EP0155890A2 - Tube convertisseur d'image à balayage de fente - Google Patents

Tube convertisseur d'image à balayage de fente Download PDF

Info

Publication number
EP0155890A2
EP0155890A2 EP85400461A EP85400461A EP0155890A2 EP 0155890 A2 EP0155890 A2 EP 0155890A2 EP 85400461 A EP85400461 A EP 85400461A EP 85400461 A EP85400461 A EP 85400461A EP 0155890 A2 EP0155890 A2 EP 0155890A2
Authority
EP
European Patent Office
Prior art keywords
deflection
screen
slit
plane
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85400461A
Other languages
German (de)
English (en)
Other versions
EP0155890B1 (fr
EP0155890A3 (en
Inventor
Claude Cavailler
Gérard Clement
Noel Fleurot
Alain Girard
Charles Loty
Jean Pierre Roux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0155890A2 publication Critical patent/EP0155890A2/fr
Publication of EP0155890A3 publication Critical patent/EP0155890A3/fr
Application granted granted Critical
Publication of EP0155890B1 publication Critical patent/EP0155890B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/50Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output
    • H01J31/501Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output with an electrostatic electron optic system
    • H01J31/502Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output with an electrostatic electron optic system with means to interrupt the beam, e.g. shutter for high speed photography

Definitions

  • the present invention relates to a slit-scanning image converter tube.
  • the slit camera makes it possible to record photographically the variation over time of the light level of an image, in one dimension, of the phenomena to be studied.
  • the image of the phenomenon to be studied is made on a photocathode of a conventional image converter tube comprising, in addition to the photocathode, a control electrode, acceleration electrodes, a focusing electrode, a pair of deflectors and an electroluminescent screen, possibly associated with an electron multiplier device.
  • the number of electrons emitted at each point of the photosensitive layer of the photocathode is proportional to the level of light applied locally.
  • the electrons are accelerated and focused at the location of the phosphor screen for example, where a visible image is produced.
  • the electrons are blocked at the photocathode by a negative potential applied to the control electrode or are deflected by a shutter electrode and then intercepted by another electrode.
  • the image produced on the photocathode is delimited by a narrow slit the image of which is made on the screen, the scrolling of the image of the slit being obtained by applying to the deflectors of the deflection optics a scanning signal.
  • the evolution of the brightness is observed along the scanning axis, as a function of the time of the light phenomenon under examination. According to the axis perpendicular to the scanning axis, that is to say along the largest dimension of the slot, the spatial evolution of the same phenomenon is noted.
  • FIG. 1 a shows the shape of the electron beam in the spatial plane between the photocathode 2 and the screen 4.
  • the image of the slit is obtained by means of a converging lens produced by electrodes 6 and 8, said image being made on the screen 4 or on a wafer of microchannels 10 in an output system comprising an electron multiplier.
  • the converging lens used is a quadrupole lens which has the advantage of not introducing large distortions in the spatial plane, since it is devoid of first order aberrations.
  • the trace of the electron beam in the spatial plane carries the re reference 12.
  • the deflection means of the tube and the shape of the electron beam are shown in the deflection plane.
  • an accelerating electrode 14 Between the photocathode 2 and the screen 4 are successively arranged an accelerating electrode 14, the electrodes 16 and 18 of the quadrupolar lens forming a diverging lens in the deflection plane, a deflection and focusing lens 20 and possibly a microchannel plate 10.
  • the deflection and focusing optics consist of three pairs of plates 22, 24 and 26.
  • This structure made it possible, in the tubes according to the prior art whose length was limited for technological reasons, to physically separate the lens from screen deflection, which helps reduce beam distortion.
  • the corollary of this structure is the impossibility of independently optimizing the focusing and deflection of the beam.
  • An objective of the invention is to decouple the focusing and the deflection of the beam in the deflection plane. This makes it possible in particular to improve, compared with the prior art, the sensitivity of deflection of the beam.
  • the invention proposes to add a converging lens in the deflection plane, upstream of the quadrupole lens in order to limit the width of the beam at the output of said quadrupole lens and thus limit the importance of the intercepted current.
  • the invention is therefore an improvement to known slit-scanning image converter tubes. It allows, while retaining the temporal resolution of these tubes, to improve the spatial resolution.
  • the invention relates to a slit-scanning image converter tube intended to observe rapidly evolving light phenomena by scanning on a screen the image of a slit, said slit collecting on a photocathode the light sent by the luminous phenomenon to be studied, and emitting an electron beam
  • said tube comprising said photocathode, a control electrode, an accelerating electrode and an optical de bending and focusing of the electron beam located between the accelerating electrode and the screen
  • said deflection and focusing optics comprising a first electronic means for making the image of the largest dimension of said slot on the screen and a second electronic means independent of the previous one for focusing and deflecting the beam, in the plane of the screen, in a direction perpendicular to the previous direction, said second electronic means comprising, between the accelerating electrode and the screen, a lens focusing followed by a deflection electrode, said focusing lens making the image of the smallest dimension of the slit on the screen and limiting the width of the beam at the input of the deflection electrode
  • the focusing and deflection optics comprises, between the accelerating electrode and the screen, a planar convergent lens, a quadrupole lens, another planar convergent lens and a deflection electrode .
  • the deflection electrode constitutes a wave propagation line.
  • FIG 2 there is shown an embodiment of a converter tube according to the invention.
  • the light of the beam 32 is concentrated by an optical system (not shown) on the photocathode 2 in a rectangle 34 constituting the electron-emitting slit.
  • the converter tube also includes an accelerating electrode 14, a planar convergent lens 36, a quadrupole lens 38, another planar convergent lens 40, an electrode deflection 42 and a screen 4.
  • the means for closing the tube has not been shown.
  • the image on the screen is taken up by an image intensifier which can be either inside the tube (microchannel pancake) or outside the tube.
  • an image intensifier which can be either inside the tube (microchannel pancake) or outside the tube.
  • an image intensifier in the tube introduces significant background noise. It is therefore preferable to use an external image intensifier such as a matrix of cells with charge transfer devices (in English CCD).
  • the accelerator electrode 14 is connected to a positive voltage source 44; the three pairs of plates of the converging lens 36 are connected to a voltage source 46; the two electrodes 6 and 8 of the quadrupole lens 38 are connected to the same positive voltage supply 48, while the other two facing electrodes 16 and 18 are connected to the same negative voltage supply 50; the three pairs of plates of the convergence lens 40 are connected to a voltage source 52 and the deflection electrode 42 to a voltage source 54.
  • the image of the slit 34 is obtained by virtue of the converging lens produced by the electrodes 6 and 8 of the quadrupole lens, said image being made on the screen 4.
  • the electrode 42 deflects in the direction Oy (time axis) the image of the photocathode on the screen 4.
  • FIG. 3a the shape of the electron beam is shown in the spatial plane between the photocathode 2 and the screen 4.
  • the potential applied by the power supply 48 of FIG. 2 to the electrodes 6 and 8 is such that, in the spatial plane xOz, the image of the slot of the photocathode is produced substantially on the screen 4.
  • the electronic harness is shown at 56.
  • the shape of the electron beam is shown in the deflection plane yOz.
  • the electron beam 58 is accelerated by the accelerating electrode 10, then it is prefocused by the converging planar lens 36 before being made divergent by the electrodes 16 and 18 of the quadrupole lens. It then enters the converging planar lens 40, after having been optionally diaphragmed by a diaphragm 60, to be focused on the screen 4.
  • the current stopped by the diaphragm 60 can be adjusted by means of the pre-focusing lens 36.
  • the beam 58 Downstream of the converging lens 40, the beam 58 passes through the deflection electrode 42 which performs the function of scanning the beam on the screen.
  • this deflection electrode constitutes a wave propagation line.
  • the deflection voltage signal then propagates on the deflection plate (s) at the same speed as the electron beam.
  • FIG. 4a the photocathode 2 and the accelerating electrode 10 are shown, as well as the diagram of the beams coming from the photocathode such as the beams 62 and 64.
  • the point of first convergence is located at 66 and the image of the photocathode given by the accelerating electrode 10 is shown in dotted lines at 68.
  • the position of the point of first convergence 66 of the image of photocathode 68 and the height of the point of first convergence vary as a function of the ratio e / d, where e is the half-width of the slot of the accelerating electrode 10 and d the distance between the photocathode and the accelerating electrode.
  • the photocathode emitting electron beams such as 70, 72 and 74 is shown in the spatial plane, the image 76 of the photocathode given by the accelerating electrode 10 in this plane being located downstream.
  • the quadrupole lens 38 has been shown.
  • This lens is formed according to this embodiment of four equilateral hyperbolic arcs, the opposite arcs 16 and 18 being brought to the potential + V and the arcs 6 and 8 at potential -V.
  • Figure 4b there is shown the same quadrupole lens of length 1 1 side view in section along the plane yOz.
  • the property of convergence of the quadrupole lens 38 is used to make the image of the slot 34 of the photocathode 2 on the screen.
  • the beam coming from photocathode 2 has dimensions which are not negligible compared to the inter-electrode distance 2a. It is therefore in the spatial plane that the aberrations of the quadrupole lens will alter the quality of the image.
  • the height of the slit being for example 1 mm
  • the height of the beam will be small in front of 2a, of the order of a centimeter, and the aberrations negligible.
  • the advantage of the quadrupole lens over the simple converging lens is that it does not introduce large distortions into the spatial plan since it is devoid of first-order aberrations.
  • the shape of the electrodes allowing to realize the quadrupole field is, as we have seen an equilateral hyperbola branch. This form being difficult to machine, it is replaced, in a variant of the invention, by an arc of an osculating circle.
  • FIG 6 there is shown an embodiment of a lens converging in the deflection plane such as lenses 36 and 40.
  • This lens consists of three pairs of plates 78, 80 and 82.
  • the plates 78 and 82 are grounded, and plate 80 has a negative potential.
  • This potential is adjustable and can be adjusted independently for each of the lenses 36 and 40 located on either side of the quadrupole lens 38. This allows, while focusing the beam on the screen, to modify its thickness at the input deflection optics, which conditions the thickness of the trace on the screen.
  • the time resolution can thus be adjusted according to each application.
  • the minimum thickness of the trace on the screen is very significantly smaller than in tubes according to the prior art.
  • FIG. 7 shows an embodiment of the deflection electrode 42.
  • the electrons closer to the negative plates are slowed down, therefore more deviated, so that the crossing of the trajectories is carried out closer than desired to the exit of the deflection plates.
  • the thickness of the trace is proportional to ⁇ / (l 2 .L) where ⁇ is the width of the beam at the input of the deflection optics, 1 2 the length of the deflection plates and L the distance between the entry of the deflection plates and the screen.
  • the thickness of the beam cannot be reduced if it is desired to keep most of the current transported.
  • the length of the plates 1 2 cannot be increased without reducing the bandwidth of the deflection system. It is therefore advantageous to increase the length L within the limits compatible with the length of the tube.
  • the bandwidth of the deflection system is limited by the transit time of the beam electrons between the plates.
  • a divided wave propagation deflector system is used, that is to say a system in which the deflection signal accompanies the beam electrons. This makes it possible to obtain a simple deflector, with high sensitivity, therefore with a low deflection voltage, and with very high bandwidth.
  • the deflection optic 42 shown in FIG. 7 comprises a plate 84 brought to constant potential and a plate 86 forming a zigzag line such that the voltage ramp propagates, in the Oz direction, at the speed of the beam electrons .
  • the set of incoming wires, connectors and zigzag line must be adapted to the impedance and closed on the characteristic impedance. This is achieved by a resistor 87 disposed between the plate 86 and the mass.
  • the adaptation is finally adjusted by means of a counter plate 88 brought to ground potential.
  • the electrons can be blocked in known manner at the photocathode by a negative potential applied to a control electrode disposed between the photocathode and the accelerating electrode.
  • An electrical signal of positive rectangular shape is then superimposed on this negative bias potential to obtain the opening of the tube.
  • This embodiment is not always the most suitable, in particular when the distance between the photocathode and the accelerating electrode is of the order of only a few millimeters and the potential of the accelerating electrode is high, for example greater than 10 kV.
  • FIG. 8 shows another embodiment of a system for closing the electron beam.
  • a first shutter lens 90 has been added between the converging lens 36 and the quadrupole lens 38, and a second shutter lens 92 between the converging lens 40 and the deflection electrode 42.
  • the obturation is achieved by deflection of the electron beam by polarizing one of the electrodes of the lens 90.
  • the impact of the electrons on the lens 92 generates secondary electrons which it would be advisable for them to be able to propagate in the tube. To prevent this, simply confine the elec secondary edges in the space delimited by the lens 92 by applying to said lens a potential greater than the potential of the converging lens 40. A voltage of a few hundred volts is sufficient to ensure shuttering.

Landscapes

  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Abstract

Ce tube comprend entre une photocathode (2) munie d'une fente (34) et un écran (4), un premier moyen électronique pour faire l'image de la plus grande dimension de la fente sur l'écran et un second moyen électronique indépendant du précédent pour focaliser et défléchir le faisceau, dans le plan de l'écran, dans une direction perpendiculaire à la direction précédente.
Ce second moyen électronique comprend au moins une lentille plane convergente (36, 40) et une électrode de déflexion (42), chacun de ces deux moyens étant réglable indépendamment.
Application à la cinématographie électronique ultra- rapide.

Description

  • La présente invention a pour objet un tube convertisseur d'image à balayage de fente.
  • L'enregistrement d'images avec un temps de pose extrêmement court permet de relever le profil de l'évolution au cours du temps de phénomènes lumineux très brefs. Ainsi, la cinématographie électronique ultra-rapide s'applique à un large domaine de recherches et de disciplines très diversifiées : balistique, détonique, étude des cellules vivantes, expérience conduite autour des lasers, etc...
  • La caméra à fente permet d'enregistrer photographiquement la variation au cours du temps du niveau lumineux d'une image, à une dimension, des phénomènes à étudier. L'image du phénomène à étudier est faite sur une photocathode d'un tube convertisseur d'image de type classique comportant, outre la photocathode, une électrode de commande, des électrodes d'accélération, une électrode de focalisation, une paire de déflecteurs et un écran électroluminescent, éventuellement associé à un dispositif multiplicateur d'électrons.
  • Le nombre d'électrons émis en chaque point de la couche photosensible de la photocathode est proportionnel au niveau de lumière appliqué localement. Les électrons sont accélérés et focalisés à l'emplacement de l'écran en phosphore par exemple, où une image visible est réalisée. Lorsque le tube est au repos, les électrons sont bloqués au niveau de la photocathode par un potentiel négatif appliqué sur l'électrode de commande ou sont défléchis par une électrode d'obturation puis interceptés par une autre électrode.
  • Dans la caméra à fente, l'image réalisée sur la photocathode est délimitée par une fente étroite dont il est fait l'image sur l'écran, le défilement de l'image de la fente étant obtenu en appliquant sur les déflecteurs de l'optique de déflexion un signal de balayage. Sur la fenêtre de sortie du tube, on observe selon l'axe de balayage l'évolution de la brillance, en fonction du temps du phénomène lumineux mis à l'examen. Selon l'axe perpendiculaire à l'axe de balayage, c'est-à-dire selon la plus grande dimension de la fente, on relève l'évolution spatiale du même phénomène.
  • Le demandeur a divulgué dans le brevet n° 74 31136 déposé le 13 septembre 1974 un tube convertisseur d'image à balayage de fente dans lequel la focalisation du faisceau d'électrons est indépendante dans le plan de déflexion, ou plan temporel, et dans le plan spatial. Les mises au point de l'image de la fente sur l'écran sont ainsi facilitées. Les figures la et lb représentent respectivement de manière schématique la forme du faisceau d'électrons dans le plan spatial et dans le plan de déflexion dans un tube convertisseur d'image à balayage de fente selon ce brevet.
  • Sur la figure la, on a représenté la forme du faisceau électronique dans le plan spatial entre la photocathode 2 et l'écran 4. Dans ce plan, l'image de la fente est obtenue grâce à une lentille convergente réalisée par des électrodes 6 et 8, ladite image se faisant sur l'écran 4 ou sur une galette de microcanaux 10 dans un système de sortie comportant un multiplicateur d'électrons. De préférence, la lentille convergente utilisée est une lentille quadrupolaire qui présente l'avantage de ne pas introduire de grosses distorsions dans le plan spatial, puisqu'elle est dépourvue d'aberrations du premier ordre. La trace du faisceau d'électrons dans le plan spatial porte la référence 12.
  • Sur la figure lb, on a représenté les moyens de déflexion du tube et l'allure du faisceau électronique dans le plan de déflexion. Entre la photocathode 2 et l'écran 4 sont disposées successivement une électrode accélératrice 14, les électrodes 16 et 18 de la lentille quadrupolaire formant une lentille divergente dans le plan de déflexion, une lentille de déflexion et de focalisation 20 et éventuellement une galette de microcanaux 10.
  • L'optique de déflexion et de focalisation est constituée par trois paires de plaques 22, 24 et 26. Cette structure permettait, dans les tubes selon l'art antérieur dont la longueur était limitée pour des raisons technologiques, d'éloigner physiquement la lentille de déflexion de l'écran, ce qui contribue à diminuer la distorsion du faisceau. Cependant, cette structure a pour corollaire l'impossibilité d'optimiser indépendamment la focalisation et la déflexion du faisceau.
  • Un objectif de l'invention est de découpler la focalisation et la déflexion du faisceau dans le plan de déflexion. Ceci permet notamment d'améliorer, par rapport à l'art antérieur, la sensibilité de déflexion du faisceau.
  • D'autre part, on constate que sur la figure lb, il est nécessaire de prévoir un diaphragme 28 en entrée de l'optique de focalisation et de déflexion 20, ceci afin que le faisceau d'électrons 30 qui diverge à la sortie des plaques 16 et 18 de la lentille quadrupolaire ne vienne frapper ladite optique de focalisation et de déflexion. La proportion de courant intercepté est importante. Elle est imposée par la dimension du diaphragme 28 et par la divergence créée par la lentille quadrupolaire réglée pour faire, dans le plan spatial, l'image de la fente sur l'écran.
  • L'invention propose d'adjoindre une lentille convergente dans le plan de déflexion, en amont de la lentille quadrupolaire afin de limiter la largeur du faisceau en sortie de ladite lentille quadrupolaire et ainsi de limiter l'importance du courant intercepté.
  • La présence de deux lentilles convergentes dans le plan de déflexion avant et après la lentille quadrupolaire donne en outre une infinité de combinaisons de réglage des deux lentilles qui permet d'avoir sur l'écran l'image de la fente. Ces différents réglages permettent de fixer soit le courant collecté, soit l'épaisseur de la trace du faisceau sur l'écran, c'est-à-dire la résolution, qui dépend de la largeur du faisceau en entrée du déflecteur.
  • Il est donc ainsi possible dans certaines applications d'optimiser le courant collecté au détriment de l'épaisseur de la trace. Inversement, il est possible d'optimiser le nombre de points suivant l'axe spatial au détriment du courant collecté.
  • L'invention est donc un perfectionnement aux tubes convertisseurs d'image à balayage de fente connus. Elle permet, tout en conservant la résolution temporelle de ces tubes, d'améliorer la résolution spatiale.
  • De manière précise, l'invention a pour objet un tube convertisseur d'image à balayage de fente destiné à observer des phénomènes lumineux d'évolution rapide par balayage sur un écran de l'image d'une fente, ladite fente recueillant sur une photocathode la lumière envoyée par le phénomène lumineux à étudier, et émettant un faisceau d'électrons, ledit tube comprenant ladite photocathode, une électrode de commande, une électrode accélératrice et une optique de déflexion et de focalisation du faisceau d'électrons située entre l'électrode accélératrice et l'écran, ladite optique de déflexion et de focalisation comprenant un premier moyen électronique pour faire l'image de la plus grande dimension de ladite fente sur l'écran et un second moyen électronique indépendant du précédent pour focaliser et défléchir le faisceau, dans le plan de l'écran, dans une direction perpendiculaire à la direction précédente, ledit second moyen électronique comprenant, entre l'électrode accélératrice et l'écran, une lentille de focalisation suivie d'une électrode de déflexion, ladite lentille de focalisation faisant l'image de la plus petite dimension de la fente sur l'écran et limitant la largeur du faisceau en entrée de l'électrode de déflexion.
  • Ainsi, la focalisation et la déflexion du faisceau d'électrons dans le plan de déflexion sont indépendantes. Il est ainsi possible d'optimiser chacune de ces deux fonctions.
  • Selon un mode de réalisation préféré de l'invention, l'optique de focalisation et de déflexion comporte, entre l'électrode accélératrice et l'écran, une lentille plane convergente, une lentille quadrupolaire, une autre lentille plane convergente et une électrode de déflexion.
  • Selon un autre mode préféré de réalisation, l'électrode de déflexion constitue une ligne à propagation d'onde.
  • Ceci améliore la sensibilité de déflexion du faisceau.
  • D'autres caractéristiques et avantages de l'invention apparaîtront mieux après la description qui suit d'exemples de réalisation donnés à titre explicatif et nullement limitatif, en référence aux dessins annexés sur lesquelles :
    • - les figures la et lb, déjà décrites, représentent l'allure du faisceau d'électrons dans le plan spatial et dans le plan de déflexion d'un tube convertisseur d'image à balayage de fente selon l'art connu,
    • - la figure 2 est un schéma en perspective d'un mode de réalisation du tube convertisseur selon l'invention,
    • - les figures 3a et 3b représentent la forme du faisceau d'électrons dans le plan spatial et dans le plan de déflexion du tube convertisseur de la figure 2,
    • - les figures 4a et 4b illustrent la modification du faisceau électronique due à l'électrode accélératrice dans le plan spatial et dans le plan de déflexion,
    • - les figures 5a et 5b représentent deux vues de la lentille quadrupolaire, respectivement en coupe sur la figure 5a et de côté sur la figure 5b,
    • - la figure 6 représente un mode de réalisation des lentilles planes convergentes dans le plan de déflexion,
    • - la figure 7 représente un mode de réalisation de l'électrode de déflexion, et
    • - la figure 8 illustre un mode de réalisation d'un moyen d'obturation du tube.
  • Sur la figure 2, on a représenté un mode de réalisation d'un tube convertisseur selon l'invention. La lumière du faisceau 32 est concentrée par un système optique (non représenté) sur la photocathode 2 dans un rectangle 34 constituant la fente émettrice d'électrons. Le tube convertisseur comprend également une électrode accélératrice 14, une lentille plane convergente 36, une-lentille quadrupolaire 38, une autre lentille plane convergente 40, une électrode de déflexion 42 et un écran 4. Dans ce mode de réalisation, on n'a pas représenté les moyens d'obturation du tube. Ceux-ci seront décrits en référence à la figure 8.
  • De manière classique, l'image sur l'écran est reprise par un intensificateur de brillance qui peut être soit à l'intérieur du tube (galette de microcanaux), soit à l'extérieur du tube. Dans certains cas, la présence d'un intensificateur de brillance dans le tube introduit un bruit de fond important. Il est alors préférable d'utiliser un intensificateur de brillance extérieur tel qu'une matrice de cellules à dispositifs à transfert de charges (en anglais CCD).
  • L'électrode accélératrice 14 est reliée à une source de tension positive 44 ; les trois paires de plaques de la lentille convergente 36 sont reliées à une source de tension 46 ; les deux électrodes 6 et 8 de la lentille quadrupolaire 38 sont reliées à une même alimentation de tension positive 48, alors que les deux autres électrodes en regard 16 et 18 sont reliées à une même alimentation de tension négative 50 ; les trois paires de plaques de la lentille de convergence 40 sont reliées à une source de tension 52 et l'électrode de déflexion 42 à une source de tension 54.
  • Dans le plan spatial, soit le plan xOz, - l'image de la fente 34 est obtenue grâce à la lentille convergente réalisée par les électrodes 6 et 8 de la lentille quadrupolaire, ladite image se faisant sur l'écran 4. Dans le plan de déflexion, soit le plan yOz, l'électrode 42 défléchit selon la direction Oy (axe temporel) l'image de la photocathode sur l'écran 4.
  • Sur la figure 3a, "on a représenté la forme du faisceau électronique dans le plan spatial entre la photocathode 2 et l'écran 4. Le potentiel appliqué par l'alimentation 48 de la figure 2 aux électrodes 6 et 8 est tel que, dans le plan spatial xOz, l'image de la fente de la photocathode est réalisée sensiblement sur l'écran 4. Le faisceau- électronique est représenté en 56.
  • Sur la figure 3b, on a représenté l'allure du faisceau électronique dans le plan de déflexion yOz. Le faisceau électronique 58 est accéléré par l'électrode accélératrice 10, puis il est préfocalisé par la lentille plane convergente 36 avant d'être rendu divergent par les électrodes 16 et 18 de la lentille quadrupolaire. Il pénètre ensuite dans la lentille plane convergente 40, après avoir été éventuellement diaphragmé par un diaphragme 60, pour être focalisé sur l'écran 4. Le courant arrêté par le diaphragme 60 peut être réglé grâce à la lentille de pré- focalisation 36.
  • En aval de la lentille convergente 40, le faisceau 58 traverse l'électrode de déflexion 42 qui assure la fonction de balayage du faisceau sur l'écran. De préférence, cette électrode de déflexion constitue une ligne à propagation d'onde. Le signal de tension de déflexion se propage alors sur la ou les plaque(s) de déflexion à la même vitesse que le faisceau d'électrons.
  • Sur la figure 4a, on a représenté la photocathode 2 et l'électrode accélératrice 10 ainsi que le schéma des faisceaux issus de la photocathode tels que les faisceaux 62 et 64. Le point de première convergence est situé en 66 et l'image de la photocathode donnée par l'électrode accélératrice 10 est représentée en pointillé en 68. La position du point de première convergence 66 de l'image de la photocathode 68 et la hauteur du point de première convergence varient en fonction du rapport e/d, où e est la demi-largeur de la fente de l'électrode accélératrice 10 et d la distance entre la photocathode et l'électrode accélératrice.
  • Sur la figure 4b, on a représenté dans le plan spatial la photocathode émettant des faisceaux d'électrons tels que 70, 72 et 74, l'image 76 de la photocathode donnée par l'électrode accélératrice 10 dans ce plan étant située en aval.
  • Sur les figures 5a et 5b, on a représenté la lentille quadrupolaire 38. Cette lentille est formée selon ce mode de réalisation de quatre arcs hyperboles équilatères, les arcs en vis-à-vis 16 et 18 étant portés au potentiel +V et les arcs 6 et 8 au potentiel -V. Sur la figure 4b, on a représenté la même lentille quadrupolaire de longueur 11 vue de côté en coupe selon le plan yOz.
  • Le potentiel à l'intérieur d'une telle lentille est de la forme V = A(y2 - x2) ; la lentille est convergente dans le plan xOz, ∂V/∂x = -2Ax, et divergente dans le plan yOz, ∂V/∂y = +2Ay.
  • On utilise la propriété de convergence de la lentille quadrupolaire 38 pour faire l'image de la fente 34 de la photocathode 2 sur l'écran. Dans le plan spatial, le faisceau issu de la photocathode 2 a des dimensions qui ne sont pas négligeables par rapport à la distance inter-électrode 2a. C'est donc dans le plan spatial que les aberrations de la lentille quadrupolaire altéreront la qualité de l'image.
  • Dans le plan de déflexion, la hauteur de la fente étant par exemple de 1 mm, la hauteur du faisceau sera faible devant 2a, de l'ordre du centimètre, et les aberrations négligeables. L'avantage de la lentille quadrupolaire sur la lentille convergente simple est de ne pas introduire de grosses distorsions dans le plan spatial puisqu'elle est dépourvue d'aberrations du premier ordre.
  • La forme des électrodes permettant de réaliser le champ quadrupolaire est, comme on l'a vu une branche d'hyperbole équilatère. Cette forme étant difficile à usiner, on la remplace, dans une variante de l'invention, par un arc de cercle osculateur.
  • Sur la figure 6, on a représenté un mode de réalisation d'une lentille convergente dans le plan de déflexion tel que les lentilles 36 et 40. Cette lentille est constituée de trois paires de plaques 78,80 et 82. Les plaques 78 et 82 sont à la masse, et la plaque 80 à un potentiel négatif. Ce potentiel est réglable et peut être ajusté indépendamment pour chacune des lentilles 36 et 40 situées de part et d'autre de la lentille quadrupolaire 38. Ceci permet, tout en focalisant le faisceau sur l'écran, de modifier son épaisseur à l'entrée de l'optique de déflexion, ce qui conditionne l'épaisseur de la trace sur l'écran. La résolution temporelle peut ainsi être réglée en fonction de chaque application. L'épaisseur minimale de la trace sur l'écran est très sensiblement plus petite que dans les tubes selon l'art connu.
  • On a représenté sur la figure 7 un mode de réalisation de l'électrode de déflexion 42.
  • Un des problèmes importants qui apparaît lorsque l'on défléchit un faisceau électronique est la défocalisation de déflexion. Lorsqu'on dévie un faisceau d'électrons au moyen de plaques, porté à des potentiels positif et négatif par rapport à un potentiel moyen, on voit la trace s'épaissir de part et d'autre de la position médiane. Cet épaississement est dû a l'effet de lentille convergente créé par l'application sur les plaques des tensions de déflexion : les électrons proches des plaques positives sont accélérés et étant plus rapides sont moins déviés que les électrons axiaux.
  • Au contraire, les électrons plus proches des plaques négatives sont ralentis, donc davantage déviés, si bien que le croisement des trajectoires s'effectue plus près que voulu de la sortie des plaques de déflexion. On montre quel'épaisseur de la trace est proportionnel à ω/(l2.L) où ω est la largeur du faisceau en entrée de l'optique de déflexion, 12 la longueur des plaques de déflexion et L la distance entre l'entrée des plaques de déflexion et l'écran.
  • L'épaisseur du faisceau ne peut être réduite si l'on souhaite conserver la majeure partie du courant transporté. De plus, la longueur des plaques 12 ne peut être augmentée sans amputer la bande passante du système de déflexion. Il y a donc intérêt à accroître la longueur L dans les limites compatibles avec la longueur du tube.
  • La bande passante du système de déflexion est limitée par le temps de transit des électrons du faisceau entre les plaques. Pour atteindre des vitesses de balayage élevées, on utilise un système de déflecteur divisé à propagation d'onde c'est-à-dire un système dans lequel le signal de déflexion accompagne les électrons du faisceau. Ceci permet d'obtenir un déflecteur simple, à forte sensibilité, donc avec une tension de déflexion faible, et à très grande bande passante.
  • L'optique de déflexion 42 représentée sur la figure 7 comprend une plaque 84 mise à un potentiel constant et une plaque 86 formant une ligne en zigzag telle que la rampe de tension se propage, dans la direction Oz, à la vitesse des électrons du faisceau. Pour permettre une bonne propagation du signal de balayage, l'ensemble fils d'arrivée, connecteurs et ligne en zigzag doit être adapté à l'impédance et refermé sur l'impédance caractéristique. Ceci est réalisé par une résistance 87 disposée entre la plaque 86 et la masse. L'adaptation est enfin ajustée au moyen d'une contre plaque 88 portée au potentiel de la masse.
  • Lorsque le tube est au repos, les électrons peuvent être bloqués de manière connue au niveau de la photocathode par un potentiel négatif appliqué sur une électrode de commande disposée entre la photocathode et l'électrode accélératrice. Un signal électrique de forme rectangulaire positif est alors superposé à ce potentiel négatif de polarisation pour obtenir l'ouverture du tube. Ce mode de réalisation n'est pas toujours le plus adapté, notamment lorsque la distance entre la photocathode et l'électrode accélératrice est de l'ordre de quelques millimètres seulement et que le potentiel de l'électrode accélératrice est élevé, par exemple supérieur à 10 kV.
  • On a représenté sur la figure 8 un autre mode de réalisation d'un système d'obturation du faisceau électronique. Sur cette figure, représentant en coupe les différents éléments du tube, on a ajouté une première lentille d'obturation 90 entre la lentille convergente 36 et la lentille quàdrupolaire 38, et une seconde lentille d'obturation 92 entre la lentille convergente 40 et l'électrodede déflexion 42. L'obturation est réalisée par déflexion du faisceau électronique en polarisant une des électrodes de la lentille 90.
  • L'impact des électrons sur la lentille 92 engendre des électrons secondaires dont il serait pré- 'judiciable qu'ils puissent se propager dans le tube. Pour empêcher cela, il suffit de confiner les électrons secondaires dans l'espace délimité par la lentille 92 en appliquant sur ladite lentille un potentiel supérieur au potentiel de la lentille convergente 40. Une tension de quelques centaines de volts est suffisante pour assurer l'obturation.
  • En conclusion, on va indiquer les caractéristiques géométriques et électriques d'un mode de réalisation de l'invention :
    • - distance photocathode-écran : 500 mm,
    • - dimensions de la fente de la photocathode : 1x12 mm,
    • - grandissement dans le plan spatial : 2,
    • - dimensions de la fente accélératrice : 2x12 mm,
    • - lentille quadrupolaire, 11=96,5 mm, a=14,4 mm,
    • - électrode de déflexion : 12=69 mm, L=223 mm, ω=2,8 mm, sensibilité 0,08 mm/V
    • - plage utile de l'écran 24x32 mm,
    • - potentiel d'accélération : 15000 V,
    • - potentiel de la lentille quadrupolaire : + 219 V,
    • - potentiel de blocage de l'électrode d'obturation : - 500 V,
    • - potentiel des lentilles planes convergentes : 500 V,
    • - sensibilité de déflexion : 0,08 mm/V,
    • - défocalisation de déflexion : 1= 25 µm,
    • - résolution spatiale dans le sens de la fente : 25 pl/mm,
    • - distorsion inférieure à 2%,
    • - épaisseur de la trace dans le plan de déflexion : 40 µm,
    • - résolution temporelle le long de la fente : 1 picoseconde.

Claims (8)

1. Tube convertisseur d'image à balayage de fente destiné à observer des phénomènes lumineux d'évolution rapide par balayage sur un écran (4) de l'image d'une fente (34), ladite fente recueillant sur une photocathode (2) la lumière envoyée par le phénomène lumineux à étudier, et émettant un faisceau d'électrons (12, 30, 58), ledit tube comprenant ladite photocathode (2), un moyen d'obturation (90, 92), une électrode accélératrice (14) et une optique de déflexion et de focalisation du faisceau d'électrons située entre l'électrode accélératrice et l'écran, ladite optique de déflexion et de focalisation comprenant un premier moyen électronique pour faire l'image de la plus grande dimension de ladite fente sur l'écran et un second moyen électronique indépendant du précédent pour focaliser et défléchir le faisceau, dans le plan de l'écran, dans une direction perpendiculaire à la direction précédente, ledit tube étant caractérisé en ce que ledit second moyen électronique comprend, entre l'électrode accélératrice et l'écran, une optique de focalisation suivie d'une électrode de déflexion, ladite optique de focalisation faisant l'image de la plus petite dimension de la fente sur l'écran et limitant la largeur du faisceau en entrée de l'électrode de déflexion.
2. Tube convertisseur d'image selon la revendication 1, caractérisé en ce que l'optique de focalisation et l'électrode de déflexion comporte, entre l'électrode accélératrice (14) et l'écran (4), une lentille plane convergente (36), une lentille quadrupolaire (38), une autre lentille plane convergente (40) et une électrode de déflexion (42).
3. Tube convertisseur d'image selon l'une quelconque des revendications 1 et 2, -caractérisé en ce que l'électrode de déflexion (42) forme une ligne à propagation d'onde.
4. Tube convertisseur selon l'une quelconque des revendications 2 et 3, caractérisé en ce que la fente de la photocathode (2) a une forme rectangulaire, d'axes perpendiculaires Ox et Oy, l'axe Ox étant parallèle au grand côté du rectangle de centre 0, et en ce que l'électrode accélératrice (14) est munie d'une fente parallèle à l'axe Ox, le faisceau électronique créé par impact de la lumière sur la photocathode étant accéléré, selon l'axe Oz perpendiculaire à Ox et Oy, par un potentiel positif appliqué sur l'électrode accélératrice (14), en ce que la lentille quadrupolaire (38) convergente dans le plan xOz, dit plan spatial, est divergente dans le plan yOz, dit plan de déflexion, et en ce que chaque lentille plane (36, 40) est convergente dans le plan yOz de déflexion et en ce qu'une alimentation électrique applique une tension variable entre les électrodes de déflexion (42) pour défléchir dans la direction Oy le faisceau électronique en fonction du temps.
5. Tube convertisseur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la photocathode (32) est plane.
6. Tube convertisseur selon l'une quelconque des revendications 2 à 5, caractérisé en ce que la lentille quadrupolaire (38) est constituée par quatre électrodes cylindriques (6, 8,16, 18) de génératrices parallèles à l'axe Oz, et dont les sections droites dans un plan parallèle au plan xOy sont sensiblement des portions d'hyperboles équilatères, deux électrodes en vis-à-vis étant portées à un potentiel positif et les deux autres électrodes en vis-à-vis à un potentiel négatif.
7. Tube convertisseur selon l'une quelconque des revendications 2 à 5, caractérisé en ce que la lentille quadrupolaire (38) est constituée par quatre électrodes cylindriques et a-génératrice parallèle à l'axe Oz, et dont les sections droites dans un plan parallèle au plan xOy sont des arcs de cercle, deux électrodes en vis-à-vis étant portées à un potentiel positif et les deux électrodes à un potentiel négatif.
8. Tube convertisseur d'image selon l'une quelconque des revendications 2 à 7, caractérisé en ce que les lentilles planes convergentes (36, 40) comportent trois paires de plaques, les plaques extrêmes étant à la masse.
EP19850400461 1984-03-16 1985-03-11 Tube convertisseur d'image à balayage de fente Expired EP0155890B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8404095A FR2561441B1 (fr) 1984-03-16 1984-03-16 Tube convertisseur d'image a balayage de fente
FR8404095 1984-03-16

Publications (3)

Publication Number Publication Date
EP0155890A2 true EP0155890A2 (fr) 1985-09-25
EP0155890A3 EP0155890A3 (en) 1985-10-23
EP0155890B1 EP0155890B1 (fr) 1988-11-17

Family

ID=9302116

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19850400461 Expired EP0155890B1 (fr) 1984-03-16 1985-03-11 Tube convertisseur d'image à balayage de fente

Country Status (4)

Country Link
EP (1) EP0155890B1 (fr)
JP (1) JPH0824037B2 (fr)
DE (1) DE3566327D1 (fr)
FR (1) FR2561441B1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2627294A1 (fr) * 1988-02-17 1989-08-18 Commissariat Energie Atomique Camera electronique ultra rapide a commande numerique, pour l'etude de phenomenes lumineux tres brefs
EP1158787A1 (fr) * 2000-05-26 2001-11-28 Thales Dispositif et procédé d'analyse d'un ou de plusieurs signaux à grande dynamique

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6401600B2 (ja) * 2014-12-18 2018-10-10 浜松ホトニクス株式会社 ストリーク管及びそれを含むストリーク装置
CN107706075B (zh) * 2017-11-09 2023-09-19 中国工程物理研究院激光聚变研究中心 一种多区域探测扫描变像管
CN109459779B (zh) * 2019-01-08 2023-08-18 中国工程物理研究院激光聚变研究中心 一种激光内爆诊断***

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1599901A (fr) * 1968-12-09 1970-07-20
FR2284978A1 (fr) * 1974-09-13 1976-04-09 Commissariat Energie Atomique Tube convertisseur d'images a balayage de fente

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935344A (ja) * 1982-08-21 1984-02-27 ダニ−ル・ジヨセフ・ブラツドリ− 電子光学的イメージ管

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1599901A (fr) * 1968-12-09 1970-07-20
FR2284978A1 (fr) * 1974-09-13 1976-04-09 Commissariat Energie Atomique Tube convertisseur d'images a balayage de fente

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
L'ONDE ELECTRIQUE, vol. 46, no. 477, décembre 1966, pages 1306-1313, Paris, FR; B. DRIARD et al.: "Tubes intensificateurs d'images faiblement lumineuses ou rapidement évolutives" *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2627294A1 (fr) * 1988-02-17 1989-08-18 Commissariat Energie Atomique Camera electronique ultra rapide a commande numerique, pour l'etude de phenomenes lumineux tres brefs
EP0329547A1 (fr) * 1988-02-17 1989-08-23 Commissariat A L'energie Atomique Caméra électronique ultra-rapide à commande numérique, pour l'étude de phénomènes lumineux très brefs
US4945416A (en) * 1988-02-17 1990-07-31 Commissariat A L'energie Atomique Ultra-rapid electronic camera
EP1158787A1 (fr) * 2000-05-26 2001-11-28 Thales Dispositif et procédé d'analyse d'un ou de plusieurs signaux à grande dynamique
FR2809568A1 (fr) * 2000-05-26 2001-11-30 Thomson Csf Dispositif et procede d'analyse d'un ou de plusieurs signaux a grande dynamique

Also Published As

Publication number Publication date
EP0155890B1 (fr) 1988-11-17
EP0155890A3 (en) 1985-10-23
FR2561441B1 (fr) 1986-11-14
FR2561441A1 (fr) 1985-09-20
JPH0824037B2 (ja) 1996-03-06
DE3566327D1 (en) 1988-12-22
JPS60211749A (ja) 1985-10-24

Similar Documents

Publication Publication Date Title
FR2486713A1 (fr) Spectrometre de masse a temps de vol
FR2549671A1 (fr) Dispositif d'affichage d'une image de television de grandes dimensions et recepteur de television comportant un tel dispositif
FR2881874A1 (fr) Tube photomultiplicateur a moindre ecarts de temps de transit
FR2687007A1 (fr) Tube intensificateur d'image notamment du type a focalisation de proximite.
FR2644291A1 (fr) Microscope electronique pour l'examen de surfaces de corps solides
EP0155890B1 (fr) Tube convertisseur d'image à balayage de fente
EP0209432A1 (fr) Testeur de circuit intégré à faisceau d'électrons
FR2532111A1 (fr) Lentille d'emission et d'objectif electrostatique combinee
FR2466095A1 (fr) Tube a rayons cathodiques compact plan servant a reproduire des images en couleur et dispositif muni d'un tel tube
EP3005397B1 (fr) Lentille electrostatique a membrane semiconductrice dielectrique
EP0124396B1 (fr) Dispositif d'injection d'un faisceau d'électrons pour générateur d'ondes radioélectriques pour hyperfréquences
FR2544549A1 (fr) Tube a rayons cathodiques avec une lentille electronique pour l'amplification de la deviation
WO2007003723A2 (fr) Tube multiplicateur d'electrons a plusieurs voies
EP0319402B1 (fr) Utilisation d'un canon à électrons pour tube à rayonnement cathodique
FR2466820A1 (fr) Dispositif d'affichage electronique a panneau plat
EP1158787A1 (fr) Dispositif et procédé d'analyse d'un ou de plusieurs signaux à grande dynamique
EP0540093B1 (fr) Tube-image à obturateur électrostatique et dispositif de prise de vue
EP0228735B1 (fr) Dispositif d'insolation pour la génération de masques
EP0418965B1 (fr) Tube à rayons cathodiques muni d'un photodeviateur
FR2551264A1 (fr) Tube a rayons cathodiques
FR2875331A1 (fr) Tube multiplicateur d'electrons a plusieurs voies
EP0533538B1 (fr) Tube intensificateur d'image à correction de brillance
FR2538613A1 (fr) Ensemble de lentilles electrostatiques d'acceleration et d'expansion de balayage
FR2494906A1 (fr) Tube photodetecteur a multiplication d'electrons utilisable dans un lecteur video couleur
EP0013235A1 (fr) Appareil multiplicateur d'électrons à champ magnétique axial

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE GB NL

AK Designated contracting states

Designated state(s): DE GB NL

17P Request for examination filed

Effective date: 19860321

17Q First examination report despatched

Effective date: 19870922

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3566327

Country of ref document: DE

Date of ref document: 19881222

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930331

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940303

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940314

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19941001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950311

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951201