EP0163579A1 - Procédé et installation de congélation de sol - Google Patents

Procédé et installation de congélation de sol Download PDF

Info

Publication number
EP0163579A1
EP0163579A1 EP85401053A EP85401053A EP0163579A1 EP 0163579 A1 EP0163579 A1 EP 0163579A1 EP 85401053 A EP85401053 A EP 85401053A EP 85401053 A EP85401053 A EP 85401053A EP 0163579 A1 EP0163579 A1 EP 0163579A1
Authority
EP
European Patent Office
Prior art keywords
probe
temperature
freezing
probes
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85401053A
Other languages
German (de)
English (en)
Other versions
EP0163579B1 (fr
Inventor
Pierre Karinthi
Maurice Gardent
Colette Regnier
Jean Tuccella
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9304631&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0163579(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Priority to AT85401053T priority Critical patent/ATE36880T1/de
Publication of EP0163579A1 publication Critical patent/EP0163579A1/fr
Application granted granted Critical
Publication of EP0163579B1 publication Critical patent/EP0163579B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/11Improving or preserving soil or rock, e.g. preserving permafrost soil by thermal, electrical or electro-chemical means
    • E02D3/115Improving or preserving soil or rock, e.g. preserving permafrost soil by thermal, electrical or electro-chemical means by freezing

Definitions

  • the present invention relates to the freezing technique of soils. It relates firstly to a method of freezing soil of the type in which a cooling liquid is cooled by heat exchange with a cryogenic fluid, then this liquid is circulated in a series of probes sunk into the ground.
  • Direct injection of liquid nitrogen has several drawbacks, in particular the difficulty of controlling the heat exchange coefficients with the soil: by yielding cold, the nitrogen vaporizes and the exchange coefficients between the probe and the nitrogen first pure liquid, then mixtures of liquid and gas in variable proportion, then cold gas alone, are very different. This results in a high degree of heterogeneity in the thickness of frozen soil around the probe and a loss of time and energy so that the less frozen zones meet to form the consolidated wall, while the most frozen zones are unnecessarily sub-cooled and oversized.
  • the cooling of a circulating liquid by a refrigeration unit makes it possible to inject the liquid at -40 ° C in the best case, more generally at -20 ° C or -30 ° C.
  • These freezing conditions lead to a prohibitive frozen wall formation time, of the order of several weeks for a wall 1 m thick. This duration is generally incompatible with the duration of construction sites in cities.
  • the object of the invention is to make it possible to considerably reduce the excess of cold and, consequently, to make the process much more economical, without thereby significantly increasing the duration of freezing.
  • the subject of the invention is a process for freezing soil of the aforementioned type, characterized in that the temperature of the coolant is varied, during the phase of freezing the soil, as a function of the progression of freezing.
  • the temperature of the liquid circulating in at least one of the probes is gradually increased, preferably in successive stages.
  • the temperature of the liquid circulating in each probe is adapted to the rate of freezing of the soil around this probe, this temperature being set to a value the higher the higher the freezing speed.
  • the invention also relates to a soil freezing installation intended for the implementation of such a method.
  • This installation of the type comprising a heat exchanger supplied on the one hand with cryogenic fluid, on the other hand with a coolant, a series of freezing probes, and means for circulating the liquid in each probe, is characterized by the fact that it comprises means for varying the set temperature of the heat exchanger, and / or the fact that it comprises at least two independent heat exchangers having different set temperatures.
  • the invention relates to the formation in a sandy and moist soil of a frozen wall in the shelter of which certain work must be carried out.
  • a series of freezing probes Sl, S2, etc. which are schematically illustrated in FIG. 3, are driven into the ground, and a coolant having an inlet temperature is circulated in each of them. determined.
  • the liquid chosen must have a sufficiently low freezing point, and methanol is an appropriate liquid, which will be referred to below.
  • this liquid circulates in a closed circuit between the probe and a heat exchanger El, E2, ..., called “cold plant", which comprises on the one hand passages for this liquid and on the other part of the passages for a cryogenic fluid, in particular liquid nitrogen.
  • the rate of admission of liquid nitrogen into these latter passages is controlled by a valve 1 controlled by a temperature sensor 2 which detects the temperature of the coolant leaving the exchanger.
  • Nitrogen passages can T ar example, as illustrated in Figure 3, be constituted by a bushing 3 calender by a coil 4 for circulating the coolant against the flow of nitrogen.
  • Cooling liquid leaving at a cold set temperature of an exchanger, is injected into the bottom of each probe connected to the latter by a central tube 5 thereof and rises between this tube and the cylindrical casing 6 of the probe to return to the exchanger. Between the inlet and the outlet of the probe, the liquid exchanges heat with the surrounding soil, through the casing 6.
  • the temperature of the coolant injected into the freezing probes is modulated over time, gradually increasing this temperature from a minimum temperature at the start of freezing to a final temperature for keeping the already frozen wall cold. In the example illustrated, this increase takes place in successive stages.
  • example I we will assume that we want to consolidate by freezing in 100 hours a wall 1 m thick in moist sandy soil, to a depth of 20 m and a length of 50 m . To do this, fifty probes S1, S2, ..., S50 are inserted into the ground, spaced 1 m apart. Methanol is circulated between the probes mounted in parallel and a single heat exchanger cooled with liquid nitrogen such as the exchanger El described above.
  • the temperature sensor 2 is equipped with an adjustment device which makes it possible to regulate at will the temperature of methanol between -80 ° C. (lower limit tolerable for this body) and -10 ° C.
  • the freezing is started by circulating the methanol with a set temperature at the outlet of the exchanger (and therefore upon injection into the probes) of -80 ° C. This set temperature is maintained for 50 hours. The temperature of the soil in the vicinity of the probes is then established at -70 ° C. and the frozen radius around the probes is 38 cm (ie a diameter of 76 cm).
  • the methanol setpoint temperature is set at -65 ° C. This temperature is maintained for 20 hours.
  • the temperature of the. soil in the vicinity of the probes is established at -57 ° C.
  • the progression of the freezing front of the wall is practically not slowed down, because it is governed by the temperature gradient in the vicinity of the freezing isotherm (0 ° C) and not by the temperature of the probe.
  • a frozen diameter of 84 cm is thus obtained after 70 hours of freezing.
  • the set temperature of methanol is fixed at -50 ° C. This set temperature is maintained for 15 hours.
  • the temperature of the soil in the vicinity of the probes is established at -44 ° C. After 85 hours, the frozen diameter around the probes is 88 cm.
  • the set temperature of methanol is then fixed at -40 ° C. It is kept for 10 hours.
  • the temperature of the soil in the vicinity of the probes is established at -35 ° C. After 95 hours of freezing, the frozen soil diameter around the probes is 90 cm.
  • the set temperature of methanol is then established at -35 ° C. This set temperature will be kept for the entire period of keeping the wall frozen. The temperature of the soil around the probes will equilibrate to -30 ° C. Freezing with a diameter of 100 cm will be obtained after approximately 100 hours.
  • each freezing probe reacts with its neighbors, which, for a spacing of 1 m between probes, leads to a frozen wall of variable thickness: 1 m in front of the probes, about 80 cm midway between the probes.
  • the different methanol set temperatures can no longer be obtained by means of a single exchanger with adjustable set temperature, but by means of several heat exchangers having different set temperatures but fixed, these exchangers can be selectively connected to the probes by a set of suitable valves.
  • the exchangers available do not allow individual cooling capacity to be supplied (proportional to the product of the methanol flow rate by the temperature difference between the inlet and the outlet of the exchanger) necessary.
  • several exchangers in parallel set to the same temperature can be used for each set temperature.
  • FIG. 2 illustrates the advantage of the method described above. It represents the variation of the soil temperature T as a function of the radius R, counted from the outer wall of a supposedly isolated probe, this at the end of the freezing, that is to say when the frozen radius Rc becomes close to the half-distance separating the probes (approximately 0.5 m in the example above).
  • the lower curve A1 corresponds to the case where the probe would have been permanently supplied with methanol at -80 ° C., according to the prior art.
  • the hatched area between the two curves Al and A2 is a representation of the economy of frigories achieved.
  • the temperature of methanol is no longer regulated over time but in space, by adapting this temperature, for each probe, to the freezing speed of the soil around this probe, in order to avoid excessively sub-cooling the parts of the soil which freeze the fastest.
  • a soil is generally relatively homogeneous in the radius of 50 to 60 cm which surrounds a probe, it is not the same from one probe to another.
  • heat exchangers El, E2, etc. are used, five in number in the example illustrated, having independently adjustable set temperatures and which can each be connected to all the probes.
  • the rate of cooling of the soil at the start of freezing is measured, and methanol is sent to each probe at a temperature which is all the cooler as the soil concerned by this probe cools faster.
  • the determination of the freezing speed which will make it possible to fix a set temperature for each probe and each heat exchanger can be done for example as follows.
  • Example II below illustrates the implementation of the invention from methods (a) and (d) above.
  • the basic data are the same as before: it involves freezing in 1 hour a wall 1 m thick in moist sandy soil, to a depth of 20 m and a length of 50 m.
  • Five independent heat exchangers E1 to E5 supplied with liquid nitrogen are used according to the diagram in FIG. 3.
  • any probe can be supplied from any what exchanger.
  • Each probe is provided with temperature sensors 8 and 9 measuring the temperature of methanol at its inlet and its outlet, respectively.
  • thermocouples 7 were placed to measure the temperature at 2 m, 10 m and 18 m deep.
  • the temperature of the external surface of the probes is not very variable at this time, between -70 ° C and -72 ° C for all the probes.
  • the cold methanol injection is then restored by setting the set temperatures as follows.
  • the probes S46 to S50 have been treated as slow-freezing probes to take account of the slow freezing observed in their deepest part
  • each probe is supplied with a cooling power that is lower the more the soil surrounding this probe freezes faster.
  • a line of twenty-five temperature sensors C1, C2, ..., C25 is available 40 cm from the line of freezing probes.
  • two freezing probes as shown in Figure 4, each sensor being equidistant from two probes.
  • the temperature sensor C1 is close to the freezing probes S1 and S2
  • the temperature sensor C2 is close to the freezing probes S3 and S4, etc.
  • Example IV below thus combines the lessons of examples I and III above and describes in table form the freezing procedure during the 100 hours allowed to obtain a wall 1 m thick.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Agronomy & Crop Science (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Processing Of Solid Wastes (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

Les sondes de congélation (S1, S2, ... ) sont parcourues par un liquide réfrigérant. La température du liquide envoyé dans chaque sonde est régulée en fonction de la vitesse de congélation du sol autour des différentes sondes et/ou est augmentée progressivement au fur et à mesure de la progression de la congélation.

Description

  • La présente Invention est relative à la technique de congélation des sols. Elle concerne en premier lieu un procédé de congélation de sol du type dans lequel on refroidit un liquide réfrigérant par échange de chaleur avec un fluide cryogénique, puis on fait circuler ce liquide dans une série de sondes enfoncées dans le sol.
  • On sait que la consolidation des sols par congélation permet l'ouverture de chantiers de travaux publics dans des sols humides et instables. Elle est pratiquée par injection d'un fluide réfrigérant dans des sondes introduites de place en place dans le sol. Ce refroidissement congèle le sol de proche en proche jusqu'à former un mur continu quand les zones de congélation de chaque sonde ont rejoint leurs voisines.
  • Il est connu d'injecter dans les sondes soit un liquide refroidi, soit un liquide cryogénique tel que l'azote liquide.
  • L'injection directe d'azote liquide présente plusieurs inconvénients, notamment la difficulté de maîtriser les coefficients d'échange thermique avec le sol : en cédant du froid, l'azote se vaporise et les coefficients d'échange entre la sonde et l'azote liquide pur d'abord, puis les mélanges de liquide et de gaz en proportion variable, puis le gaz froid seul, sont très différents. Il en résulte une forte ' hétérogénéité de l'épaisseur de sol congelé autour de la sonde et une perte de temps et d'énergie pour que les zones les moins congelées se rejoignent pour former le mur consolidé, tandis que les zones les plus congelées sont inutilement sous-refroidies et sur-dimensionnées.
  • L'injection d'un liquide refroidi ne' présente pas ces inconvénients, mais son efficacité dépend de la méthode de refroidissement.
  • Le refroidissement d'un liquide circulant par un groupe frigorifique permet d'injecter le liquide à -40°C dans le meilleur des cas, plus généralement à -20°C ou -30°C. Ces conditions de congélation conduisent à une durée de formation du mur congelé prohibitive, de l'ordre de plusieurs semaines pour un mur de 1 m dépaisseur. Cette durée est généralement incompatible avec la durée des chantiers dans les villes.
  • Pour permettre de faire circuler dans les sondes un liquide à beaucoup plus basse température, par exemple -80°C ou même -120°C, on a également proposé des procédés de congélation du type indiqué plus haut.
  • Un tel procédé permet de résoudre les inconvénients précités mais reste actuellement coûteux pour les raisons suivantes : d'une part, pour accélérer la congélation, on est amené à refroidir le sol plus que ce qui est strictement nécessaire pour sa consolidation. D'autre part, le sol est toujours hétérogène, et la consolidation du mur congelé est gouvernée par le point le plus faible, c'est-à-dire où la congélation avance le moins vite. On est alors obligé d'étendre, parfois dans des proportions considérables, les zones congelées le plus rapidement.
  • L'invention a pour but de permettre de réduire considérablement l'excès de froid et, par suite, de rendre le procédé beaucoup plus économique, sans pour cela augmenter sensiblement la durée de la congélation.
  • A cet effet, l'invention a pour objet un procédé de congélation de sol du type précité, caractérisé en ce qu'on fait varier la température du liquide réfrigérant, au cours de la phase de congélation du sol, en fonction de la progression de la congélation.
  • Dans un premier mode de mise en oeuvre, on augmente progressivement, de préférence par paliers successifs, la température du liquide circulant dans l'une au moins des sondes.
  • Dans un second mode de mise en oeuvre de l'invention, qui peut se combiner avec le premier, on adapte la température du liquide circulant dans chaque sonde à la vitesse de congélation du sol autour de cette sonde, cette température étant réglée sur une valeur d'autant plus élevée que la vitesse de congélation est plus grande.
  • L'invention a également pour objet une installation de congélation de sol destinée à la mise en oeuvre d'un tel procédé. Cette installation, du type comprenant un échangeur de chaleur alimenté d'une part en fluide cryogénique, d'autre part en un liquide réfrigérant, une série de sondes de congélation, et des moyens pour faire circuler le liquide dans chaque sonde, est caractérisée par le fait qu'elle comprend des moyens pour faire varier la température de consigne de l'échangeur de chaleur, et/ou par le fait qu'elle comprend au moins deux échangeurs de chaleur indépendants ayant des températures de consigne différentes.
  • Quelques exemples de mise en oeuvre de l'invention vont maintenant être décrits en regard des dessins annexés, sur lesquels :
    • - la figure 1 est un diagramme qui illustre un premier mode de mise en oeuvre de l'invention;
    • - la figure 2 est un diagramme qui illustre l'avantage apporté par le procédé illustré à la figure 1 ;
    • - la figure 3 est un schéma d'une installation correspondant à un second mode de mise en oeuvre de l'invention ; et
    • - la figure 4 illustre schématiquement une variante.
  • Dans chacun.des exemples ci-dessous, l'invention se rapporte à la formation dans un sol sableux et humide d'un mur congelé à l'abri duquel certains travaux doivent être effectués. Pour cela, on enfonce dans le sol une série de sondes de congélation Sl, S2, ..., illustrées schématiquement à la figure 3, et l'on fait circuler dans chacune de celles-ci un liquide réfrigérant ayant une température d'entrée déterminée. Le liquide choisi doit avoir un point de congélation suffisamment bas, et le méthanol est un liquide approprié, auquel on se référera dans la suite.
  • Comme représenté à la figure 3, ce liquide circule en circuit fermé entre la sonde et un échangeur de chaleur El, E2, ..., dit "centrale froide", qui comporte d'une part des passages pour ce liquide et d'autre part des passages pour un fluide cryogénique, notamment de l'azote liquide. Le débit d'admission d'azote liquide dans ces derniers passages est commandé par une vanne 1 pilotée par un capteur de température 2 qui capte la température du liquide réfrigérant sortant de l'échangeur. Les passages à azote peuvent Tar exemple, comme illustré à la figure 3, être constitués par une calandre 3 traversée par un serpentin 4 de circulation du liquide réfrigérant à contre-courant de l'azote. Ces éléments n'ont été représentés à la figure 3 que pour l'échangeur El, dans un but de clarté du dessin, mais il est entendu que si l'installation comporte plusieurs échangeurs, comme celle de la figure 3, tous ces échangeurs ont une constitution analogue.
  • Du liquide réfrigérant, sortant à une température froide de consigne d'un échangeur, est injecté au fond de chaque sonde connectée à ce dernier par un tube central 5 de celle-ci et remonte entre ce tube et l'enveloppe cylindrique 6 de la sonde pour retourner à l'échangeur. Entre l'entrée et la sortie de la sonde, le liquide échange de la chaleur avec le sol environnant, à travers l'enveloppe 6.
  • Suivant le mode de mise en oeuvre illustré à la figure 1, on module dans le temps la température du liquide réfrigérant injecté dans les sondes de congélation, en augmentant progressivement cette température d'une température minimale de début de congélation à une température finale de maintien en froid du mur déjà congelé. Dans l'exemple illustré, cette augmentation a lieu par paliers successifs.
  • A titre d'exemple numérique (exemple I), on supposera que l'on désire consolider par congélation en 100 heures un mur de 1 m d'épaisseur dans un sol sableux humide, sur une profondeur de 20 m et une longueur de 50 m. Pour cela, on enfonce dans le sol cinquante sondes S1, S2, ..., S50 espacées de 1 m les unes des autres. On fait circuler du méthanol entre les sondes montées en parallèle et un échangeur de chaleur unique refroidi à l'azote liquide tel que l'échangeur El décrit ci-dessus. Le capteur de température 2 est équipé d'un dispositif de réglage qui permet .de réguler à volonté la température du méthanol entre -80°C (limite inférieure tolérable pour ce corps) et -10°C.
  • On commence la congélation en faisant circuler le méthanol avec une température de consigne en sortie d'échangeur (et donc à l'injection dans les sondes) de -80°C. On maintient cette température de consigne pendant 50 heures. La température du sol au voisinage des sondes s'établit alors à -70°C et le rayon congelé autour des sondes est de 38 cm (soit un diamètre de 76 cm).
  • A ce moment, on règle la température de consigne du méthanol à -65°C. On maintient cette température pendant 20 heures. La température du. sol au voisinage des sondes s'établit à -57°C. Pendant cette période de temps, la progression du front de congélation du mur n'est pratiquement pas ralentie, car elle est gouvernée par le gradient de température au voisinage de l'isotherme de congélation (0°C) et non pas par la température de la sonde. On obtient ainsi au bout de 70 heures de congélation un diamètre congelé de 84 cm.
  • Après 70 heures de congélation, on fixe la température de consigne du méthanol à -50°C. On maintient cette température de consigne pendant 15 heures. La température du sol au voisinage des sondes s'établit à -44°C. Au bout de 85 heures, le diamètre congelé autour des sondes est de 88 cm.
  • On fixe alors la température de consigne du méthanol à -40°C. On la maintient pendant 10 heures. La température du sol au voisinage des sondes s'établit à -35°C. Au bout de 95 heures de congélation, le diamètre de sol congelé autour des sondes est de 90 cm.
  • On établit alors la température de consigne du méthanol à -35°C. On conservera cette température de consigne pendant toute la période de maintien du mur congelé. La température du sol autour des sondes s'équilibrera à -30°C. La congélation d'un diamètre de 100 cm sera obtenue au bout de 100 heures environ.
  • Il est à noter que les indications ci-dessus correspondent à un sol homogène et à une sonde isolée ; en fait, chaque sonde de congélation réagit avec ses voisines, ce qui, pour un espacement de 1 m entre sondes, conduit à un mur congelé d'épaisseur variable : 1 m au droit des sondes, 80 cm environ à mi-distance entre les sondes.
  • On comprend par ailleurs, que, en variante, les différentes températures de consigne du méthanol peuvent être obtenues non plus au moyen d'un échangeur unique à température de consigne réglable,.mais au moyen de plusieurs échangeurs de chaleur ayant des températures de consigne différentes mais fixes, ces échangeurs pouvant être sélectivement connectés aux sondes par un jeu de vannes approprié. De plus, si les échangeurs dont on dispose ne permettent pas de fournir individuellement la puissance frigorifique (proportionnelle au produit du débit de méthanol par l'écart de température entre l'entrée et la sortie de l'échangeur) nécessaire,. on peut utiliser pour chaque température de consigne plusieurs échangeurs en parallèle réglés sur la même température.
  • La figure 2 illustre l'avantage du procédé décrit ci-dessus. Elle représente la variation de la température T du sol en fonction du rayon R, compté à partir de la paroi extérieure d'une sonde supposée isolée, ceci à la fin de la congélation, c'est-à-dire lorsque le rayon congelé Rc devient voisin de la demi-distance séparant les sondes (environ 0,5 m dans l'exemple ci-dessus).
  • La courbe inférieure A1 correspond au cas où l'on aurait alimenté en permanence la sonde avec du méthanol à -80°C, suivant la technique antérieure. Cette courbe monte de -70°C pour R= 0 à 0°C pour R = Rc, puis de 0°C à la température ambiante Ta. La courbe supérieure A2 correspond au procédé suivant l'invention décrit ci-dessus ; elle monte de -30°C pour R = 0 à 0°C pour R = Rc, puis continue à croître de 0°C jusqu'à Ta en restant au-dessus de la courbe Al. L'aire hachurée comprise entre les deux courbes Al et A2 est une représentation de l'économie de frigories réalisée.
  • Suivant le mode de mise en oeuvre représenté à la figure 3, on régule la température du méthanol non plus dans le temps mais dans l'espace, en adaptant cette température, pour chaque sonde, à la vitesse de congélation du sol autour de cette sonde, afin d'éviter de sous- refroidir à l'excès les parties du sol qui congèlent le plus vite. En effet, dans la réalité, si un sol est généralement relativement homogène dans le rayon de 50 à 60 cm qui entoure une sonde, il n'en est pas de même d'une sonde à l'autre.
  • Pour cela, on utilise plusieurs échangeurs de chaleur El, E2, ..., au nombre de cinq dans l'exemple illustré, ayant des températures de consigne indépendamment réglables et pouvant chacun se raccorder à toutes les sondes. On mesure la vitesse de refroidissement du sol en début de congélation, et on envoie dans chaque sonde du méthanol à une température d'autant moins froide que le sol concerné par cette sonde se refroidit plus vite.
  • La détermination de la vitesse de congélation, qui permettra de fixer une température de consigne pour chaque sonde et chaque échangeur de chaleur peut se faire par exemple comme suit.
  • .On peut tout d'abord effectuer des mesures globales de refroidissement pour chaque sonde :
    • (a) - La mesure de la différence de température entre l'entrée et sa sortie du méthanol dans chaque sonde est une mesure caractéristique du flux de chaleur absorbé par le sol, pour un débit donné. Si cette différence est plus élevée pour une sonde particulière, il faut élever la température d'injection du méthanol dans cette sonde, car le sol absorbe beaucoup de froid.
    • (b) - On peut également disposer parallèlement à la ligne des sondes une ligne de capteurs de température C1, C2, ..., par exemple comme représenté à la figure 4, où un capteur de température est disposé dans le sol, près de la surface, entre-les paires de sondes successives, à égale distance des deux sondes de chaque paire. De la même façon que précédemment, on fixe alors la température- d'injection du méthanol dans les sondes les plus voisines de ces capteurs en fonction de la vitesse de refroidissement du sol qu'ils montreront.
  • Toutefois, en pratique, il arrive fréquemment que, sur -la longueur du mur à congeler, le sol soit hétérogène non seulement horizontalement, mais également'verticalement, au moins dans certaines zones. Il peut donc exister, sur la hauteur de certaines sondes, des régions qui congèlent rapidement et d'autres qui congèlent lentement. Par suite, les moyens de mesure globale ci-dessus risquent de conduire à ralentir excessivement le refroidissement d'une sonde qui congèlerait globalement vite (ce qui apparaîtrait par exemple à partir d'une grande différence de température entre le méthanol entrant et le méthanol sortant) mais, en fait, très rapidement sur une portion de sa longueur et très lentement sur une autre.
  • Pour éviter ce risque, on peut affiner la mesure en disposant plusieurs capteurs de température 7 sur la longueur des sondes, sur leur paroi extérieure, ces capteurs étant adaptés pour mesurer la température du sol au voisinage immédiat des sondes. On peut alors procéder de deux manières :
    • . (c) en début de refroidissement, mesurer la vitesse de refroidissement en chacun de ces points ; ou
    • (d) un certain temps après le début de la congélation, injecter temporairement, par exemple pendant 10 à 30 minutes, du méthanol plus chaud que le sol, et mesurer la vitesse de remontée de la température aux différents points de mesure. En effet, cette vitesse de remontée varie dans le même sens que la vitesse de congélation du sol.
  • Si cette procédure permet de déceler une hétérogénéité verticale du sol, on se basera sur la variation de température la plus faible pour déterminer la température d'injection du méthanol dans la ou les sondes correspondantes.
  • L'exemple II suivant illustre la mise en oeuvre de l'invention à partir des méthodes (a) et (d) ci-dessus. Les données de base sont les mêmes que précédemment : il s'agit de congeler en 100 heures un mur de 1 m d'épaisseur dans un sol sableux humide, sur une profondeur de 20 m et une longueur de 50 m. On dispose cinquante sondes S1, S2, ..., S50 espacées de 1 m, et on y fait circuler du méthanol refroidi. On utilise cinq échangeurs de chaleur El à E5 indépendants alimentés en azote liquide suivant le schéma de la figure 3. Par un jeu de tuyauteries et de vannes approprié (non représenté), on peut alimenter n'importe quelle sonde à partir de n'importe quel échangeur. Chaque sonde est munie de capteurs de température 8 et 9 mesurant la température du méthanol à son entrée et sa sortie, respectivement. Contre la paroi externe de chaque sonde, on a disposé des thermocouples 7 pour mesurer la température à 2 m, 10 m et 18 m de profondeur.
  • Après démarrage de l'injection dans toutes les sondes du méthanol à -80°C, on attend 5 heures que les effets transitoires initiaux soient passés. On constate à ce moment-là sur les sondes la différence de température ΔT suivante entre l'entrée et la sortie du méthanol.
    Figure imgb0001
  • La température de la surface externe des sondes est peu variable à ce moment-là, entre -70°C et -72°C pour toutes les sondes.
  • Par changement de la température de consigne des échangeurs El à E5, on injecte dans les sondes du méthanol à -50°C pendant 20 mn. On mesure la vitesse de remontée des températures externes des sondes. On constate à 18 m de profondeur, sur les sondes S46 à S50, une remontée trois fois plus lente de la température que sur les mêmes sondes à 10 m et à 2 m de profondeur ; aucune hétérogénéité n'est constatée sur les autres sqndes.
  • On rétablit alors l'injection de méthanol froid en fixant les températures de consigne de la façon suivante.
    Figure imgb0002
  • Comme on le voit,malgré les résultats de la mesure globale, les sondes S46 à S50 ont été traitées comme des sondes à congélation lente pour tenir compte de la lenteur de la congélation observée dans leur partie la plus profonde
  • Par ailleurs, on alimente certains groupes de sondes avec deux échangeurs connectés en parallèle. Ceci permet de fournir un débit de méthanol du même ordre à toutes les sondes. On remarque également que, pour ne pas trop compliquer l'installation, on alimente les groupes de sondes Sl à S4 et S 41 à S45 à la même température bien que, en toute rigueur, les sondes de ces deux groupes absorbent des flux de chaleur différents.
  • Il résulte de ce qui précède que l'on fournit à chaque sonde une puissance frigorifique d'autant plus faible que le sol entourant cette sonde se congèle plus vite.
  • L'exemple III ci-dessous illustre la procédure (b) indiquée plus haut.
  • A partir des mêmes données de base que dans les exemples précédents, on dispose à 40 cm de la ligne des sondes de congélation une ligne de vingt-cinq capteurs de température Cl, C2, ..., C25 au droit d'un intervalle de sondes de congélation sur deux, comme indiqué sur la figure 4, chaque capteur se trouvant à égale distance de deux sondes. Le capteur de température Cl est voisin des sondes de congélation S1 et S2, le capteur de température C2 est voisin des sondes de congélation S3 et S4, etc...
  • On commence par injecter du méthanol à -80°C dans toutes les sondes de congélation pendant 24 heures. Au bout de 24 heures, on constate les températures suivantes sur les capteurs de température.
    Figure imgb0003
  • A partir de ce moment, on alimente les sondes à des températures différentes, de la manière suivante :
    Figure imgb0004
  • Les remarques faites plus haut au sujet de l'utilisation des échangeurs, seuls ou en parallèle, restent valables dans cet exemple.
  • Il est à noter qu'il est tout-à-fait possible de combiner les divers procédés de régulation décrits ci-dessus, et en particulier de faire varier la température d'injection du méthanol à la fois dans le temps et dans'l'espace. Dans ce cas, après avoir fixé les différentes températures d'injection du méthanol dans les différentes groupes de sondes, on définit pour chaque groupe une série de paliers de plus en plus chauds, répartis sur la durée totale de la congélation de façon à alimenter en fin de congélation toutes les sondes à la température de consigne unique qui sera conservée pendant la période de maintien du mur congelé.
  • L'exemple IV ci-dessous combine ainsi les enseignements des exemples I et III précédents et décrit sous forme de tableau la procédure de congélation pendant les 100 heures imparties pour obtenir un mur de 1 m d'épaisseur.
    Figure imgb0005

Claims (13)

1. Procédé de congélation de sol, du type dans lequel on refroidit un liquide réfrigérant.par échange de chaleur avec un fluide cryogénique, puis on fait circuler ce liquide dans une série de sondes (S1, S2, ...) enfoncées dans le sol, caractérisé en ce qu'on fait varier la température du liquide, au cours de la phase de congélation du sol, en fonction de la progression de la congélation.
2. Procédé suivant la revendication 1, caractérisé en ce qu'on augmente progressivement, de préférence par paliers successifs, la température du liquide circulant dans l'une au moins des sondes (S1, S2,...).
3. Procédé suivant l'une quelconque des revendications 1 et 2, caractérisé en ce qu'on adapte la température du liquide circulant dans chaque sonde (Sl, S2, ...) à la vitesse de congélation du sol autour de cette sonde, cette température étant réglée sur une valeur d'autant plus élevée que la vitesse de congélation est plus grande.
4. Procédé suivant la revendication 3, caractérisé en ce que, pour déterminer la vitesse de congélation autour de chaque sonde (Sl, S2,...), on mesure la différence de température entre le liquide entrant dans la sonde et le liquide qui en sort.
5. Procédé suivant la revendication 3, caractérisé en ce que, en début de refroidissement, on mesure la vitesse de refroidissement du sol à plusieurs niveaux de chaque sonde (SI, S2, ...), et_on retient la plus lente de ces vitesses.
6. Procédé suivant la revendication 3, caractérisé en ce que, pour déterminer la vitesse de congélation autour de chaque sonde (S1, S2,...), on injecte temporairement dans chaque sonde, quelque temps après le début de la congélation, du liquide plus chaud que le sol au voisinage de la sonde, on mesure la vitesse de remontée-de la température à différents niveaux de la sonde, et on retient la plus lente de ces vitesses.
7. Procédé suivant la revendication 6, caractérisé en ce que, pour déterminer la vitesse de congélation autour de chaque sonde (S1, S2,...), on mesure la température du sol à une distance prédéterminée de toutes les sondes.
8. Procédé suivant l'une quelconque des revendications 1 à 7, caractérisé en ce qu'on envoie dans chaque sonde (S1, S2, ...) un débit de liquide réfrigérant du même ordre de grandeur.
9. Installation pour la mise en oeuvre d'un procédé suivant l'une quelconque des revendications 1 à 8, du type comprenant un échangeur de chaleur (El à E5) alimenté d'une part en fluide cryogénique, d'autre part en un liquide réfrigérant, une série de sondes de congélation (S1, S2,...), et des moyens (5) pour faire circuler le liquide dans chaque sonde, caractérisée en ce qu'elle comprend des moyens pour faire varier la température de consigne de l'échangeur de chaleur.
10. Installation pour la mise en oeuvre d'un procédé suivant l'une quelconque des revendications 1 à 8, du type comprenant un échangeur de chaleur (El à E5) alimenté d'une part en fluide cryogénique, d'autre part en un liquide réfrigérant, une série de sondes de congélation (S1, S2,...), et des moyens (5) pour faire circuler le liquide dans chaque sonde, caractérisée en ce qu'elle comprend au moins deux échangeurs de chaleur indépendants ayant des températures de consigne différentes.
11. Installation suivant la revendication 10, caractérisée en ce que chaque échangeur de chaleut (El à E5) comporte des moyens pour faire varier sa température de consigne.
12. Installation suivant l'une quelconque des revendications 9 à 11, caractérisée en ce que chaque sonde (Sl, S2,...) comprend des moyens (7) de mesure de la température à différents niveaux de sa paroi extérieure.
13. Installation suivant l'une quelconque des revendications 9 à 12, caractérisée en ce qu'elle comprend une série de capteurs de température (C1, C2,...) disposée parallèlement à la série de sondes (S1, S2,...), chaque capteur de température se trouvant à égale distance de deux sondes de congélation.
EP85401053A 1984-06-01 1985-05-29 Procédé et installation de congélation de sol Expired EP0163579B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85401053T ATE36880T1 (de) 1984-06-01 1985-05-29 Verfahren und vorrichtung zum gefrieren vom boden.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8408646A FR2565273B1 (fr) 1984-06-01 1984-06-01 Procede et installation de congelation de sol
FR8408646 1984-06-01

Publications (2)

Publication Number Publication Date
EP0163579A1 true EP0163579A1 (fr) 1985-12-04
EP0163579B1 EP0163579B1 (fr) 1988-08-31

Family

ID=9304631

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85401053A Expired EP0163579B1 (fr) 1984-06-01 1985-05-29 Procédé et installation de congélation de sol

Country Status (8)

Country Link
US (1) US4607488A (fr)
EP (1) EP0163579B1 (fr)
JP (1) JPS6117626A (fr)
AT (1) ATE36880T1 (fr)
CA (1) CA1269853A (fr)
DE (1) DE3564714D1 (fr)
ES (1) ES8608085A1 (fr)
FR (1) FR2565273B1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU587527B2 (en) * 1986-02-25 1989-08-17 Chevron Research Company Method and apparatus for piled foundation improvement with freezing using down-hole refrigeration units
AU587528B2 (en) * 1986-02-25 1989-08-17 Chevron Research Company Method and apparatus for piled foundation improvement through freezing using surface mounted refrigeration units
EP0480926A1 (fr) * 1988-12-08 1992-04-22 Rkk, Ltd. Barriere cryogenique hermetique pour le confinement de produits dangereux dans le sol
FR2965038A1 (fr) * 2010-09-22 2012-03-23 Total Sa Procede et dispositif de stockage d'un fluide cryogenique adaptes aux sols comprenant du pergelisol
FR2992730A1 (fr) * 2012-06-27 2014-01-03 Total Sa Procede et dispositif pour la supervision de parametres de stockage

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4860544A (en) * 1988-12-08 1989-08-29 Concept R.K.K. Limited Closed cryogenic barrier for containment of hazardous material migration in the earth
US5050386A (en) * 1989-08-16 1991-09-24 Rkk, Limited Method and apparatus for containment of hazardous material migration in the earth
US6896054B2 (en) * 2000-02-15 2005-05-24 Mcclung, Iii Guy L. Microorganism enhancement with earth loop heat exchange systems
US6585047B2 (en) 2000-02-15 2003-07-01 Mcclung, Iii Guy L. System for heat exchange with earth loops
US6267172B1 (en) * 2000-02-15 2001-07-31 Mcclung, Iii Guy L. Heat exchange systems
US20080087420A1 (en) * 2006-10-13 2008-04-17 Kaminsky Robert D Optimized well spacing for in situ shale oil development
US7631691B2 (en) 2003-06-24 2009-12-15 Exxonmobil Upstream Research Company Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons
JP2005264717A (ja) * 2004-02-19 2005-09-29 Kajima Corp 地盤の凍結方法
JP2007169967A (ja) * 2005-12-20 2007-07-05 Kajima Corp 地盤の凍結方法および凍結装置
CZ301560B6 (cs) * 2006-01-30 2010-04-14 Bagmanyan@Aykanush Zarízení ke zpevnování zeminy zmrazením
US7644993B2 (en) 2006-04-21 2010-01-12 Exxonmobil Upstream Research Company In situ co-development of oil shale with mineral recovery
JO2771B1 (en) 2006-10-13 2014-03-15 ايكسون موبيل ابستريم ريسيرتش كومباني Joint development of shale oil through in situ heating using deeper hydrocarbon sources
WO2008048448A2 (fr) * 2006-10-13 2008-04-24 Exxonmobil Upstream Research Company Chauffage d'une formation rocheuse riche en matières organiques pour obtenir des produits présentant des propriétés améliorées
AU2007313391B2 (en) * 2006-10-13 2013-03-28 Exxonmobil Upstream Research Company Improved method of developing subsurface freeze zone
US7669657B2 (en) 2006-10-13 2010-03-02 Exxonmobil Upstream Research Company Enhanced shale oil production by in situ heating using hydraulically fractured producing wells
AU2008227167B2 (en) * 2007-03-22 2013-08-01 Exxonmobil Upstream Research Company Granular electrical connections for in situ formation heating
BRPI0808508A2 (pt) 2007-03-22 2014-08-19 Exxonmobil Upstream Res Co Métodos para aquecer uma formação de subsuperfície e uma formação rochosa rica em compostos orgânicos, e, método para produzir um fluido de hidrocarboneto
CN101680284B (zh) 2007-05-15 2013-05-15 埃克森美孚上游研究公司 用于原位转化富含有机物岩层的井下燃烧器井
AU2008253753B2 (en) 2007-05-15 2013-10-17 Exxonmobil Upstream Research Company Downhole burners for in situ conversion of organic-rich rock formations
US20080290719A1 (en) * 2007-05-25 2008-11-27 Kaminsky Robert D Process for producing Hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US8146664B2 (en) 2007-05-25 2012-04-03 Exxonmobil Upstream Research Company Utilization of low BTU gas generated during in situ heating of organic-rich rock
US8082995B2 (en) 2007-12-10 2011-12-27 Exxonmobil Upstream Research Company Optimization of untreated oil shale geometry to control subsidence
EP2098683A1 (fr) 2008-03-04 2009-09-09 ExxonMobil Upstream Research Company Optimisation de géométrie de schistes bitumineux non traités pour contrôler l'affaissement
AU2009249493B2 (en) 2008-05-23 2015-05-07 Exxonmobil Upstream Research Company Field management for substantially constant composition gas generation
WO2010096210A1 (fr) 2009-02-23 2010-08-26 Exxonmobil Upstream Research Company Traitement d'eau suite à la production d'huile de schiste par chauffage in situ
WO2010129174A1 (fr) * 2009-05-05 2010-11-11 Exxonmobil Upstream Research Company Conversion de matière organique provenant d'une formation souterraine en hydrocarbures productibles par contrôle des opérations de production sur la base de la disponibilité d'une ou de plusieurs ressources de production
SE535370C2 (sv) 2009-08-03 2012-07-10 Skanska Sverige Ab Anordning och metod för lagring av termisk energi
US8863839B2 (en) 2009-12-17 2014-10-21 Exxonmobil Upstream Research Company Enhanced convection for in situ pyrolysis of organic-rich rock formations
WO2012030426A1 (fr) 2010-08-30 2012-03-08 Exxonmobil Upstream Research Company Réduction des oléfines pour produire une huile de pyrolyse in situ
BR112013000931A2 (pt) 2010-08-30 2016-05-17 Exxonmobil Upstream Res Co integridade mecânica de poço para a pirólise in situ
AU2012332851B2 (en) 2011-11-04 2016-07-21 Exxonmobil Upstream Research Company Multiple electrical connections to optimize heating for in situ pyrolysis
WO2013165711A1 (fr) 2012-05-04 2013-11-07 Exxonmobil Upstream Research Company Systèmes et procédés de détection d'une intersection entre un puits de forage et une structure souterraine qui comprend un matériau de marqueur
SE537267C2 (sv) 2012-11-01 2015-03-17 Skanska Sverige Ab Förfarande för drift av en anordning för lagring av termiskenergi
SE536723C2 (sv) 2012-11-01 2014-06-24 Skanska Sverige Ab Termiskt energilager innefattande ett expansionsutrymme
SE536722C2 (sv) 2012-11-01 2014-06-17 Skanska Sverige Ab Energilager
US9512699B2 (en) 2013-10-22 2016-12-06 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
US9394772B2 (en) 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
US9644466B2 (en) 2014-11-21 2017-05-09 Exxonmobil Upstream Research Company Method of recovering hydrocarbons within a subsurface formation using electric current
JP6756512B2 (ja) * 2016-03-31 2020-09-16 清水建設株式会社 凍結工法の凍結膨張圧算出方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1327179A (fr) * 1962-04-04 1963-05-17 Procédé de congélation de terrains boulants et aquifères et installation pour lamise en oeuvre de ce procédé
FR2113980A1 (fr) * 1970-11-16 1972-06-30 Union Carbide Canada Ltd
DE2614221A1 (de) * 1976-04-02 1977-10-20 Holzmann Philipp Ag Verfahren und vorrichtung zur bodenvereisung fuer unterirdische bauwerke, baugruben oder dergleichen
FR2452550A1 (fr) * 1979-03-28 1980-10-24 Linde Ag Procede et dispositif de refrigeration du sol

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3183675A (en) * 1961-11-02 1965-05-18 Conch Int Methane Ltd Method of freezing an earth formation
US3287915A (en) * 1963-08-19 1966-11-29 Phillips Petroleum Co Earthen storage for volatile liquids and method of constructing same
US3674086A (en) * 1970-08-07 1972-07-04 Alden W Foster Method of transporting oil or gas in frozen tundra
US3701262A (en) * 1970-10-12 1972-10-31 Systems Capital Corp Means for the underground storage of liquified gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1327179A (fr) * 1962-04-04 1963-05-17 Procédé de congélation de terrains boulants et aquifères et installation pour lamise en oeuvre de ce procédé
FR2113980A1 (fr) * 1970-11-16 1972-06-30 Union Carbide Canada Ltd
DE2614221A1 (de) * 1976-04-02 1977-10-20 Holzmann Philipp Ag Verfahren und vorrichtung zur bodenvereisung fuer unterirdische bauwerke, baugruben oder dergleichen
FR2452550A1 (fr) * 1979-03-28 1980-10-24 Linde Ag Procede et dispositif de refrigeration du sol

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU587527B2 (en) * 1986-02-25 1989-08-17 Chevron Research Company Method and apparatus for piled foundation improvement with freezing using down-hole refrigeration units
AU587528B2 (en) * 1986-02-25 1989-08-17 Chevron Research Company Method and apparatus for piled foundation improvement through freezing using surface mounted refrigeration units
EP0480926A1 (fr) * 1988-12-08 1992-04-22 Rkk, Ltd. Barriere cryogenique hermetique pour le confinement de produits dangereux dans le sol
EP0480926A4 (en) * 1988-12-08 1992-05-13 Rkk, Ltd. Closed cryogenic barrier for containment of hazardous material in the earth
GR1000841B (el) * 1988-12-08 1993-02-17 Rkk Ltd Κλειστο κρυογονο φραγμα για την συγκρατηση της μετακινησης επικινδυνων υλικων μεσα στη γη.
FR2965038A1 (fr) * 2010-09-22 2012-03-23 Total Sa Procede et dispositif de stockage d'un fluide cryogenique adaptes aux sols comprenant du pergelisol
WO2012038632A1 (fr) * 2010-09-22 2012-03-29 Total Sa Procédé et dispositif de stockage d'un fluide cryogénique adaptés aux sols comprenant du pergélisol
FR2992730A1 (fr) * 2012-06-27 2014-01-03 Total Sa Procede et dispositif pour la supervision de parametres de stockage
WO2014001679A3 (fr) * 2012-06-27 2014-07-03 Total Sa Procede et dispositif pour la supervision de parametres de stockage

Also Published As

Publication number Publication date
DE3564714D1 (en) 1988-10-06
FR2565273B1 (fr) 1986-10-17
JPS6117626A (ja) 1986-01-25
ATE36880T1 (de) 1988-09-15
CA1269853A (fr) 1990-06-05
FR2565273A1 (fr) 1985-12-06
EP0163579B1 (fr) 1988-08-31
ES543673A0 (es) 1986-06-01
US4607488A (en) 1986-08-26
ES8608085A1 (es) 1986-06-01

Similar Documents

Publication Publication Date Title
EP0163579B1 (fr) Procédé et installation de congélation de sol
EP2105695B1 (fr) Dispositif d'échangeur thermique et installation RMN comprenant un tel dispositif
FR2894014A1 (fr) Unite solaire de production frigorifique pour installation de climatisation et procede de controle correspondant
EP2376662A1 (fr) Procede et section de refroidissement d'une bande metallique en defilement par projection d'un liquide
FR2936364A1 (fr) Element magnetocalorique
EP0546932B1 (fr) Procédé de régulation de lyophilisation
CA1154432A (fr) Procede et installation de rechauffement d'un fluide froid
EP0270860B1 (fr) Procédé et dispositif pour traiter thermiquement un fil d'acier
FR3082924A1 (fr) Systeme de stockage thermique (sst) par materiaux a changement de phase (mcp) comprenant un dispositif de controle de la cristallisation par injection de gaz
Belghit et al. Etude numérique d'un séchoir solaire fonctionnant en convection forcée
EP2440865B1 (fr) Équipement de chauffage ou de refroidissement comportant une pompe a chaleur géothermique associée a une installation de production de neige de culture
FR2488332A1 (fr) Installation hydraulique pour le freinage dynamometrique et pour la recuperation de l'energie des moteurs thermiques lors des essais avec production de courant alternatif
FR2831950A1 (fr) Dispositif et installation de regulation de la temperature d'un fluide
FR2632054A1 (fr) Procede et dispositif de mise en oeuvre du froid independamment du temps et de l'etat rechauffe d'un milieu froid
FR2495741A2 (fr) Systeme de stockage saisonnier de la chaleur dans le sol applique au chauffage solaire
EP0156707A1 (fr) Installation de climatisation utilisant une pompe à chaleur avec échangeur de chaleur extérieur statique et régulation du point de vapeur sèche par variation automatique du débit du détendeur
FR2549692A1 (fr) Installation de conditionnement thermique des sols pour l'agriculture
WO2005068040A1 (fr) Procede continu de cristallisation partielle d’une solution et dispositif de mise en oeuvre
BE412461A (fr) Procédé de fonçage des puits en terrains aquifères et puits en résultant
FR2831949A1 (fr) Dispositif, procede et installation de regulation de la temperature d'un fluide
FR2549206A1 (fr) Dispositif et moyens de controle d'installations de conditionnement de locaux
JPS62147268A (ja) ドラム内面の氷結面製造方法
EP1657509A1 (fr) Procédé et installation pour la fabrication de neige artificielle
WO2010125539A1 (fr) Paroi radiante de bâtiment et applications
FR2531607A1 (fr) Convecteur cryogenique pour produire une precipitation orographique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19850601

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19870223

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 36880

Country of ref document: AT

Date of ref document: 19880915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3564714

Country of ref document: DE

Date of ref document: 19881006

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: LINDE AKTIENGESELLSCHAFT, WIESBADEN

Effective date: 19890531

NLR1 Nl: opposition has been filed with the epo

Opponent name: LINDE AG

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19901215

NLR2 Nl: decision of opposition
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940418

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940419

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19940531

Year of fee payment: 10

EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 85401053.5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950529

Ref country code: GB

Effective date: 19950529

Ref country code: AT

Effective date: 19950529

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010411

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010420

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010423

Year of fee payment: 17

Ref country code: CH

Payment date: 20010423

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010424

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010508

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021203

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20021201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST