored in the factor map 21. As already mentioned, the factor map then has 8 * 8 factors in this case, and it goes without saying that the division of the catchment areas shown in FIG. 9 can be chosen as desired.

Der Anpassungsvorgang für einen Faktor läuft dann so ab, wie schematisch in Fig. 10 dargestellt, wobei das Diagramm bei a) in Fig. 10 einen Auszug aus dem Grundkennfeld 20 angibt mit einer eingezeichneten Fahrkurve und dem jeweiligen Einzugsgebiet für den gewählten (einen) Faktor. Bei A kommt die Fahrkurve in diesen Einzugsbereich,und bei B wird der Einzugsbereich von der Fahrkurve wieder verlassen.The adjustment process for a factor then runs like this 10, as shown schematically in FIG. 10, the diagram at a) in FIG. 10 indicating an extract from the basic characteristic map 20 with a drawn driving curve and the respective catchment area for the selected (one) factor. At A the driving curve comes into this catchment area, and at B the catchment area is left again by the driving curve.

Entsprechend ist bei b) in Fig. 10 der Verlauf des Regelfaktors RF über der Zeit dargestellt. Nach dem Eintreten in den Einzugsbereich bei a) wird nach einer vorgegebenen Einschwingverzögerung, die bestimmbar ist, der Regelfaktor gemittelt, wobei eine vorgegebene Mindest-Mittelungsdauer eingehalten werden muß, die in der Darstellung der Fig. 10 ebenfalls angegeben ist. Beim Verlassen des Einzugsbereichs durch die Fahrkurve bei B oder nach jeweils einer zeitlich vorgebbaren Mittelungsdauer wird dann der gemittelte Regelfaktor RF nach der weiter vorn soeben schon angegebenen Formel in den Faktor F eingerechnet.Correspondingly, the course of the control factor RF over time is shown at b) in FIG. 10. After entering the catchment area at a), the control factor is averaged after a predetermined settling delay, which can be determined, whereby a predetermined minimum averaging period must be observed, which is also indicated in the illustration in FIG. 10. When leaving the catchment area through the driving curve at B or after a predefinable averaging period, the averaged control factor RF is then included in the factor F according to the formula just given earlier.

Durch die angegebene Einschwingverzögerung und die minimale Mittelungsdauer wird zwischen stationären und dynamischen Betriebspunkten unterschieden; es ist weiter vorn schon erwähnt worden, daß die Anpassung nur im stationären Bereich sinnvoll ist, wobei diese zusätzlich bei Warmlauf, Nachstart, Schubabschneiden und bei Beschleunigungsanreicherung unterbunden wird; Aufgaben, die ebenfalls durch den Bereichserkennungsblock 37 der Fig. 3 wahrgenommen werden können, unter verständlicher Würdigung der Maßgabe, daß entsprechende Funktions- und Wirkungsabläufe auch teilweise oder ganz, beispielsweise in Form von Programmen, durch entsprechend geeignete Rechnersysteme, Mikrocomputer o. dgl. durchgeführt und insoweit realisiert werden können.The specified settling delay and the minimum averaging time distinguish between stationary and dynamic operating points; it has already been mentioned above that the adjustment is only sensible in the stationary area, this being additionally prevented during warm-up, post-start, thrust cutting and during acceleration enrichment; Tasks that can also be performed by the area recognition block 37 of FIG. 3, with an understandable assessment of the proviso that corresponding functional and operational sequences are also partially or completely, for example in the form of programs, can be carried out by means of suitable computer systems, microcomputers or the like and can be implemented to this extent.

Durch die Anordnung eines Faktorkennfelds 21 können unter Zugrundelegung entsprechend geeigneter Regelverfahren alle Fehlanpassungen des Grundkennfeldes 20 korrigiert werden, wobei alle diese Korrekturen nur in solchen Teilbereichen wirksam werden, die nicht zu selten im stationären Betrieb angefahren werden; es stellt daher eine vorteilhafte Ausgestaltung vorliegender Erfindung vor, additiv und/oder multiplikativ wirkende Störeinflüsse noch dadurch optimal und in Ergänzung zu der Anordnung eines Faktorkennfeldes zu berücksichtigen, daß insbesondere bei Einwirken gleichförmiger Störeinfluß-Anteile diese durch das Prinzip der globalen Faktorbildung noch berücksichtigt und korrigiert werden.By arranging a factor map 21 on the basis of suitable control methods, all mismatches of the basic map 20 can be corrected, all of these corrections only being effective in those subareas that are not frequently approached in stationary operation; It therefore presents an advantageous embodiment of the present invention, in which additive and / or multiplicative interfering influences are also optimally taken into account and in addition to the arrangement of a factor map, in particular when the influence of uniform interfering components is taken into account and corrected by the principle of global factor formation will.

Dabei zeigt die nachfolgend in Form einer Tabelle angegebene Aufteilung, welche Störgrößen im wesentlichen multiplikativ und welche additiv einwirken, sowie deren Charakter bei Verwendung in Verbindung mit einem Alpha-N-System (Drosselklappenstellung und Drehzahl als Haupteingangsgrößen für die Berechnung der Einspacitzzeit). Dabei sind die Zeiten, in denen sich diese Störgrößen ändern können, unterschiedlich.

Figure imgb0032
The breakdown given below in the form of a table shows which disturbance variables are essentially multiplicative and which are additive, and their character when used in conjunction with an Alpha-N system (throttle valve position and speed as the main input variables for calculating the injection time). The times in which these disturbance variables can change are different.
Figure imgb0032

Die Darstellung der Fig. 11 zeigt in größerem Detail die eingangs schon angesprochene Ermittlung des globalen Faktorwerts, wobei dieses erste Ermittlungsverfahren darin besteht, den einer Mittelung beim Block 28' unterworfenen Regelfaktor über einen Doppelschalter S4 auf zwei parallele Abschwächerblöcke 41, 42 zu schalten, zur separaten Beaufschlagung des aus der Darstellung der Fig. 8 schon bekannten Faktorkennfelds 21 sowie des Blocks 24' für den globalen Faktor, der, ebenso wie das Faktorkennfeld als Schreiblesespeicher (RAM) ausgebildet sein kann. Die Mittelung des Regelfaktors RF erfolgt,solange die Betriebspunkte in einem jeweils vorgegebenen Einzugsbereich des Grundkennfeldes 20 liegen. In vorgegebenen Zeitabschnitten oder dann, wenn dieser Einzugsbereich verlassen wird, erfolgt eine Anpassung des entsprechenden Faktors F, wie erläutert, wobei der globale Faktor GF nur bei Wechsel des Einzugsbereichs jeweils geändert wird. Entsprechend den im folgenden angegebenen Formeln verläuft die Anpassung für den jeweils neuen Faktor F des Faktorkennfeldes und den jeweils neuen globalen Faktor, wobei also immer ein Teil der mittleren Regelabweichung in den zugehörigen Faktor und ein weiterer Teil in den globalen Faktor eingearbeitet wird.

