EP0155425B1 - Einrichtung zur Abschaltung und Zuschaltung der Kraftstoffzufuhr im Schubbetrieb eines Verbrennungsmotors - Google Patents

Einrichtung zur Abschaltung und Zuschaltung der Kraftstoffzufuhr im Schubbetrieb eines Verbrennungsmotors Download PDF

Info

Publication number
EP0155425B1
EP0155425B1 EP84402415A EP84402415A EP0155425B1 EP 0155425 B1 EP0155425 B1 EP 0155425B1 EP 84402415 A EP84402415 A EP 84402415A EP 84402415 A EP84402415 A EP 84402415A EP 0155425 B1 EP0155425 B1 EP 0155425B1
Authority
EP
European Patent Office
Prior art keywords
engine
threshold
deceleration
logic
binary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84402415A
Other languages
English (en)
French (fr)
Other versions
EP0155425A1 (de
Inventor
Bernard Le Prêtre
Christian Rousseau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Regie Nationale des Usines Renault
Original Assignee
Regie Nationale des Usines Renault
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Regie Nationale des Usines Renault filed Critical Regie Nationale des Usines Renault
Publication of EP0155425A1 publication Critical patent/EP0155425A1/de
Application granted granted Critical
Publication of EP0155425B1 publication Critical patent/EP0155425B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1504Digital data processing using one central computing unit with particular means during a transient phase, e.g. acceleration, deceleration, gear change
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a device for cutting off the supply and refueling of fuel during the deceleration phases of an internal combustion engine.
  • French patent application FR-A-2 511 430 describes such a device of the type comprising a member for interrupting the fuel supply to the engine, means for measuring the engine speed, means for detecting the deceleration of the engine. , means for comparing the engine speed with at least a first threshold and whose logic output state depends on the result of the comparison, a logic circuit which receives, on the one hand, the logic output state of the comparison and, on the other hand, a logic signal representative of an operation with or without deceleration of the motor delivered by the deceleration detection means and which controls the interruption of the supply of the motor by the interruption member when the engine speed is greater than said threshold and the engine is decelerating, and the engine is refueled when its speed drops below the first threshold.
  • the electronic part of such a device can be integrated at a low cost into the electronic computer of the injection system, either in the form of wired logic, or under form of software.
  • the invention aims to offer a solution which makes it possible to produce such a device at a lower cost in the case of an internal combustion engine equipped with an electronic ignition computer, without fundamental alteration of the latter.
  • the problem to be solved can arise in the hypothesis of an electronic programmable ignition computer whose power is insufficient to allow it to perform calculations other than those to which it is dedicated, but it is encountered more particularly in the presence of '' a specific electronic ignition computer, the tasks of which it must fulfill have been fixed from the design stage and cannot be increased without modifying its architecture at a prohibitive cost.
  • the problem posed is solved by means of a device of the aforementioned type associated with an internal combustion engine with electronic ignition computer, comprising a member (103) for interrupting the supply of fuel to the engine. , means (49, 50) for measuring the engine speed, means (106) for detecting the deceleration of the engine means (53) for comparing the engine speed (w) with at least a first threshold ( ⁇ 1 ) and whose logic output state (B I ) has the value "1 for speeds (w) below the threshold ( ⁇ 1 ) and the value" 0 for speeds greater than (w l ), a logic circuit (100 -102) which receives, on the one hand, the logic output state of the comparison means (53) and, on the other hand, a logic signal representative of a deceleration operation or not of the engine delivered by the means ( 106) of deceleration detection and which controls the interruption of the supply of the motor by the interruption member (103) when the speed (w) of the mo teur is higher than said threshold ( ⁇ 1 ) and that
  • the number of components of the device is reduced to a minimum since the means for measuring the engine speed are those with which the ignition computer is necessarily equipped and the means for comparing between the engine speed and the threshold are produced.
  • the logic circuit receives from comparison means a second logic state depending on the comparison between the engine speed and a second threshold higher than the first threshold
  • the second logic state is defined by a second binary digit also stored at each location in the read-only memory containing a binary number for calculating the ignition advance angle and said logic circuit is adapted to not allow the interruption of the supply of the motor by said interruption member between the first and second thresholds only in response to the detection of the passage of the motor from an acceleration phase to a deceleration phase by said deceleration detection means.
  • This embodiment makes it possible, by means of a single additional binary digit programmed in read-only memory, to implement a significantly more elaborate deceleration and make-up cut strategy.
  • the logic circuit comprises a flip-flop D at the inputs R and S to which said binary digits are applied, the clock input of which receives from deceleration detection means the logic level representative of an operation of the motor under deceleration or no and whose input D receives a predetermined logic level.
  • said flip-flop D is connected to a power stage for actuation of said interrupting member via a NAND gate, a first input of which is connected to the output Q of flip-flop D and the second input of which is connected to the clock input CK of the rocker and receives from said detector member the logic level representative of the position of the accelerator pedal.
  • the logic circuit therefore consists of a minimum number of components which can be added to the ignition computer at low cost.
  • FIG. 1 represents, in the form of a block diagram, an exemplary embodiment of an ignition advance computer 19 which receives, on an input 16, a synchronization signal Sy and, on a second input 17, a speed signal V, signals which are obtained from a processing stage 13 of the signal taken by a position sensor 11 detecting the passage of the teeth with which a target 10 is provided at its periphery 10 fixed on the crankshaft 12 of the internal combustion engine and turning in synchronism with it.
  • the sensor 11 gives a permanent electrical image of the periphery of the target.
  • This assembly has been described in EP-A-0 013 846.
  • the essential parts of the computer 19 are as follows: a sequencer 30 delivering in particular information for sending correction SAC of ignition advance according to the clicking by an output conductor 39; a speed measuring stage 31; a read only memory 32; a pressure measurement stage 33 connected to an external pressure sensor by an input conductor 37; a security stage 34 to protect against any incident of operation of the computer 19; a correction stage 35 connected at least by an input conductor 38 to at least one external sensor with binary function and a stage 36 for the actual calculation of the ignition advance angle receiving correction information for the angle of advance as a function of clicking by an input 41 of HAC series pulses and an input 40 of sign of advance correction as a function of clicking UDAC.
  • the computer 19 delivers by its respective outputs 21 and 22 two binary numbers which correspond respectively to the angle of conduction of the coil 27 expressed in number of teeth of the target 10 on its output 21 and to the angle of advance on ignition expressed in number of teeth of target 10 and in number of subdivisions between two teeth of said target on its output 22.
  • These two binary numbers arrive via conductors 21 and 22 as input on a generation block 20 the control signal of the coil 27; the block 20 also receives as input three signals by the conductors 14, 15 and 18 which are respectively the teeth of the target 10 by 14, the speed signal 15 which is obtained by the subdivisions between two teeth of the target 10 and the synchronization signal 18.
  • the generation block 20 of the coil control signal provides on its output 23 a low power signal which is transmitted to an amplifier power stage 24 whose output 28 is connected to the ignition coil 27 having a primary winding 26 and a secondary winding 29 connected by one of its ends to the central part of a distributor 42, around which rotates the movable arm 43 which successively brings the secondary 29 into communication during its rotation of the ignition coil 27 with the spark plugs of the various cylinders of the engine to cause the explosion and combustion of the mixture contained in the cylinders.
  • This latter assembly comprising the block 20 for generating the control signal from the coil 27 and the power amplifier stage 24, was described in French patent application 2,474,597.
  • FIG. 2 represents a more detailed embodiment of the stage of calculation proper of the ignition advance angle designated by the reference 19 in FIG. 1, without the elements 30 and 34.
  • This calculation stage first of all comprises a speedometer 50 into which one enters via a logic gate 49 with AND function connected by an input to the conductor 17 transmitting the speed signal coming from the processing stage 13 and receiving, by a second input 80, a speed measurement slot in the form of a control signal from the sequencer 30 of FIG. 1 allowing a measurement for a time determined by said sequencer with an increment value of 100 revolutions / min.
  • the counter 50 is, for example, a counter with six binary digits which locks at its maximum value in the case of a speed measurement greater than 6,300 rpm.
  • the speedometer 50 is connected by the outputs 0 0 to Q 5 to the inputs of an address coder 51 which is connected by its outputs to the inputs of an address decoder 52.
  • Said address coder 51 can be wired logic type or programmed type and the resolution of this encoder can be variable depending on the motor applications. Indeed, in certain areas of use, it may be desirable to use a coding step of 100 revolutions / min, while in others, it is possible to use coding every 200 revolutions / min, 400 revolutions / min or even 800 rpm.
  • the read-only memory designated by the reference 32 in FIG. 1 comprises, in the present embodiment of FIG. 2, three essential parts, namely: a first read-only memory 53 containing the actual correction correction coefficients; a second read-only memory 54 of full load advance and a third read-only memory 55 of conduction angle or conduction time.
  • These three read-only memories 53, 54 and 55 are addressed either directly to memories 54 and 55 by the speedometer 50 indicating speeds between zero and 6,300 rpm via the address coder 51 and the decoder d address 52, either indirectly for the memory 53 via the encoder 51 then involving the four most significant lines of the speed and two pressure digits.
  • the advance correction coefficients in the read-only memory 53 are coded on three binary digits plus a binary sign digit for the load and two binary digits whose function will be explained in the following description, each double group of six binary digits defined in this way that can be addressed and distributed differently depending on the engine use case.
  • the read-only memory 54 representing the full load advance is defined by eight binary digits, the least significant digit being worth one degree of flywheel and memorized at the same time as the value representative of the conduction time in the counter 74.
  • the third read-only memory 55 known as conduction time is connected by its outputs to a latching flip-flop 75 (Latch) memorizing on four binary digits the value of conduction angle supplied by memory 55 and subsequently transmitted on outputs 21 to the circuit 20 of FIG. 1 generator of the control signal of the coil 27.
  • latch latching flip-flop 75
  • the second read-only memory 54 known as the full load advance is connected by its outputs to an up / down counter 74 of the advance calculation memorizing on eight binary digits the ignition advance value which is subsequently transmitted by its outputs 22 to circuit 20 in FIG. 1.
  • the outputs 21 of the flip-flop 75 and 22 of the counter 74 correspond to the conductors 21 and 22 illustrated in FIG. 1.
  • the up / down counter 74 has a first up / down counting input 81, a second clock input 84 and a loading inlet 83.
  • the locking latch 75 has a loading inlet 82.
  • the calculation stage according to the present invention further comprises a pressure meter 61 which, in the illustrated embodiment, is a counter with ten synchronous binary digits of the frequency signal corresponding to the pressure prevailing in the engine intake manifold internal combustion.
  • This pressure signal reaches the counter 61 during the pressure measurement slot coming from the sequencer 30 of FIG. 1 by a first conductor 85, via a logic gate 56 with AND function which is connected by a second input to the second conductor 37 of FIG. 1 connected to the pressure measurement sensor prevailing in the intake manifold and by a third conductor 86 to a set of doors 57a, 57b, 57c transmitting a capacity limitation and synchronization signal.
  • the set of doors comprises a first logic gate 57a with an EXCLUSIVE OR function connected by one of its inputs to an output of the addressing encoder 51, by a second input to the output P lo of the pressure meter 61 and by its output to an input of the second logic gate 57b with OR function which is connected by its output 86 to an input of the logic gate 56 with AND function encountered previously.
  • the second input of the logic gate 57b is connected to the output Q of a flip-flop 57c of type D whose input D is connected to the most battery, whose clock input is connected to the output P lo of the pressure meter 61 and the reset input of which is connected to the reset 87 of a binary rhythm multiplier 66.
  • the pressure counter 61 has ten outputs numbered from P, to P lo .
  • the outputs P 8 and Pg are connected in parallel to inputs of the addressing encoder 51.
  • the output P 1O ' in addition to its connections to the logic gate 57a and to the flip-flop 57c, is connected, on the one hand, to a first input of a logic gate 59 with NAND function via an inverter 58, on the other hand, to a first input of a logic gate 62 with AND function, the latter connected by a second input to the output of logic gate 56 with AND function already encountered by means of a inverter 60, and furthermore, by its output to an input of the binary rhythm multiplier 66 already mentioned.
  • the output P 7 of the pressure meter 61 is connected to a trigger input of a stage 67 of choice of coefficient which is connected, moreover, by its series of inputs greater than the outputs of the read-only memory 53 in which are stored the correction coefficients of advance by two groups of six binary digits as previously men tionné.
  • This coefficient selection stage 67 is connected by three first outputs in parallel to the first inputs of three logic gates 63, 64, 65 with AND function, all three connected in parallel by their second input to the output of logic gate 59 to NAND function and by their outputs in parallel on three inputs of the binary rhythm multiplier 66 to introduce there the three binary digits of the advance correction coefficient selected in the read-only memory 53.
  • the second input of the logic gate 59 has function NO - AND is connected to an output of the addressing encoder 51 and to an input of the logic gate 57a with an EXCLUSIVE OR function.
  • the right lateral output of the stage 67 for choosing the coefficient is connected to the “SIGN of a stage 73 input enabling the sign of the pressure correction to be determined.
  • the stage 73 is connected to the conductor 40 already mentioned in FIG. 1 to receive a UDAC signal, namely the sign of advance correction as a function of the clicking.
  • the output of the latter is connected to the input of a stage 68 divider by M which, in the example shown, is a divider by eight and the output of which is connected to a second input of the stage 73 mentioned above.
  • This stage 73 is connected by its third input located at its lower part to the output of a logic gate 72 with OR function with two inputs connected respectively to the output of a logic gate 71 with AND function and to the conductor 41 already appearing at FIG. 1 and which transmits series ignition advance correction pulses as a function of the knock, pulses generated by the anti-knock clock of the installation.
  • the upper conductor 38c serves to convey the possible correction order coming from the outside and the lower conductor serves to receive z pulses which are supplied by the sequencer 30 of FIG. 1.
  • the stage 73 making it possible to determine “the type of pressure correction-external anti-knock correction is connected by its two outputs 81 and 84 respectively to the up / down counting input and to the clock input of the eight-digit advance calculation counter 74 binaries.
  • the counter 74 and the locking latch 75 have loading inputs numbered 83 and 82 respectively, connected to the sequencer 30 of FIG. 1.
  • the ignition advance computer described hitherto with reference to FIGS. 1 and 2 is identical to that which is the subject of EP-A-0 043 053 except that it does not include any entry door for conditional correction. .
  • the detailed description of some of the circuits of the computer and its operation will therefore not be repeated and reference may be made to this effect to the aforementioned patent application. It will simply be recalled that the various corrections coming from the door 72 are controlled by an external member at 38c and a knock sensor at 41.
  • the value of the external correction is fixed in the sequencer 30 by a door allowing z pulses to pass when the external organ indicates in 38c a state requiring a well-defined correction.
  • the two available binary digits B, and B 2 of the group of six binary digits programmed in the memory 53 are addressed respectively to the inputs R and S of a flip-flop D 100 via the switcher 67.
  • the terminals Q and CK of the flip-flop D 100 are connected respectively to the inputs 101a and 101b of a NAND gate 101 whose output controls a power stage 102.
  • This power stage 102 supplies the winding 103 in parallel with a diode 104 of a solenoid valve (not shown) which controls the fuel supply to the nozzle of a carburetor (not shown).
  • the input 101b of the NAND gate 101 is also connected to the output of a NAND gate 105, the two inputs of which are connected via an adapter circuit 107 to engine deceleration detection means constituted, for example , by an electrical switch 106 linked to the throttle valve or to the accelerator pedal.
  • the contactor 106 is closed in the "raised foot" position, that is to say in the substantially closed position of the throttle valve, and open in the opposite case.
  • the input 38c of the AND gate 71 is connected to the output Q of a down-counter 109 with n rockers, the change inputs of which are connected to a storage circuit 108.
  • the clock input CK of the down-counter 109 is connected to the output of an AND gate 110, one of the inputs of which receives the signal Sy (reference 16 in FIG. 1) and the other input receives the signal B, which is also applied to the input P of the down-counter 109 via a differentiator circuit 111.
  • the input R (“reset •) of the down-counter 109 receives the signal B 1 inverted by an inverter 112.
  • Binary digits B 1 and B 2 are programmed in memory 53 according to two engine speed thresholds ⁇ 1 and ⁇ 2 respectively. More precisely, B 1 has the value “1" for engine speeds w less than ⁇ 1 and the value "0" for engine speeds greater than ⁇ 1 . Conversely, B 2 takes the value " 0 for engine speeds ⁇ less than ⁇ 2 and the value" 1 for engine speeds greater than w 2 .
  • a means of comparison between the engine speed and the thresholds ⁇ 1 and ⁇ 2 is thus produced directly in cartographic form.
  • the signals corresponding to the logic states B 1 and B 2 enter on the inputs R and S of the flip-flop 100 and, these latter having priority when they are "1", they directly affect the output Q of the flip-flop.
  • the entry S of the rocker D is equal to “1” and the exit Q also.
  • the inputs 101 a and 101 b are therefore at “1” if the contact 106 is closed, which results in a "1” at the output of the door 105.
  • the output of the NAND gate 101 is then at "0 And power stage 3 does not drive. In this case the control member 103 is not supplied and there is a cut in the fuel supply to the engine.
  • the entry S of the rocker 100 is equal to “0” and the exit Q is not affected by the change of state from “1 to to "0 of this entry. If there is then a release of the accelerator pedal, the output of the NAND door 105 changes from “0” to “1” and the input D of the rocker 100, to which a level “1” is applied. , is transferred to output Q. Therefore, the inputs 101a and 101b are at "1", which authorizes a cut of the fuel supply.
  • the input R of the flip-flop 100 changes from “0” to “1 (FIG. 2), while its output Q changes from“ 1 "To” 0 ". There is then refeeding as indicated above. If the engine speed w then returns above the threshold ⁇ 1 , the input R switches from 1 "to” 0 ", but the output Q does not change state and remains at” 0 ". So that the output Q then passes to “1”, it would then be necessary either for the regime ⁇ to go back above the threshold ⁇ 2 which would make the input S go from “0” to “1”, or there was a depressing of the accelerator pedal followed by a new release of foot.
  • the threshold ⁇ 2 is chosen so that the engine speed w cannot reach this value, in the absence of action on the accelerator pedal, following a “overshoot of speed due to the resumption of fuel supply following a cut in fuel at threshold ⁇ 1 .
  • the zone between ⁇ 2 and ⁇ 1 is a speed zone where it is impossible to make successive cuts on variation of the speed w if there has been no change of state of the contactor 106.
  • circuit 108-112 the presence of which is optional and which aims to make a modification to the law programmed in advance at ignition during the automatic refueling of engine fuel below the threshold.
  • ⁇ 1 in particular to improve driving pleasure during this operating phase.
  • the signal B 1 passing from “0” to “1”
  • the branch circuit 111 applies to the input P of the down-counter 109 a pulse which causes loading the content of the storage circuit 108 into the down-counter 109 and passing the output Q of the latter from “0” to “1”.
  • the down-counter 109 begins to receive at its input CK, via the AND gate 110, the synchronization signal Sy emitted at each engine half-turn.
  • the AND gate 71 whose conductor 38c is at "1” then lets through the z pulses supplied by the sequencer 30 of FIG. 1.
  • these z pulses correct the ignition advance developed by the computer and, depending on the type of engine considered, these corrections can be either positive to increase the advance, or negative to decrease it.
  • the sign of the correction is definitively programmed in each computer when the latter is hidden.
  • the contactor 106 can be replaced by any other suitable means for detecting the deceleration of the engine, for example by using information relating to the engine load, the binary digits B 1 and B 2 then being for example programmed in the memory. 53 depending on the speed and the load of the motor, and no longer as a function of speed alone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Claims (9)

1. Einrichtung zur Abschaltung und Zuschaltung der Kraftstoffzufuhr im Schubbetrieb eines Verbrennungsmotors mittels eines elektronischen Zündrechners, der ein Teil (103) zur Abschaltung der Kraftstoffzufuhr zum Motor aufweist, eine Anordnung (49, 50) zur Messung der Motordrehzahl, eine Anordnung (106) zur Feststellung einer Verzögerung des Motors, eine Anordnung (53) zum Vergleichen der Motordrehzahl ω mit wenigstens einem ersten Schwellwert ω1 deren logischer Ausgangszustand B, den Wert 1 aufweist für Drehzahlen ω kleinerals derSchwellwert ω1 und den Wert Null aufweist für Drehzahlen größer als ω1, einen logischen Schaltkreis (100 bis 102), dem einerseits der logische Ausgangszustand der Vergleicheranordnung (53) zugeführt wird und andererseits ein logisches Signal, das den Verzögerungsbetrieb des Motors oder nicht darstellt und von der Feststellanordnung (106) für die Verzögerung geliefert wird und das die Abschaltung des Motors mittels des Abschaltteils (103) bewirkt, wenn die Drehzahl w des Motors größer als der Schwellwert ω1, ist und der Motor im Verzögerungsbetrieb läuft sowie die Zuschaltung des Kraftstoffs zum Motor bewirkt, wenn dessen Drehzahl w unter den ersten Schwellwertw, abfällt, dadurch gekennzeichnet, daß die Vergleicheranordnung aus einem Totspeicher (53) zur Speicherung des Vorwinkels der Zündung des elektronischen Rechners besteht und die Meßanordnung (49, 50) für die Motorgeschwindigkeit aufweist, die auf jedem als Funktion der Motorgeschwindigkeit adressierbaren Feld eine Binärzahl zur Berechnung des Vorzündwinkels enthält und wenigstens eine erste binäre Ziffer B" dessen Wert den logischen Zustand darstellt, der dem logischen Schaltkreis (100 bis 102) zugeführt wird.
2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der logische Schaltkreis (100 bis 102) von der Vergleicheranordnung (53) einen zweiten logischen Zustand erhält, der eine Funktion des Vergleichs zwischen der Motordrehzahl w und einem zweiten Schwellwert W2 ist, der größer als der erste Schwellwert ω1, ist und durch eine zweite binäre Ziffer B2 dargestellt wird, die ebenfalls in jedem Feld des eine Binärzahl enthaltenden Totspeichers (53) gespeichert ist und daß der logische Schaltkreis derart ausgelegt ist, daß er die Abschaltung des Motors durch das Abschaltteil (103) zwischen den beiden Schwellwerten ω1, ω2 nur als Funktion der Messung des Übergangs des Motors von einer Beschleunigungsphase zu einer Verzögerungsphase durch die Anordnung (106) zur Feststellung der Verzögerung ermöglicht.
3. Einrichtung nach Anspruch 2, dadurch gekennzeichnet, daß der logische Schaltkreis eine Flip-Flop-Schaltung D (100) aufweist, deren Eingängen R und S die Binärziffern B1, B2 zugeführt werden, deren Zeiteingang CK von der Anordnung (106) zur Feststellung der Verzögerung ein logischer Pegel zugeführt wird, der den Betrieb des Motors in der Verzögerungsphase oder nicht darstellt und dessen Eingang D einen vorgegebenen logischen Pegel erhält.
4. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die zweite Binärziffer B2 den Binärwert 1 darstellt für alle Motordrehzahlen oberhalb des zweiten Schwellwerts ω2 und den Binärwert 0 darstellt für alle Motordrehzahlen unterhalb des zweiten Schwellwertes w2.
5. Einrichtung nach einem der Ansprüche 3 und 4, dadurch gekennzeichnet, daß die Flip-Flop-Schaltung D (100) mit einer Leistungsstufe (102) verbunden ist zur Betätigung des Abschaltteils (103) mittels einer Torschaltung NAND (101), deren erster Eingang (101 a) mit dem Ausgang Q der Flip-Flop-Schaltung D (100) verbunden ist und deren zweiter Eingang (101 b) mit dem Zeiteingang CK des Flip-Flops verbunden ist und von der Anordnung (106) zur Feststellung der Verzögerung den logischen Pegel erhält, der den Betrieb des Motors in der Verzögerungsphase oder nicht darstellt.
6. Einrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sie einen zweiten logischen Schaltkreis (108 bis 112) aufweist, der von der ersten Binärziffer B, gesteuert wird um die berechnete Vorzündung zu verändern ausgehend von den Binärzahlen des Totspeichers (53), wenn die Kraftstoffzuschaltung für den Motor wieder erfolgt zum Zeitpunkt, zu dem die Motordrehzahl kleiner als der erste Schwellwert ω1, ist.
7. Einrichtung nach Anspruch 6, dadurch gekennzeichnet, daß der zweite logische Schaltkreis einen Zähler (109) aufweist, der mit einem vorgegebenen Wert n vorgeladen wird und dessen Ausgang Q einen logischen Pegel annimt, der die Übertragung von Korrekturimpulsen für die Vorzündung in den Rechner ermöglicht und dessen Inhalt n ausgelesen wird durch ein Sychronisationssignal Sy, das vom Rechner synchron mit der Motorumdrehung abgegeben wird, wenn die erste Binärziffer B, von einem ersten Binärwert, der einer Motordrehzahl ω entspricht, die größer ist als der erste Schwellwert ω1, zu einem zweiten Binärwert übergeht, der einer Motordrehzahl w kleiner als dem ersten Schwellwert ω1, entspricht, wobei der Ausgang Q des Zählers (109) einen logischen Pegel annimmt, der die Übertragung der Korrekturimpulse verhindert, wenn der Inhalt des Zählers (109) auf Null gebracht wurde oder wenn die erste Binärziffer B, vom zweiten Wert zum ersten Wert entsprechend einer Motordrehzahl ω größer als der erste Schwellwert ω1 übergeht.
8. Einrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Anordnung zur Feststellung der Verzögerung des Motors in an sich bekannter Weise aus einem elektrischen Kontakt (106) besteht zur Feststellung einer im wesentlichen geschlossenen Stellung der Drosselklappe des Motorvergasers oder des Freigebens eines diese Drosselklappe steuernden Beschleunigungspedals.
9. Einrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Zündrechner eine Anordnung (56, 57, 61) zur Messung der Motorlast aufweist, einen ersten Totspeicher (53) für Vorzündungskoeffizienten, die als Funktion der Drehzahl und der Last des Motors adressierbar sind, einen zweiten Totspeicher (54) für die Vorzündung bei Vollast, der als Funktion der Motordrehzahl adressierbar ist, eine Anordnung (50, 51, 52) zum Adressieren des ersten und zweiten Totspeichers (53, 54) ausgehend von der Meßanordnung (49, 50, 56, 57, 61), eine Rechenanordnung (62, 74) für den Vorzündungswinkel ausgehend von den Werten der Vorzündungskoeffizienten und der Vollastvorzündung in den beiden entsprechenden Totspeichern (53, 54) sowie eine Auswahlstufe (67) aufweist, die zwischen den ersten Totspeicher (53) und die Rechenanordnung eingesetzt ist und daß jede Binärziffer B1, B2, deren Wert den logischen Ausgangszustand der Vergleicheranordnung darstellt, in einem Feld des ersten Totspeichers (53) gespeichert ist und einen Vorzündungskoeffizienten enthält, der dem logischen Schaltkreis (100, 102) über die Auswahlstufe (67) zugeführt wird.
EP84402415A 1983-12-07 1984-11-27 Einrichtung zur Abschaltung und Zuschaltung der Kraftstoffzufuhr im Schubbetrieb eines Verbrennungsmotors Expired EP0155425B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8319550 1983-12-07
FR8319550A FR2556415B1 (fr) 1983-12-07 1983-12-07 Calculateur d'avance a l'allumage a fonction de coupure d'alimentation en carburant pour vehicule automobile

Publications (2)

Publication Number Publication Date
EP0155425A1 EP0155425A1 (de) 1985-09-25
EP0155425B1 true EP0155425B1 (de) 1988-03-02

Family

ID=9294932

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84402415A Expired EP0155425B1 (de) 1983-12-07 1984-11-27 Einrichtung zur Abschaltung und Zuschaltung der Kraftstoffzufuhr im Schubbetrieb eines Verbrennungsmotors

Country Status (3)

Country Link
EP (1) EP0155425B1 (de)
DE (1) DE3469579D1 (de)
FR (1) FR2556415B1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3828850A1 (de) * 1988-08-25 1990-03-08 Bosch Gmbh Robert Vorrichtung zur steuerung einer betriebskenngroesse einer brennkraftmaschine
US8639418B2 (en) * 2008-04-18 2014-01-28 Caterpillar Inc. Machine control system with directional shift management

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866584A (en) * 1970-11-03 1975-02-18 Volkswagenwerk Ag Switching device and circuit
GB1592762A (en) * 1976-09-21 1981-07-08 Lucas Industries Ltd Internal combustion engine fuel injection control
JPS54145819A (en) * 1978-05-04 1979-11-14 Nippon Denso Co Ltd Engine control
GB2043772A (en) * 1979-03-08 1980-10-08 Harris E S I Improvements in and relating to a method of operating combustion engines
DE3035245A1 (de) * 1980-09-18 1982-05-06 Robert Bosch Gmbh, 7000 Stuttgart Vorrichtung zur unterbrechung der kraftstoffzufuhr bei vorzugsweise in fahrzeugen eingebauten brennkraftmaschinen im schiebetrieb
FR2511430B1 (fr) * 1981-08-11 1986-06-27 Peugeot Dispositif de realimentation en carburant d'un moteur a combustion interne a la suite d'une coupure en deceleration

Also Published As

Publication number Publication date
FR2556415B1 (fr) 1988-04-22
FR2556415A1 (fr) 1985-06-14
EP0155425A1 (de) 1985-09-25
DE3469579D1 (en) 1988-04-07

Similar Documents

Publication Publication Date Title
EP0987421B1 (de) Verfahren zur Erkennung der Phase der Zylinder einer Mehrzylinder-Viertaktbrennkraftmaschine.
EP0013846B1 (de) Verfahren und Vorrichtung zur Bestimmung der Winkellage eines rotierenden Teiles
FR2460508A1 (fr) Appareil pour tester un systeme de commande dans un vehicule automobile
FR2505402A1 (fr) Dispositif de commande de recirculation des gaz d'echappement avec une fonction de correction automatique de valeur d'ouverture zero detectee de la soupape de recirculation des gaz d'echappement
FR2503266A1 (fr) Dispositif de commande de l'alimentation en carburant d'un moteur a combustion interne
CH625596A5 (de)
FR2528909A1 (fr) Procede de commande du fonctionnement d'un moteur a combustion interne au demarrage
EP0102273B1 (de) Zünd- und Einspritzungssteueranlage für eine Brennkraftmaschine
FR2571782A1 (fr) Systeme de commande de distribution de combustible pour moteur a combustion interne a allumage par compression
FR2691207A1 (fr) Système pour commander un dispositif de dosage de carburant contrôlé par vanne électromagnétique.
EP0155425B1 (de) Einrichtung zur Abschaltung und Zuschaltung der Kraftstoffzufuhr im Schubbetrieb eines Verbrennungsmotors
EP0101342B1 (de) Optimierungsverfahren des Zündzeitpunktes einer Brennkraftmaschine
FR2516982A1 (fr) Dispositif electronique de commande d'injection de carburant pour moteurs a combustion interne a plusieurs cylindres
EP0043053B1 (de) Elektronisches Zündsteuerverfahren und Vorrichtung für eine Brennkraftmaschine
FR2529261A1 (fr) Dispositif de controle de l'allumage pour un moteur a combustion interne
EP0300896A1 (de) Auslösevorrichtung eines Ereignisses in Phasenverbindung mit der winkligen Stellung eines drehenden Organs und ihre Anwendung
FR2720445A1 (fr) Dispositif pour la reconnaissance de la relation des phases dans un moteur à combustion internee.
EP0033280B1 (de) Steuerungsvorrichtung für die Zündspule eines Verbrennungsmotors mit einem elektronischen Rechner zur Zündverstellung
EP0029374A1 (de) Signal-generator zur Korrektur der Einstellung der Frühzündung in Abhängigkeit vom Klopfverhalten
FR2526868A1 (fr) Procede de commande de la quantite du combustible fournie a un moteur a combustion interne au ralentissement
EP0009443B1 (de) Digitales Vergleichsgerät der Winkelgeschwindigkeit und mit einer solchen Vorrichtung versehene Motorsteuerung
FR2511430A1 (fr) Dispositif de realimentation en carburant d'un moteur a combustion interne a la suite d'une coupure en deceleration
BE1005407A0 (fr) Systeme d'allumage avec detection de sens de rotation pour un moteur a combustion interne, procede de detection de ce sens, et generateur de base de temps pour ce systeme.
EP0051529A1 (de) Steuervorrichtung zur Regelung der optimalen Kontaktzeit in Zündspulen von Brennkraftmaschinen
EP0090740A1 (de) Rechner für Zündzeit und/oder Kraftstoffeinspritzung zum Erzielen optimaler Verbrauchswerte für ein Fahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19841130

AK Designated contracting states

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 19860902

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3469579

Country of ref document: DE

Date of ref document: 19880407

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 84402415.8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19961014

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19961024

Year of fee payment: 13

Ref country code: DE

Payment date: 19961024

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19961025

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19971127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980801

EUG Se: european patent has lapsed

Ref document number: 84402415.8

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST