EP0169402A2 - Rock drill bit - Google Patents

Rock drill bit Download PDF

Info

Publication number
EP0169402A2
EP0169402A2 EP85107961A EP85107961A EP0169402A2 EP 0169402 A2 EP0169402 A2 EP 0169402A2 EP 85107961 A EP85107961 A EP 85107961A EP 85107961 A EP85107961 A EP 85107961A EP 0169402 A2 EP0169402 A2 EP 0169402A2
Authority
EP
European Patent Office
Prior art keywords
cutting
rock drill
cutting body
wings
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85107961A
Other languages
German (de)
French (fr)
Other versions
EP0169402B1 (en
EP0169402A3 (en
Inventor
Wolfgang Dipl.-Ing. Peetz
Bernhard Moser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hawera Probst Hartmetall Werk Zeugfabrik Ravensburgh KG
Robert Bosch Power Tools GmbH
Original Assignee
Hawera Probst Hartmetall Werk Zeugfabrik Ravensburgh KG
Hawera Probst GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hawera Probst Hartmetall Werk Zeugfabrik Ravensburgh KG, Hawera Probst GmbH filed Critical Hawera Probst Hartmetall Werk Zeugfabrik Ravensburgh KG
Publication of EP0169402A2 publication Critical patent/EP0169402A2/en
Publication of EP0169402A3 publication Critical patent/EP0169402A3/en
Application granted granted Critical
Publication of EP0169402B1 publication Critical patent/EP0169402B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • E21B10/58Chisel-type inserts
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/36Percussion drill bits
    • E21B10/40Percussion drill bits with leading portion
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • E21B10/54Drill bits characterised by wear resisting parts, e.g. diamond inserts the bit being of the rotary drag type, e.g. fork-type bits

Definitions

  • the invention relates to a rock drill with radial recess grooves for receiving cutting bodies to be soldered in, and in particular to a rock drill for breakthroughs with a drill head body arranged at the end of a drill shank, the at least two radially projecting vanes provided with cutting bodies, and a centering lug with cutting bodies arranged axially in front of the wings in the direction of drilling having.
  • the cutting bodies made of hard metal are soldered into the cutting body receiving grooves of the steel drill head using the brazing method.
  • the depth of the cutting body receiving groove was dimensioned such that the cutting body sits on the base of the groove during the soldering process in order to obtain a precisely defined position.
  • the invention has for its object to eliminate the aforementioned disadvantages, d. H. to create a tension-free fit of hard metal cutting bodies in rock drills and in this context to simplify the manufacturing process, in particular of rock drills for producing breakthroughs, and thus to make them more cost-effective.
  • the installation of a hard metal cutting body according to the invention without a lower support has a favorable effect on the stress state in the drill head.
  • the reason for this can be seen in the following.
  • the Ve and the thermal expansion is approx. 2: 1.
  • the same lengths of hard metal and steel are available before the soldering process. When heated to the soldering temperature, the steel expands much more than the hard metal.
  • the connection cools down to the solidification temperature of the solder, the length of the steel is still much larger than that of the hard metal body. Further cooling to room temperature then - similar to a bimetal - causes the compound to bend.
  • the hard metal cutting body can at least partially follow the steel shrinkage, so that the stresses both in the steel and in the hard metal cutting body are considerably reduced and in particular are not exactly present in the slot base.
  • This area is in any case very vulnerable as a breaking point due to voltage peaks.
  • the invention therefore has the further advantage that in a rock drill with two blades, all the grooves for receiving cutting bodies are produced with only one operation.
  • the groove is made axially so deep through the centering projection with a disk milling cutter that it simultaneously engages in the wings of the drill head body. The result is a continuous radial groove, which cuts through both the centering shoulder in its full axial length and the wings to the intended depth for the cutting body.
  • the continuous groove according to the invention for the formation of the insert seat in the wing also advantageously enables the cutting bodies to be optimally soldered into the wing. This is caused by the fact that due to the available space on both sides of the respective cutting element, correct metering and feeding of the solder is made possible.
  • the principle according to the invention can be applied to a one-piece rock drill both with two and with a larger number of blades, provided that these are arranged diametrically to one another. According to the invention, the simplified production possibility of one-piece rock drills and thus the more economical production of such breakthrough tools is decisive.
  • a plurality of cutting bodies can be arranged radially next to one another in a groove in order to increase the cutting performance if necessary. For this it is not necessary that new grooves or slots or bores are made in the wing by means of complex manufacturing processes.
  • a plurality of radial grooves can be arranged at a certain angle to one another in one finger. This can also increase the cutting performance for special applications.
  • the rock drill 10 shown in FIGS. 1 and 2 can be both a normal twist drill and the centering tip or centering shoulder 16 of a rock drill as shown in FIGS. 3 and 4.
  • the largely tension-free seat of the cutting body cutting element 23 made of hard metal in the cutting body receiving groove 17 is decisive.
  • the depth t of the cutting body receiving groove 17 or insertion groove 17 to be introduced by means of a disc cutter is greater than the penetration depth t 2 of the hard metal cutting body 23.
  • the free space t 4 between the cutting body and the groove base should be at least 0.5 x the slot width or cutting body width b.
  • the width b of the slot or the groove 17 is constant.
  • soldering surface in connection with the shear strength of the solder can absorb the load on the cutting plate.
  • the following calculation can be made for a drill with a nominal diameter of 25: Soldering area approx. 430 mm 2 Shear strength of the solder: approx. 150 to 300 N / mm2. This results in the following resilience: Minimum: 430. 150 64,500 N ( ⁇ 6.45 t)
  • the loads that occur in practice are in the range of approx. 2 to 4 tons.
  • the rock drill 10 'shown in a side view in FIG. 3 consists of a drill head body 11 which is molded onto the cylindrical shaft 12 of a breakthrough tool.
  • the drill head body 11 consists of two radial sections designated as vanes 13, 14, which are designed in a manner known per se. With respect to the axis plane 15, the wings 13, 14 are symmetrical.
  • a continuous cutting body receiving groove 17 ' is produced, for example, by means of a disk milling cutter, which extends in alignment from the outermost radial point of the wing 13 via the centering projection 16 to the outermost radial point of the wing 14.
  • the lower edge 18 'of the receiving groove 17' which can be seen in plan view in FIG. 4 is indicated by dashed lines.
  • the cutting bodies 19, 20 in the wing 13 or 21, 22 in the wing 14 and the cutting body 23 of the centering projection 16, which is offset in the axial direction, are then soldered into this continuous cutting body receiving groove 17 ′, which can be produced in one operation, in the known brazing process. It is important from a manufacturing point of view that the cutting bodies 19 to 22 are easily accessible from the side so that the dosage of the solder and the soldering process can be optimally designed.
  • the cutting body 23 of the centering projection 16 is not limited at the bottom by the continuous groove 17 ′′ according to the invention, so that lower voltage peaks occur during soldering than with firm clamping.
  • the cutting-body receiving groove 17 ' is offset by an angle ⁇ 18 ° with respect to the plane of symmetry 24 by the wings 13, 14 is executed.
  • this ensures early engagement of the cutting bodies 19 to 22 in the material to be drilled and increased support of the cutting bodies by the drill head body 11.
  • the radius R shown in Fig. 2 is approximately 32 mm.
  • the groove depth t 2 in the wings 13, 14 is approximately 4.5 mm, the groove width b is also approximately 4.5 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