Figure imgb0033
Figure imgb0034
Figure imgb0035
The illustration in FIG. 11 shows in greater detail the determination of the global factor value already mentioned at the beginning, whereby this first determination method consists in switching the control factor subjected to averaging at block 28 ′ to two parallel attenuator blocks 41, 42 via a double switch S4 separate application of the from the Darstel 8 already known factor map 21 and block 24 'for the global factor, which, like the factor map, can be designed as a read-write memory (RAM). The averaging of the control factor RF takes place as long as the operating points lie in a respectively specified feed range of the basic map 20. The corresponding factor F is adjusted, as explained, in predetermined time intervals or when this feed area is left, the global factor GF being changed only when the feed area changes. The adjustment for the new factor F of the factor map and the respective new global factor follows the formulas given below, so that part of the mean control deviation is always incorporated into the associated factor and another part into the global factor.
Figure imgb0033
Figure imgb0034
Figure imgb0035

Der Ablauf dieses Lernverfahrens zur Ermittlung des globalen Faktors entsprechend Fig. 11 ist in Form eines Flußdiagramms auf Seite 37 angegeben, wobei dieses Verfahren als Verfahren I bezeichnet ist, während ein weiteres Verfahren zur Ermittlung des globalen Faktors als Verfahren II mit zwei Untervarianten im folgenden anhand der Darstellung der Fig. 12 zunächst mittels eines Blockschaltbilds und nachfolgend ebenfalls als Flußdiagramm auf den Seiten 38 und 39 als Zusatz zum Flußdiagramm auf Seite 37 angegeben ist.The course of this learning method for determining the global factor in accordance with FIG. 11 is given in the form of a flowchart on page 37, this method being referred to as method I, while another method for determining the global factor as method II with two sub-variants in the following the representation of FIG. 12 first by means of a block diagram and subsequently is also given as a flow chart on pages 38 and 39 as an addition to the flow chart on page 37.

Bei dem Blockschaltbild der Fig. 12 ist bemerkenswert, daß ein zusätzliches, also zweites Faktorkennfeld II vorgesehen und mit dem Bezugszeichen 21* bezeichnet ist, welches ebenfalls parallel zum Grundkennfeld 20 und erstem Faktorkennfeld I (Bezugszeichen 21') von den gleichen Eingangsdaten (hier Drehzahl und Last) als Adressen angesteuert ist und ebenfalls multiplikativ auf das Grundkennfeld wirkt, mit einer ersten Multiplikationsstelle bei 43 und einer zweiten Multiplikationsstelle bei 44, an welcher ein Gesamtkorrekturfaktor dann auf den vom Grundkennfeld 20 ausgegebenen jeweiligen te-Wert einwirkt. Das Faktorkennfeld II wird beim Start der Brennkraftmaschine jeweils auf "1.0" gesetzt und dann laufend angepaßt. Das Faktor- kennfeld I und der globale Faktor ändern sich zunächst nicht. Zusätzlich wird in einem Merkerkennfeld festgehalten, welche Faktoren angesteuert werden.In the block diagram of FIG. 12, it is noteworthy that an additional, i.e. second factor map II is provided and is designated by the reference symbol 21 * , which is also parallel to the basic map 20 and the first factor map I (reference symbol 21 ') from the same input data (in this case the speed and Last) is controlled as addresses and also has a multiplicative effect on the basic map, with a first multiplication point at 43 and a second multiplication point at 44, at which a total correction factor then acts on the respective te value output by the basic map 20. The factor map II is set to "1.0" at the start of the internal combustion engine and then continuously adjusted. The factor map I and the global factor do not initially change. In addition, a flag map shows which factors are controlled.

In vorgegebenen größeren Zeitabschnitten wird das Faktorkennfeld II dann ausgewertet, wobei die Abweichung des Mittelwerts aller Faktoren vom Anfangswert "1.0" in den globalen Faktor eingearbeitet wird (Verbindungsleitung 45 über einen Schalter 46), während die restliche "strukturelle" Abweichung von "1.0" in das Faktorkennfeld I eingearbeitet wird, wobei nur die angesteuerten Faktoren berücksichtigt werden. Danach wird das Faktorkennfeld II wieder auf "1.0" gesetzt, und es beginnt ein neuer Anpassungsvorgang in der gleichen Weise. Die Formeln, die bei dieser nach dem Verfahren II sich ergebenden Ermittlung des globalen Faktors gültig sind, sind im folgenden angegeben:

Figure imgb0036
The factor map II is then evaluated in predetermined larger time periods, the deviation of the mean value of all factors from the initial value "1.0" being incorporated into the global factor (connecting line 45 via a switch 46), while the remaining "structural" deviation from "1.0" in the factor map I is incorporated, whereby only the controlled factors are taken into account. Thereafter, the factor map II is reset to "1.0" and a new adjustment process begins in the same way. The formulas for this after the Method II resulting determination of the global factor are valid are given below:
Figure imgb0036

Aus den veränderten Stützstellen FII wird:

Figure imgb0037
The changed support points F II become:
Figure imgb0037

Ein entsprechendes Programm für dieses Ermittlungsverfahren II besteht aus zwei 'Teilen. Der erste Teil entspricht dem auf Seite 37 angegebenen Verfahren I mit der dort dargestellten Alternative, wobei der globale Faktor dort nicht eingerechnet wird (b = 0). Der zweite Teil ist ein zusätzliches Unterprogramm des Verfahrens I und ist als Flußdiagramm auf Seite38 dargestellt mit entsprechenden Angaben in Kreisen, wo die Einfügung vorgenommen werden soll.A corresponding program for this investigation II consists of two parts. The first part corresponds to the procedure I given on page 37 with the alternative shown there, whereby the global factor is not included (b = 0). The second part is an additional subroutine of method I and is shown as a flowchart on page 38 with corresponding information in circles where the insertion is to be made.

