EP0165640B1 - Device for the galvanic insulation between a pulse generator and a load - Google Patents

Device for the galvanic insulation between a pulse generator and a load Download PDF

Info

Publication number
EP0165640B1
EP0165640B1 EP85200912A EP85200912A EP0165640B1 EP 0165640 B1 EP0165640 B1 EP 0165640B1 EP 85200912 A EP85200912 A EP 85200912A EP 85200912 A EP85200912 A EP 85200912A EP 0165640 B1 EP0165640 B1 EP 0165640B1
Authority
EP
European Patent Office
Prior art keywords
circuit
pulses
load
diode
pulse generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85200912A
Other languages
German (de)
French (fr)
Other versions
EP0165640A1 (en
Inventor
Oséas Bercy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telecommunications Radioelectriques et Telephoniques SA TRT
Koninklijke Philips NV
Original Assignee
Telecommunications Radioelectriques et Telephoniques SA TRT
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telecommunications Radioelectriques et Telephoniques SA TRT, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Telecommunications Radioelectriques et Telephoniques SA TRT
Publication of EP0165640A1 publication Critical patent/EP0165640A1/en
Application granted granted Critical
Publication of EP0165640B1 publication Critical patent/EP0165640B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/42Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F19/00Fixed transformers or mutual inductances of the signal type
    • H01F19/04Transformers or mutual inductances suitable for handling frequencies considerably beyond the audio range
    • H01F19/08Transformers having magnetic bias, e.g. for handling pulses
    • H01F2019/085Transformer for galvanic isolation

Definitions

  • the present invention relates to a device for carrying out galvanic isolation between a pulse generator and a load, comprising a primary circuit and a secondary circuit coupled by mutual inductance, at least one circuit for eliminating the magnetizing current connected to the secondary circuit and a unidirectional transmission circuit connected to the primary circuit.
  • a device of this type is known from the German document DE-B-1 236 566 filed by PHILIPS on February 9, 1965 and gives complete satisfaction when the pulse generator has a high impedance cyclically, in particular, like that presented at the output of a transistor in switching regime.
  • the generator transmits a series of pulses of the same sign (for example positive)
  • the magnetizing current tends to increase by a phenomenon of accumulation in time, if one does not manage to flow it quickly enough.
  • the characteristics of the transformer then deteriorate as the magnetizing current increases, the material of the core goes into saturation and the transformer no longer transmits the pulses.
  • the invention provides a device combining the advantages of these known devices and which can be directly connected to the output of a generator supplying bipolar signals.
  • the device for carrying out the galvanic isolation between a pulse generator and a load of the type mentioned in the preamble is remarkable in that to be directly connected to a generator supplying pulses of bipolar type, on the one hand the primary circuit consists of two windings each admitting a polarity of the pulses, said pulses being switched by means of unidirectional transmission circuits each consisting of a diode connected in series with the primary circuit to allow the pulses to pass and force in cooperation with circuits elimination of the magnetizing current the magnetizing currents to flow quickly and only through the secondary circuit while for each of the polarities is also provided a circuit for attenuation of the transient phenomena due to the switching consisting of a zener diode connected in series with corresponding unidirectional transmission circuit to clip parasitic voltage fluctuations, and on the other hand the secondary circuit has two windings to transmit each, according to the polarity of the pulses, said pulses to the load.
  • each unidirectional transmission circuit allows the pulses to pass to the primary circuit and has a high impedance for the magnetizing current wishing to return to the generator having a continuously low impedance, it thus masks the low impedance of the latter.
  • the pulse generator is subjected to frequent transitions during the transmission of a message (message coded in “return to zero” RZ, for example), with each transition are generated fluctuations or parasitic noises called phenomena transient.
  • the zener diode therefore clips these parasitic noises, advantageously attenuates the transient phenomena due to switching and immunizes the transmission of the signals.
  • the device consists of a transformer 1 formed of a primary circuit 2 comprising a single winding 3 and of a secondary circuit 4 also comprising a single winding 5, the primary circuit 2 and the secondary circuit 4 being coupled by mutual induction M.
  • the winding 5 of the secondary circuit 4 and the winding 3 of the primary circuit 2 are wound so that the pulses returning with a determined polarity (positive for example) on the winding 3, come out with the same polarity of the winding 5.
  • the transformer 1 performs galvanic isolation and transmits the signal from the generator E, connected to the input between terminals 6 and 7, supplying pulses of positive polarity, to the load CH connected between the points 8 and 9.
  • a series circuit 12 known as the magnetizing current elimination circuit, composed of a diode 13 and a resistor 14.
  • One side of the resistor 14 is connected on the one hand to the terminal 11 of the circuit secondary 4 and secondly at point 9, thus connecting it to one side of the load CH.
  • the other side of the resistor 14 is connected to the anode of the diode 13.
  • the cathode of the diode 13 is connected on the one hand to the terminal 10 of the secondary circuit 4 and on the other hand to the point 8, thus connected to the other side of the CH load.
  • the diode 13 conducts the magnetizing current which therefore flows in the resistor 14, this if the pulse generator E has during this time a high impedance.
  • a unidirectional transmission circuit 15 allows the pulses to pass and force in cooperation with the magnetizing current elimination circuit 12, said magnetizing current to flow quickly and only by the secondary circuit 4.
  • the unidirectional transmission circuit 15 preferably consists of a diode 16, connected in series with the primary circuit 2 of the transformer 1. The cathode of the diode 16 is connected to the primary circuit 2 at terminal 17.
  • the anode of the diode zener 19 is connected to the anode of the diode 16.
  • the cathode of the zener diode 19 is connected to the input terminal 6 and thus connected at a point of the pulse generator E.
  • the terminal 20 of the primary circuit 2 is directly connected to the second input terminal 7, itself connected to the pulse generator E at its second point.
  • the diode 16 allows the pulses of positive polarity to pass and prevents the return of the magnetizing current since it has a high impedance in reverse, it thus forces the magnetizing current to flow through the secondary circuit 4 in the current elimination circuit.
  • magnetizer 12 specially provided for this purpose.
  • the pulse generator E is subjected to frequent transitions and therefore is disturbed by transient phenomena due to switching.
  • the role of the zener diode 19 is to advantageously attenuate the influence of the transient phenomena due to the switching, it clips the parasitic fluctuations and immunizes the transmission of the signals.
  • FIG. 2 shows a device according to the invention, for which the pulse generator E supplies pulses of bipolar type, such as those proposed in FIG. 3a.
  • the primary circuit 2 here comprises two windings 3 'and 3 "each admitting a polarity of the pulses
  • the secondary circuit 4 comprises two windings 5' and 5" transmitting the pulses to a load CH.
  • the winding 5 'of the secondary circuit 4 and the winding 3' of the primary circuit 2 are wound so that the pulses returning with a determined polarity (positive for example) on the winding 3 ', come out with the same polarity of winding 5 '.
  • the winding 5 “of the secondary circuit 4 and the winding 3" of the primary circuit 2 are wound so that the pulses returning with a determined polarity (negative for example) on the winding 3 ", come out of the 5 "winding with opposite polarity (positive).
  • the pulses of positive polarity are routed through the unidirectional transmission circuit 15 'and transmitted to the winding 3' of the primary circuit 2.
  • the pulses of negative polarity are routed through the unidirectional transmission circuit 15 "to the 3 "winding of the primary circuit 2.
  • the circuits for attenuating transient phenomena due to switching 18 'and 18" are connected in series, respectively with the unidirectional transmission circuits 15' and 15 ".
  • the unidirectional transmission and attenuation circuits for transient phenomena due to switching are each adapted to the polarities of the pulses.
  • the operation of the device shown is based on that described for the device of FIG. 1, except that in the unidirectional transmission circuit 15 "and the circuit for attenuation of the transient switching phenomena 18", the diode 16 “and the zener diode 19 "are connected in reverse relative to the connections of the diode 16 and the zener diode 19, this in order to direct and to let pass only the pulses of negative polarity.
  • the diode 16 'placed in series with the winding 3' of the primary circuit 2 allows only the pulses of positive polarity to pass while the diode 16 "placed in series with the winding 3" of the primary circuit 2 allows only the pulses of negative polarity.
  • the diodes 16 'and 16 "prevent the magnetizing current from returning to the pulse generator E.
  • the zener diode 19 ' is connected in series with the diode 16' while the zener diode 19 "is connected in series with the diode 16".
  • the zener diodes 19 'and 19 protect the pulse generator E by clipping parasitic fluctuations, thus attenuating the transient phenomena due to switching.
  • the diodes 16 'and 19' are connected in the same way as the diodes 16 and 19 of the device of FIG. 1, since they all receive pulses of positive polarity.
  • the cathodes of the 16 "and 19" diodes are interconnected.
  • the anode of diode 16 is connected to point 17" of the primary circuit 2.
  • the anode of diode 19 is connected to the input at terminal 6, connected at one point to pulse generator E.
  • the primary circuit 2 is connected by its terminal 20 "to the second point of the pulse generator E via terminal 7.
  • circuits for eliminating the magnetizing current are in total identity with the circuit 12 of Figure 1 as to the operation and arrangement of the elements.
  • V + is the voltage across the terminals of this load
  • V_ is the voltage at the terminals of this second load.
  • the voltage V + is applied to the inverting input of a voltage comparator circuit 21 ′, it is compared to a reference voltage REF, which is a fraction of the value of the amplitude of the input voltage, thus the transitions of V + are detected.
  • REF reference voltage
  • the voltage V_ is applied to l inverting input of a second voltage comparator circuit 21 ", it is also compared to the reference voltage REF, in order to detect the transitions of V_.
  • the output voltage V s _ see figure 3c.
  • Such a device is of great interest as to its use in receiving data, it gives the possibility of strictly complying with the ARINC 429-2 standard.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electronic Switches (AREA)
  • Dc Digital Transmission (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

La présente invention concerne un dispositif pour réaliser l'isolement galvanique entre un générateur d'impulsions et une charge, comportant un circuit primaire et un circuit secondaire couplés par inductance mutuelle, au moins un circuit d'élimination du courant magnétisant connecté au circuit secondaire et un circuit de transmission unidirectionnelle connecté au circuit primaire.The present invention relates to a device for carrying out galvanic isolation between a pulse generator and a load, comprising a primary circuit and a secondary circuit coupled by mutual inductance, at least one circuit for eliminating the magnetizing current connected to the secondary circuit and a unidirectional transmission circuit connected to the primary circuit.