Es wird ein Gesteinsbohrer vorgeschlagen, bei welchem die Tiefe der Einstichnut für den Schneidkörper größer ausgeführt ist, als die axiale Einlöttiefe des Schneidkörpers. Insbesondere für Gesteinsbohrer zur Herstellung von Durchbrüchen kann diese in axialer Richtung erweiterte Einstichnut bis in die Flügel des Bohrkopfes zur Aufnahme von Schneidkörpern in den Flügeln dienen.A rock drill is proposed in which the depth of the penetration groove for the cutting body is greater than the axial depth of the cutting body. In particular for rock drills for producing breakthroughs, this penetration groove, which is widened in the axial direction, can serve to accommodate cutting bodies in the wings.

Description

Die Erfindung betrifft einen Gesteinsbohrer mit radialen Einstichnuten zur Aufnahme von einzulötenden Schneidkörpern und insbesondere einen Gesteinsbohrer für Durchbrüche mit einem am Ende eines Bohrerschaftes angeordneten Bohrkopfkörper der wenigstens zwei radial vorstehende, mit Schneidkörpern versehene Flügel, sowie einen in Bohrrichtung vor den Flügeln axial angeordneten Zentrieransatz mit Schneidkörpern aufweist.The invention relates to a rock drill with radial recess grooves for receiving cutting bodies to be soldered in, and in particular to a rock drill for breakthroughs with a drill head body arranged at the end of a drill shank, the at least two radially projecting vanes provided with cutting bodies, and a centering lug with cutting bodies arranged axially in front of the wings in the direction of drilling having.

Bei bekannten Gesteinsbohrern werden die aus Hartmetall bestehenden Schneidkörper in die Schneidkörperaufnahmenuten des aus Stahl bestehenden Bohrerkopfs im Hartlötverfahren eingelötet. Dabei wurde die Tiefe der Schneidkörperaufnahmenut derart bemessen, daß der Schneidkörper auf dem Nutgrund beim Lötvorgang aufsitzt, um eine genau definierte Lage zu bekommen. Bei diesem Verfahren wird in Kauf genommen, daß sich beim Lötvorgang infolge der stark unterschiedlichen Ausdehnungskoeffizienten von Hartmetall und Stahl (Faktor ca. 1 : 2) Spannungen insbesondere im unteren Bereich der Einstichnut bilden, die bei extremer Belastung zu einer Schwächung der Verbindung führen können.In known rock drills, the cutting bodies made of hard metal are soldered into the cutting body receiving grooves of the steel drill head using the brazing method. The depth of the cutting body receiving groove was dimensioned such that the cutting body sits on the base of the groove during the soldering process in order to obtain a precisely defined position. With this method, it is accepted that during the soldering process, due to the greatly different expansion coefficients of hard metal and steel (factor approx. 1: 2), stresses form in particular in the lower region of the groove, which can lead to a weakening of the connection under extreme loads.

Dieses Problem ist gleichermaßen bei normalen Gesteinsbohrern als auch bei Gesteinsbohrern zur Erzeugung von Durchbrüchen bekannt, wie sie beispielsweise aus der OS 24 14 354 zu entnehmen sind. Der Zentrieransatz an derartigen Werkzeugen ist prinzipiell gleich aufgebaut wie normale Hartmetallbohrer, d.h. der Zentrieransatz weist einen entsprechenden Hartmetallschneidkörper auf. Zusätzlich ist es bei den bekannten Gesteinsbohrern zur Herstellung von Durchbrüchen weiterhin erforderlich, Nuten bzw. Bohrungen in den radial nach außen gerichteten Flügeln anzubringen, die zur Aufnahme der Hartmetall-Schneidkörper in den Flügeln dienen. Diese einzelnen Schneidplatten-Aufnahmenuten in den Flügeln müssen mittels Fingerfräser oder ähnlichem hergestellt werden, was das Herstellungsverfahren verteuert.This problem is equally known in normal rock drills as well as in rock drills for producing breakthroughs, as can be seen, for example, from OS 24 14 354. The centering approach to such tools is in principle constructed in the same way as normal hard metal drills, ie the centering attachment has a corresponding hard metal cutting body. In addition, in the known rock drills for producing breakthroughs, it is still necessary to make grooves or bores in the radially outward-pointing blades, which are used to accommodate the hard metal cutting bodies in the blades. These individual insert slots in the wings have to be produced using a milling cutter or the like, which makes the manufacturing process more expensive.

Der Erfindung liegt die Aufgabe zugrunde, die vorgenannten Nachteile zu beseitigen, d. h. einen möglichst spannungsfreien Sitz von Hartmetall-Schneidkörpern bei Gesteinsbohrern zu schaffen und in diesem Zusammenhang das Herstellungsverfahren insbesondere von Gesteinsbohrern zur Erzeugung von Durchbrüchen zu vereinfachen und damit kostengünstiger zu gestalten.The invention has for its object to eliminate the aforementioned disadvantages, d. H. to create a tension-free fit of hard metal cutting bodies in rock drills and in this context to simplify the manufacturing process, in particular of rock drills for producing breakthroughs, and thus to make them more cost-effective.

Diese Aufgabe wird durch den kennzeichnenden Teil des Anspruchs 1 und insbesondere durch die Weiterentwicklung eines Gesteinsbohrers nach Unteranspruch 3 gelöst.This object is achieved by the characterizing part of claim 1 and in particular by the further development of a rock drill according to subclaim 3.

Der erfindungsgemäße Einbau eines Hartmetall-Schneidkörpers ohne untere Abstützung wirkt sich günstig auf den Spannungszustand im Bohrkopf aus. Der Grund hierfür kann im folgenden gesehen werden. Bei der Werkstoffpaarung Stahl-Hartmetall beträgt das Ve and der Wärmeausdehnung ca. 2 : 1. Bei Raumtemperatur sind vor dem Lötvorgang zunächst gleiche Längen von Hartmetall und Stahl vorhanden. Bei der Erwärmung auf Löttemperatur dehnt sich dann der Stahl wesentlich stärker aus als das Hartmetall. Bei Abkühlung der Verbindung bis auf die Erstarrungstemperatur des Lotes ist die Längenausdehnung des Stahls immer noch wesentlich größer als die des Hartmetallkörpers. Eine weitere Abkühlung auf Raumtemperatur bewirkt dann - ähnlich wie bei einem Bi-Metall - eine Verbiegung der zusammengesetzten Verbindung. Diese Durchbiegung kann jedoch bei einem Bohrwerkzeug nicht erfolgen, da in der Praxis die Hartmetallplatte beidseitig von Stahl infolge der Schlitzlötung umgeben ist. Demzufolge müssen im Stahlkörper Zugspannungen vorliegen die im Schlitzgrund am größten sind. Ebenso herrschen in der Hartmetall-Platte Zugspannungen in Querrichtung.The installation of a hard metal cutting body according to the invention without a lower support has a favorable effect on the stress state in the drill head. The reason for this can be seen in the following. With the steel-hard metal pairing, the Ve and the thermal expansion is approx. 2: 1. At room temperature, the same lengths of hard metal and steel are available before the soldering process. When heated to the soldering temperature, the steel expands much more than the hard metal. When the connection cools down to the solidification temperature of the solder, the length of the steel is still much larger than that of the hard metal body. Further cooling to room temperature then - similar to a bimetal - causes the compound to bend. However, this deflection cannot take place with a drilling tool, since in practice the hard metal plate is surrounded on both sides by steel as a result of the slot soldering. As a result, tensile stresses must be present in the steel body that are greatest in the slot base. There are also tensile stresses in the transverse direction in the hard metal plate.

Gemäß der Erfindung kann nun der Hartmetall-Schneidkörper den Stahlschrumpfungen wenigstens teilweise folgen, so daß die Spannungen sowohl im Stahl als auch im Hartmetall-Schneidkörper erheblich reduziert werden und insbesondere nicht gerade im Schlitzgrund vorliegen. Dieser Bereich ist als Bruchstelle infolge von Spannungsspitzen ohnehin sehr gefährdet.According to the invention, the hard metal cutting body can at least partially follow the steel shrinkage, so that the stresses both in the steel and in the hard metal cutting body are considerably reduced and in particular are not exactly present in the slot base. This area is in any case very vulnerable as a breaking point due to voltage peaks.

Führt man aus oben genannten Gründen erfindungsgemäß einen tiefergehenden Schlitz aus, so folgt als Weiterentwicklung dieses Gedankens die erfinderische Ausbildung der Erfindung gemäß dem Unteranspruch 3.If, according to the invention, a deeper slot is carried out for the reasons mentioned above, the inventive development of the invention follows as a further development of this idea.

Gegenüber den bekannten einstückigen Gesteinsbohrern zur Herstellung von Durchbrüchen hat die Erfindung demnach den weiteren Vorteil, daß bei einem Gesteinsbohrer mit zwei Flügeln, mit nur einem Arbeitsgang sämtliche Nuten für die Aufnahme von Schneidkörpern hergestellt werden. Hierzu wird erfindungsgemäß mit einem Scheibenfräser die Nut durch den Zentrieransatz axial so tief ausgeführt, daß sie gleichzeitig in die Flügel des Bohrkopfkörpers eingreift. Es entsteht demnach eine durchgehende radiale Nut, die sowohl den Zentrieransatz in seiner vollen axialen Länge als auch die Flügel bis zu der vorgesehenen Tiefe für die Schneidkörper durchtrennt.Compared to the known one-piece rock drills for producing breakthroughs, the invention therefore has the further advantage that in a rock drill with two blades, all the grooves for receiving cutting bodies are produced with only one operation. For this purpose, according to the invention, the groove is made axially so deep through the centering projection with a disk milling cutter that it simultaneously engages in the wings of the drill head body. The result is a continuous radial groove, which cuts through both the centering shoulder in its full axial length and the wings to the intended depth for the cutting body.

Die erfindungsgemäße durchgehende Nut zur Bildung des Schneidplattensitzes in den Flügel ermöglicht weiterhin auf vorteilhafte Weise ein optimales Einlöten der Schneidkörper in die Flügel. Dies wird dadurch bewirkt, daß infolge des vorhandenen Platzes beidseitig des jeweiligen Schneidelements, eine richtige Dosierung und Zuführung des Lotes ermöglicht wird.The continuous groove according to the invention for the formation of the insert seat in the wing also advantageously enables the cutting bodies to be optimally soldered into the wing. This is caused by the fact that due to the available space on both sides of the respective cutting element, correct metering and feeding of the solder is made possible.

Das erfindungsgemäße Prinzip läßt sich bei einem einstückigen Gesteinsbohrer sowohl bei zwei, als auch bei darüber hinausgehender Anzahl von Flügeln anwenden, sofern diese zueinander diametral angeordnet sind. Erfindungsgemäß maßgeblich ist die vereinfachte Herstellungsmöglichkeit von einstückigen Gesteinsbohrern und damit die wirtschaftlichere Herstellung derartiger Durchbruchwerkzeuge.The principle according to the invention can be applied to a one-piece rock drill both with two and with a larger number of blades, provided that these are arranged diametrically to one another. According to the invention, the simplified production possibility of one-piece rock drills and thus the more economical production of such breakthrough tools is decisive.

Durch die in den weiteren Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der Erfindung möglich. Gemäß der Weiterbildung der Erfindung nach Unteranspruch 2 wird ein zweckmäßiges Längenverhältnis zur Ausführung der Gesamttiefe der Nut bei einem Gesteinsbohrer allgemein vorgeschlagen.Advantageous further developments and improvements of the invention are possible through the measures listed in the further subclaims. According to the development of the invention according to subclaim 2, an expedient aspect ratio for executing the total depth of the groove in a rock drill is generally proposed.

Die weitere Ausbildung des erfindungsgemäßen Grundgedankens bei einem Gesteinsbohrer insbesondere zur Erzeugung von Durchbrüchen nach Unteranspruch 3 bringt Fertigungsvorteile durch einfache konstruktive Gestaltung mit sich.The further development of the basic idea according to the invention in a rock drill, in particular for producing breakthroughs according to subclaim 3, brings about manufacturing advantages through a simple structural design.

Die Maßnahmen gemäß den Unteransprüchen 4 und 5 stellen vorteilhafte Einzelheiten der Weiterbildung dar. Insbesondere können mehrere Schneidkörper in einer Nut radial nebeneinander angeordnet werden, um damit die Schneidleistung ggf. zu erhöhen. Hierfür ist es nicht erforderlich daß neue Nuten bzw. Schlitze oder Bohrungen durch aufwendige Fertigungsverfahren in die Flügel eingebracht werden.The measures according to subclaims 4 and 5 represent advantageous details of the further development. In particular, a plurality of cutting bodies can be arranged radially next to one another in a groove in order to increase the cutting performance if necessary. For this it is not necessary that new grooves or slots or bores are made in the wing by means of complex manufacturing processes.

Gemäß der Ausgestaltung der Erfindung nach Unteranspruch 6 ist es bei dem speziellen Gesteinsbohrer zur Erzeugung von Durchbrüchen zweckmäßig, die Nut durch die Flügel um einen gewissen Winkel versetzt zur Symmetrieebene anzuordnung. Bei einer Drehbewegung des Werkzeugs im Uhrzeigersinn wird hierdurch ein frühzeitiger Eingriff der Schneidkörper in das zu bohrende Gut und eine erhöhte Abstützung der Schneidkörper durch den Bohrkopfkörper gewährleistet.According to the embodiment of the invention according to subclaim 6, it is expedient in the special rock drill for producing breakthroughs to arrange the groove offset by a certain angle to the plane of symmetry through the wings. When the tool rotates clockwise, this ensures that the cutting bodies engage in the material to be drilled at an early stage and provides increased support for the cutting bodies by the drill head body.

Gemäß der Ausgestaltung der Erfindung nach Unteranspruch 7 können in einem Finger mehrere radiale Nuten in einem bestimmten Winkel zueinander angeordnet sein. Hierdurch kann für besondere Einsatzfälle die Schneidleistung ebenfalls erhöht werden.According to the embodiment of the invention according to subclaim 7, a plurality of radial grooves can be arranged at a certain angle to one another in one finger. This can also increase the cutting performance for special applications.

Die Ausgestaltung der Erfindung nach Unteranspruch 8 sieht vor, daß - wie an sich bekannt - vier symmetrisch angeordnete Flügel mit den erfindungsgmäßen Maßnahmen ausgebildet sind.The embodiment of the invention according to subclaim 8 provides that - as is known per se - four symmetrically arranged wings are formed with the measures according to the invention.

Die vorteilhafte Ausgestaltung der Erfindung nach Unteranspruch 9 erweitert den erfindungsgemäßen Gedanken auch auf Kreuzbohrkronen.The advantageous embodiment of the invention according to subclaim 9 extends the concept according to the invention to cross drill bits.

Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen

  • Fig. 1 eine Seitenansicht der Erfindung mit verlängerter Schneidkörper-Einstichnut,
  • Fig. 2 die Darstellung nach Fig. 1 um 90° verdreht,
  • Fig. 3 eine Seitenansicht eines Gesteinsbohrers zur Erzeugung von Durchbrüchen und
  • Fig. 4 eine Draufsicht des Gesteinsbohrers gem. Fig. 3.
Embodiments of the invention are shown in the drawing and explained in more detail in the following description. Show it
  • 1 is a side view of the invention with an elongated cutting groove.
  • 2 rotated the representation of FIG. 1 by 90 °,
  • Fig. 3 is a side view of a rock drill for generating breakthroughs and
  • Fig. 4 is a plan view of the rock drill gem. Fig. 3.

Der in den Figuren 1 und 2 dargestellte Gesteinsbohrer 10 kann sowohl ein normaler Spiralbohrer als auch die Zentrierspitze bzw. der Zentrieransatz 16 eines Gesteinsbohrers gemäß der Darstellung nach Fig. 3 und 4 sein. Maßgeblich ist der weitgehend spannungsfreie Sitz des Schneidkörper-Schneidelements 23 aus Hartmetall in der Schneidkörperaufnahmenut 17. Gemäß der Darstellung in den Figuren 1 und 2 ist erkennbar, daß die Tiefe t der mittels eines Scheibenfräsers einzubringenden Schneldkörper-Aufnahmenut 17 bzw. Einstichnut 17 größer ist als die Eindringtiefe t2 des Hartmetall-Schneidkörpers 23. Der freie Raum t4 zwischen dem Schneidkörper und dem Nutboden soll wenigstens 0,5 x der Schlitzbreite bzw. Schneidkörperbreite b betragen. Hierdurch liegt die untere Kante des Schneidkörpers 23 nicht auf dem Boden 18 der Einstichnut 17 auf. Die Breite b des Schlitzes bzw. der Nut 17 ist konstant.The rock drill 10 shown in FIGS. 1 and 2 can be both a normal twist drill and the centering tip or centering shoulder 16 of a rock drill as shown in FIGS. 3 and 4. The largely tension-free seat of the cutting body cutting element 23 made of hard metal in the cutting body receiving groove 17 is decisive. According to the illustration in FIGS. 1 and 2, it can be seen that the depth t of the cutting body receiving groove 17 or insertion groove 17 to be introduced by means of a disc cutter is greater than the penetration depth t 2 of the hard metal cutting body 23. The free space t 4 between the cutting body and the groove base should be at least 0.5 x the slot width or cutting body width b. As a result, the lower edge of the cutting body 23 does not rest on the bottom 18 of the groove 17. The width b of the slot or the groove 17 is constant.

Voraussetzung für diese Anordnung ist, daß die Lötfläche in Verbindung mit der Scherfestigkeit des Lotes die Belastung auf die Schneidplatte aufnehmen kann. Bei einem Bohrer mit einem Nenndurchmesser von 25 kann folgende Rechnung aufgestellt werden: Lötfläche ca. 430 mm2 Scherfestigkeit des Lotes: ca. 150 bis 300 N/mm2. Hieraus-ergibt sich folgende Belastbarkeit: Minimum: 430 . 150 = 64.500 N ( ≈ 6,45 t)The prerequisite for this arrangement is that the soldering surface in connection with the shear strength of the solder can absorb the load on the cutting plate. The following calculation can be made for a drill with a nominal diameter of 25: Soldering area approx. 430 mm 2 Shear strength of the solder: approx. 150 to 300 N / mm2. This results in the following resilience: Minimum: 430. 150 = 64,500 N (≈ 6.45 t)

Maximal: 430 300 = 129.000 N (≈12,9 t).Maximum: 430 300 = 129,000 N (≈12.9 t).

Die in der Praxis auftretenden Belastungen liegen je nach Bohrhammer im Bereich von ca. 2 bis 4 Tonnen.Depending on the hammer drill, the loads that occur in practice are in the range of approx. 2 to 4 tons.

Hieraus ist ersichtlich, daß das erfindungsgemäße Verfahren zu einem Abbau der Spannungen bei ausreichender Belastbarkeit des Bohrkopfes führt.From this it can be seen that the method according to the invention leads to a reduction of the stresses with sufficient load capacity of the drill head.

Die in den Figuren 3 und 4 dargestellte weitere Ausbildung bzw. konsequente Fortentwicklung des erfindungsgemäßen Gedankens auf einen Bohrer zur Erzeugung von Durchbrüchen weist die gleichen Vorteile auf. Gleiche Teile sind deshalb mit gleichen Bezugszeichen angegeben.The further development shown in FIGS. 3 and 4 or consequent further development of the idea according to the invention on a drill for producing breakthroughs has the same advantages. The same parts are therefore given the same reference numerals.

Der in der Fig. 3 in Seitenansicht dargestellte Gesteinsbohrer 10' besteht aus einem Bohrkopfkörper 11 der an den zylindrischen Schaft 12 eines Durchbruchwerkzeugs angeformt ist.The rock drill 10 'shown in a side view in FIG. 3 consists of a drill head body 11 which is molded onto the cylindrical shaft 12 of a breakthrough tool.

Gemäß der Darstellung in Fig. 3 und 4 besteht der Bohrkopfkörper 11 aus zwei als Flügel 13, 14 bezeichnete radiale Abschnitte, die in an sich bekannter Weise ausgeführt sind. Bezüglich der Achsebene 15 sind die Flügel 13, 14 symmetrisch ausgeführt.3 and 4, the drill head body 11 consists of two radial sections designated as vanes 13, 14, which are designed in a manner known per se. With respect to the axis plane 15, the wings 13, 14 are symmetrical.

In Bohrrichtung vor den Flügeln 13, 14 befindet sich ein Zentrieransatz 16 der zur Herstellung einer Zentrierbohrung dient.In the drilling direction in front of the vanes 13, 14 there is a centering projection 16 which is used to produce a centering hole.

Gemäß der Erfindung wird beispielsweise mittels eines Scheibenfräsers eine durchgehende Schneidkörperaufnahmenut 17' erzeugt, die sich fluchtend vom äußersten radialen Punkt des Flügels 13 über den Zentrieransatz 16 zum äußersten radialen Punkt des Flügels 14 erstreckt. In Fig. 3 ist die Unterkante 18' der in der Fig. 4 in Draufsicht erkennbaren Aufnahmenut 17' gestrichelt angedeutet. Die Aufnahmenut 17' schlitzt den Zentrieransatz 16 in seiner vollen Länge, so daß der Scheibenfräser zur Herstellung der Aufnahmenut 17' bis zu einer Tiefe t1 in den Bohrkopfkörper 11 eindringen muß.According to the invention, a continuous cutting body receiving groove 17 'is produced, for example, by means of a disk milling cutter, which extends in alignment from the outermost radial point of the wing 13 via the centering projection 16 to the outermost radial point of the wing 14. In FIG. 3, the lower edge 18 'of the receiving groove 17' which can be seen in plan view in FIG. 4 is indicated by dashed lines. The receiving groove 17 'slits the centering projection 16 in its full length, so that the side milling cutter has to penetrate into the drill head body 11 to produce a depth t 1 .

In diese durchgehende, mit einem Arbeitsgang herstellbare Schneidkörperaufnahmenut 17' werden dann die Schneidkörper 19, 20 im Flügel 13 bzw. 21, 22 im Flügel 14, sowie der in axialer Richtung versetzte Schneidkörper 23 des Zentrieransatzes 16 im bekannten Hartlötverfahren eingelötet. Hierbei ist es fertigungstechnisch von Bedeutung, daß die Schneidkörper 19 bis 22 seitlich gut zugänglich sind, damit die Dosierung des Lotes sowie das Lötverfahren optimal ausgestaltet werden kann. Ebenso ist der Schneidkörper 23 des Zentrieransatzes 16 durch die durchgehende Nut 17"nach unten hin erfindungsgemäß nicht begrenzt, so daß beim Löten geringere Spannungsspitzen als bei fester Einspannung auftreten.The cutting bodies 19, 20 in the wing 13 or 21, 22 in the wing 14 and the cutting body 23 of the centering projection 16, which is offset in the axial direction, are then soldered into this continuous cutting body receiving groove 17 ′, which can be produced in one operation, in the known brazing process. It is important from a manufacturing point of view that the cutting bodies 19 to 22 are easily accessible from the side so that the dosage of the solder and the soldering process can be optimally designed. Likewise, the cutting body 23 of the centering projection 16 is not limited at the bottom by the continuous groove 17 ″ according to the invention, so that lower voltage peaks occur during soldering than with firm clamping.

Gemäß der Darstellung in Fig. 4 ist es besonders vorteilhaft, daß die Schneidkörper-Aufnahmenut 17' gegenüber der Symmetrieebene 24 durch die Flügel 13, 14 um einen Winkel λ≈ 18° versetzt ausgeführt ist. Bei einer Drehbewegung des Werkzeugs im Uhrzeigersinn (Pfeil 25) wird hierdurch ein frühzeitiger Eingriff der Schneidkörper 19 bis 22 in das zu bohrende Gut und eine erhöhte Abstützung der Schneidkörper durch den Bohrkopfkörper 11 gewährleistet.According to the illustration in FIG. 4, it is particularly advantageous that the cutting-body receiving groove 17 'is offset by an angle λ≈ 18 ° with respect to the plane of symmetry 24 by the wings 13, 14 is executed. When the tool rotates clockwise (arrow 25), this ensures early engagement of the cutting bodies 19 to 22 in the material to be drilled and increased support of the cutting bodies by the drill head body 11.

Durch diese Maßnahme Ist es weiterhin möglich, eine weitere Schneldkörperaufnahmenut 17" in einem Winkel versetzt in den Flügeln 13, 14 vorzusehen, um eine erhöhte Schneidleistung bei nur zwei Flügeln zu erzielen. Selbstverständlich können auch mehr als zwei Flügel, d. h. beispielsweise eine Anordnung entsprechend der eingangs erwähnten Literatur verwendet werden.With this measure, it is also possible to provide a further Schneldkörperaufnahmut 17 "offset at an angle in the wings 13, 14 in order to achieve an increased cutting performance with only two wings. Of course, more than two wings, for example, an arrangement according to the literature mentioned at the beginning can be used.

Der im Ausführungsbeispiel nach den Figuren 3 und 4 dargestellte Gesteinsbohrer hat beispielsweise einen Außendurchmesser von D = 68 mm, einen Schaftdurchmesser von d . 19 mm. Der in Fig. 2 dargestellte Radius R beträgt ca. 32 mm. Die Nuttiefe t2 in den Flügeln 13, 14 beträgt ca. 4,5 mm, die Nutbreite b ebenfalls ca. 4,5 mm.The rock drill shown in the exemplary embodiment according to FIGS. 3 and 4 has, for example, an outer diameter of D = 68 mm, a shank diameter of d. 19 mm. The radius R shown in Fig. 2 is approximately 32 mm. The groove depth t 2 in the wings 13, 14 is approximately 4.5 mm, the groove width b is also approximately 4.5 mm.

Claims (9)

1. Gesteinsbohrer mit radialen Einstichnuten zur Aufnahme von einzulötenden Schneidkörpern, dadurch gekennzeichnet, daß die Tiefe (t, tl) der Einstichnut (17, 17' 17'') für den Schneidkörper (23) größer ausgeführt ist, als die axiale Einlöttiefe (t2) des Schneidkörpers (23).1. Rock drill with radial groove for receiving cutting elements to be soldered in, characterized in that the depth (t, t l ) of the groove (17, 17 '17'') for the cutting element (23) is greater than the axial depth of soldering ( t 2 ) of the cutting body (23). 2. Gesteinsbohrer nach Anspruch 1, dadurch gekennzeichnet, daß die Differenz der Schlitztiefe (t) zur axialen Einlöttiefe (t2) des Schneidkörpers (23) wenigstend 0,5 x Schlitzbreite (b) beträgt.2. Rock drill according to claim 1, characterized in that the difference of the slot depth (t) to the axial depth of soldering (t 2 ) of the cutting body (23) is at least 0.5 x slot width (b). 3. Gesteinsbohrer zur Herstellung von Durchbrüchen, mit einem am Ende eines Bohrerschaftes angeordneten Bohrkopfkörper der wenigstens zwei radial vorstehende, mit Schneidkörper versehene Flügel, sowie einen in Bohrrichtung vor den Flügeln axial angeordneten Zentrieransatz mit Schneidkörpern aufweist, dadurch gekennzeichnet, daß die Tiefe (tl) der Einstichnut (17', 17") sich durch den axialen Zentrieransatz (16) in den Bereich der radialen Flügel (13, 14) hinein erstreckt.3. Rock drill for producing breakthroughs, with a drill head body arranged at the end of a drill shank and having at least two radially protruding parts with a cutting body see wing, as well as a centering approach with cutting bodies arranged axially in front of the wings in the drilling direction, characterized in that the depth (t l ) of the groove (17 ', 17 ") extends through the axial centering approach (16) into the area of the radial wings (13, 14) extends into it. 4. Gesteinsbohrer nach Anspruch 3, dadurch gekennzeichnet, daß der Schneidkörpersitz für die Schneidkörper (19 bis 22) der symmetrisch angeordneten Flügel (13, 14) und für den Schneidkörper (23) des Zentrieransatzes (16) durch eine, in einem Arbeitsgang herstellbare durchgehende, radiale Einstichnut (17', 17") gebildet ist.4. Rock drill according to claim 3, characterized in that the cutting body seat for the cutting body (19 to 22) of the symmetrically arranged wings (13, 14) and for the cutting body (23) of the centering projection (16) by a continuous in one operation , radial groove (17 ', 17 ") is formed. 5. Gesteinsbohrer nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß jeder Flügel (13, 14) wenigstens zwei radial nebeneinander angeordnete Schneidkörper (19, 20 bzw. 21, 22) aufweist.5. Rock drill according to claim 3 or 4, characterized in that each wing (13, 14) has at least two radially juxtaposed cutting body (19, 20 or 21, 22). 6. Gesteinsbohrer nach einem oder mehreren der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß die Schneidkörperaufnahmenut (17') gegenüber der Mittellängsachse (24) durch die Flügel (13, 14) um einen Winkel α ≈ 18° versetzt angeordnet ist.6. Rock drill according to one or more of claims 3 to 5, characterized in that the cutting body receiving groove (17 ') with respect to the central longitudinal axis (24) through the wings (13, 14) is arranged offset by an angle α ≈ 18 °. 7. Gesteinsbohrer nach einem oder mehreren der vorhergehenden Ansprüche 3 bis 6, dadurch gekennzeichnet, daß zwei gegenüberliegende Flügel (13, 14) und der dazwischen liegende Zentrieransatz (16) mehrere, in einem Winkel versetzte durchgehende Einstichnuten (17', 17'') aufweisen.7. Rock drill according to one or more of the preceding claims 3 to 6, characterized in that two Opposing wings (13, 14) and the centering projection (16) lying between them have a plurality of continuous groove grooves (17 ', 17'') offset at an angle. 8. Gesteinsbohrer nach einem oder mehreren der vorhergehenden Ansprüche 3 bis 7, dadurch gekennzeichnet, daß vier symmetrisch angeordnete Flügel mit über den Zentrieransatz durchlaufenden Einstichnuten zur Aufnahme von Schneidkörpern vorgesehen sind.8. Rock drill according to one or more of the preceding claims 3 to 7, characterized in that four symmetrically arranged wings are provided with through the centering insertion grooves for receiving cutting bodies. 9. Gesteinsbohrer nach einem oder mehreren der vorhergehenden Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Schneidkörper (23) des Zentrieransatzes als Kreuzbohrkrone ausgebildet ist.9. Rock drill according to one or more of the preceding claims 1 to 8, characterized in that the cutting body (23) of the centering projection is designed as a cross drill bit.
EP85107961A 1984-07-21 1985-06-27 Rock drill bit Expired EP0169402B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843426977 DE3426977A1 (en) 1984-07-21 1984-07-21 ROCK DRILL
DE3426977 1984-07-21

Publications (3)

Publication Number Publication Date
EP0169402A2 true EP0169402A2 (en) 1986-01-29
EP0169402A3 EP0169402A3 (en) 1986-12-10
EP0169402B1 EP0169402B1 (en) 1989-05-03

Family

ID=6241251

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85107961A Expired EP0169402B1 (en) 1984-07-21 1985-06-27 Rock drill bit

Country Status (3)

Country Link
US (1) US4729441A (en)
EP (1) EP0169402B1 (en)
DE (2) DE3426977A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5918105A (en) * 1994-12-12 1999-06-29 Black & Decker Inc. Cutting tools for drilling concrete, aggregate, masonry or the like materials
US6174111B1 (en) 1994-12-12 2001-01-16 Black & Decker Inc. Cutting tools for drilling concrete, aggregate, masonry or the like materials

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3742661A1 (en) * 1987-12-16 1989-07-13 Hawera Probst Kg Hartmetall ROCK DRILL
DE3820697A1 (en) * 1988-06-18 1989-12-21 Hawera Probst Kg Hartmetall DRILLING TOOL
DE4114271A1 (en) * 1991-05-02 1992-11-05 Hilti Ag DRILLING AND CHISELING TOOL WITH BASIC BODY AND CUTTING BODY
GB2303809A (en) * 1995-07-29 1997-03-05 Black & Decker Inc Roll-forged drill bit
GB2303810A (en) * 1995-07-29 1997-03-05 Black & Decker Inc Masonry drill bit
US5732784A (en) * 1996-07-25 1998-03-31 Nelson; Jack R. Cutting means for drag drill bits
US5769986A (en) * 1996-08-13 1998-06-23 Northrop Grumman Corporation Stress-free bonding of dissimilar materials
US6026918A (en) * 1997-10-10 2000-02-22 Briese Industrial Technologies, Inc. Roof bolt bit
US6039127A (en) * 1998-03-13 2000-03-21 Loudon Enterprises, Inc. Rock drill
DE19923792A1 (en) * 1999-05-25 2000-11-30 Hawera Probst Gmbh Drilling tool has slit for cutter in drill head which has further narrower deeper projecting recess to withstand stresses
US6374931B1 (en) * 1999-11-03 2002-04-23 Relton Corporation Multiple cutter rotary hammer bit
DE10117262A1 (en) * 2001-01-17 2002-07-18 Hilti Ag Rock drill has head with main and subsidiary blades, curved and diametrically opposite cutting edges, and point
FR2832944B1 (en) * 2001-12-05 2004-01-16 Commissariat Energie Atomique PROCESS FOR ASSEMBLING TWO PARTS HAVING PRECISE DIMENSIONS AND APPLICATION TO BRAZING OF A LINAC RFQ ACCELERATOR
DE10306645B3 (en) * 2003-02-18 2004-04-08 Hilti Ag Hammer drill with hard cutters for drilling hard material has at least one tangentially offset second hard cutter in drilling head with yielding axial displacement
US7228922B1 (en) 2004-06-08 2007-06-12 Devall Donald L Drill bit
US7513319B2 (en) 2004-06-08 2009-04-07 Devall Donald L Reamer bit
US8360174B2 (en) 2006-03-23 2013-01-29 Schlumberger Technology Corporation Lead the bit rotary steerable tool
US8522897B2 (en) * 2005-11-21 2013-09-03 Schlumberger Technology Corporation Lead the bit rotary steerable tool
US7571780B2 (en) * 2006-03-24 2009-08-11 Hall David R Jack element for a drill bit
US9051795B2 (en) 2006-08-11 2015-06-09 Schlumberger Technology Corporation Downhole drill bit
US8616305B2 (en) * 2006-08-11 2013-12-31 Schlumberger Technology Corporation Fixed bladed bit that shifts weight between an indenter and cutting elements
US8714285B2 (en) * 2006-08-11 2014-05-06 Schlumberger Technology Corporation Method for drilling with a fixed bladed bit
US9145742B2 (en) 2006-08-11 2015-09-29 Schlumberger Technology Corporation Pointed working ends on a drill bit
US7637574B2 (en) 2006-08-11 2009-12-29 Hall David R Pick assembly
US8590644B2 (en) * 2006-08-11 2013-11-26 Schlumberger Technology Corporation Downhole drill bit
US8292372B2 (en) * 2007-12-21 2012-10-23 Hall David R Retention for holder shank
US8622155B2 (en) * 2006-08-11 2014-01-07 Schlumberger Technology Corporation Pointed diamond working ends on a shear bit
US8567532B2 (en) 2006-08-11 2013-10-29 Schlumberger Technology Corporation Cutting element attached to downhole fixed bladed bit at a positive rake angle
US8960337B2 (en) 2006-10-26 2015-02-24 Schlumberger Technology Corporation High impact resistant tool with an apex width between a first and second transitions
EP2669033B1 (en) 2012-05-29 2015-11-04 Black & Decker Inc. Cutting head for a drill bit.
US10507534B2 (en) 2016-03-17 2019-12-17 O-Tags, Inc. Systems, methods, and apparatus for reliably installing survey tags
CN115506731A (en) * 2022-11-10 2022-12-23 湖南五新隧道智能装备股份有限公司 Quick rod replacing device of rock drill

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2030576A (en) * 1932-07-28 1936-02-11 Erickson Charles Replaceable bit rock drill
DE630138C (en) * 1936-05-20 Wallramit Handel Mij Nv Rock percussion drill with carbide insert
GB692373A (en) * 1950-08-08 1953-06-03 Joseph Dionisotti Improvements in or relating to drill bits for boring rock or like materials
FR1414023A (en) * 1964-09-03 1965-10-15 Forges & Ateliers Du Saut Du T Tool consisting of a support and inserts held elastically in said support
US3459073A (en) * 1967-06-12 1969-08-05 Timken Roller Bearing Co Rock bit assembly and bit insert assembly process
DE2414354A1 (en) * 1974-03-26 1975-10-16 Heller Geb ROCK DRILLS

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE175859C (en) *
US2101376A (en) * 1934-10-09 1937-12-07 Wallramit Handel Mij Nv Percussive boring tool
US2341314A (en) * 1941-03-07 1944-02-08 Vascoloy Ramet Corp Tipped cutting tool
US2522045A (en) * 1948-05-21 1950-09-12 Silas A Knowles Bit for rock drilling
US2777672A (en) * 1949-03-26 1957-01-15 Sandvikens Jernverke Aktiebola Percussion drilling bit
US2707619A (en) * 1950-06-22 1955-05-03 Sandvikens Jernverks Ab Percussion drills
DE1101095B (en) * 1957-05-31 1961-03-02 Siemens Ag Tool for the machining of metals
US3549337A (en) * 1968-03-05 1970-12-22 Du Pont Method of securing dense,metal-bonded refractory nitride bodies to steel
ZA77339B (en) * 1977-01-20 1978-04-26 Boart Int Ltd Brazing inserts
AT376765B (en) * 1978-05-16 1984-12-27 Guergen Karlheinz INTERCHANGEABLE DRILL BIT FOR ONE STONE DRILL DRILL AND DRILL BIT APPLICABLE TO ALL STONES
DE2952295A1 (en) * 1979-12-24 1981-07-02 Beck, Dieter, 2110 Buchholz Rock drilling machine cutter crown - has cutting plates whose edges slope at acute angle to head face for milling action

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE630138C (en) * 1936-05-20 Wallramit Handel Mij Nv Rock percussion drill with carbide insert
US2030576A (en) * 1932-07-28 1936-02-11 Erickson Charles Replaceable bit rock drill
GB692373A (en) * 1950-08-08 1953-06-03 Joseph Dionisotti Improvements in or relating to drill bits for boring rock or like materials
FR1414023A (en) * 1964-09-03 1965-10-15 Forges & Ateliers Du Saut Du T Tool consisting of a support and inserts held elastically in said support
US3459073A (en) * 1967-06-12 1969-08-05 Timken Roller Bearing Co Rock bit assembly and bit insert assembly process
DE2414354A1 (en) * 1974-03-26 1975-10-16 Heller Geb ROCK DRILLS

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5918105A (en) * 1994-12-12 1999-06-29 Black & Decker Inc. Cutting tools for drilling concrete, aggregate, masonry or the like materials
US6174111B1 (en) 1994-12-12 2001-01-16 Black & Decker Inc. Cutting tools for drilling concrete, aggregate, masonry or the like materials

Also Published As

Publication number Publication date
US4729441A (en) 1988-03-08
DE3426977A1 (en) 1986-01-30
EP0169402B1 (en) 1989-05-03
EP0169402A3 (en) 1986-12-10
DE3569957D1 (en) 1989-06-08

Similar Documents

Publication Publication Date Title
EP0169402B1 (en) Rock drill bit
EP1604762B1 (en) Drill
DE60109872T2 (en) PDC drill head with stress-reducing groove
DE19724373A1 (en) Rock drill
DE19807609B4 (en) twist drill
DE1921677B2 (en) ROTARY TURN DRILL
EP2212046B1 (en) Tool for machining work pieces
DE3742661A1 (en) ROCK DRILL
DE69308823T2 (en) Precision twist drill
EP1083294B1 (en) Drilling tool
DE3621414A1 (en) DRILLING TOOL
EP1213080B1 (en) Boring tool
DE3025890A1 (en) Rock or concrete working hammer drill bit - has cutting edges on radial ribs of one-piece tungsten carbide insert with centering point
EP0790387B1 (en) Rock drill bit and method of manufacturing same
DE2756990C2 (en) Rock drill
EP1024247A1 (en) Drilling tool
DE10360707A1 (en) Rock drill used e.g. in hammer drills for drilling rock comprises a drill head having at its end a trapezoidal or X-shaped receiving groove for a cutting element
DE4406513A1 (en) Carbide plate and rock drill equipped with it
DE3044001C2 (en)
DE102016105945A1 (en) Method for producing a pointed drill for the carpentry trade
DE2717717A1 (en) Impact operated rock drill head - has stepped impact face forming truncated cone, each step carrying ring of cutter inserts
AT356462B (en) SELF-DRILLING SCREW
DE1975009U (en) DRILLING TOOL WITH CUTTING INSERTS AND GUIDE RAILS.
DE3205543C2 (en)
DE3825107A1 (en) Rock drill with cutting tip

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19870515

17Q First examination report despatched

Effective date: 19880425

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3569957

Country of ref document: DE

Date of ref document: 19890608

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19890630

Ref country code: CH

Effective date: 19890630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890703

ITF It: translation for a ep patent filed

Owner name: UFFICIO TECNICO ING. A. MANNUCCI

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990616

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990702

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010403