Schließlich ist es möglich, daß Ermittlungsverfahren II für den globalen Faktor im Bereich der Software so darzustellen, daß auf den Schreiblesespeicher (RAM) für das Faktorkennfeld II verzichtet werden kann und alle Rechenschritte nur mit dem Faktorkennfeld I durchgeführt werden; ein entsprechendes Teilflußdiagramm für dieses Verfahren ist auf Seite 39 dargestellt.Finally, it is possible to present the determination method II for the global factor in the area of the software in such a way that the read-write memory (RAM) for the factor map II can be dispensed with and all calculation steps are carried out only with the factor map I; a corresponding partial flow diagram for this process is shown on page 39.

Alle in der Beschreibung, den nachfolgenden Ansprüchen und der Zeichnung dargestellten Merkmale können sowohl einzeln als auch in beliebiger Kombination miteinander erfindungswesentlich sein.

Figure imgb0038
Figure imgb0039
Figure imgb0040
All features shown in the description, the following claims and the drawing can be essential to the invention both individually and in any combination with one another.
Figure imgb0038
Figure imgb0039
Figure imgb0040

Claims (18)

1. Verfahren zur Steuerung/Regelung von Betriebskenngrößen einer Brennkraftmaschine, mit einem von Betriebsgrößen der Brennkraftmaschine aufgespannten Kennfeld zur Vorsteuerung von die Betriebskenngrößen beeinflussenden Maschinenvariablen, wobei eine auf mindestens eine Maschinenvariable als Istwert empfindliche Regeleinrichtung die jeweils ausgegebenen Kennfeldwerte korrigierend beeinflußt (überlagerte Regelung) und wobei ferner die im Kennfeld gespeicherten und in Abhängigkeit von Betriebskenngrößen der Brennkraftmaschine angewählten Werte über die Regeleinrichtung zur Korrektur der Kennfeldwerte geändert werden (adaptive Vorsteuerung), dadurch gekennzeichnet, daß unter Zugrundelegung und Auswertung der Änderung der Kennfeldwerte ein vorgegebener Anteil dieser Änderung als zusätzlicher globaler Faktor (GF) übernommen und jeder aus dem Kennfeld, auch durch Interpolation, gewonnene und/oder additiv Steuerwert multiplikativYdurch den globalen Faktor (GF) beeinflußt wird, derart, daß sich eine multi- plikative und/oder additive Verschiebung aller Kennfeld-Stützstellen ergibt.1.Procedure for controlling / regulating operating parameters of an internal combustion engine, with a map spanned by operating parameters of the internal combustion engine for the pre-control of machine variables influencing the operating parameters, wherein a control device sensitive to at least one machine variable as the actual value has a corrective effect on the respective map values output (superimposed control) and wherein Furthermore, the values stored in the map and selected as a function of operating parameters of the internal combustion engine are changed via the control device for correcting the map values (adaptive feedforward control), characterized in that, based on and evaluating the change in the map values, a predetermined proportion of this change as an additional global factor ( GF) and everyone from the map, also by interpolation, and / or additive control value multiplied by the global factor (G F ) is influenced in such a way that s I result in a multiplicative and / or additive shift of all map support points. 2. Verfahren zur Steuerung/Regelung von Betriebskenngrößen einer Brennkraftmaschine, mit einem von Betriebsgrößen der Brennkraftmaschine aufgespannten Kennfeld zur Vorsteuerung von die Betriebskenngrößen beeinflussenden Maschinenvariablen, wobei eine auf mindestens eine Maschinenvariable als Istwert empfindliche Regeleinrichtung die jeweils ausgegebenen Kennfeldwerte korrigierend beeinflußt (überlagerte Regelung) und wobei ferner die im Kennfeld gespeicherten und in Abhängigkeit von Betriebskenngrößen der Brennkraftmaschine angewählten Werte über die Regeleinrichtung zur Korrektur der Kennfeldwerte geändert werden (adaptive Vorsteuerung), dadurch gekennzeichnet, daß ein vorgegebener Anteil des gemittelten Werts (RF) des von der Regeleinrichtung herausgegebenen Regelfaktors (RF) zur Bildung eines zusätzlichen globalen Faktors (GF) benutzt und jeder aus dem Kennfeld, auch durch Inter- und/oder additiv polation, gewonnene Steuerwert multiplikativYdurch den globalen Faktor (GF) beeinflußt wird, derart, daß sich eine multiplikative und/oder additive Verschiebung aller Kennfeld-Stützstellen ergibt.2.Procedure for controlling / regulating operating parameters of an internal combustion engine, with a map spanned by operating parameters of the internal combustion engine for the pre-control of machine variables influencing the operating parameters, wherein a control device sensitive to at least one machine variable as the actual value has a corrective effect on the respective map values output (superimposed control) and wherein Furthermore, the values stored in the map and selected as a function of operating parameters of the internal combustion engine are changed via the control device to correct the map values (adaptive feedforward control), characterized in that a predetermined proportion of the averaged value (RF) of the control factor (RF) issued by the control device used to form an additional global factor (GF) and each control value obtained from the map, also by interpolation and / or additive polation, multiplies Y by the global factor (GF) t is such that there is a multiplicative and / or additive shift of all map support points. 3. Verfahren zur Steuerung/Regelung von Betriebskenngrößen einer Brennkraftmaschine, mit einem von Betriebsgrößen der Brennkraftmaschine aufgespannten Kennfeld zur Vorsteuerung von die Betriebskenngrößen beeinflussenden Maschinenvariablen, wobei eine auf mindestens eine Maschinenvariable als Istwert empfindliche Regeleinrichtung die jeweils ausgegebenen Kennfeldwerte korrigierend beeinflußt (überlagerte Regelung) und wobei ferner die im Kennfeld gespeicherten und in Abhängigkeit von Betriebskenngrößen der Brennkraftmaschine angewählten Werte über die Regeleinrichtung zur Korrektur der Kennfeldwerte geändert werden (adaptive Vorsteuerung), dadurch gekennzeichnet, daß zur Selbstanpassung der Kennfeldwerte diese in ein von einem Festwertspeicher (ROM) gebildetes Grundkennfeld und in ein jeweils Korrekturen zugängliches Faktor-Kennfeld unterteilt werden, wobei bestimmte Bereiche des Grundkennfeldes durch jeweils einen aus dem Faktorkenn- feld abgeleiteten spezifisgnen Faktor multiplikativ und/oder additiv beeinflußt werden.3.Procedure for controlling / regulating operating parameters of an internal combustion engine, with a map spanned by operating parameters of the internal combustion engine for the pre-control of machine variables influencing the operating parameters, wherein a control device sensitive to at least one machine variable as the actual value has a correcting effect on the map data output in each case (superimposed control) and wherein also those in the map Stored and selected values depending on the operating parameters of the internal combustion engine can be changed via the control device to correct the map values (adaptive feedforward control), characterized in that for self-adaptation of the map values, these are converted into a basic map formed by a read-only memory (ROM) and into a factor accessible to corrections Map are divided, certain areas of the basic map being influenced multiplicatively and / or additively by a specific factor derived from the factor map. 4. Verfahren nach einem oder mehreren der Ansprüche 1-3, dadurch gekennzeichnet, daß der vom Grundkennfeld jeweils herausgegebene, durch Adressierung durch vorgegebene Betriebskenngrößen (Drehzahl, Last, Luftmenge, Drosselklappenstellung ...) ange- wählte Steuerwert sowohl durch multiplikative und/oder additive Beeinflussung durch den globalen Faktor (GF) als auch und/oder additive durch multiplikativeVBeeinflussung des jeweils ebenfalls in Abhängigkeit zu den als Adressen ausgewählten Betriebskenngrößen der Brennkraftmaschine angewählten Faktorwerts(F) des zusätzlichen Faktorkennfelds korrigiert wird.4. The method according to one or more of claims 1-3, characterized in that the control map issued in each case, by addressing by predetermined operating parameters (speed, load, air volume, throttle valve position ...) selected control value both by multiplicative and / or additive influencing by the global factor ( GF ) and / or additive by multiplicative influencing the factor value (F) of the additional factor map, which is also selected depending on the operating parameters of the internal combustion engine selected as addresses, is corrected. 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß der durch Mittelung des Regelfaktors unter Zugrundelegung eines vorgegebenen Einflußfaktors (a) ermittelte globale Faktor für c.e multiplika- tive und/oder additive Gesamtverschiebung der Kennfel werte und der aktuelle Regelfaktor (RF) multiplikativ und/oder additiv zu einem Gesamtkorrekturfaktor zusammengefaßt den jeweils vom Grundkennfeld herausgegebenen Steuerwert (t ) multiplikativ und/oder aditiv beeinflussen.5. The method according to claim 4, characterized in that the global factor determined by averaging the control factor on the basis of a predetermined influencing factor (a) for ce multiplicative and / or additive total shift of the characteristic values and the current control factor (RF) multiplicative and / or additive to one G summarized the esamtkorrekturfaktor respectively issued by the basic characteristic field control value (t) by multiplication and / or aditiv influence. 6. Verfahren nach einem der Ansprüche 1-5, dadurch gekennzeichnet, daß die Regeleinrichtung als Istwert der Maschinenvariablen die Abgaszusammensetzung (Lambda-Wert), die Laufruhe der Brennkraftmaschine, die Drehzahl der Brennkraftmaschine und dergleichen auswertet und mit dem gebildeten Regelfaktor (RF) zur aktuellen Regelung den von der Vorsteuerung herausgegebenen Steuerwert und über den gemittelten Regelfaktor parallel die Selbstanpassung der Vorsteuerung beeinflußt.6. The method according to any one of claims 1-5, characterized in that the control device as the actual value of the machine variables evaluates the exhaust gas composition (lambda value), the smooth running of the internal combustion engine, the speed of the internal combustion engine and the like and with the control factor (RF) formed current control influences the control value issued by the pilot control and, via the averaged control factor, the self-adaptation of the pilot control in parallel. 7. Verfahren nach einem oder mehreren der Ansprüche 1-6, dadurch gekennzeichnet, daß überwiegend multiplikativ wirkende Störgrößen (Lufttemperatur, Luftdruck, Kraftstoffdruck, Kraftstoffqualität ...) von dem das gesamte Grundkennfeld multiplikativ beeinflussenden globalen Faktor (GF) und überwiegend additiv einwirkende Störgrößen (Ventilabfall und Anzugszeiten, Potentiometerjustage, Klappenverschluß, Tankentlüftung ...) durch einzelne Faktoren des dem jeweiligen Grundkennfeld zugeordneten Faktorkennfelds berücksichtigt werden.7. The method according to one or more of claims 1-6, characterized in that predominantly multiplicative disturbance variables (air temperature, air pressure, fuel pressure, fuel quality ...) of the global characteristic (GF) which has a multiplicative influence on the entire characteristic map and predominantly additive disturbance variables (Valve drop and tightening times, potentiometer adjustment, flap closure, tank ventilation ...) are taken into account by individual factors of the factor map assigned to the respective basic map. 8. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß zur Ermittlung der einzelnen Faktoren (globaler Faktor und Faktor aus Faktorkennfeld) aus dem gemittelten Regelfaktor (RF) die Mitteilung des Regelfaktors solange durchgeführt wird, wie die jeweils von der Brennkraftmaschine angefahrene Betriebspunkte in einem jeweils vorgegebenen Einzugsbereich des Grundkennfelds liegen, und daß die Faktoren (globaler Faktor und Faktor aus Faktorkennfeld) jeweils beim Wechsel des Einzugsbereichs durch Einarbeitung eines vorgegebenen Anteils des gemittelten Regelfaktors geändert werden.8. The method according to claim 2, characterized in that the determination of the individual factors (global factor and factor from the factor map) from the averaged control factor (RF), the communication of the control factor is carried out as long as the Be started by the internal combustion engine drive points lie in a given catchment area of the basic map, and that the factors (global factor and factor from the factor map) are changed each time the catchment area is changed by incorporating a predetermined proportion of the averaged control factor. 9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß jeweils ein Teil vom gemittelten Regelfaktor (RF) in den globalen Faktor und ein Teil in den Faktor des Faktorkennfeldes eingearbeitet wird.9. The method according to claim 8, characterized in that a part of the averaged control factor (RF) is incorporated into the global factor and a part in the factor of the factor map. 10. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Anpassung des jeweiligen Faktors (F) des zusätzlichen Faktorkennfelds durch Zuführung des gemittelten Regelabweichungsfaktors (RF) und gleichzeitig durch Definition eines vorgegebenen Einzugsbereichs innerhalb des Grundkennfelds für diesen Faktor bewirkt wird, wobei dem zusätzlichen Faktorkennfeld als Adressen parallel die auch dem Grundkennfeld zur Ausgabe der Vorsteuergröße zugeführten Betriebskenngrößen zugeführt werden, wobei die Anpassung entweder in vorgegebenen Zeitabschnitten oder dann erfolgt, wenn der jeweils definierte Einzugsbereich im Grundkennfeld verlassen wird, und wobei jeweils ein vorgegebener Anteil der mittleren Regelabweichung in den zugehörigen Faktor (F) des zusätzlichen Faktorkennfelds eingearbeitet wird.10. The method according to claim 3, characterized in that the adaptation of the respective factor (F) of the additional factor map is effected by supplying the averaged control deviation factor (RF) and at the same time by defining a predetermined catchment area within the basic map for this factor, the additional factor map the operating parameters also supplied to the basic characteristic map for outputting the pilot control variable are supplied as addresses in parallel, the adjustment either taking place in predetermined time periods or when the respectively defined catchment area is left in the basic characteristic diagram, and each with a predetermined proportion of the mean control deviation in the associated factor (F) the additional factor map is incorporated. 11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß das Grundkennfeld (20) von einem Lesespeicher (ROM) und das zusätzliche Faktorkennfeld von einem Schreiblesespeicher (RAM) gebildet sind.11. The method according to claim 10, characterized in that the basic map (20) from a read-only memory (ROM) and the additional factor map from a read-write memory (RAM) are formed. 12. Verfahren nach Anspruch 11, dadurch.gekennzeichnet, daß nach dem Eintreten der Fahrkurve in einen vorgegebenen Einzugsbereich der Regelfaktor zunächst nach einer vorgegebenen Einschwingverzögerung gemittelt und anschließend eine vorgegebene minimale Mittelungsdauer eingehalten und nachfolgend entweder beim Verlassen des Einzugsbereichs oder nach einer bestimmten Mittelungsdauer der gemittelte Regelfaktor in den für diesen Finzugsbereich jeweils zuständigen Faktor (F) des zusätzlichen Faktorkennfelds addiert wird.12. The method according to claim 11, characterized.ge characterized in that after the occurrence of the driving curve in a predetermined catchment area, the control factor ge first after a predetermined settling delay averages and then adhered to a predetermined minimum ittelungsdauer M and below either of the additional factor map is added on leaving the feeding section or after a certain duration of averaging, the averaged control factor in the respectively responsible for this Finzugsbereich factor (F). 13. Verfahren nach Anspruch 1 oder einem oder mehreren der nachfolgenden Ansprüche 2-12, dadurch gekennzeichnet, daß ein weiteres, zweites Faktorkennfeld II definiert wird zur multiplikativen Einwirkung auf das Grundkennfeld, wobei dieses zweite Faktor- kennfeld II beim Start auf einen vorgegebenen Anfangswert (1.0) gesetzt und laufend angepaßt wird bei zunächst unveränderter Beibehaltung der Werte im ersten zusätzlichen Faktorkennfeld I und des globalen Faktors und daß in vorgegebenen (größeren) Zeitabschnitten das zusätzliche zweite Faktorkennfeld II ausgewertet, die Abweichung des Mittelwerts sämtlicher Faktoren vom Anfangswert in die Bildung des globalen Faktorwerts eingearbeitet und die restliche strukturelle Abweichung vom Anfangswert in das erste Faktorkennfeld I eingearbeitet wird, wobei lediglich die angesteuerten Faktoren berücksichtigt werden, woraufhin das zusätzliche zweite Faktorkennfeld II wieder auf den vorgegebenen Anfangswert gesetzt und ein neuer Anpassungsvorgang eingeleitet wird.13. The method according to claim 1 or one or more of the following claims 2-12, characterized in that a further, second factor map II is defined for multiplicative action on the basic map, this second factor map II at the start to a predetermined initial value ( 1.0) is set and continuously adjusted while the values in the first additional factor map I and the global factor are initially unchanged and that the additional second factor map II is evaluated in predetermined (longer) time segments, the deviation of the mean value of all factors from the initial value into the formation of the global one Factor value is incorporated and the remaining structural deviation from the initial value is incorporated into the first factor map I, only the controlled factors being taken into account, whereupon the additional second factor map II is reset to the predetermined initial value and a new adjustment process is carried out is passed. 14. Verfahren nach einem oder mehreren der Ansprüche 1-13, gekennzeichnet durch die Verwendung bei Ver- brennungsmotoren beliebiger Art, insbesondere selbstzündenden (Dieselmotoren) oder fremdgezündeten Brennkraftmaschinen (Otto-Motoren) mit Kraftstoffzumessung (gesteuerter Vergaser) oder mit intermittierender oder kontinuierlicher Einspritzung ferner Wankelmotor, Stirlingmotor, Gasturbine und dgl.14. The method according to one or more of claims 1-1 3, characterized by using at Ver - combustion engines of any type, in particular self-igniting (diesel engines) or spark-ignited internal combustion engines (petrol engines) with fuel metering (controlled carburetor) or with intermittent or continuous injection also Wankel engine, Stirling engine, gas turbine and the like. 15. Verfahren nach einem oder mehreren der Ansprüche 1-14, gekennzeichnet durch eine Verwendung in mindestens einem der Systeme für die Kraftstoffluftgemischzumessung, die Zündzeitpunktregelung, Ladedruckregelung, Abgasrückführrate, Leerlaufregelung u. dgl.15. The method according to one or more of claims 1-14, characterized by use in at least one of the systems for the fuel air mixture metering, the ignition timing control, boost pressure control, exhaust gas recirculation rate, idle control and the like. the like 16. Einrichtung zur Steuerung/Regelung von Betriebskenngrößen einer Brennkraftmaschine zur Durchführung des Verfahrens nach einem oder mehreren der Ansprüche 1-15, dadurch gekennzeichnet, daß dem Regler (23, 35, 23') ein Mittelwertbildner (28, 36, 28') für den Regelfaktor (RF) nachgeschaltet ist, dessen Ausgangssignal einer Anordnung (24, 39) zur Bildung eines globalen Faktors (GF) zugeführt ist, der an einer nachgeschalteten Multiplizierstelle (25) jeden vom Kennfeld (12, 20) herausgegebenen Steuerwert (te, tK) im Sinne einer multiplikativen Beeinflussung des gesamten Grundkennfelds korrigiert. Eimcichtung zur Steuerung/Regelung von Betriebskenngrößen einer Brennkraftmaschine zur Durchführung des Verfahrens nach einem oder mehreren der Ansprüche 1-15, dadurch gekennzeichnet, daß dem unveränderbaren Grundkennfeld (Lesespeicher; ROM) mindestens ein in seinen Einzelwerten durch den gemittelten Regelfaktor (RF) beeinflußbares Faktor- kennfeld (21, 21'; 21*) zugeordnet ist, wobei das mindestens eine Faktorkennfeld parallel zur Angabe vorgegebener Einzugsbereiche im Grundkennfeld von den gleichen Betriebskenngrößen adressiert ist wie das Grundkennfeld und daß jeder vom mindestens einen Faktorkennfeld (F) für einen vorgegebenen Einzugsbereich des Grundkennfelds herausgegebener Faktor (F) den jeweiligen Steuerwert des Grundkennfelds korrigiert. 16. A device for controlling / regulating operating parameters of an internal combustion engine for carrying out the method according to one or more of claims 1-15, characterized in that the controller (23, 35, 23 ') for averaging (28, 36, 28') for the control factor (RF) is connected downstream, the output signal of which is fed to an arrangement (24, 39) for forming a global factor (GF) which, at a downstream multiplication point (25), each control value (te, t K ) corrected in the sense of a multiplicative influence on the entire basic map. Device for controlling / regulating operating parameters of an internal combustion engine for carrying out the method according to one or more of claims 1-15, characterized in that the unchangeable basic map (read-only memory; ROM) has at least one factor which can be influenced in its individual values by the averaged control factor (RF). map (21, 21 '; 21 * ) is assigned, wherein the at least one factor map is addressed in parallel with the specification of specified catchment areas in the basic map by the same operating parameters as the basic map and that each of the at least one factor map (F) for a given catchment area of the basic map issued factor (F) corrects the respective control value of the basic map. 18. Einrichtung nach Anspruch 16 oder 17, dadurch gekennzeichnet, daß globaler Faktor (GF) und der jeweilige, aus dem Faktorkennfeld (21, 21') stammende Faktor (F) für einen vorgegebenen Einzugsbereich zusammengefaßt und einer gemeinsamen Multiplizierstelle (44) zur Bewirkung einer Gesamtkorrektur des vom Grundkennfeld jeweils herausgegebenen Steuerwerts im Sinne einer selbstanpassenden Vorsteuerung zugeführt werden.18. Device according to claim 16 or 17, characterized in that global factor (GF) and the respective, from the factor map (21, 21 ') originating factor (F) for a predetermined catchment area combined and a common multiplier (44) for effecting an overall correction of the control value issued by the basic map in the sense of a self-adapting pilot control. 19. Einrichtung nach Anspruch 17 oder 18, dadurch gekennzeichnet, daß neben dem ersten zusätzlichen Faktorkennfeld (21') ein weiteres Faktorkennfeld (21*) vorgesehen ist, welches unmittelbar vom gemittelten Regelfaktor (RF) beaufschlagt ist, wobei die Abweichung des Mittelwerts aller Faktoren des zusätzlichen Faktorkennfelds in vorgegebenen Zeitabschnitten zur Bildung des globalen Faktors ausgewertet und die restliche strukturelle Abweichung vom Anfangswert in die Werte des ersten zusätzlichen Faktorkennfelds (21, 21') eingearbeitet werden.19. Device according to claim 17 or 18, characterized in that in addition to the first additional factor map (21 ') a further factor map (21 * ) is provided, which is acted upon directly by the averaged control factor (RF), the deviation of the mean of all factors of the additional factor map are evaluated in predetermined time periods to form the global factor and the remaining structural deviation from the initial value is incorporated into the values of the first additional factor map (21, 21 ').
EP85115451A 1985-02-21 1985-12-05 Method and device for the controlling of and regulation method for the operating parameters of a combustion engine Expired - Lifetime EP0191923B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3505965 1985-02-21
DE19853505965 DE3505965A1 (en) 1985-02-21 1985-02-21 METHOD AND DEVICE FOR CONTROL AND REGULATING METHOD FOR THE OPERATING CHARACTERISTICS OF AN INTERNAL COMBUSTION ENGINE

Publications (3)

Publication Number Publication Date
EP0191923A2 true EP0191923A2 (en) 1986-08-27
EP0191923A3 EP0191923A3 (en) 1988-01-27
EP0191923B1 EP0191923B1 (en) 1990-09-05

Family

ID=6263108

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85115451A Expired - Lifetime EP0191923B1 (en) 1985-02-21 1985-12-05 Method and device for the controlling of and regulation method for the operating parameters of a combustion engine

Country Status (4)

Country Link
US (1) US4827937A (en)
EP (1) EP0191923B1 (en)
JP (1) JPH0823331B2 (en)
DE (2) DE3505965A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0221386A2 (en) * 1985-11-07 1987-05-13 Robert Bosch Gmbh Method and device for adapting the mixture control in an internal-combustion engine
EP0265079A2 (en) * 1986-10-21 1988-04-27 Japan Electronic Control Systems Co., Ltd. Apparatus for learning and controlling air/fuel ratio in internal combustion engine
EP0265078A2 (en) * 1986-10-21 1988-04-27 Japan Electronic Control Systems Co., Ltd. Apparatus for learning and controlling air/fuel ratio in internal combustion engine
EP0275507A2 (en) * 1987-01-21 1988-07-27 Japan Electronic Control Systems Co., Ltd. Method and device for learn-controlling the air-fuel ratio of an internal combustion engine
EP0358062A2 (en) * 1988-09-05 1990-03-14 Hitachi, Ltd. Method of controlling air-fuel ratio for use in internal combustion engine and apparatus of controlling the same
GB2224369A (en) * 1988-09-23 1990-05-02 Management First Limited "Updating output parameters for controlling a process"
EP0404060A2 (en) * 1989-06-20 1990-12-27 WEBER S.r.l. An electronic fuel injection system for internal combustion engines, with self-adjusting flow rate strategy
EP0431627A2 (en) * 1989-12-06 1991-06-12 Japan Electronic Control Systems Co., Ltd. Process and apparatus for learning and controlling air/fuel ratio in internal combustion engine
AU2009325082B2 (en) * 2008-12-10 2012-09-06 Blackberry Limited Method and apparatus for discovery of relay nodes

