EP0156707A1 - Air conditioning plant using a heat pump with a static exterior heat exchanger and with dry vapour regulation by automatically changing the rate of flow through the expansion valve - Google Patents

Air conditioning plant using a heat pump with a static exterior heat exchanger and with dry vapour regulation by automatically changing the rate of flow through the expansion valve Download PDF

Info

Publication number
EP0156707A1
EP0156707A1 EP85400416A EP85400416A EP0156707A1 EP 0156707 A1 EP0156707 A1 EP 0156707A1 EP 85400416 A EP85400416 A EP 85400416A EP 85400416 A EP85400416 A EP 85400416A EP 0156707 A1 EP0156707 A1 EP 0156707A1
Authority
EP
European Patent Office
Prior art keywords
exchanger
fluid
evaporator
pressure
installation according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP85400416A
Other languages
German (de)
French (fr)
Inventor
Bernard Baldoni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0156707A1 publication Critical patent/EP0156707A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • F25B41/335Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms

Definitions

  • the cold source is constituted by the outside air
  • its low temperature penalizes the coefficient of performance at the time when the heat needs are high and the presence of humidity usually requires an installation of defrosting of the external exchanger, which consumes energy.
  • the external heat exchanger includes fans to increase the heat exchange, noisy solution that consumes energy and additional electrical resistances are also provided.
  • a first object of the invention is to provide an installation where the external exchanger is purely static and where no auxiliary heating is provided for the premises.
  • the static external exchanger must, for heating, recover all the calories available in the moving air and the contribution due to solar irradiation.
  • the usual solar collectors which have a large glass surface and use water as the heat-transfer fluid, do not work outside of the periods of sunshine.
  • the external exchanger is a static exchanger with a large heat exchange surface with the outside air, preferably of the type comprising a multiplicity of finned tubes, in which the refrigerant and regulating means are provided for regulating the flow rate of the expansion valve, so as to maintain the point of the evaporator circuit downstream of which the heat transfer fluid is completely vaporized in the vicinity of the point of exit of the evaporator and even, preferably, a little beyond this exit point.
  • said regulating means comprise a membrane, the displacements of which are transmitted to the regulating member of the regulator, and means for subjecting the membrane, in the direction of opening, to the saturated vapor pressure which corresponds to the temperature of the fluid at the suction of the compressor and, in the direction of closing, to the effective pressure of the fluid to the suction of the compressor and to an adjustable additional thrust, advantageously exerted by a spring, said additional thrust being determined to take account of the pressure drop of the circuit up to suction and to obtain a predetermined superheating value, advantageously of around 6 to 8 ° C.
  • the regulation does not completely overcome a significant insufficiency of heat input, according to another feature of the invention, advantageously combined with the previous one when the installation is intended to operate at relatively low outside temperatures, it includes means heat exchange between the heat transfer fluid leaving the evaporator and the high pressure fluid and a device for commissioning these means when the temperature or pressure of the fluid leaving the evaporator or the compressor becomes lower than a first predetermined value.
  • the installation is reversible and, for this purpose, comprises a distribution member capable of establishing a heating circuit in which the external exchanger plays the role of evaporator and the internal exchanger plays the role of condenser, or a refrigeration circuit in which the internal exchanger acts as an evaporator and the external exchanger acts as a condenser
  • said heat exchange means comprise a first auxiliary exchanger in which circulate, on the one hand, the heat transfer fluid leaving the outdoor heat exchanger in heating mode or entering the outdoor heat exchanger in refrigeration mode, on the other hand, the water from an auxiliary circuit bypassing on a closed water circuit , and a second auxiliary exchanger in which, on the one hand, the heat transfer fluid leaving the compressor, on the other hand, the water of said closed circuit, a member for commissioning the auxiliary circuit when the temperature of the fluid leaving the evaporator becomes lower than said first predetermined value in heating mode, said auxiliary circuit being in almost permanent service in refrigeration mode.
  • FIG. 1 there is shown at 1 an exchanger composed of a bundle of copper tubes (100, FIG. 2) provided, over their entire periphery, with aluminum fins 101.
  • these tubes have a diameter of 5/8 inch (15.87 mm) and the fins are 43 to 44 mm in diameter and are distributed at a pitch of between 4 and 5 mm (4.2 mm for example).
  • Tighter fins would cause an excessive risk of icing and, if the fins had a larger diameter, the losses at the periphery would be such that the peripheral portion would no longer transmit heat to the corresponding tube.
  • the total heat exchange surface can be very large, for example 96 m 2 for a 4.5 CV compressor, in relatively small volume (the support frame of the tubing has for example 2 m ⁇ 1 m and the tubing, a total length of 80 m).
  • a refrigerant advantageously "Freon 22" circulates inside the tubes, between a supply pipe 102 and an outlet pipe 103.
  • the latter is connected to a small exchanger 2, in which, as is will explain further on, is also established a countercurrent circulation of sub-cooled “Freon” (dotted arrows) by means of a supply pipe 201 and an outlet pipe 202.
  • the main current of " Freon "then enters a liquid drop separator 3 comprising a supply tube 301 and an outlet tube 302 having their ends open at a certain distance from each other.
  • an additional exchanger 303 in which circulate, on the one hand, the low pressure fluid which leaves the exchanger 2, on the other hand apart, the sub-cooled fluid coming from the receiver 9 mentioned below.
  • the exchanger 303 could be produced by placing additional tubing around the separator 3.
  • the auxiliary exchanger 2 is of the type comprising a central tube threaded helically on its outer surface and surrounded by a concentric outer tube.
  • the sub-cooled “Freon” circulates in the interval between the two tubes by turning along the thread, at a speed of the order of 10 m / s, while the low pressure "Freon” circulates in the inner tube.
  • the separator outlet pipe 302 is connected to a compressor 4 by means of a low pressure pressure switch 5.
  • the overheated “Freon” (around 100 to 110 ° C) passes through a high pressure pressure switch 6 and a non-return valve 7 and arrives at a condenser 8.
  • This is a condenser with traditional type water.
  • the water pipes, symbolized in 801-802, are connected to user terminals, not shown.
  • the sub-cooled "Freon” (between 35 and 40 ° C.) arrives at a receiver 9 intended for the storage of the condensed "Freon” when the machine stops, then passes into the exchanger 303, so as to undergo a permanent additional sub-cooling.
  • the outlet pipe 304 of the exchanger 303 is connected, on the one hand, through a valve 10, a filter 11 and an electromagnetic valve 12, to a pressure reducer 13 itself connected to the inlet pipe 102 of the exchanger 1, on the other hand, directly to the line 201 for supplying the counter current in the small exchanger 2.
  • this counter current is used to raise the temperature of the main current of "Freon" sent to the compressor, when the outside temperature is relatively low.
  • the counter-current "Freon" which leaves via the line 202 was sub-cooled in the exchanger 2 by the main stream and brought for example between 25 and 27 ° C.
  • valve 10 When the outside temperature is above 5 ° C for example, the valve 10 is opened, so as to bypass the 201-202 circuit of the exchanger 2. This is therefore only in use for outside temperatures lower. This result can also be obtained automatically by measuring the pressure and / or the temperature of the fluid at the inlet or at the outlet of the compressor to control the valve 10.
  • the sub-cooled high pressure liquid arrives at the valve 12 which is permanently open in operation and ends up at the pressure reducer 13.
  • a valve 14 is connected in a small pipe 140 which connects the pipe 202 to the pipe 102. There is thus produced a small temporary injection, at the inlet of the exchanger, of the sub-cooled fluid. This injection is adjusted so that the temperature of the inlet fluid of the exchanger is such that the fins are always maintained above the dew point of the air. This prevents the formation of frost on the outer walls of the sensor tubes.
  • FIG 3 there is shown schematically a pressure reducer in which the high pressure fluid P1 arrives, after passing through a filter 130, in an intake chamber 132 from which it can escape only through a calibrated orifice of trigger closed at rest by a needle 133 pushed against its seat 132 by a small spring 134.
  • the opening is obtained when the needle 133 is pushed down, against the spring 134, by the lower end of a rod 135 which slides in a guide piece and is fixed at its upper end to a membrane 136.
  • This is mounted in a bellows 137 where it defines an upper chamber connected to the temperature sensor bulb B placed on the suction pipe 302 of the compressor.
  • a capillary 138 takes the pressure P 4 in said suction line.
  • a spring 139 disposed around the rod 135, is, at its upper end, supported on the underside of the membrane and, at its lower end, supported on a stop ring 1390 mounted on the rod 135.
  • the position of this ring on the rod is adjustable by means of a 1391 screw.
  • the fluid leaves the regulator at low pressure P 2 and at a temperature T 2 .
  • Seals 1392 and 1350 isolate from each other the chambers subjected to pressures P 2 and P 4 .
  • the regulator is closed as long as the thrust exerted by the pressure P (T 4 ) on its upper face (pressure which depends on the temperature of the gas sucked by the compressor) is less than the sum of the thrusts exerted respectively, on its lower face, by the spring 139 (thrust adjustable by means of the screw 1391) and by the pressure P 4 .
  • the device is adjusted to operate constantly in the vicinity of the balance of thrusts.
  • the regulation has the effect of keeping stable the average position of the limit point, and the settings are chosen so that this average position is close to the output of the 'evaporator or even a little beyond.
  • any reduction in the external calorific intake reduces at the same time the flow of the fluid on the one hand, and the temperature and the boiling pressure on the other hand, therefore the equilibrium can be reached; conversely, any increase in calorific intake results in an increase in both the flow rate on the one hand, and the temperature and boiling pressure on the other hand, so equilibrium can also be achieved .
  • the equilibrium position corresponds to maximum absorption of external calories by the exchanger, since evaporation continues substantially over the entire length of the journey. Thanks to the liquid droplet separator 3, the risk inherent in this particular adjustment of the device is eliminated, that a fluid not entirely in the state of dry vapor may arrive at the compressor.
  • a first situation is that where the heat input is very low and could lead to a permanent zero flow.
  • the exchanger 2 provides overheating which brings the operating range of the regulation and the saturation vapor limit point to acceptable zones. This operating mode amounts to supercharging the evaporator when the climatic conditions are severe, which, within certain limits, could also be obtained by acting on the settings, but with a risk of liquid blows on the compressor suction.
  • a second situation is that where the heat input is very important (considerable sunshine for example). A runaway of the installation is then accepted, until the user terminals cause the machine to stop.
  • control mode which has just been described differs markedly from that used in certain cold room installations where a pressure reducer connected to a cold room temperature sensor provides an evaporator with a regulated flow rate for keep said temperature constant.
  • the regulation alone does not completely absorb the serious shortcomings of calorific intake in the event of very low outside temperatures and absence of wind and sunshine.
  • the compressor can operate with its specific flow rate to bring the fluid to a temperature of at least 100 ° C which will allow condensation to restore calories with a good coefficient of performance.
  • the exchangers 303 and especially 2 allow this result to be obtained by raising the temperature of the gas at low pressure. They also have a complementary sub-cooling role: the temperature of the counter-current fluid which leaves the exchanger 2 is lowered (between 25 and 27 ° C. for example), so that it has a more significant liquid phase.
  • FIG. 4 shows that the additional sub-cooling provided by the exchangers 2 and 303 has the effect of moving point 3 of the enthalpy diagram to the left, which thus passes into 3 '.
  • 1-2 represents the compression phase, 2-3 the condensation phase, 3-3 'the additional sub-cooling, 3'-4 the expansion phase, 4-1 the evaporation phase.
  • the hatched surface illustrates the additional thermal contribution due to the additional sub-cooling.
  • the diagram also illustrates the effects which would result from too low evaporation pressure or excessive overheating, effects which the regulation and the auxiliary exchangers make it possible to avoid.
  • the operating mode described ultimately provides a better coefficient of performance than in a conventional heat pump.
  • valve 16 In winter, the valve 16 is positioned to establish the connection 16h indicated in dotted lines, that is to say that the pipe which leaves the exchanger 2 is connected to the pipe 301, while the pipe 171 which leaves the exchanger 17 is connected to the internal exchanger "Freon-water" 8 which then plays the role of condenser.
  • the exchanger 17 comprises a water circuit 172, provided with a pump 173 and d 'an expansion vessel 174 and which passes through the balloon 18 supplied with 180 with city water.
  • a temperature sensor 181 controls the opening of a valve 182 as soon as the temperature of the water in the flask reaches for example 46 ° C. The exchanger 17 is then bypassed.
  • the exchanger 2 comprises, apart from the main "Freon” circuit, a counter-current water circuit 200, mounted as a bypass on the circuit 172 and fitted with a solenoid valve 203.
  • a temperature sensor 204 which measures the temperature of the fluid in the pipe 103. If this temperature drops for example below -12 ° C, the valve 203 opens and the "Freon" is thus brought to a sufficient temperature to ensure normal evaporation pressure.
  • the exchanger 2 plays the same role as in FIG. 1 and cooperates in the same way with the regulation of the regulator 13h to obtain the same optimal working conditions of the evaporator, whatever the external conditions.
  • the bulb and the pressure sensor are not shown, which are associated with the 13h regulator and placed upstream of the compressor, as in the previous embodiment.
  • the exchanger 17 is, as indicated, bypassed as soon as the water in the tank is at 46 ° C. This exchanger operates, in practice, almost continuously. It will be noted that if, despite the regulation, and as a result of an exceptional external supply of calories at the exchanger 1 (due to a high air temperature, a strong wind or intense solar irradiation), the temperature at the outlet of the compressor tended to rise, the exchanger 17 would then play, during its periods of operation, the role of desuperheater, thus reducing the condensation temperature to a normal value.
  • the high-pressure "Freon” passes through the non-return valve 90, the receiver 9, the exchanger 303, the filter 11, the valve 12h then open (while the valve 12e is closed) and the regulator 1 p.m., to return to evaporator 1 via line 102.
  • valve 16 In summer, the valve 16 is positioned to establish the connection shown in solid lines, that is to say that the outlet of the exchanger 8 is connected to the pipe 301, while the pipe 171 is connected to the exchanger 2.
  • the water circulating in the air conditioning circuit (not shown) through pipes 801 and 802 is, when the installation is put into service, at a high temperature (15 to 18 0 C for example).
  • the exchanger 8 then plays the role of evaporator.
  • the low-pressure "Freon” enters the separator 3, and arrives at the compressor 4.
  • the high-pressure "Freon” passes through the exchanger 17, then the exchanger 2, the external exchanger 1 which then acts as a condenser , the non-return valve 1020, the receiver 9, the exchanger 303, the filter 11, the valve 12e then open, the regulator 13e.
  • the low pressure "Freon” then returns to the evaporator 8 via the line 803.
  • the regulation of the evaporation pressure is carried out as already indicated, the flow rate of the pressure reducer 13e being controlled by temperature and pressure sensors, not shown, placed upstream of the compressor.
  • the "Freon" which circulates in the exchanger 2 is at high pressure and at a relatively high temperature (60 ° C. for example). This is why the external exchanger 1 can play the role of condenser, even if it is itself brought to a relatively high temperature (however less than 40 ° C) by solar radiation. As it has a large surface area (fin structure) and is designed to have significant convection losses, this external exchanger can statically evacuate the calories due to condensation.
  • valve 203 In summer operation, the valve 203 is no longer controlled by the sensor 204, but by the pressure switch 6 (this control has been represented by a simple dashed line in the drawing; in reality, a summer-winter switching device for the control of valve 203 must be provided). If the pressure at the outlet of the compressor exceeds a predetermined value, owing to the fact that the condenser 1 can no longer remove the calories, the valve opens and, consequently, the exchanger 2 contributes to evaluating the calories of the "Freon", which are recovered by the hot water circuit 172.
  • the exchanger 17 plays, for its part, a role of desuperheater when the calorie intake at the interior exchanger 8 are significant.
  • the excess calories are recovered by the hot water circuit 172.
  • an internal exchanger 8 of the "Freon-water” type has been shown in FIG. 5, it could be replaced by one or more exchangers ensuring direct heat exchange between the "Freon" of the installation circuit and the air in the room to be conditioned.
  • the various internal exchangers will be placed in diversion on the circuit of the installation, according to a provision ensuring the equalization of the pressure losses for the different interior exchangers. It is thus possible to supply several terminals, of the fan coil type for example, with a single regulator, the latter ensuring regulation taking account of the pressure drop.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

Heat pump used in air conditioning and in heating, the condenser and evaporator of which are constituted by two exchangers, one (1) of which, outside the room, is a static exchanger made up of a finned tube, characterised by regulating means (138-B) which serve to regulate the throughput of the expander (13) so as to maintain the point of the circuit of the evaporator, downstream of which the heat- exchanging fluid is completely vaporised, somewhat beyond the point of exit from the evaporator. <IMAGE>

Description

L'invention se rapporte aux installations à pompe à chaleur, pour le chauffage et/ou le refroidissement d'un local, comprenant, en série dans un circuit fermé de fluide caloporteur :

  • - un compresseur ;
  • - un condenseur relié à la sortie à haute pression du compresseur ;
  • - un détendeur :
  • - un évaporateur dont la sortie est reliée à l'entrée à basse pression du compresseur,

le condenseur et l'évaporateur étant constitués par des échangeurs dont l'un est situé à l'intérieur du local, l'autre à l'extérieur.The invention relates to heat pump installations for heating and / or cooling a room, comprising, in series in a closed circuit of heat transfer fluid:
  • - a compressor;
  • - a condenser connected to the high pressure outlet of the compressor;
  • - a regulator:
  • - an evaporator, the outlet of which is connected to the low pressure inlet of the compressor,

the condenser and the evaporator being constituted by exchangers, one of which is located inside the room, the other outside.

Lorsque ce genre d'installations fonctionne en chauffage, comme la source froide est constituée par l'air extérieur, sa température faible pénalise le coefficient de performance au moment où les besoins de chaleur sont élevés et la présence d'humidité nécessite habituellement une installation de dégivrage de l'échangeur extérieur, laquelle consomme de l'énergie. Généralement, l'échangeur extérieur comporte des ventilateurs pour augmenter l'échange thermique, solution bruyante et qui consomme de l'énergie et l'on prévoit en outre des résistances électriques complémentaires.When this type of installation works in heating, as the cold source is constituted by the outside air, its low temperature penalizes the coefficient of performance at the time when the heat needs are high and the presence of humidity usually requires an installation of defrosting of the external exchanger, which consumes energy. Generally, the external heat exchanger includes fans to increase the heat exchange, noisy solution that consumes energy and additional electrical resistances are also provided.

Un premier objet de l'invention est de réaliser une installation où l'échangeur extérieur est purement statique et où aucun chauffage d'appoint n'est prévu pour les locaux.A first object of the invention is to provide an installation where the external exchanger is purely static and where no auxiliary heating is provided for the premises.

A priori, dans une telle installation, l'échangeur extérieur statique doit, pour le chauffage, récupérer toutes les calories disponibles dans l'air en mouvement et l'apport dû à l'irradiation solaire. Mais les capteurs solaires habituels, qui comportent une grande surface vitrée et utilisent de l'eau comme fluide caloporteur, ne fonctionnent pas en dehors des périodes d'ensoleillement.A priori, in such an installation, the static external exchanger must, for heating, recover all the calories available in the moving air and the contribution due to solar irradiation. However, the usual solar collectors, which have a large glass surface and use water as the heat-transfer fluid, do not work outside of the periods of sunshine.

Par ailleurs, compte tenu des variations importantes des apports thermiques en fonction de la température de l'air extérieur, de sa vitesse et de l'ensoleillement, il est évidemment nécessaire de prévoir une régulation ; mais les solutions connues, telles que celle qui consiste à réguler le débit à l'entrée du compresseur, ne sont pas satisfaisantes.Furthermore, given the significant variations in heat input as a function of the temperature of the outside air, its speed and the amount of sunshine, it is obviously necessary to provide for regulation; but known solutions, such as that which regulates the flow rate at the inlet of the compressor, are not satisfactory.

Suivant une première particularité de l'invention, l'échangeur extérieur est un échangeur statique à grande surface d'échange thermique avec l'air extérieur, de préférence du type comportant une multiplicité de tubes à ailettes, dans lequel circule le liquide frigorigène et des moyens de régulation sont prévus pour régler le débit du détendeur, de manière à maintenir le point du circuit de l'évaporateur en aval duquel le fluide caloporteur est entièrement vaporisé au voisinage du point de sortie de l'évaporateur et même, de préférence, un peu au-delà de ce point de sortie.According to a first feature of the invention, the external exchanger is a static exchanger with a large heat exchange surface with the outside air, preferably of the type comprising a multiplicity of finned tubes, in which the refrigerant and regulating means are provided for regulating the flow rate of the expansion valve, so as to maintain the point of the evaporator circuit downstream of which the heat transfer fluid is completely vaporized in the vicinity of the point of exit of the evaporator and even, preferably, a little beyond this exit point.

Suivant un mode d'exécution préféré, lesdits moyens de régulation comportent une membrane dont les déplacements sont transmis à l'organe de régulation de débit du détendeur, et des moyens de soumettre la membrane, dans le sens de l'ouverture, à la pression de vapeur saturante qui correspond à la température du fluide à l'aspiration du compresseur et, dans le sens de la fermeture, à la pression effective du fluide à l'aspiration du compresseur et à une poussée supplémentaire réglable, avantageusement exercée par un ressort, ladite poussée supplémentaire étant déterminée pour tenir compte de la perte de charge du circuit jusqu'à l'aspiration et pour obtenir une valeur de surchauffe prédéterminée, avantageusement de l'ordre de 6 à 8°C.According to a preferred embodiment, said regulating means comprise a membrane, the displacements of which are transmitted to the regulating member of the regulator, and means for subjecting the membrane, in the direction of opening, to the saturated vapor pressure which corresponds to the temperature of the fluid at the suction of the compressor and, in the direction of closing, to the effective pressure of the fluid to the suction of the compressor and to an adjustable additional thrust, advantageously exerted by a spring, said additional thrust being determined to take account of the pressure drop of the circuit up to suction and to obtain a predetermined superheating value, advantageously of around 6 to 8 ° C.

Comme la régulation ne permet pas de pallier complètement une insuffisance importante d'apport thermique, suivant une autre particularité de l'invention, avantageusement conjuguée à la précédente lorsque l'installation est destinée à fonctionner à des températures extérieures relativement basses, elle comporte des moyens d'échange thermique entre le fluide caloporteur qui sort de l'évaporateur et le fluide à haute pression et un organe de mise en service de ces moyens lorsque la température ou la pression du fluide qui sort de l'évaporateur ou du compresseur devient inférieure à une première valeur prédéterminée.As the regulation does not completely overcome a significant insufficiency of heat input, according to another feature of the invention, advantageously combined with the previous one when the installation is intended to operate at relatively low outside temperatures, it includes means heat exchange between the heat transfer fluid leaving the evaporator and the high pressure fluid and a device for commissioning these means when the temperature or pressure of the fluid leaving the evaporator or the compressor becomes lower than a first predetermined value.

Suivant une autre particularité de l'invention, l'installation est réversible et, à cet effet, comporte un organe de distribution apte à établir un circuit de chauffage dans lequel l'échangeur extérieur joue le rôle d'évaporateur et l'échangeur intérieur joue le rôle de condenseur, ou un circuit de réfrigération dans lequel l'échangeur intérieur joue le rôle d'évaporateur et l'échangeur extérieur joue le rôle de condenseur, tandis que lesdits moyens d'échange thermique comportent un premier échangeur auxiliaire dans lequel circulent, d'une part, le fluide caloporteur sortant de l'échangeur extérieur en mode chauffage ou entrant dans l'échangeur extérieur en mode réfrigération, d'autre part, l'eau d'un circuit auxiliaire en dérivation sur un circuit d'eau fermé, et un second échangeur auxiliaire dans lequel circulent, d'une part, le fluide caloporteur sortant du compresseur, d'autre part, l'eau dudit circuit fermé, un organe de mise en service du circuit auxiliaire lorsque la température du fluide qui sort de l'évaporateur devient inférieure à ladite première valeur prédéterminée en mode chauffage, ledit circuit auxiliaire étant en service quasi- permanent en mode réfrigération.According to another feature of the invention, the installation is reversible and, for this purpose, comprises a distribution member capable of establishing a heating circuit in which the external exchanger plays the role of evaporator and the internal exchanger plays the role of condenser, or a refrigeration circuit in which the internal exchanger acts as an evaporator and the external exchanger acts as a condenser, while said heat exchange means comprise a first auxiliary exchanger in which circulate, on the one hand, the heat transfer fluid leaving the outdoor heat exchanger in heating mode or entering the outdoor heat exchanger in refrigeration mode, on the other hand, the water from an auxiliary circuit bypassing on a closed water circuit , and a second auxiliary exchanger in which, on the one hand, the heat transfer fluid leaving the compressor, on the other hand, the water of said closed circuit, a member for commissioning the auxiliary circuit when the temperature of the fluid leaving the evaporator becomes lower than said first predetermined value in heating mode, said auxiliary circuit being in almost permanent service in refrigeration mode.

D'autres particularités, ainsi que les avantages de l'invention apparaîtront clairement à la lumière de la description ci-après :

  • Au dessin annexé :
    • La figure 1 est un schéma de principe d'une installation de chauffage conforme à un mode d'exécution préféré de l'invention ;
    • La figure 2 représente l'un des tubes à ailettes de l'échangeur extérieur ;
    • La figure 3 représente un mode d'exécution préféré du détendeur et des organes de régulation de son débit ;
    • La figure 4 est un diagramme d'enthalpie illustrant le fonctionnement de l'installation ; et
    • La figure 5 est un schéma de principe d'une installation de climatisation réversible conforme à un mode d'exécution préféré de l'invention.
Other particularities, as well as the advantages of the invention will become clear in the light of the description below:
  • In the attached drawing:
    • Figure 1 is a block diagram of a heating installation according to a preferred embodiment of the invention;
    • FIG. 2 represents one of the finned tubes of the external exchanger;
    • FIG. 3 represents a preferred embodiment of the regulator and of the organs for regulating its flow;
    • Figure 4 is an enthalpy diagram illustrating the operation of the installation; and
    • Figure 5 is a block diagram of a reversible air conditioning installation according to a preferred embodiment of the invention.

A la figure 1, on a représenté en 1 un échangeur composé d'un faisceau de tubes de cuivre (100, figure 2) munis, sur toute leur périphérie, d'ailettes d'aluminium 101. Avantageusement, ces tubes ont un diamètre de 5/8 de pouce (15,87 mm) et les ailettes ont 43 à 44 mm de diamètre et sont distribuées à un pas compris entre 4 et 5 mm (4,2 mm par exemple). Des ailettes plus serrées entraîneraient un risque excessif de givrage et, si les ailettes avaient un diamètre plus grand, les pertes en périphérie seraient telles que la portion périphérique ne transmettrait plus de chaleur au tube correspondant. La surface d'échange thermique totale peut être très grande, par exemple 96 m2 pour un compresseur de 4,5 CV, sous volume relativement faible (le cadre de support de la tubulure a par exemple 2 m X 1 m et la tubulure, une longueur totale de 80 m).In FIG. 1, there is shown at 1 an exchanger composed of a bundle of copper tubes (100, FIG. 2) provided, over their entire periphery, with aluminum fins 101. Advantageously, these tubes have a diameter of 5/8 inch (15.87 mm) and the fins are 43 to 44 mm in diameter and are distributed at a pitch of between 4 and 5 mm (4.2 mm for example). Tighter fins would cause an excessive risk of icing and, if the fins had a larger diameter, the losses at the periphery would be such that the peripheral portion would no longer transmit heat to the corresponding tube. The total heat exchange surface can be very large, for example 96 m 2 for a 4.5 CV compressor, in relatively small volume (the support frame of the tubing has for example 2 m × 1 m and the tubing, a total length of 80 m).

Un fluide frigorigène, avantageusement du "Fréon 22", circule à l'intérieur des tubes, entre une tubulure d'amenée 102 et une tubulure de sortie 103. Cette dernière est raccordée à un petit échangeur 2, dans lequel, comme on l'expliquera plus loin, est par ailleurs établie une circulation à contre-courant de "Fréon" sous-refroidi (flèches en pointillé) au moyen d'une canalisation d'amenée 201 et d'une canalisation de sortie 202. Le courant principal de "Fréon" pénètre ensuite dans un séparateur de gouttes de liquide 3 comportant un tube d'amenée 301 et un tube de sortie 302 ayant leurs extrémités ouvertes à une certaine distance l'une de l'autre.A refrigerant, advantageously "Freon 22", circulates inside the tubes, between a supply pipe 102 and an outlet pipe 103. The latter is connected to a small exchanger 2, in which, as is will explain further on, is also established a countercurrent circulation of sub-cooled "Freon" (dotted arrows) by means of a supply pipe 201 and an outlet pipe 202. The main current of " Freon "then enters a liquid drop separator 3 comprising a supply tube 301 and an outlet tube 302 having their ends open at a certain distance from each other.

Entre la sortie à basse pression de l'échangeur 2 et l'entrée du séparateur 3 est disposé un échangeur -supplémentaire 303 dans lequel circulent, d'une part, le fluide à basse pression qui sort de l'échangeur 2, d'autre part, le fluide sous-refroidi provenant du receveur 9 mentionné plus loin. En variante, l'échangeur 303 pourrait être réalisé en disposant une tubulure supplémentaire autour du séparateur 3.Between the low pressure outlet of the exchanger 2 and the inlet of the separator 3 is disposed an additional exchanger 303 in which circulate, on the one hand, the low pressure fluid which leaves the exchanger 2, on the other hand apart, the sub-cooled fluid coming from the receiver 9 mentioned below. As a variant, the exchanger 303 could be produced by placing additional tubing around the separator 3.

Avantageusement, l'échangeur auxiliaire 2 est du type comportant un tube central fileté hélicoldalement sur sa surface extérieure et entouré d'un tube extérieur concentrique. Le "Fréon" sous refroidi circule dans l'intervalle entre les deux tubes en tournant le long du filetage, à une vitesse de l'ordre de 10 m/s, tandis que le "Fréon" à basse pression circule dans le tube intérieur.Advantageously, the auxiliary exchanger 2 is of the type comprising a central tube threaded helically on its outer surface and surrounded by a concentric outer tube. The sub-cooled "Freon" circulates in the interval between the two tubes by turning along the thread, at a speed of the order of 10 m / s, while the low pressure "Freon" circulates in the inner tube.

La canalisation 302 de sortie du séparateur est raccordée à un compresseur 4 par l'intermédiaire d'un pressostat à basse pression 5.The separator outlet pipe 302 is connected to a compressor 4 by means of a low pressure pressure switch 5.

A la sortie du compresseur 4, le "Fréon" surchauffé (vers 100 à 110°C) passe dans un pressostat à haute pression 6 et un clapet anti-retour 7 et arrive à un condenseur 8. Celui- - ci est un condenseur à eau de type traditionnel. Les canalisations d'eau, symbolisées en 801-802, sont raccordées à des terminaux d'utilisation, non figurés.At the outlet of compressor 4, the overheated "Freon" (around 100 to 110 ° C) passes through a high pressure pressure switch 6 and a non-return valve 7 and arrives at a condenser 8. This is a condenser with traditional type water. The water pipes, symbolized in 801-802, are connected to user terminals, not shown.

A la sortie du condenseur, le "Fréon" sous-refroidi (entre 35 et 40°C) arrive à un receveur 9 destiné au stockage du "Fréon" condensé à l'arrêt de la machine, puis passe dans l'échangeur 303, de façon à subir un sous-refroidissement complémentaire permanent.At the outlet of the condenser, the sub-cooled "Freon" (between 35 and 40 ° C.) arrives at a receiver 9 intended for the storage of the condensed "Freon" when the machine stops, then passes into the exchanger 303, so as to undergo a permanent additional sub-cooling.

La canalisation 304 de sortie de l'échangeur 303 est raccordée, d'une part, à travers une vanne 10, un filtre 11 et une vanne électro-magnétique 12, à un détendeur 13 lui-même relié à la canalisation 102 d'entrée de l'échangeur 1, d'autre part, directement à la canalisation 201 d'amenée du contre-courant dans le petit échangeur 2. Comme on l'expliquera plus loin, ce contre-courant sert à élever la température du courant principal de "Fréon" envoyé au compresseur, lorsque la température extérieure est relativement basse.The outlet pipe 304 of the exchanger 303 is connected, on the one hand, through a valve 10, a filter 11 and an electromagnetic valve 12, to a pressure reducer 13 itself connected to the inlet pipe 102 of the exchanger 1, on the other hand, directly to the line 201 for supplying the counter current in the small exchanger 2. As will be explained below, this counter current is used to raise the temperature of the main current of "Freon" sent to the compressor, when the outside temperature is relatively low.

Le "Fréon" à contre-courant qui sort par la canalisation 202 a été sous-refroidi dans l'échangeur 2 par le courant principal et amené par exemple entre 25 et 27°C.The counter-current "Freon" which leaves via the line 202 was sub-cooled in the exchanger 2 by the main stream and brought for example between 25 and 27 ° C.

Lorsque la température extérieure est supérieure à 5°C par exemple, on ouvre la vanne 10, de façon à by-passer le circuit 201-202 de l'échangeur 2. Celui-ci n'est donc en service que pour les températures extérieures plus basses. Ce résultat peut également être obtenu automatiquement en mesurant la pression et/ou la température du fluide à l'entrée ou à la sortie du compresseur pour commander la vanne 10.When the outside temperature is above 5 ° C for example, the valve 10 is opened, so as to bypass the 201-202 circuit of the exchanger 2. This is therefore only in use for outside temperatures lower. This result can also be obtained automatically by measuring the pressure and / or the temperature of the fluid at the inlet or at the outlet of the compressor to control the valve 10.

A la sortie du filtre 11, le liquide sous-refroidi à haute pression arrive à la vanne 12 ouverte en permanence en fonctionnement et aboutit au détendeur 13.At the outlet of the filter 11, the sub-cooled high pressure liquid arrives at the valve 12 which is permanently open in operation and ends up at the pressure reducer 13.

Celui-ci est agencé, de la manière qui sera expliquée en se référant à la figure 3, pour que son débit soit régulé,-en fonction de la température qui règne dans la canalisation 302 d'aspiration du compresseur (mesurée par un bulbe B) et de la pression, prélevée par un capillaire 138 (figure 3) qui règne dans ladite canalisation d'aspiration, au droit du bulbe, de manière à faire travailler l'évaporateur 1 dans des conditions optimales, quelles que soient les conditions climatiques extérieures et la charge de l'installation. L'intérêt de cette mesure sera expliqué dans la suite.This is arranged, as will be explained with reference to FIG. 3, so that its flow is regulated, as a function of the temperature prevailing in the suction line 302 of the compressor (measured by a bulb B ) and of the pressure, taken by a capillary 138 (FIG. 3) which prevails in said suction pipe, at the level of the bulb, so as to make the evaporator 1 work in optimal conditions, whatever the external climatic conditions and the installation charge. The value of this measure will be explained below.

Une vanne 14 est branchée dans une petite canalisation 140 qui relie la canalisation 202 à la canalisation 102. Il se produit ainsi une petite injection temporaire, à l'entrée de l'échangeur, du fluide sous-refroidi. On règle cette injection pour que la température du fluide d'entrée de l'échangeur soit telle que les ailettes soient toujours maintenues au-dessus du point de rosée de l'air. On évite ainsi la formation de givre sur les parois extérieures des tubes du capteur.A valve 14 is connected in a small pipe 140 which connects the pipe 202 to the pipe 102. There is thus produced a small temporary injection, at the inlet of the exchanger, of the sub-cooled fluid. This injection is adjusted so that the temperature of the inlet fluid of the exchanger is such that the fins are always maintained above the dew point of the air. This prevents the formation of frost on the outer walls of the sensor tubes.

En pratique il suffit, pour obtenir ce résultat, de commander la vanne 14 au moyen d'un capteur de température 141 placé sur la canalisation 103 de sortie de l'échangeur 1, pour une consigne de température inférieure à -12°C.In practice, to obtain this result, it suffices to control the valve 14 by means of a temperature sensor 141 placed on the outlet pipe 103 of the exchanger 1, for a temperature set point below -12 ° C.

A la figure 3, on a représenté schématiquement un détendeur dans lequel le fluide à haute pression P1 arrive, après passage dans un filtre 130, dans une chambre d'admission 132 d'où il ne peut s'échapper que par un orifice calibré de détente fermé au repos par un pointeau 133 poussé contre son siège 132 par un petit ressort 134. L'ouverture est obtenue lorsque le pointeau 133 est poussé vers le bas, à l'encontre du ressort 134, par l'extrémité inférieure d'une tige 135 qui coulisse dans une pièce de guidage et est fixée, à son extrémité supérieure, à une membrane 136. Celle-ci est montée dans un soufflet 137 où elle définit une chambre supérieure reliée au bulbe capteur de température B placé sur la canalisation d'aspiration 302 du compresseur. Un capillaire 138 prélève d'autre part la pression P 4 dans ladite canalisation d'aspiration.In Figure 3, there is shown schematically a pressure reducer in which the high pressure fluid P1 arrives, after passing through a filter 130, in an intake chamber 132 from which it can escape only through a calibrated orifice of trigger closed at rest by a needle 133 pushed against its seat 132 by a small spring 134. The opening is obtained when the needle 133 is pushed down, against the spring 134, by the lower end of a rod 135 which slides in a guide piece and is fixed at its upper end to a membrane 136. This is mounted in a bellows 137 where it defines an upper chamber connected to the temperature sensor bulb B placed on the suction pipe 302 of the compressor. A capillary 138 on the other hand takes the pressure P 4 in said suction line.

Un ressort 139, disposé autour de la tige 135, est, à son extrémité supérieure, en appui sur la face inférieure de la membrane et, par son extrémité inférieure, en appui sur une bague de butée 1390 montée sur la tige 135. La position de cette bague sur la tige est réglable au moyen d'une vis 1391.A spring 139, disposed around the rod 135, is, at its upper end, supported on the underside of the membrane and, at its lower end, supported on a stop ring 1390 mounted on the rod 135. The position of this ring on the rod is adjustable by means of a 1391 screw.

Le fluide sort du détendeur à basse pression P2 et à une température T2. Des joints d'étanchéité 1392 et 1350 isolent l'une de l'autre les chambres soumises aux pressions P2 et P 4.The fluid leaves the regulator at low pressure P 2 and at a temperature T 2 . Seals 1392 and 1350 isolate from each other the chambers subjected to pressures P 2 and P 4 .

En négligeant la pression du ressort 134, on peut dire que le détendeur est fermé tant que la poussée exercée par la pression P(T4) sur sa face supérieure (pression qui dépend de la température du gaz aspiré par le compresseur) est inférieure à la somme des poussées respectivement exercées, sur sa face inférieure, par le ressort 139 (poussée réglable au moyen de la vis 1391) et par la pression P4.By neglecting the pressure of the spring 134, it can be said that the regulator is closed as long as the thrust exerted by the pressure P (T 4 ) on its upper face (pressure which depends on the temperature of the gas sucked by the compressor) is less than the sum of the thrusts exerted respectively, on its lower face, by the spring 139 (thrust adjustable by means of the screw 1391) and by the pressure P 4 .

Le dispositif est réglé pour fonctionner constamment au voisinage de l'équilibre des poussées.The device is adjusted to operate constantly in the vicinity of the balance of thrusts.

Pour une température extérieure donnée, il est clair que l'alimentation de l'évaporateur est assurée avec un débit tel que la pression moyenne soit maintenue constante. En effet, toute chute de pression a alors pour effet (en agissant sous la membrane) d'ouvrir le détendeur, donc d'augmenter la pression dans l'évaporateur et, inversement, toute augmentation de pression P4 a pour effet de fermer le détendeur, donc de faire baisser rapidement la pression dans l'évaporateur, du fait de l'aspiration du compresseur. Le détendeur s'ouvre finalement pour une valeur P2 - ΔP'2 de la pression d'évaporation, et se ferme pour une valeur P2 + ΔP2. Il se produit une succession d'injections périodiques de fluide dans l'évaporateur.For a given outside temperature, it is clear that the supply of the evaporator is ensured with a flow such that the average pressure is kept constant. Indeed, any drop in pressure then has the effect (by acting under the membrane) of opening the pressure reducer, therefore increasing the pressure in the evaporator and, conversely, any increase in pressure P4 has the effect of closing the pressure reducer, therefore to quickly lower the pressure in the evaporator, due to the suction of the compressor. The regulator finally opens for a value P 2 - ΔP ' 2 of the evaporation pressure, and closes for a value P 2 + ΔP 2 . A series of periodic injections of fluid takes place in the evaporator.

Il est évident que, dans ce régime oscillant stable, pendant les phases de fermeture du détendeur, il se produit en fait une élévation de T4, puisque les calories extérieures absorbées par l'évaporateur n'ont plus de nouvel apport de liquide à évaporer et provoquent la surchauffe de la vapeur sèche. Il en résulte une tendance supplémentaire à l'ouverture, par croissance de la pression P(T4) en même temps que chute de P4. Inversement, la diminution de T4 pendant les phases d'ouverture provoque également une tendance supplémentaire à la fermeture. Ainsi, la régulation s'effectue avec une oscillation de température allant de T4 + AT à T4 - ΔT.It is obvious that, in this stable oscillating regime, during the stages of closure of the regulator, there is in fact an increase in T 4 , since the external calories absorbed by the evaporator no longer have any new supply of liquid to evaporate and cause the dry steam to overheat. This results in an additional tendency to open, by increasing the pressure P (T 4 ) at the same time as falling P 4 . Conversely, the decrease in T 4 during the opening phases also causes an additional tendency to close. Thus, the regulation is carried out with a temperature oscillation ranging from T 4 + AT to T 4 - ΔT.

Mais il est évident que l'apport extérieur de calories à l'échangeur extérieur subit des variations très importantes, en fonction de l'ensoleillement, du vent et de la température extérieure. Lorsque, au cours d'un régime de marche donné, il se produit un apport supplémentaire de calories, la température à la sortie de l'évaporateur augmente et, par suite, il en résulte une tendance à l'ouverture du détendeur [action de P(T4)], laquelle pourrait créer une instabilité. Mais l'apport supplémentaire de calories fait en même temps croître la pression, et l'action de P4 sous la membrane s'exerce cette fois en sens inverse de celle de P(T4), grâce à quoi un nouveau régime stable de régulation, correspondant à une température et à une pression plus élevées, peut être atteint. Un raisonnement identique montre qu'une diminution de l'apport calorifique conduit également à un nouveau régime stable, à température et à pression plus basses.But it is obvious that the external supply of calories to the external exchanger undergoes very significant variations, as a function of the sunshine, the wind and the external temperature. When, during a given running regime, there is an additional supply of calories, the temperature at the outlet of the evaporator increases and, as a result, this results in a tendency to open the expansion valve [action of P (T 4 )], which could create instability. But the additional supply of calories increases the pressure at the same time, and the action of P 4 under the membrane is exerted this time in opposite direction to that of P (T 4 ), thanks to which a new stable diet of regulation, corresponding to a higher temperature and pressure, can be achieved. Identical reasoning shows that a reduction in calorific intake also leads to a new stable diet, at lower temperature and pressure.

Il convient de faire observer qu'à chaque point de fonctionnement en régime stable défini par une pression P2 et une température T2, il correspond, dans la tubulure de l'échangeur extérieur, un point compris entre son entrée et à sa sortie, ou même, au-delà de cette dernière, dans la conduite de sortie, au-delà duquel tout le fluide caloporteur a été vaporisé et où la vapeur sèche commence à subir une surchauffe. Entre l'entrée de l'évaporateur et ce point limite de vapeur saturante, on a un mélange liquide-vapeur dont la proportion de vapeur croît le long du parcours.It should be noted that at each point of steady state operation defined by a pressure P 2 and a temperature T 2 , there corresponds, in the tubing of the external exchanger, a point between its inlet and its outlet, or even, beyond the latter, in the outlet pipe, beyond which all the heat transfer fluid has been vaporized and where the dry vapor begins to undergo overheating. Between the inlet of the evaporator and this saturation vapor limit point, there is a liquid-vapor mixture whose proportion of vapor increases along the route.

Tant que l'apport extérieur de calories reste dans une zone moyenne de valeurs, la régulation a pour effet de maintenir stable la position moyenne du point limite, et l'on choisit les réglages pour que cette position moyenne soit proche de la sortie de l'évaporateur ou même un peu au-delà.As long as the external intake of calories remains in an average zone of values, the regulation has the effect of keeping stable the average position of the limit point, and the settings are chosen so that this average position is close to the output of the 'evaporator or even a little beyond.

En effet, toute réduction de l'apport calorifique extérieur réduit à la fois le débit du fluide d'une part, et la température et la pression d'ébullition d'autre part, donc l'équilibre peut être atteint ; à l'inverse, toute augmentation de l'apport calorifique se traduit par une augmentation à la fois du débit d'une part, et de la température et la pression d'ébullition d'autre part, donc l'équilibre peut également être atteint.Indeed, any reduction in the external calorific intake reduces at the same time the flow of the fluid on the one hand, and the temperature and the boiling pressure on the other hand, therefore the equilibrium can be reached; conversely, any increase in calorific intake results in an increase in both the flow rate on the one hand, and the temperature and boiling pressure on the other hand, so equilibrium can also be achieved .

La position d'équilibre correspond à une absorption maximale des calories extérieures par l'échangeur, puisque l'évaporation se poursuit sensiblement sur toute la longueur du parcours. Grâce au séparateur de gouttes liquides 3, on supprime le risque, inhérent à ce réglage particulier du dispositif, qu'un fluide non entièrement à l'état de vapeur sèche puisse arriver au compresseur.The equilibrium position corresponds to maximum absorption of external calories by the exchanger, since evaporation continues substantially over the entire length of the journey. Thanks to the liquid droplet separator 3, the risk inherent in this particular adjustment of the device is eliminated, that a fluid not entirely in the state of dry vapor may arrive at the compressor.

En dehors de la zone moyenne définie ci-dessus, une première situation est celle où l'apport thermique est très faible et pourrait conduire à un débit nul permanent. Dans ce cas, comme on l'expliquera ci-après, l'échangeur 2 apporte une surchauffe qui ramène la plage de fonctionnement de la régulation et le point limite de vapeur saturante dans des zones acceptables. Ce mode de fonctionnement revient à suralimenter l'évaporateur lorsque les conditions climatiques sont sévères, ce qui, dans certaines limites, pourrait aussi être obtenu en agissant sur les réglages, mais avec un risque de coups de liquide à l'aspiration du compresseur.Outside the average zone defined above, a first situation is that where the heat input is very low and could lead to a permanent zero flow. In that case, as will be explained below, the exchanger 2 provides overheating which brings the operating range of the regulation and the saturation vapor limit point to acceptable zones. This operating mode amounts to supercharging the evaporator when the climatic conditions are severe, which, within certain limits, could also be obtained by acting on the settings, but with a risk of liquid blows on the compressor suction.

Une deuxième situation est celle où l'apport thermique est très important (ensoleillement considérable par exemple). Un emballement de l'installation est alors accepté, jusqu'au moment où les terminaux d'utilisation provoquent l'arrêt de la machine.A second situation is that where the heat input is very important (considerable sunshine for example). A runaway of the installation is then accepted, until the user terminals cause the machine to stop.

Il convient de souligner que le mode de régulation qui vient d'être décrit diffère notablement de celui qui est utilisé dans certaines installations de chambre froide où un détendeur relié à un capteur de la température de la chambre froide fournit à un évaporateur un débit régulé pour maintenir constante ladite température.It should be emphasized that the control mode which has just been described differs markedly from that used in certain cold room installations where a pressure reducer connected to a cold room temperature sensor provides an evaporator with a regulated flow rate for keep said temperature constant.

Dans cette régulation, la pression n'est pas prise en compte et il n'y a aucune préoccupation de maintenir le point limite de vapeur saturante au voisinage de la sortie de l'évaporateur.In this regulation, the pressure is not taken into account and there is no concern to maintain the saturation vapor limit point in the vicinity of the evaporator outlet.

Au contraire, lorsque ladite température est basse, la régulation rapproche ce point limite de l'entrée de l'évaporateur, diminuant ainsi le rendement, dont le maintien à une valeur optimale n'est nullement recherché.On the contrary, when said temperature is low, the regulation brings this limit point closer to the inlet of the evaporator, thus reducing the efficiency, the maintenance of which at an optimal value is in no way sought.

Dans les explications qui précèdent, il n'a pas été tenu compte de l'influence des pertes de charge dans le circuit de l'évaporateur, entre son entrée et l'entrée d'aspiration du compresseur.In the foregoing explanations, no account has been taken of the influence of the pressure drops in the evaporator circuit, between its inlet and the suction inlet of the compressor.

Or, pour une température d'ébullition To à la pression P qui règne à l'entrée de l'évaporateur, on aura une pression Po - pc (Pc étant la perte de charge), à l'entrée du compresseur et, dans le bulbe, une pression Po +ΔP(ΔT), P étant l'accroissement de la pression d'ébullition quand la température passe de la valeur To à la valeur To + ΔT,ΔT étant la surchauffe. Si PR est la pression du ressort (en supposant égales les surfaces de poussée, pour simplifier le raisonnement), l'équilibre sera donc atteint pour P 0 +ΔP(ΔT) = PR + Po - Pc, Par conséquent, la surchauffe ΔT sera telle que : ΔP(ΔT) = pR- pc Now, for a boiling point T o at pressure P which prevails at the inlet of the evaporator, there will be a pressure P o - p c (P c being the pressure drop), at the inlet of the compressor and, in the bulb, a pressure P o + ΔP (ΔT ), P being the increase in the boiling pressure when the temperature goes from the value T o to the value T o + ΔT, ΔT being the overheating. If P R is the spring pressure (assuming that the thrust surfaces are equal, to simplify the reasoning), equilibrium will therefore be reached for P 0 + ΔP (ΔT) = P R + P o - P c , Consequently, the overheating ΔT will be such that: ΔP (ΔT) = p R - p c

En réglant convenablement la pression du ressort, on peut ainsi obtenir, pour une perte de charge donnée, une surchauffe fixée à l'avance (6 à 7°C par exemple).By properly adjusting the spring pressure, it is thus possible to obtain, for a given pressure drop, an overheating fixed in advance (6 to 7 ° C. for example).

L'installation qui vient d'être décrite ne fonctionne que pour le chauffage, c'est-à-dire avec des températures extérieures qui sont, en hiver, le plus souvent suffisamment basses pour que la vanne 10 se trouve fermée, mettant ainsi en service l'échangeur 2.The installation which has just been described only works for heating, that is to say with outside temperatures which are, in winter, most often sufficiently low for the valve 10 to be closed, thus putting in service exchanger 2.

Grâce à la régulation, on évite ainsi toute surchauffe excessive qui risquerait d'amener le gaz à haute pression à une température supérieure à la température critique du "Fréon" 22 (130°C) ou, en tout cas, d'accroître la consommation du moteur électrique du compresseur et, en réduisant la viscosité de l'huile de graissage miscible au "Fréon", de réduire la durée de vie du compresseur.Thanks to the regulation, this avoids any excessive overheating which would risk bringing the high pressure gas to a temperature higher than the critical temperature of "Freon" 22 (130 ° C) or, in any case, increasing consumption of the electric motor of the compressor and, by reducing the viscosity of the lubricating oil miscible with "Freon", to reduce the service life of the compressor.

Comme on l'a expliqué ci-dessus, la régulation, à elle seule, n'absorbe par contre pas complètement les insuffisances graves d'apport calorifique en cas de températures extérieures très basses et d'absence de vent et d'ensoleillement. Or il est essentiel que le compresseur puisse fonctionner avec son débit spécifique pour amener le fluide à une température d'au moins 100°C qui permettra à la condensation de restituer les calories avec un bon coefficient de performance.As explained above, the regulation alone does not completely absorb the serious shortcomings of calorific intake in the event of very low outside temperatures and absence of wind and sunshine. However, it is essential that the compressor can operate with its specific flow rate to bring the fluid to a temperature of at least 100 ° C which will allow condensation to restore calories with a good coefficient of performance.

Les échangeurs 303 et surtout 2 permettent l'obtention de ce résultat en élevant la température du gaz à basse pression. Ils ont en outre un rôle de sous-refroidissement complémentaire : la température du fluide à contre-courant qui sort de l'échangeur 2 se trouve abaissée (entre 25 et 27°C par exemple), si bien qu'il comporte une proportion plus importante de phase liquide.The exchangers 303 and especially 2 allow this result to be obtained by raising the temperature of the gas at low pressure. They also have a complementary sub-cooling role: the temperature of the counter-current fluid which leaves the exchanger 2 is lowered (between 25 and 27 ° C. for example), so that it has a more significant liquid phase.

La figure 4 permet de se rendre compte que le complément de sous-refroidissement apporté par les échangeurs 2 et 303 a pour effet de déplacer vers la gauche le point 3 du diagramme d'enthalpie, qui passe ainsi en 3'.FIG. 4 shows that the additional sub-cooling provided by the exchangers 2 and 303 has the effect of moving point 3 of the enthalpy diagram to the left, which thus passes into 3 '.

Dans ce diagramme, 1-2 représente la phase de compression, 2-3 la phase de condensation, 3-3' le sous-refroidissement complémentaire, 3'-4 la phase de détente, 4-1 la phase d'évaporation. La surface hachurée illustre l'apport thermique supplémentaire dû au complément de sous-refroidissement.In this diagram, 1-2 represents the compression phase, 2-3 the condensation phase, 3-3 'the additional sub-cooling, 3'-4 the expansion phase, 4-1 the evaporation phase. The hatched surface illustrates the additional thermal contribution due to the additional sub-cooling.

Le diagramme illustre également les effets qui résulteraient d'une pression d'évaporation trop basse ou d'une surchauffe excessive, effets que la régulation et les échangeurs auxiliaires permettent d'éviter.The diagram also illustrates the effects which would result from too low evaporation pressure or excessive overheating, effects which the regulation and the auxiliary exchangers make it possible to avoid.

Le mode de fonctionnement décrit procure finalement un meilleur coefficient de performance que dans une pompe à chaleur classique.The operating mode described ultimately provides a better coefficient of performance than in a conventional heat pump.

Dans la variante à fonctionnement réversible représentée à la figure 5, on retrouve l'échangeur extérieur 1, le petit échangeur 2, le séparateur 3, le compresseur 4, les pressostats 5 et 6, l'échangeur "Fréon-eau" 8, le receveur 9. Deux détendeurs 13e et 13h sont prévus, ainsi qu'une vanne d'inversion été-hiver 16 à quatre voies et, en outre, un petit échangeur supplémentaire 17 et un ballon d'eau chaude 18.In the reversible variant shown in FIG. 5, there is the external exchanger 1, the small exchanger 2, the separator 3, the compressor 4, the pressure switches 5 and 6, the "Freon-water" exchanger 8, the receiver 9. Two regulators 13e and 13h are provided, as well as a four-way summer-winter reversing valve 16 and, in addition, a small additional exchanger 17 and a hot water tank 18.

En hiver, la vanne 16 est positionnée pour établir la connexion 16h indiquée en pointillé, c'est-à-dire que la canalisation qui sort de l'échangeur 2 est reliée à la canalisation 301, tandis que la canalisation 171 qui sort de l'échangeur 17 est reliée à l'échangeur intérieur "Fréon-eau" 8 qui joue alors le rôle de condenseur.In winter, the valve 16 is positioned to establish the connection 16h indicated in dotted lines, that is to say that the pipe which leaves the exchanger 2 is connected to the pipe 301, while the pipe 171 which leaves the exchanger 17 is connected to the internal exchanger "Freon-water" 8 which then plays the role of condenser.

Le "Fréon" à haute pression qui sort du compresseur traverse l'échangeur supplémentaire 17 avant d'arriver dans le condenseur 8 par la canalisation 171. L'échangeur 17 comporte un circuit d'eau 172, muni d'une pompe 173 et d'un vase d'expansion 174 et qui traverse le ballon 18 alimenté en 180 en eau de la ville.The high pressure "Freon" which leaves the compressor crosses the additional exchanger 17 before arriving in the condenser 8 via the pipe 171. The exchanger 17 comprises a water circuit 172, provided with a pump 173 and d 'an expansion vessel 174 and which passes through the balloon 18 supplied with 180 with city water.

Un capteur de température 181 commande l'ouverture d'une vanne 182 dès que la température de l'eau du ballon atteint par exemple 46°C. L'échangeur 17 est alors by-passé.A temperature sensor 181 controls the opening of a valve 182 as soon as the temperature of the water in the flask reaches for example 46 ° C. The exchanger 17 is then bypassed.

On notera que, dans le mode d'exécution de la figure 5, l'échangeur 2 comporte, en dehors du circuit principal de "Fréon", un circuit d'eau à contre-courant 200, monté en dérivation sur le circuit 172 et muni d'une électro-vanne 203. Celle-ci est commandée en hiver par un capteur de température 204 qui mesure la température du fluide dans la canalisation 103. Si cette température descend par exemple en dessous de -12°C, la vanne 203 s'ouvre et le "Fréon" est ainsi porté à température suffisante pour assurer une pression d'évaporation normale. Autrement dit, l'échangeur 2 joue le même rôle qu'à la figure 1 et coopère de la même façon avec la régulation du détendeur 13h pour obtenir les mêmes conditions de travail optimal de l'évaporateur, quelles que soient les conditions extérieures. Pour simplifier le dessin, on n'a pas représenté le bulbe et le capteur de pression qui sont associés au détendeur 13h et placés en amont du compresseur, comme dans le mode d'exécution précédent.It will be noted that, in the embodiment of FIG. 5, the exchanger 2 comprises, apart from the main "Freon" circuit, a counter-current water circuit 200, mounted as a bypass on the circuit 172 and fitted with a solenoid valve 203. This is controlled in winter by a temperature sensor 204 which measures the temperature of the fluid in the pipe 103. If this temperature drops for example below -12 ° C, the valve 203 opens and the "Freon" is thus brought to a sufficient temperature to ensure normal evaporation pressure. In other words, the exchanger 2 plays the same role as in FIG. 1 and cooperates in the same way with the regulation of the regulator 13h to obtain the same optimal working conditions of the evaporator, whatever the external conditions. To simplify the drawing, the bulb and the pressure sensor are not shown, which are associated with the 13h regulator and placed upstream of the compressor, as in the previous embodiment.

On notera que ce rôle de l'échangeur 2 ne peut être joué pleinement que lorsque l'eau du circuit 172 a été portée à sa température normale de 46°C par l'échangeur 17. Compte tenu de cette température, la pression d'évaporation du "Fréon" peut être élevée d'environ 300 g/cm2.It will be noted that this role of the exchanger 2 cannot be played fully that when the water in circuit 172 has been brought to its normal temperature of 46 ° C by the exchanger 17. Taking this temperature into account, the evaporation pressure of the "Freon" can be raised by approximately 300 g / c m 2 .

L'échangeur 17 est, comme on l'a indiqué, by-passé dès que l'eau du ballon est à 46°C. Cet échangeur fonctionne, en pratique, presque en permanence. On notera que si, malgré la régulation, et par suite d'un apport extérieur de calories exceptionnel au niveau de l'échangeur 1 (dû à une température élevée de l'air, un vent fort ou une irradiation solaire intense), la température à la sortie du compresseur avait tendance à s'élever, l'échangeur 17 jouerait alors, pendant ses périodes de fonctionnement, le rôle de désurchauffeur, ramenant ainsi la température de condensation à une valeur normale.The exchanger 17 is, as indicated, bypassed as soon as the water in the tank is at 46 ° C. This exchanger operates, in practice, almost continuously. It will be noted that if, despite the regulation, and as a result of an exceptional external supply of calories at the exchanger 1 (due to a high air temperature, a strong wind or intense solar irradiation), the temperature at the outlet of the compressor tended to rise, the exchanger 17 would then play, during its periods of operation, the role of desuperheater, thus reducing the condensation temperature to a normal value.

On a représenté en 140 une petite canalisation d'injection de "Fréon" à haute pression en aval du détendeur 13h, commandée par une vanne de dégivrage 14, elle-même ouverte sous la commande d'un capteur de température 141. Le dégivrage fonctionne comme on l'a expliqué en se référant à la figure 1.There is shown in 140 a small high pressure "Freon" injection pipe downstream of the regulator 13h, controlled by a defrost valve 14, itself open under the control of a temperature sensor 141. Defrosting works as explained with reference to Figure 1.

A la sortie de l'échangeur interne 8, le "Fréon" à haute pression traverse le clapet anti-retour 90, le receveur 9, l'échangeur 303, le filtre 11, la vanne 12h alors ouverte (tandis que la vanne 12e est fermée) et le détendeur 13h, pour revenir à l'évaporateur 1 par la canalisation 102.At the outlet of the internal exchanger 8, the high-pressure "Freon" passes through the non-return valve 90, the receiver 9, the exchanger 303, the filter 11, the valve 12h then open (while the valve 12e is closed) and the regulator 1 p.m., to return to evaporator 1 via line 102.

En été, la vanne 16 est positionnée pour établir la connexion figurée en trait plein, c'est-à-dire que la sortie de l'échangeur 8 est reliée à la canalisation 301, tandis que la canalisation 171 est reliée à l'échangeur 2.In summer, the valve 16 is positioned to establish the connection shown in solid lines, that is to say that the outlet of the exchanger 8 is connected to the pipe 301, while the pipe 171 is connected to the exchanger 2.

L'eau qui circule dans le circuit de climatisation (non figuré) par les canalisations 801 et 802 est, à la mise en service de l'installation, à une température élevée (15 à 180C par exemple). L'échangeur 8 joue alors le rôle d'évaporateur.The water circulating in the air conditioning circuit (not shown) through pipes 801 and 802 is, when the installation is put into service, at a high temperature (15 to 18 0 C for example). The exchanger 8 then plays the role of evaporator.

Le "Fréon" à basse pression pénètre dans le séparateur 3, et arrive au compresseur 4. Le "Fréon" à haute pression traverse l'échangeur 17, puis l'échangeur 2, l'échangeur extérieur 1 qui joue alors le rôle de condenseur, le clapet anti-retour 1020, le receveur 9, l'échangeur 303, le filtre 11, la vanne 12e alors ouverte, le détendeur 13e. Le "Fréon" à basse pression revient alors à l'évaporateur 8 par la canalisation 803.The low-pressure "Freon" enters the separator 3, and arrives at the compressor 4. The high-pressure "Freon" passes through the exchanger 17, then the exchanger 2, the external exchanger 1 which then acts as a condenser , the non-return valve 1020, the receiver 9, the exchanger 303, the filter 11, the valve 12e then open, the regulator 13e. The low pressure "Freon" then returns to the evaporator 8 via the line 803.

La régulation de la pression d'évaporation s'effectue comme déjà indiqué, le débit du détendeur 13e étant commandé par des capteurs de température et de pression, non figurés, placés en amont du compresseur.The regulation of the evaporation pressure is carried out as already indicated, the flow rate of the pressure reducer 13e being controlled by temperature and pressure sensors, not shown, placed upstream of the compressor.

Dans ce mode de fonctionnement en climatisation, le "Fréon" qui circule dans l'échangeur 2 est à haute pression et à une température relativement élevée (60°C par exemple). C'est ce qui explique que l'échangeur extérieur 1 puisse jouer le rôle de condenseur, même s'il est lui-même porté à une température relativement élevée (toutefois inférieure à 40°C) par le rayonnement solaire. Comme il a une surface importante (structure à ailettes) et est conçu pour avoir des pertes par convection importantes, cet échangeur extérieur pourra évacuer statiquement les calories dues à la condensation.In this air conditioning operating mode, the "Freon" which circulates in the exchanger 2 is at high pressure and at a relatively high temperature (60 ° C. for example). This is why the external exchanger 1 can play the role of condenser, even if it is itself brought to a relatively high temperature (however less than 40 ° C) by solar radiation. As it has a large surface area (fin structure) and is designed to have significant convection losses, this external exchanger can statically evacuate the calories due to condensation.

En marche été, la vanne 203 n'est plus commandée par le capteur 204, mais par le pressostat 6 (cette commande a été représentée par un simple trait mixte au dessin ; en réalité, un dispositif de commutation été-hiver de la commande de la vanne 203 doit être prévu). Si la pression à la sortie du compresseur dépasse une valeur prédéterminée, par suite du fait que le condenseur 1 n'arrive plus à évacuer les calories, la vanne s'ouvre et, par conséquent, l'échangeur 2 contribue à évaluer les calories du "Fréon", qii sont récupérées par le circuit d'eau chaude 172.In summer operation, the valve 203 is no longer controlled by the sensor 204, but by the pressure switch 6 (this control has been represented by a simple dashed line in the drawing; in reality, a summer-winter switching device for the control of valve 203 must be provided). If the pressure at the outlet of the compressor exceeds a predetermined value, owing to the fact that the condenser 1 can no longer remove the calories, the valve opens and, consequently, the exchanger 2 contributes to evaluating the calories of the "Freon", which are recovered by the hot water circuit 172.

L'échangeur 17 joue, de son côté, un rôle de désurchauffeur lorsque les apports de calories au niveau de l'échangeur intérieur 8 sont importants. Les calories en excès sont récupérées par le circuit d'eau chaude 172.The exchanger 17 plays, for its part, a role of desuperheater when the calorie intake at the interior exchanger 8 are significant. The excess calories are recovered by the hot water circuit 172.

Bien que l'on ait représenté à la figure 5 un échangeur intérieur 8 du type "Fréon-eau", on pourrait le remplacer par un ou plusieurs échangeurs assurant l'échange thermique direct entre le "Fréon" du circuit de l'installation et l'air du local à climatiser. Dans cette solution, qui présente l'avantage de réduire l'inertie thermique de l'installation, on placera avantageusement les différents échangeurs intérieurs en dérivation sur le circuit de l'installation, suivant une disposition assurant l'égalisation des pertes de charge pour les différents échangeurs intérieurs. On peut ainsi alimenter plusieurs terminaux, du genre ventilo-convecteurs par exemple, avec un seul détendeur, celui-ci assurant la régulation en tenant compte de la perte de charge.Although an internal exchanger 8 of the "Freon-water" type has been shown in FIG. 5, it could be replaced by one or more exchangers ensuring direct heat exchange between the "Freon" of the installation circuit and the air in the room to be conditioned. In this solution, which has the advantage of reducing the thermal inertia of the installation, the various internal exchangers will be placed in diversion on the circuit of the installation, according to a provision ensuring the equalization of the pressure losses for the different interior exchangers. It is thus possible to supply several terminals, of the fan coil type for example, with a single regulator, the latter ensuring regulation taking account of the pressure drop.

Dans cette variante (non figurée) on ajoutera, si nécessaire, un échangeur auxiliaire supplémentaire pour.assurer le sous-refroidissement.In this variant (not shown), an additional auxiliary exchanger will be added, if necessary, to ensure sub-cooling.

Il va de soi que diverses variantes pourront être imaginées par l'homme du métier et diverses modifications apportées aux schémas décrits et représentés, sans s'écarter de l'esprit de l'invention.It goes without saying that various variants can be imagined by those skilled in the art and various modifications made to the diagrams described and shown, without departing from the spirit of the invention.

Claims (14)

1. Installation à pompe à chaleur, pour le chauffage et/ou le refroidissement d'un local, comprenant, en série dans un circuit fermé de fluide caloporteur : - un compresseur (4) ; - un condenseur (8) relié à la sortie à haute pression du compresseur ; - un détendeur (13) ; - un évaporateur (1) dont la sortie est reliée à l'entrée à basse pression du compresseur,
le condenseur et l'évaporateur étant constitués par des échangeurs dont l'un (8) est situé à l'intérieur du local, l'autre (1) à l'extérieur,
caractérisée en ce que : l'échangeur extérieur (1) est un échangeur statique à grande surface d'échange thermique avec l'air extérieur ; et que des moyens de régulation (138-B) sont prévus pour régler le débit du détendeur (13) de manière à maintenir le point du circuit de l'évaporateur en aval duquel le fluide caloporteur est entièrement vaporisé au voisinage du point de sortie de l'évaporateur et même, de préférence, un peu au-delà de ce point de sortie.
1. Installation with heat pump, for heating and / or cooling a room, comprising, in series in a closed circuit of heat transfer fluid: - a compressor (4); - a condenser (8) connected to the high pressure outlet of the compressor; - a regulator (13); - an evaporator (1) whose outlet is connected to the low pressure inlet of the compressor,
the condenser and the evaporator being constituted by exchangers, one of which (8) is located inside the room, the other (1) outside,
characterized in that: the external exchanger (1) is a static exchanger with a large heat exchange surface with the outside air; and that regulating means (138-B) are provided for regulating the flow rate of the pressure reducer (13) so as to maintain the point of the evaporator circuit downstream of which the heat transfer fluid is completely vaporized in the vicinity of the point of exit from the evaporator and even, preferably, a little beyond this exit point.
2. Installation selon la revendication 1, caractérisée en ce que lesdits moyens de régulation comportent une membrane (136) dont les déplacements sont transmis à l'organe (132) de régulation de débit du détendeur et des moyens (B) de soumettre la membrane, dans le sens de l'ouverture, à la pression de vapeur saturante qui correspond à la température du fluide à l'aspiration du compresseur et, dans le sens de la fermeture, à la pression effective du fluide à l'aspiration du compresseur (138) et à une poussée supplémentaire réglable, avantageusement exercée par un ressort (139), ladite poussée supplémentaire étant déterminée pour tenir compte de la perte de charge du circuit jusqu'à l'aspiration et pour obtenir une valeur de surchauffe prédéterminée, avantageusement de l'ordre de 6 à 8°C.2. Installation according to claim 1, characterized in that said regulating means comprise a membrane (136), the displacements of which are transmitted to the member (132) regulating the flow rate of the regulator and means (B) of submitting the membrane , in the opening direction, at the saturated vapor pressure which corresponds to the temperature of the fluid at the compressor suction and, in the closing direction, at the effective pressure of the fluid at the compressor suction ( 138) and to an adjustable additional thrust, advantageously exerted by a spring (139), said additional thrust being determined to take into account the pressure drop of the circuit until suction and to obtain a value of predetermined overheating, advantageously of the order of 6 to 8 ° C. 3. Installation selon la revendication 1 ou 2, caractérisée par des moyens (2) d'échange thermique entre le fluide caloporteur qui sort de l'évaporateur et le fluide à haute pression et un organe (10-1000) de mise en service de ces moyens en deçà d'un seuil prédéterminé d'apport thermique à l'évaporateur.3. Installation according to claim 1 or 2, characterized by means (2) of heat exchange between the heat transfer fluid which leaves the evaporator and the high pressure fluid and a member (10-1000) for commissioning these means below a predetermined threshold of thermal input to the evaporator. 4. Installation selon la revendication 2 ou 3, caractérisée en ce que lesdits moyens comportent un bulbe (B) de prise de la température du fluide en amont du compresseur et un capillaire (138) de prise de la pression du fluide au voisinage du point de prise de la température.4. Installation according to claim 2 or 3, characterized in that said means comprise a bulb (B) for taking the temperature of the fluid upstream of the compressor and a capillary (138) for taking the pressure of the fluid near the point taking the temperature. 5. Installation selon la revendication 3, caractérisée en ce que lesdits moyens d'échange thermique comportent un échangeur auxiliaire (2) dans lequel circulent en sens inverses le fluide sortant de l'évaporateur et le fluide sous-refroidi en aval du condenseur.5. Installation according to claim 3, characterized in that said heat exchange means comprise an auxiliary exchanger (2) in which circulate in opposite directions the fluid leaving the evaporator and the sub-cooled fluid downstream of the condenser. 6. Installation selon la revendication 5, caractérisée par un échangeur de sous-refroidissement supplémentaire (303) placé entre ledit échangeur auxiliaire et le condenseur et dans lequel un échange thermique s'effectue en permanence entre le fluide sous-refroidi et le fluide à basse pression sortant de l'échangeur auxiliaire (2).6. Installation according to claim 5, characterized by an additional sub-cooling exchanger (303) placed between said auxiliary exchanger and the condenser and in which a heat exchange takes place permanently between the sub-cooled fluid and the low-level fluid. pressure leaving the auxiliary exchanger (2). 7. Installation selon l'une des revendications 1 à 6, caractérisée par des moyens (14-140-141) d'injecter temporairement, à l'entrée de l'évaporateur (1), une fraction prédéterminée du fluide à haute pression, chaque fois que les conditions climatiques sont telles qu'un risque de givrage de l'échangeur extérieur se présente.7. Installation according to one of claims 1 to 6, characterized by means (14-140-141) of temporarily injecting, at the inlet of the evaporator (1), a predetermined fraction of the high pressure fluid, whenever the climatic conditions are such that there is a risk of icing of the outdoor heat exchanger. 8. Installation selon l'une des revendications 1 à 4, comportant un organe de distribution (16) apte à établir un circuit de chauffage (16h) dans lequel l'échangeur extérieur M) joue le rôle d'évaporateur et l'échangeur intérieur (8) joue le rôle de condenseur, ou un circuit de réfrigération dans lequel l'échangeur intérieur (8) joue le rôle d'évaporateur et l'échangeur extérieur (1) joue le rôle de condenseur,
caractérisée en ce que lesdits moyens d'échange thermique comportent un premier échangeur auxiliaire (2) dans lequel circulent, d'une part, le fluide caloporteur sortant de l'échangeur extérieur en mode chauffage ou entrant dans l'échangeur extérieur en mode réfrigération, d'autre part, l'eau d'un circuit auxiliaire (200) en dérivation sur un circuit d'eau fermé (172), et un second échangeur auxiliaire (17) dans lequel circulent, d'une part, le fluide caloporteur sortant du compresseur, d'autre part, l'eau dudit circuit fermé (172), un organe (203) de mise en service du circuit auxiliaire, en mode chauffage lorsque la température du fluide qui entre dans l'évaporateur devient inférieure à une valeur prédéterminée, en mode réfrigération lorsque la pression à la sortie du compresseur (6) devient supérieure à une valeur prédéterminée.
8. Installation according to one of claims 1 to 4, comprising a distribution member (16) capable of establishing a heating circuit (16h) in which the external exchanger M) acts as an evaporator and the internal exchanger (8) acts as a condenser, or a refrigeration circuit in which the internal exchanger (8) acts role of evaporator and the external exchanger (1) plays the role of condenser,
characterized in that said heat exchange means comprise a first auxiliary exchanger (2) in which circulate, on the one hand, the heat transfer fluid leaving the external exchanger in heating mode or entering the external exchanger in cooling mode, on the other hand, the water from an auxiliary circuit (200) in diversion on a closed water circuit (172), and a second auxiliary exchanger (17) in which circulate, on the one hand, the outgoing heat transfer fluid from the compressor, on the other hand, the water from said closed circuit (172), a member (203) for commissioning the auxiliary circuit, in heating mode when the temperature of the fluid entering the evaporator becomes lower than a value predetermined, in refrigeration mode when the pressure at the outlet of the compressor (6) becomes greater than a predetermined value.
9. Installation selon la revendication 8, caractérisée par un ballon (18) de chauffage d'eau sanitaire chauffé par ledit circuit fermé et par un organe (181-182) de commande de by-pass du circuit de fluide caloporteur dudit second échangeur auxiliaire (17) lorsque la température de l'eau du ballon atteint un seuil prédéterminé.9. Installation according to claim 8, characterized by a tank (18) for heating sanitary water heated by said closed circuit and by a member (181-182) for controlling the by-pass of the heat transfer fluid circuit of said second auxiliary exchanger. (17) when the temperature of the balloon water reaches a predetermined threshold. 10. Installation selon la revendication 8 ou 9, caractérisée par un échangeur supplémentaire (303) de sous-refroidissement effectuant un échange thermique entre le fluide à basse pression sortant de l'évaporateur et le fluide sous-refroidi sortant du condenseur.10. Installation according to claim 8 or 9, characterized by an additional exchanger (303) for sub-cooling carrying out a heat exchange between the low pressure fluid leaving the evaporator and the sub-cooled fluid leaving the condenser. 11. Installation selon la revendication 8, 9 ou 10, caractérisée par des moyens (14-140-141) d'injecter à l'entrée de l'évaporateur (1) une fraction prédéterminée du fluide à haute pression chaque fois que la température du fluide de sortie de l'évaporateur est inférieure à une seconde valeur prédéterminée.11. Installation according to claim 8, 9 or 10, characterized by means (14-140-141) of injecting at the inlet of the evaporator (1) a predetermined fraction of the high pressure fluid each time the temperature of the evaporator outlet fluid is lower than a second predetermined value. 12. Installation selon l'une des revendications 1 à 11,
caractérisée en ce qu'au moins l'échangeur extérieur (1) comporte une pluralité de tubes (100) munis d'ailettes (101) et en contact direct avec l'air extérieur.
12 . Installation according to one of claims 1 to 11,
characterized in that at least the external exchanger (1) comprises a plurality of tubes (100) provided with fins (101) and in direct contact with the outside air.
13. Installation selon la revendication 5 ou 8, caractérisée en ce que chacun desdits échangeurs auxiliaires comporte un tube central muni extérieurement d'un filetage hélicoïdal et dans lequel passe le fluide caloporteur à l'état gazeux et un tube extérieur concentrique, le fluide sous-refroidi ou l'eau circulant à grande vitesse en tournant le long dudit filetage.13. Installation according to claim 5 or 8, characterized in that each of said auxiliary exchangers comprises a central tube provided externally with a helical thread and through which passes the heat transfer fluid in the gaseous state and a concentric outer tube, the fluid under -cooled or water circulating at high speed by turning along said thread. 14. Installation selon la revendication 8, caractérisée par un ou plusieurs échangeurs intérieurs assurant l'échange thermique direct entre le fluide caloportéur et l'air du local et montés en dérivation dans le circuit de façon à y introduire des pertes de charge sensiblement identiques.14. Installation according to claim 8, characterized by one or more internal exchangers ensuring direct heat exchange between the heat transfer fluid and the air in the room and mounted as a bypass in the circuit so as to introduce therein substantially identical pressure drops.
EP85400416A 1984-03-06 1985-03-05 Air conditioning plant using a heat pump with a static exterior heat exchanger and with dry vapour regulation by automatically changing the rate of flow through the expansion valve Withdrawn EP0156707A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8403442A FR2560975A1 (en) 1984-03-06 1984-03-06 AIR CONDITIONING SYSTEM USING A HEAT PUMP WITH STATIC EXTERNAL HEAT EXCHANGER AND REGULATION OF THE DRY VAPOR POINT BY AUTOMATIC VARIATION OF THE REGULATOR FLOW
FR8403442 1984-03-06

Publications (1)

Publication Number Publication Date
EP0156707A1 true EP0156707A1 (en) 1985-10-02

Family

ID=9301744

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85400416A Withdrawn EP0156707A1 (en) 1984-03-06 1985-03-05 Air conditioning plant using a heat pump with a static exterior heat exchanger and with dry vapour regulation by automatically changing the rate of flow through the expansion valve

Country Status (4)

Country Link
EP (1) EP0156707A1 (en)
ES (1) ES8606619A1 (en)
FR (1) FR2560975A1 (en)
PT (1) PT80048B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2059232A2 (en) * 1991-05-14 1994-11-01 Electric Power Res Inst Automatic refrigerant charge variation means
ES2061353A2 (en) * 1991-05-14 1994-12-01 Electric Power Res Inst Integrated heat pump with restricted refrigerant feed
FR2774461A1 (en) * 1998-01-30 1999-08-06 Valeo Climatisation Air conditioning for motor vehicle cabin
EP1666817A3 (en) * 2004-12-01 2007-01-17 Fujikoki Corporation Pressure control valve

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2100494A (en) * 1935-12-03 1937-11-30 Alco Valve Company Inc Equalizing connection for refrigeration systems
US2241070A (en) * 1939-07-15 1941-05-06 Gen Electric Heat pump system
US2244376A (en) * 1938-12-30 1941-06-03 Gen Electric Refrigerating system
FR987914A (en) * 1943-03-17 1951-08-21 Improved heat exchange installation of the heat pump type and its components
US3111816A (en) * 1958-11-07 1963-11-26 Alco Valve Co Thermostatic expansion valve with compound pressure regulating override
US3398785A (en) * 1966-06-03 1968-08-27 Robert V. Anderson Combination heating and cooling unit
US3552140A (en) * 1968-12-19 1971-01-05 Westinghouse Electric Corp Refrigeration system with accumulator
US3555843A (en) * 1969-07-23 1971-01-19 Ranco Inc Water chilling unit control
US3759055A (en) * 1971-07-22 1973-09-18 Takenaka Komuten Co Reversibly heat-recovering type heat pump through air heat source
DE2350001A1 (en) * 1973-10-05 1975-04-10 Heinrich Dipl Ing Ullrich Heat pump system for combined heating and cooling of houses - has heat exchanger whose flat components cover outside walls with exception of windows and doors
FR2349807A1 (en) * 1976-04-29 1977-11-25 Univ Melbourne HEAT PUMP ASSISTED BY SOLAR ENERGY
FR2362346A1 (en) * 1976-08-17 1978-03-17 Bernier Jacques Solar heat collector circulating a refrigerant - which can be used all year and which builds neatly into roof
DE2932906A1 (en) * 1979-08-14 1981-02-26 Flitsch E Gmbh & Co Refrigeration circuit thermostatic expansion valve - has bar extension on body in line with tappet
GB2081861A (en) * 1980-08-14 1982-02-24 Hummel Steven L Solar heating system
BE895393A (en) * 1982-12-17 1983-04-15 Gerard Philippe Solar heat pump with controlled refrigeration - includes electronic differential amplifier to maintain necessary temp. difference around liq. freon heat exchange circuit
FR2517812A1 (en) * 1981-12-07 1983-06-10 Trane Co HEAT PUMP REFRIGERATION CIRCUIT
EP0098788A2 (en) * 1982-07-02 1984-01-18 Carrier Corporation Combined refrigerant circuit and hot water preheater, air conditioning system using same and section of such system including the combination

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2100494A (en) * 1935-12-03 1937-11-30 Alco Valve Company Inc Equalizing connection for refrigeration systems
US2244376A (en) * 1938-12-30 1941-06-03 Gen Electric Refrigerating system
US2241070A (en) * 1939-07-15 1941-05-06 Gen Electric Heat pump system
FR987914A (en) * 1943-03-17 1951-08-21 Improved heat exchange installation of the heat pump type and its components
US3111816A (en) * 1958-11-07 1963-11-26 Alco Valve Co Thermostatic expansion valve with compound pressure regulating override
US3398785A (en) * 1966-06-03 1968-08-27 Robert V. Anderson Combination heating and cooling unit
US3552140A (en) * 1968-12-19 1971-01-05 Westinghouse Electric Corp Refrigeration system with accumulator
US3555843A (en) * 1969-07-23 1971-01-19 Ranco Inc Water chilling unit control
US3759055A (en) * 1971-07-22 1973-09-18 Takenaka Komuten Co Reversibly heat-recovering type heat pump through air heat source
DE2350001A1 (en) * 1973-10-05 1975-04-10 Heinrich Dipl Ing Ullrich Heat pump system for combined heating and cooling of houses - has heat exchanger whose flat components cover outside walls with exception of windows and doors
FR2349807A1 (en) * 1976-04-29 1977-11-25 Univ Melbourne HEAT PUMP ASSISTED BY SOLAR ENERGY
FR2362346A1 (en) * 1976-08-17 1978-03-17 Bernier Jacques Solar heat collector circulating a refrigerant - which can be used all year and which builds neatly into roof
DE2932906A1 (en) * 1979-08-14 1981-02-26 Flitsch E Gmbh & Co Refrigeration circuit thermostatic expansion valve - has bar extension on body in line with tappet
GB2081861A (en) * 1980-08-14 1982-02-24 Hummel Steven L Solar heating system
FR2517812A1 (en) * 1981-12-07 1983-06-10 Trane Co HEAT PUMP REFRIGERATION CIRCUIT
EP0098788A2 (en) * 1982-07-02 1984-01-18 Carrier Corporation Combined refrigerant circuit and hot water preheater, air conditioning system using same and section of such system including the combination
BE895393A (en) * 1982-12-17 1983-04-15 Gerard Philippe Solar heat pump with controlled refrigeration - includes electronic differential amplifier to maintain necessary temp. difference around liq. freon heat exchange circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2059232A2 (en) * 1991-05-14 1994-11-01 Electric Power Res Inst Automatic refrigerant charge variation means
ES2061353A2 (en) * 1991-05-14 1994-12-01 Electric Power Res Inst Integrated heat pump with restricted refrigerant feed
FR2774461A1 (en) * 1998-01-30 1999-08-06 Valeo Climatisation Air conditioning for motor vehicle cabin
EP1666817A3 (en) * 2004-12-01 2007-01-17 Fujikoki Corporation Pressure control valve

Also Published As

Publication number Publication date
FR2560975A1 (en) 1985-09-13
PT80048B (en) 1986-10-20
PT80048A (en) 1985-04-01
ES8606619A1 (en) 1986-04-16
ES540947A0 (en) 1986-04-16

Similar Documents

Publication Publication Date Title
FR2898544A1 (en) AIR CONDITIONING INSTALLATION
FR2715211A1 (en) Method of operating a refrigeration system and refrigeration system operating according to this method.
FR2715213A1 (en) Method and apparatus for operating a refrigeration system, characterized by regulating the maximum operating pressure.
FR2894014A1 (en) Refrigeration-generation solar unit for air-conditioning system in e.g. dwelling premise, has automaton varying operational delivery rate of circulation pump according to temperature recorded by sensor at outlet of solar collectors
FR2694076A1 (en) Refrigeration system and its operating method.
FR2715212A1 (en) Method and apparatus for operating a refrigeration system, characterized by regulation of the engine coolant.
WO2015155422A1 (en) Energy system with improved efficiency
EP2488803A1 (en) Refrigeration system and heat pump unit including such a system
WO2021053227A1 (en) Air conditioning unit for an aircraft
EP0156707A1 (en) Air conditioning plant using a heat pump with a static exterior heat exchanger and with dry vapour regulation by automatically changing the rate of flow through the expansion valve
FR2624957A1 (en) REFRIGERATION APPARATUS
FR2934890A1 (en) Thermodynamic heat pump installation for heating room, has secondary compressor in which secondary heat transfer fluid is reheated by compression before ceding fluid by condensing calories of secondary fluid accumulated by compression
WO2010043829A2 (en) Heat pump
FR2469679A1 (en) AIR CONDITIONING APPARATUS, PARTICULARLY HEAT PUMP
EP0060813B1 (en) Heat pump
EP0115799A1 (en) Method and device for the control of the initiation and termination of the defrosting of a heat pump evaporator
CH615268A5 (en) Heat installation with refrigerant fluid
CH642439A5 (en) HEATING SYSTEM FOR PREMISES FOR HOUSING OR INDUSTRIAL USE COMPRISING A HEAT PUMP.
EP3044521B1 (en) Solar energy system for domestic hot water production and cooling
BE899256A (en) Reversible cycle heat pump - has supplementary heat exchanger to pre-heat suction refrigerant gas
EP0309634A1 (en) Environment-assisted high-efficiency integrated heating and cooling system
FR2937410A1 (en) Heat pump for transporting e.g. refrigerant, in e.g. building, has compressor protection kit collecting excess energy to protect movement setting unit, with temperature of fluid at suction compatible with characteristics of compressor
FR2494822A1 (en) DEFROST PROCESS
FR2484065A1 (en) IMPROVEMENTS ON HEAT PUMPS
FR2561363A1 (en) Method for implementing a heat pump and/or a compression refrigeration machine comprising periodic defrosting by the inversion of the cycle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19850307

AK Designated contracting states

Designated state(s): BE CH DE GB IT LI LU NL

17Q First examination report despatched

Effective date: 19860908

D17Q First examination report despatched (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19880215

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BALDONI, BERNARD