Un dispositif de ce type est connu du document allemand DE-B-1 236 566 déposé par PHILIPS le 9 Février 1965 et donne entière satisfaction lorsque le générateur d'impulsions présente cycliquement une impédance élevée, notamment, comme celle présentée à la sortie d'un transistor en régime de commutation. Quand le générateur transmet une série d'impulsions de même signe (par exemple positives), le courant magnétisant tend à augmenter par un phénomène d'accumulation dans le temps, si l'on ne parvient pas à l'écouler suffisamment rapidement. Les caractéristiques du transformateur se dégradent alors au fur et à mesure que le courant magnétisant croît, le matériau du noyau va en saturation et le transformateur ne transmet plus les impulsions. En branchant au secondaire du transformateur et en parallèle avec la charge un circuit d'élimination du courant magnétisant, on évite les inconvénients dus à la saturation.A device of this type is known from the German document DE-B-1 236 566 filed by PHILIPS on February 9, 1965 and gives complete satisfaction when the pulse generator has a high impedance cyclically, in particular, like that presented at the output of a transistor in switching regime. When the generator transmits a series of pulses of the same sign (for example positive), the magnetizing current tends to increase by a phenomenon of accumulation in time, if one does not manage to flow it quickly enough. The characteristics of the transformer then deteriorate as the magnetizing current increases, the material of the core goes into saturation and the transformer no longer transmits the pulses. By connecting a magnetization current elimination circuit to the transformer secondary and in parallel with the load, the drawbacks due to saturation are avoided.

Cependant si le générateur d'impulsions présente continuellement une faible impédance comme c'est le cas par exemple pour un amplificateur opérationnel, un autre défaut apparaît. Le primaire du transformateur choisit alors le chemin le plus court et de moindre résistance pour écouler le courant magnétisant, lequel retourne alors vers le générateur, provoquant ainsi des perturbations, voire une destruction. Ce second type d'inconvénients peut être évité en utilisant un circuit de transmission unidirectionnelle, tel que celui proposé dans GB-A- 836 027, qui présente une très faible impédance dans un sens pour laisser passer les impulsions et une impédance très élevée dans l'autre sens pour éviter le retour des courants de démagnétisation.However, if the pulse generator continuously has a low impedance as is the case for example for an operational amplifier, another fault appears. The transformer primary then chooses the shortest and least resistance path to flow the magnetizing current, which then returns to the generator, thus causing disturbances or even destruction. This second type of drawback can be avoided by using a unidirectional transmission circuit, such as that proposed in GB-A-836 027, which has a very low impedance in one direction for passing the pulses and a very high impedance in the Another way to avoid the return of demagnetization currents.

Toutefois, ces types de dispositifs ne sont pas prévus pour être connectés à un générateur délivrant des signaux bipolaires, signaux couramment utilisés.However, these types of devices are not intended to be connected to a generator delivering bipolar signals, signals commonly used.

L'invention propose un dispositif combinant les avantages de ces dispositifs connus et pouvant être directement connecté à la sortie d'un générateur fournissant des signaux bipolaires.The invention provides a device combining the advantages of these known devices and which can be directly connected to the output of a generator supplying bipolar signals.

Pour cela, le dispositif pour réaliser l'isolement galvanique entre un générateur d'impulsions et une charge du type mentionné dans le préambule est remarquable en ce que pour être directement connecté à un générateur fournissant des impulsions de type bipolaire, d'une part le circuit primaire est constitué de deux enroulements admettant chacun une polarité des impulsions, lesdites impulsions étant aiguillées au moyen des circuits de transmission unidirectionnelle constitués chacun d'une diode connectée en série avec le circuit primaire pour laisser passer les impulsions et forcer en coopération avec des circuits d'élimination du courant magnétisant les courants magnétisants à s'écouler rapidement et uniquement par le circuit secondaire alors que pour chacune des polarités est en outre prévu un circuit d'atténuation des phénomènes transitoires dus à la commutation constitué d'une diode zéner connectée en série avec le circuit de transmission unidirectionnelle correspondant pour écrêter les fluctuations de tension parasites, et d'autre part le circuit secondaire comporte deux enroulements pour transmettre chacun, selon la polarité des impulsions, lesdites impulsions vers la charge.For this, the device for carrying out the galvanic isolation between a pulse generator and a load of the type mentioned in the preamble is remarkable in that to be directly connected to a generator supplying pulses of bipolar type, on the one hand the primary circuit consists of two windings each admitting a polarity of the pulses, said pulses being switched by means of unidirectional transmission circuits each consisting of a diode connected in series with the primary circuit to allow the pulses to pass and force in cooperation with circuits elimination of the magnetizing current the magnetizing currents to flow quickly and only through the secondary circuit while for each of the polarities is also provided a circuit for attenuation of the transient phenomena due to the switching consisting of a zener diode connected in series with corresponding unidirectional transmission circuit to clip parasitic voltage fluctuations, and on the other hand the secondary circuit has two windings to transmit each, according to the polarity of the pulses, said pulses to the load.