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3603137C2 (en) * 1986-02-01 1994-06-01 Bosch Gmbh Robert Method and device for controlling / regulating operating parameters of an internal combustion engine
DE3628628C2 (en) * 1986-08-22 1994-12-08 Bosch Gmbh Robert Method and device for adapting the mixture control in internal combustion engines
DE3642476A1 (en) * 1986-12-12 1988-06-23 Bosch Gmbh Robert Method and device for the inclusion of additive and multiplicative correction variables in a continuous fuel feed system
JPS6480746A (en) * 1987-09-22 1989-03-27 Japan Electronic Control Syst Fuel supply control device for internal combustion engine
JPH0656120B2 (en) * 1987-10-20 1994-07-27 株式会社ユニシアジェックス Internal combustion engine learning control device
JPH0656118B2 (en) * 1987-10-20 1994-07-27 株式会社ユニシアジェックス Internal combustion engine learning control device
US4881505A (en) * 1987-10-20 1989-11-21 Japan Electronic Control Systems Co., Ltd. Electronic learning control apparatus for internal combustion engine
DE3802274A1 (en) * 1988-01-27 1989-08-03 Bosch Gmbh Robert CONTROL / REGULATION SYSTEM FOR INSTATIONAL OPERATION OF AN INTERNAL COMBUSTION ENGINE
DE3811262A1 (en) * 1988-04-02 1989-10-12 Bosch Gmbh Robert LEARNING CONTROL METHOD FOR AN INTERNAL COMBUSTION ENGINE AND DEVICE THEREFOR
DE3836556A1 (en) * 1988-10-27 1990-05-03 Bayerische Motoren Werke Ag Method for adjustment of the mixture control in internal combustion engines
JPH0826805B2 (en) * 1989-11-01 1996-03-21 株式会社ユニシアジェックス Air-fuel ratio learning controller for internal combustion engine
DE4001477A1 (en) * 1990-01-19 1991-08-01 Audi Ag System controls engine knocking - modifying specified characteristics of each working point when knocking is detected
DE4001476A1 (en) * 1990-01-19 1991-08-01 Audi Ag Engine knocking control system - uses short and long term adaption and modification figure derived from control excursions
JPH06264808A (en) * 1993-03-16 1994-09-20 Mazda Motor Corp Control device for engine
DE4418731A1 (en) * 1994-05-28 1995-11-30 Bosch Gmbh Robert Control and regulation of processes in motor vehicles
DE4423241C2 (en) * 1994-07-02 2003-04-10 Bosch Gmbh Robert Method for adjusting the composition of the operating mixture for an internal combustion engine
DE19501458B4 (en) * 1995-01-19 2009-08-27 Robert Bosch Gmbh Method for adapting the warm-up enrichment
DE19605407C2 (en) * 1996-02-14 1999-08-05 Bosch Gmbh Robert Method for determining the ignition angle for an internal combustion engine with adaptive knock control
JP3878258B2 (en) * 1996-11-01 2007-02-07 株式会社日立製作所 Engine control device
DE19706750A1 (en) * 1997-02-20 1998-08-27 Schroeder Dierk Prof Dr Ing Dr Method for controlling the mixture in an internal combustion engine and device for carrying it out
JP3340058B2 (en) * 1997-08-29 2002-10-28 本田技研工業株式会社 Air-fuel ratio control system for multi-cylinder engine
DE10044412A1 (en) * 2000-09-08 2002-03-21 Bayerische Motoren Werke Ag ID field value adapting device files adaptation values in correction ID field of memory, and has parameters for indicating occurrence of deviation that vary based on current operating point
US7096669B2 (en) * 2004-01-13 2006-08-29 Compressor Controls Corp. Method and apparatus for the prevention of critical process variable excursions in one or more turbomachines
DE102006008051B3 (en) * 2006-02-21 2007-11-29 Siemens Ag Adaptive positioning method of an actuator
DE102006041317A1 (en) * 2006-09-01 2008-03-20 Oase Gmbh Water pump for suspended waters containing water
DE102012209384A1 (en) * 2012-06-04 2013-12-05 Robert Bosch Gmbh Method and device for carrying out an adaptive control of a position of an actuator of an actuator
DE102022115515A1 (en) 2022-06-22 2023-12-28 Bayerische Motoren Werke Aktiengesellschaft Control system for a motor vehicle and method for generating a wheel-specific torque

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4322800A (en) * 1979-04-04 1982-03-30 Nippondenso Co., Ltd. Method of reducing fuel consumption rate in internal combustion engines
US4348727A (en) * 1979-01-13 1982-09-07 Nippondenso Co., Ltd. Air-fuel ratio control apparatus
EP0151768A2 (en) * 1984-02-01 1985-08-21 Robert Bosch Gmbh Measuring system for the fuel-air mixture of a combustion engine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4351281A (en) * 1979-07-27 1982-09-28 Volkswagenwerk Aktiengesellschaft Method and system for operation of a spark-ignited internal combustion engine
JPS5654936A (en) * 1979-10-10 1981-05-15 Nippon Denso Co Ltd Control method for air-fuel ratio
JPS5954750A (en) * 1982-09-20 1984-03-29 Mazda Motor Corp Fuel controller of engine
JPH0635844B2 (en) * 1983-06-15 1994-05-11 本田技研工業株式会社 Fuel supply control method for internal combustion engine
JPS6053635A (en) * 1983-09-01 1985-03-27 Toyota Motor Corp Air-furl ratio control method
JPS60156953A (en) * 1984-01-27 1985-08-17 Hitachi Ltd Electronic controller for internal-combustion engine
DE3408223A1 (en) * 1984-02-01 1985-08-01 Robert Bosch Gmbh, 7000 Stuttgart CONTROL AND REGULATING METHOD FOR THE OPERATING CHARACTERISTICS OF AN INTERNAL COMBUSTION ENGINE
JPS60233328A (en) * 1984-05-02 1985-11-20 Honda Motor Co Ltd Method of feedback controlling air-fuel ratio of internal-combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4348727A (en) * 1979-01-13 1982-09-07 Nippondenso Co., Ltd. Air-fuel ratio control apparatus
US4322800A (en) * 1979-04-04 1982-03-30 Nippondenso Co., Ltd. Method of reducing fuel consumption rate in internal combustion engines
EP0151768A2 (en) * 1984-02-01 1985-08-21 Robert Bosch Gmbh Measuring system for the fuel-air mixture of a combustion engine

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0221386A3 (en) * 1985-11-07 1988-08-17 Robert Bosch Gmbh Method and device for adapting the mixture control in an internal-combustion engine
EP0221386A2 (en) * 1985-11-07 1987-05-13 Robert Bosch Gmbh Method and device for adapting the mixture control in an internal-combustion engine
EP0265079A2 (en) * 1986-10-21 1988-04-27 Japan Electronic Control Systems Co., Ltd. Apparatus for learning and controlling air/fuel ratio in internal combustion engine
EP0265078A2 (en) * 1986-10-21 1988-04-27 Japan Electronic Control Systems Co., Ltd. Apparatus for learning and controlling air/fuel ratio in internal combustion engine
EP0265078A3 (en) * 1986-10-21 1988-11-17 Japan Electronic Control Systems Co., Ltd. Apparatus for learning and controlling air/fuel ratio in internal combustion engine
EP0265079A3 (en) * 1986-10-21 1988-12-07 Japan Electronic Control Systems Co., Ltd. Apparatus for learning and controlling air/fuel ratio in internal combustion engine
EP0275507B1 (en) * 1987-01-21 1991-06-12 Japan Electronic Control Systems Co., Ltd. Method and device for learn-controlling the air-fuel ratio of an internal combustion engine
EP0275507A2 (en) * 1987-01-21 1988-07-27 Japan Electronic Control Systems Co., Ltd. Method and device for learn-controlling the air-fuel ratio of an internal combustion engine
EP0358062A2 (en) * 1988-09-05 1990-03-14 Hitachi, Ltd. Method of controlling air-fuel ratio for use in internal combustion engine and apparatus of controlling the same
EP0358062B1 (en) * 1988-09-05 1993-07-21 Hitachi, Ltd. Method of controlling air-fuel ratio for use in internal combustion engine and apparatus of controlling the same
GB2224369A (en) * 1988-09-23 1990-05-02 Management First Limited "Updating output parameters for controlling a process"
EP0404060B1 (en) * 1989-06-20 1993-05-26 WEBER S.r.l. An electronic fuel injection system for internal combustion engines, with self-adjusting flow rate strategy
EP0404060A2 (en) * 1989-06-20 1990-12-27 WEBER S.r.l. An electronic fuel injection system for internal combustion engines, with self-adjusting flow rate strategy
EP0431627A2 (en) * 1989-12-06 1991-06-12 Japan Electronic Control Systems Co., Ltd. Process and apparatus for learning and controlling air/fuel ratio in internal combustion engine
EP0431627A3 (en) * 1989-12-06 1992-02-26 Japan Electronic Control Systems Co., Ltd. Process and apparatus for learning and controlling air/fuel ratio in internal combustion engine
AU2009325082B2 (en) * 2008-12-10 2012-09-06 Blackberry Limited Method and apparatus for discovery of relay nodes

Also Published As

Publication number Publication date
US4827937A (en) 1989-05-09
EP0191923B1 (en) 1990-09-05
EP0191923A3 (en) 1988-01-27
DE3505965A1 (en) 1986-08-21
JPH0823331B2 (en) 1996-03-06
JPS61229961A (en) 1986-10-14
DE3579587D1 (en) 1990-10-11

Similar Documents

Publication Publication Date Title
EP0191923B1 (en) Method and device for the controlling of and regulation method for the operating parameters of a combustion engine
EP0154710B1 (en) Control apparatus for controlling the operating parameters of an internal-combustion engine
EP0416270B1 (en) Method and apparatus to control and regulate an engine with self-ignition
EP0152604A1 (en) Control and regulation method for the operating parameters of an internal-combustion engine
DE3311892C2 (en)
DE3603137A1 (en) METHOD AND DEVICE FOR CONTROLLING OPERATING CHARACTERISTICS OF AN INTERNAL COMBUSTION ENGINE
DE3311029A1 (en) METHOD AND DEVICE FOR CONTROLLING THE IDLE SPEED OF AN INTERNAL COMBUSTION ENGINE
DE3221640A1 (en) METHOD AND DEVICE FOR THE OPTIMAL CONTROL OF INTERNAL COMBUSTION ENGINES
DE69825670T2 (en) Torque control of an internal combustion engine
EP0151768A2 (en) Measuring system for the fuel-air mixture of a combustion engine
DE3725521C2 (en)
DE3704587C2 (en)
DE3330700C2 (en)
DE3422384C2 (en)
EP0629775A1 (en) Method and device for controlling the smooth running of an internal combustion engine
DE4037772A1 (en) METHOD AND DEVICE FOR IDLE CONTROL OF AN INTERNAL COMBUSTION ENGINE
EP2550443B1 (en) Method and apparatus for adapting adaptation values for actuating injection valves in an engine system having a plurality of injection types
DE19612453A1 (en) IC engine cylinder fuel mass flow determination method
DE4405340B4 (en) Method and device for adjusting the speed of a drive unit of a vehicle in idle
DE10221337B4 (en) Method and device for correcting an amount of fuel that is supplied to an internal combustion engine
DE3726892A1 (en) MIXING RATIO CONTROL SYSTEM FOR A MOTOR VEHICLE ENGINE
DE3248745A1 (en) Control system for an internal combustion engine
DE69216523T2 (en) Fuel injection control device for internal combustion engines
DE102004049812A1 (en) Method for operating a fuel injection system, in particular of a motor vehicle
DE102015200898B3 (en) Pilot control of an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19880618

17Q First examination report despatched

Effective date: 19890118

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3579587

Country of ref document: DE

Date of ref document: 19901011

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ITTA It: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 19940512

REG Reference to a national code

Ref country code: FR

Ref legal event code: DL

ITPR It: changes in ownership of a european patent

Owner name: OFFERTA DI LICENZA AL PUBBLICO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19991129

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19991216

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010226

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20001205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702