Ainsi la diode de chaque circuit de transmission unidirectionnelle laisse passer les impulsions vers le circuit primaire et présente une impédance élevée pour le courant magnétisant désirant retourner vers le générateur présentant une impédance continûment faible, elle masque ainsi la faible impédance de ce dernier. En outre, le générateur d'impulsions est soumis à de fréquentes transitions lors de l'émission d'un message (message codé en « retour à zéro » RZ, par exemple), à chaque transition sont engendrés des fluctuations ou bruits parasites appelés phénomènes transitoires. La diode zéner écrête donc ces bruits parasites, atténue avantageusement les phénomènes transitoires dus à ia commutation et immunise la transmission des signaux.Thus the diode of each unidirectional transmission circuit allows the pulses to pass to the primary circuit and has a high impedance for the magnetizing current wishing to return to the generator having a continuously low impedance, it thus masks the low impedance of the latter. In addition, the pulse generator is subjected to frequent transitions during the transmission of a message (message coded in “return to zero” RZ, for example), with each transition are generated fluctuations or parasitic noises called phenomena transient. The zener diode therefore clips these parasitic noises, advantageously attenuates the transient phenomena due to switching and immunizes the transmission of the signals.

La description suivante en regard des dessins annexés, donnés à titre d'exemple, fera bien comprendre comment l'invention peut être réalisée.

  • La figure 1 montre un dispositif complet combinant les dispositifs connus pour un générateur fournissant des impulsions unipolaires.
  • La figure 2 présente un dispositif conforme à l'invention, pour un générateur fournissant des impulsions bipolaires.
  • La figure 3 représente l'allure de quelques signaux dans le dispositif montré à la figure 2.
The following description with reference to the accompanying drawings, given by way of example, will make it clear how the invention can be implemented.
  • Figure 1 shows a complete device combining the known devices for a generator providing unipolar pulses.
  • FIG. 2 shows a device according to the invention, for a generator supplying bipolar pulses.
  • FIG. 3 represents the appearance of a few signals in the device shown in FIG. 2.

Sur la figure 1, le dispositif est constitué par un transformateur 1 formé d'un circuit primaire 2 comportant un seul enroulement 3 et d'un circuit secondaire 4 comportant aussi un seul enroulement 5, le circuit primaire 2 et le circuit secondaire 4 étant couplés par induction mutuelle M. L'enroulement 5 du circuit secondaire 4 et l'enroulement 3 du circuit primaire 2 sont bobinés de telle sorte que les impulsions rentrant avec une polarité déterminée (positive par exemple) sur l'enroulement 3, ressortent avec la même polarité de l'enroulement 5. Le transformateur 1 réalise l'isolement galvanique et transmet le signal du générateur E, branché à t'entrée entre les bornes 6 et 7, fournissant des impulsions de polarité positive, vers la charge CH connectée entre les points 8 et 9. Aux bornes 10 et 11 du circuit secondaire 4 est branché un circuit série 12, dit circuit d'élimination du courant magnétisant, composé d'une diode 13 et d'une résistance 14. Un côté de la résistance 14 est connecté d'une part à la borne 11 du circuit secondaire 4 et d'autre part au point 9, le reliant ainsi à un côté de la charge CH. L'autre côté de la résistance 14 est connecté à l'anode de la diode 13. La cathode de la diode 13 est raccordée d'une part à la borne 10 du circuit secondaire 4 et d'autre part au point 8, ainsi reliée à l'autre côté de la charge CH. La diode 13 conduit le courant magnétisant qui s'écoule donc dans la résistance 14, ceci si le générateur d'impulsions E présente pendant ce temps une impédance élevée. Connecté entre le générateur d'impulsions E et le circuit primaire 2, un circuit de transmission unidirectionnelle 15 laisse passer les impulsions et force en coopération avec le circuit d'élimination du courant magnétisant 12, ledit courant magnétisant à s'écouler rapidement et uniquement par le circuit secondaire 4. Le circuit de transmission unidirectionnelle 15 est constitué de préférence par une diode 16, branchée en série avec le circuit primaire 2 du transformateur 1. La cathode de la diode 16 est connectée au circuit primaire 2 en la borne 17.In FIG. 1, the device consists of a transformer 1 formed of a primary circuit 2 comprising a single winding 3 and of a secondary circuit 4 also comprising a single winding 5, the primary circuit 2 and the secondary circuit 4 being coupled by mutual induction M. The winding 5 of the secondary circuit 4 and the winding 3 of the primary circuit 2 are wound so that the pulses returning with a determined polarity (positive for example) on the winding 3, come out with the same polarity of the winding 5. The transformer 1 performs galvanic isolation and transmits the signal from the generator E, connected to the input between terminals 6 and 7, supplying pulses of positive polarity, to the load CH connected between the points 8 and 9. At terminals 10 and 11 of secondary circuit 4 is connected a series circuit 12, known as the magnetizing current elimination circuit, composed of a diode 13 and a resistor 14. One side of the resistor 14 is connected on the one hand to the terminal 11 of the circuit secondary 4 and secondly at point 9, thus connecting it to one side of the load CH. The other side of the resistor 14 is connected to the anode of the diode 13. The cathode of the diode 13 is connected on the one hand to the terminal 10 of the secondary circuit 4 and on the other hand to the point 8, thus connected to the other side of the CH load. The diode 13 conducts the magnetizing current which therefore flows in the resistor 14, this if the pulse generator E has during this time a high impedance. Connected between the pulse generator E and the primary circuit 2, a unidirectional transmission circuit 15 allows the pulses to pass and force in cooperation with the magnetizing current elimination circuit 12, said magnetizing current to flow quickly and only by the secondary circuit 4. The unidirectional transmission circuit 15 preferably consists of a diode 16, connected in series with the primary circuit 2 of the transformer 1. The cathode of the diode 16 is connected to the primary circuit 2 at terminal 17.

En amont du circuit de transmission unidirectionnelle 15 et en série avec celui-ci, se trouve un circuit d'atténuation des phénomènes transitoires dus à la commutation 18, qui de préférence est constitué d'une diode zéner 19. L'anode de la diode zéner 19 est reliée à l'anode de la diode 16. La cathode de la diode zéner 19 est connectée à la borne d'entrée 6 et ainsi reliée en un point du générateur d'impulsions E. La borne 20 du circuit primaire 2 est directement reliée à la deuxième borne d'entrée 7, elle-même reliée au générateur d'impulsions E en son deuxième point.Upstream of the unidirectional transmission circuit 15 and in series with it, there is a circuit for attenuation of the transient phenomena due to switching 18, which preferably consists of a zener diode 19. The anode of the diode zener 19 is connected to the anode of the diode 16. The cathode of the zener diode 19 is connected to the input terminal 6 and thus connected at a point of the pulse generator E. The terminal 20 of the primary circuit 2 is directly connected to the second input terminal 7, itself connected to the pulse generator E at its second point.

La diode 16 laisse passer les impulsions de polarité positive et interdit le retour du courant magnétisant puisqu'elle présente en inverse une grande impédance, elle force ainsi le courant magnétisant à s'écouler par le circuit secondaire 4 dans le circuit d'élimination du courant magnétisant 12, spécialement prévu à cet effet.The diode 16 allows the pulses of positive polarity to pass and prevents the return of the magnetizing current since it has a high impedance in reverse, it thus forces the magnetizing current to flow through the secondary circuit 4 in the current elimination circuit. magnetizer 12, specially provided for this purpose.

D'autre part, le générateur d'impulsions E est soumis à de fréquentes transitions et de ce fait est perturbé par des phénomènes transitoires dus à la commutation. Le rôle de la diode zéner 19 est d'atténuer avantageusement l'influence des phénomènes transitoires dus à la commutation, elle écrête les fluctuations parasites et immunise la transmission des signaux.On the other hand, the pulse generator E is subjected to frequent transitions and therefore is disturbed by transient phenomena due to switching. The role of the zener diode 19 is to advantageously attenuate the influence of the transient phenomena due to the switching, it clips the parasitic fluctuations and immunizes the transmission of the signals.

Sur la figure 2 est représenté un dispositif conforme à l'invention, pour lequel le générateur d'impulsions E fournit des impulsions de type bipolaire, telles que celles proposées sur la figure 3a.FIG. 2 shows a device according to the invention, for which the pulse generator E supplies pulses of bipolar type, such as those proposed in FIG. 3a.

Le circuit primaire 2 comporte ici deux enroulements 3' et 3" admettant chacun une polarité des impulsions, de même le circuit secondaire 4 comporte deux enroulements 5' et 5" transmettant les impulsions vers une charge CH. L'enroulement 5' du circuit secondaire 4 et l'enroulement 3' du circuit primaire 2 sont bobinés de telle sorte que les impulsions rentrant avec une polarité déterminée (positive par exemple) sur l'enroulement 3', ressortent avec la même polarité de l'enroulement 5'. Au contraire, l'enroulement 5" du circuit secondaire 4 et l'enroulement 3" du circuit primaire 2 sont bobinés de telle sorte que les impulsions rentrant avec une polarité déterminée (négative par exemple) sur l'enroulement 3", ressortent de l'enroulement 5" avec une polarité opposée (positive).The primary circuit 2 here comprises two windings 3 'and 3 "each admitting a polarity of the pulses, similarly the secondary circuit 4 comprises two windings 5' and 5" transmitting the pulses to a load CH. The winding 5 'of the secondary circuit 4 and the winding 3' of the primary circuit 2 are wound so that the pulses returning with a determined polarity (positive for example) on the winding 3 ', come out with the same polarity of winding 5 '. On the contrary, the winding 5 "of the secondary circuit 4 and the winding 3" of the primary circuit 2 are wound so that the pulses returning with a determined polarity (negative for example) on the winding 3 ", come out of the 5 "winding with opposite polarity (positive).

Les impulsions de polarité positive sont aiguillées par l'intermédiaire du circuit de transmission unidirectionnelle 15' et transmises vers l'enroulement 3' du circuit primaire 2. Les impulsions de polarité négative sont aiguillées par l'intermédiaire du circuit de transmission unidirectionnelle 15" vers l'enroulement 3" du circuit primaire 2. Les circuits d'atténuation des phénomènes transitoires dus à la commutation 18' et 18" sont branchés en série, respectivement avec les circuits de transmission unidirectionnelle 15' et 15".The pulses of positive polarity are routed through the unidirectional transmission circuit 15 'and transmitted to the winding 3' of the primary circuit 2. The pulses of negative polarity are routed through the unidirectional transmission circuit 15 "to the 3 "winding of the primary circuit 2. The circuits for attenuating transient phenomena due to switching 18 'and 18" are connected in series, respectively with the unidirectional transmission circuits 15' and 15 ".

Les circuits de transmission unidirectionnelle et d'atténuation des phénomènes transitoires dus à la commutation sont chacun adaptés aux polarités des impulsions.The unidirectional transmission and attenuation circuits for transient phenomena due to switching are each adapted to the polarities of the pulses.

Le fonctionnement du dispositif représenté est basé sur celui décrit pour le dispositif de la figure 1, à cela près que dans le circuit de transmission unidirectionnelle 15" et le circuit d'atténuation des phénomènes transitoires de commutation 18", la diode 16" et la diode zéner 19" sont branchées en inverse relativement aux branchements de la diode 16 et de la diode zéner 19, cela afin d'aiguiller et de ne laisser passer que les impulsions de polarité négative.The operation of the device shown is based on that described for the device of FIG. 1, except that in the unidirectional transmission circuit 15 "and the circuit for attenuation of the transient switching phenomena 18", the diode 16 "and the zener diode 19 "are connected in reverse relative to the connections of the diode 16 and the zener diode 19, this in order to direct and to let pass only the pulses of negative polarity.

La diode 16' placée en série avec l'enroulement 3' du circuit primaire 2 ne laisse passer que les impulsions de polarité positive alors que la diode 16" placée en série avec l'enroulement 3" du circuit primaire 2 ne laisse passer que les impulsions de polarité négative. Les diodes 16' et 16" interdisent au courant magnétisant de retourner vers le générateur d'impulsions E.The diode 16 'placed in series with the winding 3' of the primary circuit 2 allows only the pulses of positive polarity to pass while the diode 16 "placed in series with the winding 3" of the primary circuit 2 allows only the pulses of negative polarity. The diodes 16 'and 16 "prevent the magnetizing current from returning to the pulse generator E.

La diode zéner 19' est branchée en série avec la diode 16' alors que la diode zéner 19" est branchée en série avec la diode 16". Les diodes zéner 19' et 19" protègent le générateur d'impulsions E en écrêtant les fluctuations parasites, atténuant ainsi les phénomènes transitoires dus à la commutation.The zener diode 19 'is connected in series with the diode 16' while the zener diode 19 "is connected in series with the diode 16". The zener diodes 19 'and 19 "protect the pulse generator E by clipping parasitic fluctuations, thus attenuating the transient phenomena due to switching.

Les diodes 16' et 19' sont connectées de la même manière que les diodes 16 et 19 du dispositif de la figure 1, puisqu'elles reçoivent toutes des impulsions de polarité positive.The diodes 16 'and 19' are connected in the same way as the diodes 16 and 19 of the device of FIG. 1, since they all receive pulses of positive polarity.

Les cathodes des diodes 16" et 19" sont reliées entre elles. L'anode de la diode 16" est connectée au point 17" du circuit primaire 2. L'anode de la diode 19" est connectée à l'entrée à la borne 6, reliée en un point du générateur d'impulsions E. Le circuit primaire 2 est relié par sa borne 20" au deuxième point du générateur d'impulsions E par l'intermédiaire de la borne 7.The cathodes of the 16 "and 19" diodes are interconnected. The anode of diode 16 "is connected to point 17" of the primary circuit 2. The anode of diode 19 "is connected to the input at terminal 6, connected at one point to pulse generator E. The primary circuit 2 is connected by its terminal 20 "to the second point of the pulse generator E via terminal 7.

Les circuits 12' et 12" d'élimination du courant magnétisant sont en totale identité avec le circuit 12 de la figure 1 quant au fonctionnement et à la disposition des éléments.The 12 'and 12 "circuits for eliminating the magnetizing current are in total identity with the circuit 12 of Figure 1 as to the operation and arrangement of the elements.

Aux points 8' et 9' d'une part est connectée une charge CH', la tension V+ est la tension aux bornes de cette charge, aux points 8" et 9" d'autre part est connectée une charge équivalente CH", la tension V_ est la tension aux bornes de cette deuxième charge. La tension V+ est appliquée à l'entrée inverseuse d'un circuit comparateur de tension 21', elle est comparée à une tension de référence REF, qui est une fraction de la valeur de l'amplitude de la tension d'entrée, ainsi les transitions de V+ sont détectées. A la sortie du comparateur de tension 21' est la tension de sortie Vs+ (voir figure 3b). La tension V_ est appliquée à l'entrée inverseuse d"un deuxième circuit comparateur de tension 21", elle est aussi comparée à la tension de référence REF, afin de détecter les transitions de V_. A la sortie du comparateur de tension 21" la tension de sortie Vs_ (voir figure 3c).At points 8 'and 9' on the one hand, a load CH 'is connected, the voltage V + is the voltage across the terminals of this load, at points 8 "and 9" on the other hand, an equivalent load CH "is connected, the voltage V_ is the voltage at the terminals of this second load. The voltage V + is applied to the inverting input of a voltage comparator circuit 21 ′, it is compared to a reference voltage REF, which is a fraction of the value of the amplitude of the input voltage, thus the transitions of V + are detected. At the output of the voltage comparator 21 ′ is the output voltage V s + (see FIG. 3b). The voltage V_ is applied to l inverting input of a second voltage comparator circuit 21 ", it is also compared to the reference voltage REF, in order to detect the transitions of V_. At the output of the voltage comparator 21" the output voltage V s _ ( see figure 3c).

L'obtention de ces deux tensions Vs+ et Vs_, permet avantageusement d'une part de reconstituer l'horloge de départ en utilisant un circuit logique NON-ET 22, dont les deux entrées reçoivent respectivement Vs+ et Vs―, et d'autre part de transformer le message codé en « retour à zéro » RZ en un message codé en « non retour à zéro » NRZ, au moyen d'une bascule bistable 23, du type bascule RS par exemple, obtenue à partir de deux circuits logiques NON-ET. L'horloge reconstituée HR et le message transformé IR, sont reproduits respectivement en figure 3d et 3e.Obtaining these two voltages V s + and V s _ advantageously makes it possible on the one hand to reconstruct the starting clock using a NAND logic circuit 22, the two inputs of which receive V s + and V s― respectively , and on the other hand to transform the coded message into "return to zero" RZ into a coded message into "non return to zero" NRZ, by means of a flip-flop 23, of the RS flip-flop type for example, obtained from two NAND logic circuits. The reconstituted clock HR and the transformed message IR, are reproduced respectively in FIGS. 3d and 3e.

Un tel dispositif est d'un grand intérêt quant à son utilisation en réception de données, il donne la possibilité de respecter strictement la norme ARINC 429-2.Such a device is of great interest as to its use in receiving data, it gives the possibility of strictly complying with the ARINC 429-2 standard.

Claims (1)

  1. An arrangement for providing the d. c. insulation between a pulse generator (E) and a load (CH', CH") comprising a primary circuit (2) and a secondary circuit (4) coupled to each other by mutual inductance, at least one circuit (12) for eliminating the magnetizing current connected to the secondary circuit and a unidirectional transmission circuit (15) connected to the primary circuit, characterized in that, in order to be directly connected to a generator supplying pulses of the bipolar type, on the one hand the primary circuit is constituted by two windings (3', 3") each admitting one polarity of the pulses, the said pulses being routed by means of the unidirectional transmission circuits (15', 15") each constituted by a diode (16', 16") connected in series with the primary circuit (2) to cause the pulses to pass and to force in cooperation with circuits (12', 12") for eliminating the magnetizing current the magnetizing currents to flow rapidly and solely through the secondary circuit (4), while moreover there is provided for each of the polarities a circuit for attenuating the transient phenomena due to the commutation (18', 18") constituted by a Zener diode (19', 19") connected in series with the corresponding unidirectional transmission circuit to smooth the parasitic voltage fluctuations, and on the other hand the secondary circuit (4) comprises two windings (5', 5") each for transmitting, in accordance with the polarity of the pulses, the said pulses to the load (CH', CH").
EP85200912A 1984-06-15 1985-06-11 Device for the galvanic insulation between a pulse generator and a load Expired EP0165640B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8409410 1984-06-15
FR8409410A FR2566169B1 (en) 1984-06-15 1984-06-15 DEVICE FOR PROVIDING GALVANIC ISOLATION BETWEEN A PULSE GENERATOR AND A LOAD

Publications (2)

Publication Number Publication Date
EP0165640A1 EP0165640A1 (en) 1985-12-27
EP0165640B1 true EP0165640B1 (en) 1989-09-20

Family

ID=9305071

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85200912A Expired EP0165640B1 (en) 1984-06-15 1985-06-11 Device for the galvanic insulation between a pulse generator and a load

Country Status (5)

Country Link
US (1) US4721863A (en)
EP (1) EP0165640B1 (en)
JP (1) JPS6116506A (en)
DE (1) DE3573189D1 (en)
FR (1) FR2566169B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4777382A (en) * 1987-06-19 1988-10-11 Allied-Signal, Inc. Pulse width logic/power isolation circuit
FR2638231B1 (en) * 1988-10-24 1993-02-05 Michelin & Cie ANTENNA FOR TIRE MONITORING DEVICE
US5196845A (en) * 1988-10-24 1993-03-23 Compagnie Generale Des Etablissements Michelin Antenna for tire monitoring device
DE19706127C2 (en) * 1997-02-17 1999-09-09 Vacuumschmelze Gmbh Power converter

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2787755A (en) * 1953-08-13 1957-04-02 North American Aviation Inc Magnetic frequency divider
US2942175A (en) * 1954-11-08 1960-06-21 Ryan Aeronautical Co Cascaded magnetic amplifier
US2758206A (en) * 1955-08-03 1956-08-07 Hughes Aircraft Co Transistor pulse generator
GB836027A (en) * 1955-08-18 1960-06-01 Sperry Rand Corp Improvements in gating circuits using transformers
US3234407A (en) * 1963-01-31 1966-02-08 Burroughs Corp Rapid recovery pulse transformer circuit
US3339022A (en) * 1963-12-16 1967-08-29 Ibm Transistor circuit for receiving data pulses
US3375378A (en) * 1964-06-01 1968-03-26 Bliss E W Co Pulse forming circuit
DE1236566B (en) * 1965-02-09 1967-03-16 Philips Patentverwaltung Transistor impulse amplifier with transformer coupling of the load resistor
US3524071A (en) * 1966-11-03 1970-08-11 Sinclair Research Inc Oscillatory pulse forming circuit
GB1252905A (en) * 1968-05-17 1971-11-10
US3681656A (en) * 1970-09-23 1972-08-01 Ikor Inc High power wide bandwidth pulse generator
JPS57154931A (en) * 1981-03-19 1982-09-24 Nissin Electric Co Ltd High-voltage pulse generating circuit
GB2135547B (en) * 1983-01-22 1986-05-14 Marconi Co Ltd Pulse circuits
US4612455A (en) * 1984-05-10 1986-09-16 The United States Of America As Represented By The Secretary Of The Army Distributed pulse forming network for magnetic modulator

Also Published As

Publication number Publication date
FR2566169B1 (en) 1987-04-17
US4721863A (en) 1988-01-26
DE3573189D1 (en) 1989-10-26
JPS6116506A (en) 1986-01-24
EP0165640A1 (en) 1985-12-27
FR2566169A1 (en) 1985-12-20

Similar Documents

Publication Publication Date Title
EP0454597B1 (en) Pulse gate control circuit with short-circuit protection
EP0004815B1 (en) System for transmitting optically linked electrical signals and device for the automatic gain control of a receiver path connected to this optical linkage
EP0082791A1 (en) Signal transmission device over a line also assuring a D.C. current supply
FR2602620A1 (en) SEMICONDUCTOR SWITCHING CIRCUIT
FR2468193A1 (en) TRANSFORMER, PARTICULARLY USEFUL AS A SWITCHING REGULATOR
EP0737989A1 (en) Switching power supply using a saturable inductor for achieving a pulsed current source
EP0194177B1 (en) Subscriber line interface circuit with a reduced power monitoring mode
EP0165640B1 (en) Device for the galvanic insulation between a pulse generator and a load
FR2556905A1 (en) CONTROL CIRCUIT FOR POWER FIELD EFFECT TRANSISTOR
FR2477338A1 (en) OUTPUT CIRCUIT PREVENTS BLOCKING DUE TO VOLTAGE PULSES GENERATED BY AN INDUCTIVE LOAD
FR2573257A1 (en) PROTECTION CIRCUIT AGAINST POWER SUPPLY BREAKS
EP0063502B1 (en) Arrangement for locating faults in a two-wire line
EP0277855B1 (en) Binary-to-bipolar converter
FR2527399A1 (en) CIRCUIT WITH IMPEDANCE OF ENTRANCE, HIGH
EP0060164A1 (en) Sliding class A broadband linear amplifier with low power consumption, and circuit comprising at least one such amplifier
EP0822907B1 (en) Ac input cell for data acquisition circuits
FR2700085A1 (en) Remote supply device for electronic equipment.
EP0147306A2 (en) Linear power amplifier
CA1115869A (en) Subscriber electronic equipment with two wire - four wire conversion circuit for telephone exchange
EP0130261A1 (en) D.C. powering circuit for a line interface circuit
BE903101R (en) Power limit transistorised switching circuit - provides high or low impedance according to operating current voltage characteristic
EP0195713A1 (en) Switching aid device for a switch and free-wheel diode
FR2491704A1 (en) Uses differential amplifier and generator - giving spaced voltage pulses to power line to reduce consumption and avoid noise generation
EP1428309A1 (en) Device for measuring a chopped current
EP0280616B1 (en) Electric power supply device for a cable, and its use

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19860529

17Q First examination report despatched

Effective date: 19870515

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19890920

Ref country code: NL

Effective date: 19890920

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19890920

Ref country code: GB

Effective date: 19890920

REF Corresponds to:

Ref document number: 3573189

Country of ref document: DE

Date of ref document: 19891026

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN

Owner name: TELECOMMUNICATIONS RADIOELECTRIQUES ET TELEPHONIQU

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19900630

Ref country code: CH

Effective date: 19900630

Ref country code: BE

Effective date: 19900630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: PHILIPS' GLOEILAMPENFABRIEKEN N.V.

Effective date: 19900630

Owner name: TELECOMMUNICATIONS RADIOELECTRIQUES ET TELEPHONIQU

Effective date: 19900630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910301

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930625

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST