EP0149449B1 - Hartmetallkörper, insbesondere Hartmetall-Schneidwerkzeug - Google Patents

Hartmetallkörper, insbesondere Hartmetall-Schneidwerkzeug Download PDF

Info

Publication number
EP0149449B1
EP0149449B1 EP84890252A EP84890252A EP0149449B1 EP 0149449 B1 EP0149449 B1 EP 0149449B1 EP 84890252 A EP84890252 A EP 84890252A EP 84890252 A EP84890252 A EP 84890252A EP 0149449 B1 EP0149449 B1 EP 0149449B1
Authority
EP
European Patent Office
Prior art keywords
coating
hard
metal body
layer
body according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84890252A
Other languages
English (en)
French (fr)
Other versions
EP0149449A1 (de
Inventor
Johann Ing. Kiefer
Oskar Dr. Pacher
Johann Dipl.-Ing. Stamberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vereinigte Edelstahlwerke AG
Original Assignee
Vereinigte Edelstahlwerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vereinigte Edelstahlwerke AG filed Critical Vereinigte Edelstahlwerke AG
Publication of EP0149449A1 publication Critical patent/EP0149449A1/de
Application granted granted Critical
Publication of EP0149449B1 publication Critical patent/EP0149449B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Definitions

  • the invention relates to a hard metal body, in particular a hard metal cutting tool, with a coating based on carbides and / or nitrides of elements from IV.
  • Such tools are used primarily in the machining of materials, in particular metalworking.
  • Use A large number of coated hard metal bodies with a base body and mostly multi-layer coatings are known, but there is always the endeavor to achieve high cutting speeds with as little wear as possible and also to have a tool available which can also withstand high mechanical stresses, such as those with an interrupted one Occur cut, withstands. All efforts are aimed at still increasing the service life of the tools and the ease of machining. So z. B.
  • such phenomena should be reduced if care is taken to ensure that oxygen introduction is avoided at least in certain areas of the base body coating by first providing the base body with a carbide-nitride or carbonitride layer, Then diffusion from the substrate into the layer or vice versa takes place, which is followed by a highly wear-resistant coating with oxide. Before this oxidic layer is applied, the intermediate coating can be oxidized from the outside in order to improve the adhesion, but only in a layer thickness that does not reach the substrate.
  • a multi-layer coating is also known from EU-A-0 083 842, in which a binding layer made of carbide or oxycarbide compounds is oxidized on the surface and bears an oxidic wear layer.
  • the surface oxidation of the binding layer is intended to improve the adhesive strength of the oxidic outer layer, an intermediate layer between the binding layer and the substrate also being proposed.
  • Such bodies can admittedly have a wear layer adhering firmly to the binding layer, in the binding layer itself or in the zones on the substrate surface, brittle layers arise in particular as a result of the oxygen diffusion when subjected to thermal stress, which layers adversely affect the performance properties of the tools.
  • a coating is made known which is formed from homogeneous individual layers with an alternating composition, whereby the thermal stresses are to be reduced and the wear resistance is to be increased. If the individual layers are applied alternately with up to seven intermediate layers, flaking of the coating can occur in practical use due to the resulting stress.
  • Patent Abstracts of Japan, unexamined applications, Field C, Volume 6, No. 186, September 22, 1982; The Patent Office Japanese Government, page 7 C 126; Kokai no. 57-98 670 (Sumitomo) has become known a cutting tool made of coated hard metal, in which one or more titanium compounds are applied to a substrate, on which there is an outer layer made of A1 2 0 3 .
  • the titanium compound (s) consists of a titanium oxide, the oxygen being partially replaced by carbon and nitrogen. At higher working temperatures, in particular due to oxygen diffusion, intermediate layers of this type lead to brittle layer regions which favor the chipping of the cover layer, in particular on the substrate, as a result of which the service life of the tool is reduced.
  • the invention relates to a hard metal body, in particular a hard metal cutting tool, of the type mentioned at the outset, which is characterized in that a first coating formed from one or more layers with at least one 0.1 to 2.5 atom% is formed directly on the substrate of the basic body.
  • the above-mentioned inclusions have at least substantial proportions of metal boride.
  • the body can optionally be heat treated and / or compacted.
  • the oxycarbide, carbonitride or nitride - particularly preferred oxycarbonitride - of the first coating has an aluminum content of 0.5 to 2 atomic% and an oxygen content of 1 to 5 atomic%, this is particularly reliable adhesion guaranteed both coatings, it should be noted that even with zirconium oxide-containing second coating aluminum alone is able to bring the beneficial effect.
  • the first coating has two or more layers of oxycarbide, oxycarbonitride or oxynitride, preferably oxycarbonitride, at least one of the above-mentioned elements, the aluminum content of the individual layers being one of them directly on the substrate bordering layer is rising away to the outside.
  • the oxygen content with concentrations of 0.1 to 8 atom%, preferably 1 to 5 atom%, of the oxycarbide, oxycarbonitride or oxynitride layer (s) of the first coating has no adverse effect.
  • the first coating comprises two or more layers with an oxycarbide or oxycarbonitride or oxynitride, preferably has oxycarbonitride, at least one of the above-mentioned elements, the oxygen content of the individual layers increasing outwards from the layer directly adjacent to the substrate, with even better operating behavior being achievable if the oxygen content in the first coating is different layer directly adjacent to the substrate, preferably substantially linearly increasing. Very thin individual layers can also be present, so that the increase is practically continuous.
  • the oxidic coating it is advantageous if it or at least some of its layers have or have zirconium of 1 to 20% by weight, preferably 2 to 15% by weight.
  • the second coating has two or more oxide layers
  • the zirconium content of the individual layers increasing outwards from a layer which may be zirconium-free and which immediately adjoins the first coating, can be removed among others estimate the abrasion on the surfaces subject to wear and thus the remaining tool life, whereby an essentially linear - gradual or continuous - increase in the zirconium content is particularly favorable in this respect.
  • unintentional downtimes can be largely avoided.
  • the doping of the first coating or of its layers with aluminum itself has a stabilizing effect, so that the presence of zirconium is not urgent per se, the oxidic layer of the second coating immediately adjacent to the first coating can therefore also have a zirconium-free layer with aluminum oxide.
  • a further substantial increase in wear resistance can be achieved if the boride-containing inclusions provided in the second coating are those with aluminum and / or zirconium boride.
  • a particularly intimate yet improved bond between the individual layers of the coatings can be achieved in particular by heat treatment or by means of hot pressing to be advantageously provided.
  • a body according to the invention is therefore particularly preferred if the substrate and layer (s) of the first and second coating each have diffusion zones with one another.
  • the invention further relates to a method for producing hard metal bodies, in particular cutting tool bodies, as described so far, the body optionally being subjected to heat or heat treatment, preferably thermal diffusion treatment, in particular at temperatures from 900 to 1600 ° C., preferably from 1100 to 1500 ° C. and / or a post-compression process, preferably an isostatic hot pressing, in particular at pressures of 500 to 2500 bar.
  • heat or heat treatment preferably thermal diffusion treatment, in particular at temperatures from 900 to 1600 ° C., preferably from 1100 to 1500 ° C. and / or a post-compression process, preferably an isostatic hot pressing, in particular at pressures of 500 to 2500 bar.
  • Cuts made of hard metal (85% WC, 9.5% TiC + TaC, 5.5% Co) are heated in a furnace under protective gas or vacuum to a temperature of 1000 ° C, and then for 60 minutes with a gas mixture with 5 % TiCl 4 , 80% H 2 , 5% N 2 , 5% CH 4 and 5% CO treated. Then the gas mixture AICI 3 is mixed in amounts of 0.5% (test series 1a) and 1% (test series 1b) with small amounts of CO (2% each) based on AICI 3 .
  • the total pressure in the furnace is 150 mbar during the treatments. After a treatment period of 210 minutes, an approximately 3 ⁇ m thick, completely dense oxycarbonitride layer was formed, which, in each case on average in the case of the test series 1a with 0.5 atom% AI and in those of the test series 1 with 1.4 Atom% AI was doped.
  • Cuts made of hard metal (91% WC, 2.5% TiC + TaC, 6.5% Co) are heated in an oven under protective gas or vacuum to a temperature of 1000 ° C and then for 40 minutes with a gas mixture with 8% TiCl 4, 2% ZrCl4, 70% hydrogen, 15% N 2 and 5% C0 2 initially (experiment A) treated. Thereafter is replaced at intervals of 10 min each for 5 min the TiC1 4 by AICI 3 and continuously 2 content of the C0 2 content is increased from 5 to 15% under the corresponding reduction of the H.
  • the total pressure in the furnace during this treatment is 650 mbar. After 90 minutes there was an approximately 2.5 ⁇ m thick oxynitride layer in which the Al content was 0.9 atomic% on average and the oxygen content from the substrate to the outside from 0.5 to 3.5 atoms -% increase, trained.
  • test series 2a and 2b were maintained.
  • the coated material obtained contained no aluminum in its hard material layer.
  • Cuts made of hard metal (79% WC, 10% TiC + TaC, 11% Co) are heated in a furnace under protective gas or vacuum to a temperature of 1020 ° C, and then for 90 minutes with a gas mixture with 5% TiCl 4 , Treated 70% H 2 and 25% CH 4 .
  • the working pressure in the furnace is 200 mbar.
  • the temperature is then increased to 1050 ° C. and at a working pressure of 150 mbar, 5% AICI 3 and 5% CO 2 are then added alternately for 5 minutes to the gas mixture for 120 minutes, each time with a corresponding reduction in the hydrogen content.
  • test series 3a After a total duration of 150 min, a coating was formed in test series 3a which had an Al content of 1.5 atom% AI and 6 atom% oxygen enriched against the outer surface, while Al and the oxygen were close to the substrate -Content below 0.1 atom%.
  • Cutting bodies according to the preceding examples and test series are treated in a gas mixture with 10% AICI 3 , 80% H 2 , 5% CO 2 and 5% ZrCl 4 for 120 min at a temperature of 1020 ° C, during which period at regular intervals of 8 min the proportion of CO 2 is reduced in each case for 2 minutes and replaced by BCl 3 .
  • Oxidic coatings are formed on the cutting bodies, which have embedded borides of aluminum or zirconium.
  • Cutting bodies according to the preceding examples and test series are treated in a gas mixture with initially 10% AlCl 3 , 70% hydrogen, 12% CO 2 , 5% ZrCl 4 and 3% HCl at 1030 ° C and a working pressure of 200 mbar in such a way that the AlCl 3 content is continuously reduced to 60% of the initial value over a period of 150 min and at the same time the ZrCl 4 content is increased accordingly, so that the total AlCl 3 + ZrCl 4 remains constant.
  • An approximately 2 ⁇ m thick layer with an outer zone rich in Zr0 2 is obtained.
  • the flexibility of the layers and their adhesion that can be achieved by installing Al in the base layer is particularly positive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

  • Die Erfindung betrifft einen Hartmetallkörper, insbesondere ein Hartmetall-Schneidwerkzeug, mit Beschichtung auf Basis von Karbiden und/oder Nitriden von Elementen der IV. bis VI. Nebengruppe des Periodensystems und mindestens einer weiteren Beschichtung auf Basis von Aluminiumoxid und/oder Zirkoniumoxid.
  • Solche Werkzeuge finden vor allem in der spanabhebenden Material-, insbesondere Metallbearbeitung, Verwendung, es seien z. B. Dreh-, Schneid-, und Fräswerkzeuge, Fräsköpfe, Bohrer, Sägen und dgl. genannt. Sie können weiters auch für nicht spanabhebende Verformung, wie z. B. als Matrizen, Düsen, Preßstempel, Gesenke od. dgl. Einsatz finden. Es ist eine große Anzahl von beschichteten Hartmetallkörpern mit Grundkörper und meist mehrlagigen Beschichtungen bekannt, wobei immer das Bestreben besteht, hohe Schnittgeschwindigkeiten bei möglichst geringem Verschleiß zu erreichen und außerdem ein Werkzeug zur Verfügung zu haben, welches auch hohen mechanischen Beanspruchungen, wie sie beispielsweise bei unterbrochenem Schnitt auftreten, standhält. Alle Bestrebungen sind darauf ausgerichtet, die Standzeit der Werkzeuge und den Bearbeitungskomfort immer noch zu erhöhen. So ist z. B. aus der US-PS-40 18 631 bekannt, einen Schneidkörper mit Mehrfachbeschichtung herzustellen, bei dem auf ein gesintertes Karbidsubstrat eine Karbid-, Nitrid- oder Karbonitrid-Beschichtung aufgebracht wird, dann aus dem Grundkörper Elemente, wie Wolfram und Kobalt, in den Überzug eindiffundieren gelassen werden, danach die Beschichtung oxidiert wird und auf die so vorbehandelte Beschichtung eine oxidische Schicht aufgebracht wird. Nachteil solcher Körper ist, daß die beim beschriebenen Vorgang gebildete Oxidschicht zu Volumsexpansion neigt. Gemäß EP-PS 32 887 sollen solche Erscheinungen vermindert sein, wenn dafür Sorge getragen ist, daß Sauerstoff-Einbringung zumindest in bestimmte Bereiche der Grundkörper-Beschichtung vermieden wird, indem der Grundkörper zuerst mit einer Karbid-Nitrid- oder Karbonitrid-Schicht versehen wird, danach Diffusion vom Substrat in die Schicht oder umgekehrt erfolgt, wonach eine hochverschleißfeste Beschichtung mit Oxid folgt. Bevor diese oxidische Schicht aufgebracht wird, kann zur Verbesserung der Haftung, jedoch nur in einer das Substrat nicht erreichenden Schichtdicke, die Zwischenbeschichtung von außen her anoxidiert werden.
  • Auch aus EU-A-0 083 842 ist eine mehrlagige Beschichtung bekannt, bei welcher eine Bindeschicht aus Karbid oder Oxikarbidverbindungen oberflächlich oxidiert ist und eine oxidische Verschleißschicht trägt. Durch die Oberflächenoxidation der Bindeschicht soll auf dieser die Haftfestigkeit der oxidischen Außenschicht verbessert werden, wobei auch eine Zwischenschicht zwischen Bindeschicht und Substrat also eine dritte Beschichtung vorgeschlagen wird. Solche Körper können zwar eine auf der Bindeschicht fest haftende Verschleißschicht aufweisen, in der Bindeschicht selbst oder in den Zonen an der Substratoberfläche entstehen insbesondere durch die Sauerstoffdiffusion bei thermischer Belastung spröde Schichten, die die Gebrauchseigenschaften der Werkzeuge nachteilig beeinflussen. Weiters wird beispielsweise in EU-PA-0 083 043 eine Beschichtung bekanntgemacht, die aus homogenen Einzelschichten mit abwechselnder Zusammensetzung gebildet wird, wodurch die thermisch bedingten Spannungen verkleinert und eine Steigerung der Verschleißfestigkeit bewirkt werden soll. Wenn auch die Einzelschichten im Wechsel mit bis zu sieben Zwischenschichten aufgebracht sind, können im praktischen Gebrauch Abplatzungen der Beschichtung aufgrund der resultierenden Belastung entstehen. In Patent Abstracts of Japan, unexamined applications, Field C, Band 6, Nr. 186, 22. September 1982; The Patent Office Japanese Government, Seite 7 C 126; Kokai-Nr. 57-98 670 (Sumitomo) ist ein Schneidwerkzeug aus beschichtetem Hartmetall bekanntgeworden, bei welchem auf ein Substrat ein oder mehrere Titanverbindungen aufgebracht sind, worauf sich eine Außenschicht aus A1203 befindet. Die Titanverbindung(en) besteht(en) aus einem Titanoxid, wobei der Sauerstoff teilweise durch Kohlenstoff und Stickstoff ersetzt ist. Derartige Zwischenschichten führen bei höheren Arbeitstemperaturen, insbesondere durch die Sauerstoffdiffusion zu spröden, das Abplatzen der Deckschicht begünstigenden Schichtbereichen, insbesondere am Substrat, wodurch die Standzeit des Werkzeuges vermindert wird.
  • Es wurde nun gefunden, daß die Probleme, die infolge der unterschiedlichen physikalischen und GebrauchsEigenschaften sowie Zweckbestimmung der einzelnen Lagen von Beschichtungen von Hartstoffkörpern mit hochverschleißfesten oxidischen Außen-Beschichtungen auftreten, weitestgehend ausschaltbar sind, wenn die auf dem Grundkörper bzw. Substrat befindliche Beschichtung unter Einhaltung bestimmter Mengengrenzen mit einem Element, das in der Außenbeschichtung anwesend bzw. mit ihm wesensverwandt ist, dotiert wird. Gegenstand der Erfindung ist ein Hartmetallkörper, insbesondere ein Hartmetallschneidwerkzeug, der eingangs genannten Art, das dadurch gekennzeichnet ist, daß unmittelbar auf dem Substrat des Grundkörpers eine aus einer oder mehreren Lagen gebildete erste Beschichtung mit zumindest einer 0,1 bis 2,5 Atom-% Aluminium und 0,1 bis 8,0 Atom-% Sauerstoff aufweisenden Schicht aus Oxikarbid, Oxikarbonitrid oder Oxinitrid, zumindest eines der Elemente Ti, Zr, Hf, V, Nb, Ta und Cr, aufgebracht ist, über welcher eine zweite, oxidische Beschichtung aus einer oder mehreren Schichten aus Oxid von Aluminium und/oder Zirkonium angeordnet ist, wobei die oxidische Schicht oder zumindest eine Schicht der zweiten Beschichtung boridhältige Einlagerungen aufweisen kann. Die genannten Einlagerungen weisen zumindest wesentliche Anteile Metallborid auf. Der Körper kann gegebenenfalls hitzebehandelt und/oder kompaktiert sein.
  • Es wurde gefunden, daß der Einbau von Aluminium und Sauerstoff in den genannten kleinen Mengen in die erste Beschichtung den Effekt eines praktisch stufenlosen Eigenschaftsüberganges der Einzellagen der Beschichtung ineinander erbringt, sodaß sich die jeweils spezifischen günstigen Eigenschaften von karbidischen und/oder nitridischen Schichten synergistisch mit den ausgezeichneten Verschleißeigenschaften von oxidischen (Außen)Beschichtungen kombinieren lassen. Nicht nur die Übergänge zwischen den beiden Haupt-Typen der Beschichtung, sondern auch jener vom Substrat zu den Beschichtungen zeichnet sich durch Flexibilität und hohe Haftung aus. Es wurde gefunden, daß eine Anwesenheit von Sauerstoff auch in unmittelbar an das Substrat angrenzender Schicht unproblematisch ist. Mit den neuen Hartmetallkörpern können hohe Schnittgeschwindigkeiten sowie hohe Bearbeitungsökonomie bei gleichzeitig verbesserten Standzeiten erreicht werden.
  • Wenn das Oxikarbid, -karbonitrid oder -nitrid - besonders bevorzugt ist Oxikarbonitrid - der ersten Beschichtung einen Gehalt an Aluminium von 0,5 bis 2 Atom-% und einen Gehalt an Sauerstoff von 1 bis 5 Atom-% aufweist, ist besonders sicheres Haften der beiden Beschichtungen gewährleistet, wobei anzumerken ist, daß auch bei Zirkonoxid aufweisender zweiter Beschichtung Aluminium allein den günstigen Effekt zu bringen imstande ist.
  • Hohe Standzeiten trotz ökonomisch hoher Schnittgeschwindigkeiten sind zu erzielen, wenn die erste Beschichtung zwei oder mehrere Schichten mit Oxikarbid, Oxikarbonitrid oder Oxinitrid, vorzugsweise Oxikarbonitrid, zumindest eines der oben genannten Elemente aufweist, wobei der Aluminium-Gehalt der einzelnen Schichten von einer unmittelbar an das Substrat grenzenden Schicht weg nach außen hin steigend ist.
  • In dieser Richtung weitere Verbesserungen können erzielt werden, wenn der Aluminium-Gehalt der Schichten der ersten Beschichtung von der unmittelbar an das Substrat grenzenden Schicht nach außen hin im wesentlichen linear steigend ist. Der Anstieg des Aluminium-Gehaltes kann dabei stufenweise, oder praktisch kontinuierlich sein.
  • Es hat sich in der Praxis erwiesen, daß der Sauerstoff-Gehalt mit Konzentrationen von 0,1 bis 8 Atom-%, vorzugsweise 1 bis 5 Atom-%, der Oxikarbid-, Oxikarbonitrid-, oder Oxinitrid-Schicht(en) der ersten Beschichtung keinesfalls nachteilige Wirkung hat.
  • Ähnlich wie das Vorhandensein von Aluminium, dessen Gehalt günstigerweise zusätzlich nach außen hin ansteigend gehalten werden kann, ist es im Hinblick auf den Übergang zum oxidischen Überzug hin weiters technisch vorteilhaft, wenn die erste Beschichtung zwei oder mehr Schichten mit einem Oxikarbid oder Oxikarbonitrid oder Oxinitrid, vorzugsweise Oxikarbonitrid, zumindest eines der oben genannten Elemente aufweist, wobei der Sauerstoff-Gehalt der einzelnen Schichten von der unmittelbar an das Substrat grenzenden Schicht weg nach außen hin steigend ist, wobei noch besseres Betriebsverhalten erzielbar ist, wenn der Sauerstoffgehalt in der ersten Beschichtung von der unmittelbar an das Substrat grenzenden Schicht weg nach außen, vorzugsweise im wesentlichen linear-steigend ist. Dabei können auch sehr dünne Einzelschichten vorhanden sein, sodaß der Anstieg praktisch kontinuierlich ist.
  • Für eine hohe Stabilisierung der oxidischen Beschichtung ist es vorteilhaft, wenn diese bzw. zumindest einzelne von deren Schichten Zirkonium von 1 bis 20 Gew.-%, vorzugsweise von 2 bis 15 Gew.-%, aufweist bzw. aufweisen.
  • Wenn, wie gemäß einer weiteren Variante vorgesehen, die zweite Beschichtung zwei oder mehr oxidische Schichten aufweist, wobei der Zirkonium-Gehalt der einzelnen Schichten von einer unmittelbar an die erste Beschichtung grenzenden, gegebenenfalls zirkonium-freien Schicht weg nach außen hin steigend ist, lassen sich u.a. die Abtragung an den verschleißbeanspruchten Flächen und damit die noch ausstehenden Standzeiten der Werkzeuge abschätzen, wobei auch in dieser Hinsicht ein im wesentlichen linearer - stufenweiser oder kontinuierlicher - Anstieg des Zirkoniumgehaltes besonders günstig ist. Mit einer solchen Abschätzungsmöglichkeit sind unbeabsichtigte Stillstandzeiten weitgehend vermeidbar.
  • Es hat sich gezeigt, daß die Dotation der ersten Beschichtung bzw. von deren Schichten mit Aluminium an sich stabilisierend wirkt, sodaß Anwesenheit von Zirkonium an sich nicht dringlich ist, es kann daher die an die erste Beschichtung unmittelbar angrenzende oxidische Schicht der zweiten Beschichtung auch eine zirkonium-freie Schicht mit Aluminiumoxid sein.
  • Weitere wesentliche Verschleißfestigkeitserhöhung läßt sich erreichen, wenn die in der zweiten Beschichtung vorgesehenen boridhältigen Einlagerungen solche mit Aluminium- und/oder Zirkoniumborid sind.
  • Insbesondere durch Wärmebehandlung oder durch ein vorteilhafterweise vorzusehendes Heißpressen kann ein besonders inniger noch verbesserter Verbund der einzelnen Lagen der Beschichtungen erzielt werden. Es ist also ein Körper gemäß der Erfindung besonders bevorzugt, wenn Substrat und Schicht(en) der ersten und zweiten Beschichtung jeweils untereinander Diffusionszonen aufweisen.
  • Weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung von wie bisher beschriebenen Hartmetallkörpern, insbesondere Schneidwerkzeugkörpern, wobei der Körper gegebenenfalls einer Wärme- bzw. Hitzebehandlung, vorzugsweise Thermodiffusionsbehandlung, insbesondere bei Temperaturen von 900 bis 1600°C, vorzugsweise von 1100 bis 1500°C, und/oder einem Nachverdichtungsvorgang, vorzugsweise einem isostatischen Heißpressen, insbesondere bei Drücken von 500 bis 2500 bar, unterworfen wird.
  • Die Erfindung wird im folgenden anhand von Beispielen mit Ergebnissen aus Testversuchen mit den neuen Schneidkörpern erläutert.
  • Beispiel 1:
  • Schneidkörper aus Hartmetall (85 % WC, 9,5 % TiC + TaC, 5,5 % Co) werden in einem Ofen unter Schutzgas bzw. Vakuum auf eine Temperatur von 1000°C aufgeheizt, und danach 60 min lang mit einem Gasgemisch mit 5 % TiCl4, 80 % H2, 5 % N2, 5 % CH4 und 5 % CO behandelt. Danach wird dem Gasgemisch AICI3 in Mengen von 0,5 % (Versuchsreihe 1a) und 1 % (Versuchsreihe 1b) mit geringen Mengen CO (jeweils 2 %) bezogen auf AICI3 zugemischt.
  • Für Vergleichszwecke unterblieb die Zumischung von AICI3. (Versuchsreihe 1c)
  • Der Gesamtdruck im Ofen beträgt während den Behandlungen 150 mbar. Nach einer Behandlungsdauer von 210 min hat sich eine etwa 3 µm dicke, völlig dichte Oxikarbonitrid-Schicht gebildet, die, jeweils im Mittel bei den Körpern der Versuchsreihe 1a mit 0,5 Atom-% AI und bei jenen der Versuchsreihe 1 mit 1,4 Atom-% AI dotiert war.
  • Beispiel 2: Versuchsreihe 2a
  • Schneidkörper aus Hartmetall (91 % WC, 2,5 % TiC + TaC, 6,5 % Co) werden in einem Ofen unter Schutzgas oder Vakuum auf eine Temperatur von 1000° C aufgeheizt und danach 40 min lang mit einem Gasgemisch mit 8 % TiCl4, 2 % ZrCl4, 70 % Wasserstoff, 15 % N2 und anfänglich 5 % C02 (Versuch A) behandelt. Danach wird in Intervallen von jeweils 10 min jeweils für 5 min das TiC14 durch AICI3 ersetzt und kontinuierlich wird unter entsprechender Reduktion des H2-Gehaltes der Gehalt an C02 von 5 auf 15 % gesteigert. Der Gesamtdruck im Ofen beträgt während dieser Behandlung 650 mbar. Nach 90 min hat sich eine etwa 2,5 µm dicke Oxinitrid-Schicht, in welcher der Al-Gehalt durchschnittlich 0,9 Atom-% betrug, und der Sauerstoff-Gehalt vom Substrat nach außen hin von 0,5 auf 3,5 Atom-% anstieg, ausgebildet.
  • Versuchsreihe 2b
  • Es wird in gleicher Weise vorgegangen, wie in Versuchsreihe 2a, jedoch wurden statt 15 % N2 im Gasgemisch 7,5 % N2 und 7,5 % CH4 eingesetzt. Es wird eine ebenfalls etwa 2,5 µm dicke Oxikarbonitrid-Schicht mit im wesentlichen ähnlichen Aluminiumgehalten und Sauerstoffgehalten, wie für Versuch 2a angegeben, auf dem Substrat abgeschieden.
  • Versuchsreihe 2c
  • Bei dieser Versuchsreihe erfolgte keine Zudotierung von AICI3, jedoch wurden die Behandlungsbedingungen gemäß Versuchsreihe 2a und 2b beibehalten. Das erhaltene beschichtete Material enthielt in seiner Hartstoffschicht kein Aluminium.
  • Zu den mit Aluminium dotierten Proben gemäß 2a und 2b ist anzumerken, daß in der direkt an das Substrat angrenzenden Schicht, in die an sich teilweise Aluminium von der späteren Behandlung eindiffundieren kann, analytisch Aluminium an der Nachweisgrenze lag.
  • Beispiel 3: Versuchsreihe 3a
  • Schneidkörper aus Hartmetall (79 % WC, 10 % TiC + TaC, 11 % Co) werden in einem Ofen unter Schutzgas bzw. Vakuum auf eine Temperatur von 1020°C aufgeheizt, und danach 90 min lang mit einem Gasgemisch mit 5 % TiCl4, 70 % H2 und 25 % CH4 behandelt. Der Arbeitsdruck im Ofen beträgt 200 mbar. Danach wird die Temperatur auf 1050°C erhöht und bei einem Arbeitsdruck von 150 mbar werden dann 120 min lang dem Gasgemisch unter jeweils entsprechender Senkung des Wasserstoff-Gehaltes jeweils 5 % AICI3 und 5 % CO2 jeweils 5 min lang alternierend zugesetzt.
  • Nach einer Gesamtdauer von 150 min hat sich bei Versuchsreihe 3a ein Überzug ausgebildet, der gegen die Außenfläche hin einen AI-Gehalt von 1,5 Atom-% AI und 6 Atom-% Sauerstoff angereichert aufweist, während nahe am Substrat Al- und der Sauerstoff-Gehalt jeweils unter 0,1 Atom-% liegen.
  • Versuchsreihe 3b
  • Hiebei wurde kein Aluminium zudotiert, jedoch wurden die sonstigen Bedingungen gemäß Versuchsreihe 3a eingehalten.
  • Beispiel 4: Versuchsreihe 4a
  • Schneidkörper gemäß den vorangegangenen Beispielen und Versuchsreihen werden in einem Gasgemisch mit 10 % AICI3, 80 % H2, 5 % CO2 und 5 % ZrCl4 während 120 min bei einer Temperatur von 1020°C behandelt, währenddessen in regelmäßigen Abständen von 8 min jeweils 2 min lang der Anteil an CO2 reduziert und durch BCl3 ersetzt wird. Es werden auf den Schneidkörpern oxidische Überzüge ausgebildet, welche Einlagerungen von Boriden des Aluminiums bzw. Zirkoniums aufweisen.
  • Versuchsreihe 4b
  • Bei sonst gleichem Vorgehen erfolgt bei Beschichtung von Proben der Versuchsreihe 1a, 2a kein Zudotieren von BCl3. Die Eigenschaften der erhaltenen Körper sind in einer Tabelle am Ende der Beispiele zusammengefaßt.
  • Beispiel 5: Versuchsreihe 5a
  • Schneidkörper gemäß den vorangegangenen Beispielen und Versuchsreihen werden in einem Gasgemisch mit anfänglich 10 % AlCl3, 70 % Wasserstoff, 12 % CO2, 5 % ZrCl4 und 3 % HCI bei 1030°C und einem Arbeitsdruck von 200 mbar derart behandelt, daß der AlCl3-Gehalt kontinuierlich während einer Zeit von 150 min auf 60 % des Anfangswertes reduziert wird und gleichzeitig der Gehalt an ZrCl4 entsprechend gesteigert wird, sodaß die Summe AlCl3 + ZrCl4 konstant bleibt. Es wird eine etwa 2 µm dicke Schicht mit Zr02-reicherer Außenzone erhalten.
  • Versuchsreihe 5b
  • Es werden die sonstigen Bedingungen gemäß Versuchsreihe 5a eingehalten, jedoch fehlte in der Gasphase das ZrCl4. Der AlCl3-Gehalt betrug 12 % und H2-Gehalt 73 %. Es wird ebenfalls ein etwa 1,5 bis 2 um dicker gleichmäßiger Aluminiumoxidüberzug erhalten.
  • Die Ergebnisse von Tests auch nach diesem Beispiel hergestellter Schneidkörper sind in der Tabelle zusammengefaßt.
  • Bei der Prüfung der Schneidkörper wurde die Biegebruchfestigkeit, sowie anhand von Drehversuchen an Grauguß 235 HB mit 1000 N/mm2 Festigkeit bei Testzeiten von 15 min mit Schnittgeschwindigkeit von 130 m min-1, Spanquerschnitt a x s = 2,0 x 0,25 mm2, die Verschleißmarkenbreite in mm, sowie an Stahl 34 Cr Ni Mo 6 bei Schnittgeschwindigkeiten von 140 m min-1, Spanquerschnitt a x s = 2,0 x 0,25 mm2, die Standzeit in min jeweils als Mittel von 5 Probeschneidkörpern ermittelt.
  • Die Ergebnisse zeigen deutlich den positiven Einfluß einer Anwesenheit von AI in der ersten Beschichtung sowie jenen von Sauerstoff. Verschleißeigenschafts-Verbesserungen werden durch Einbau von Zirkon in die auf die erfindungsgemäß mit AI dotierte Grundbeschichtung aufgebrachten oxidischen Überzüge erreicht, ebenso durch Einbau von Borid-Einlagerungen.
  • Besonders positiv ist die durch den Einbau von AI in die Grundschicht erreichbare Flexibilität der Schichten und deren Haftung.
    Figure imgb0001

Claims (16)

1. Hartmetallkörper, insbesondere Hartmetall-Schneidwerkzeug, mit Beschichtung auf Basis von Karbiden und/oder Nitriden von Elementen der IV. bis VI. Nebengruppe des Periodensystems und mindestens einer weiteren Beschichtung auf Basis von Aluminiumoxid und/oder Zirkoniumoxid, dadurch gekennzeichnet, daß unmittelbar auf dem Substrat des Grundkörpers eine aus einer oder mehreren Lagen gebildete erste Beschichtung mit zumindest einer 0,1 bis 2,5 Atom-% Aluminium und 0,1 bis 8,0 Atom-% Sauerstoff aufweisenden Schicht aus Oxikarbid, Oxikarbonitrid oder Oxinitrid, zumindest eines der Elemente Ti, Zr, Hf, V, Nb, Ta und Cr, aufgebracht ist, über welcher eine zweite, oxidische Beschichtung aus einer oder mehreren Schichten aus Oxid von Aluminium und/oder Zirkonium angeordnet ist.
2. Hartmetallkörper nach Anspruch 1, dadurch gekennzeichnet, daß die erste Beschichtung zwei oder mehr Schichten mit Oxikarbid, Oxikarbonitrid oder Oxinitrid, vorzugsweise Oxikarbonitrid, zumindest eines der im Anspruch 1 genannten Elemente aufweist, wobei dem Aluminium-Gehalt der einzelnen Schichten von einer unmittelbar an das Substrat grenzenden Schicht weg nach außen hin steigend ist.
3. Hartmetallkörper nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß der Aluminium-Gehalt der Schichten der ersten Beschichtung von der unmittelbar an das Substrat grenzenden Schicht nach außen hin im wesentlichen linear steigend ist.
4. Hartmetallkörper nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die erste Beschichtung zwei oder mehr Schichten mit einem Oxikarbid oder Oxikarbonitrid oder Oxinitrid, oder Oxikarbonitrid, zumindest eines der im Anspruch 1 genannten Elemente aufweist, wobei der Sauerstoff-Gehalt der einzelnen Schichten von der unmittelbar an das Substrat grenzenden Schicht weg nach außen hin steigend ist.
5. Hartmetallkörper nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Sauerstoffgehalt der Schichten der ersten Beschichtung von der unmittelbar an das Substrat grenzenden Schicht weg nach außen hin im wesentlichen linear steigend ist.
6. Hartmetallkörper nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Schicht(en) der zweiten Beschichtung 1 bis 20 Gew.-% Zirkonium enthält (enthalten).
7. Hartmetallkörper nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die zweite Beschichtung zwei oder mehr oxidische Schichten aufweist, wobei der Zirkonium-Gehalt der einzelnen Schichten von einer unmittelbar an die erste Beschichtung grenzenden, gegebenenfalls zirkonium-freien, Schicht weg nach außen hin steigend ist.
8. Hartmetallkörper nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die an die erste Beschichtung unmittelbar angrenzende oxidische Schicht der zweiten Beschichtung eine zirkonium-freie Aluminiumoxid-Schicht ist.
9. Hartmetallkörper nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß in der zweiten Beschichtung der Zirkonium-Gehalt von der an die erste Beschichtung unmittelbar angrenzenden Oxid-Schicht weg nach außen hin im wesentlichen linear steigend ist.
10. Hartmetallkörper nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die oxidische Schicht oder zumindest eine Schicht der zweiten Beschichtung boridhältige Einlagerungen aufweist.
11. Hartmetallkörper nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die in mindestens einer Schicht der zweiten Beschichtung vorhandenen boridhältige Einlagerungen durch Aluminium- und/oder Zirkoniumborid(e) gebildet sind.
12. Hartmetallkörper nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß der Körper Wärmebehandelt ist.
13. Hartmetallkörper nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß der Körper kompaktiert ist.
14. Hartmetallkörper nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß Substrat und Schicht bzw. Schichten der ersten und zweiten Beschichtung Diffusionszonen aufweisen.
15. Verfahren zur Herstellung eines Hartmetallkörpers nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß eine Wärmebehandlung, bei Temperaturen von 900 bis 1600°C und/oder eine Wärmebehandlung während des Beschichtungsvorganges angewendet wird.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß ein Nachverdichtungsvorgang, bei Drücken von 500 bis 2500 bar, angewendet wird.
EP84890252A 1983-12-22 1984-12-20 Hartmetallkörper, insbesondere Hartmetall-Schneidwerkzeug Expired EP0149449B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT449483A AT385947B (de) 1983-12-22 1983-12-22 Hartmetallkoerper, insbesondere hartmetall-schneidwerkzeug
AT4494/83 1983-12-22

Publications (2)

Publication Number Publication Date
EP0149449A1 EP0149449A1 (de) 1985-07-24
EP0149449B1 true EP0149449B1 (de) 1988-05-18

Family

ID=3564766

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84890252A Expired EP0149449B1 (de) 1983-12-22 1984-12-20 Hartmetallkörper, insbesondere Hartmetall-Schneidwerkzeug

Country Status (3)

Country Link
EP (1) EP0149449B1 (de)
AT (1) AT385947B (de)
DE (1) DE3471279D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008026358A1 (de) * 2008-05-31 2009-12-03 Walter Ag Werkzeug mit Metalloxidbeschichtung

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI862725A0 (fi) * 1986-06-26 1986-06-26 Ahlstroem Oy Slitfast haolplatta.
AT387186B (de) * 1987-05-04 1988-12-12 Ver Edelstahlwerke Ag Beschichteter hartmetallkoerper
US5449547A (en) * 1993-03-15 1995-09-12 Teikoku Piston Ring Co., Ltd. Hard coating material, sliding member coated with hard coating material and method for manufacturing sliding member
US7264668B2 (en) * 2001-10-16 2007-09-04 The Chinese University Of Hong Kong Decorative hard coating and method for manufacture
DE10320652A1 (de) * 2003-05-07 2004-12-02 Kennametal Widia Gmbh & Co.Kg Werkzeug, insbesondere Schneidwerkzeug und Verfahren zur CVD-Abscheidung einer zweiphasigen Schicht auf einem Substratkörper
DE102010039035A1 (de) * 2010-08-06 2012-02-09 Walter Ag Schneidwerkzeug mit mehrlagiger Beschichtung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2525185C3 (de) * 1975-06-06 1986-04-17 Fried. Krupp Gmbh, 4300 Essen Hartmetallkörper
US4018631A (en) * 1975-06-12 1977-04-19 General Electric Company Coated cemented carbide product
DE2851584B2 (de) * 1978-11-29 1980-09-04 Fried. Krupp Gmbh, 4300 Essen Verbundkörper
DE3069238D1 (en) * 1979-12-28 1984-10-25 Ver Edelstahlwerke Ag Hard body, especially hard metal wearing part, and process for its production
DE3174953D1 (en) * 1980-01-21 1986-08-28 Sandvik Ab Method of preparing coated cemented carbide product and resulting product
DE3279814D1 (en) * 1981-12-16 1989-08-17 Carboloy Inc Surface-coated hard metal body and method of producing the same
AT377786B (de) * 1981-12-24 1985-04-25 Plansee Metallwerk Verschleissteil, insbesondere hartmetall -schneideinsatz zur spanabhebenden bearbeitung
US4416670A (en) * 1982-05-20 1983-11-22 Gte Laboratories Incorporated Carbide coated composite silicon nitride cutting tools

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, unexamined applications, Field C Band 7, Nr. 77, 30. März 1983 THE PATENT OFFICE JAPANESE GOVERNMENT Seite 9 C 159 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008026358A1 (de) * 2008-05-31 2009-12-03 Walter Ag Werkzeug mit Metalloxidbeschichtung

Also Published As

Publication number Publication date
ATA449483A (de) 1987-11-15
AT385947B (de) 1988-06-10
DE3471279D1 (en) 1988-06-23
EP0149449A1 (de) 1985-07-24

Similar Documents

Publication Publication Date Title
DE2727250C2 (de) Oberflächenbeschichteter Sintercarbidgegenstand und Verfahren zu dessen Herstellung
DE69025582T2 (de) Beschichteter Hartmetallkörper und Verfahren zu seiner Herstellung
EP0306077B1 (de) Verfahren zur Herstellung mehrlagig beschichteter Hartmetallteile
DE2435989C2 (de) Verfahren zur Herstellung eines verschleißfesten, beschichteten Hartmetallkörpers für Zerspanungszwecke
EP0250865B1 (de) Schneidwerkzeug
DE2717842C2 (de) Verfahren zur Oberflächenbehandlung von gesinterten Hartmetallkörpern
DE19980940B4 (de) Beschichtetes Hartmetall-Schneidwerkzeug
EP3380645B1 (de) Beschichtung eines körpers mit diamantschicht und hartstoffschicht
DE19546357C2 (de) Harte Beschichtung mit ausgezeichneter Abriebsbeständigkeit zur Substratbeschichtung
DE68910081T2 (de) Schneidkörperblatt und Verfahren zu dessen Herstellung.
EP0093706B1 (de) Werkzeug und Verfahren zu dessen Herstellung
DE2917348B1 (de) Verbundkoerper und seine Verwendung
DE102016108734B4 (de) Beschichteter Körper und Verfahren zur Herstellung des Körpers
WO1993004015A1 (de) Werkzeug mit verschleissfester schneide aus kubischem bornitrid oder polykristallinem kubischem bornitrid, verfahren zu dessen herstellung sowie dessen verwendung
DE3234931A1 (de) Ueberzugsmasse und beschichtungsverfahren
EP1726687A2 (de) Beschichtes Werkzeug
DE2263210B2 (de) Verschleissteil aus hartmetall, insbesondere fuer werkzeuge
CH646127A5 (de) Beschichtetes sintercarbidprodukt.
EP2686462B1 (de) Beschichteter körper und verfahren zu dessen herstellung
EP1957429B1 (de) Beschichteter hartmetallkörper
EP0149449B1 (de) Hartmetallkörper, insbesondere Hartmetall-Schneidwerkzeug
EP1511870A1 (de) Hartmetall-substratkörper und verfahren zu dessen herstellung
EP0643152B1 (de) Schneidwerkstoff
DE2317447C2 (de) Schneideinsätze
DE2303756C3 (de) Verfahren zur Erzeugung einer Mischkarbidschicht aus Vanadium und Chrom auf kohlenstoffhaltigen Eisenwerkstoffen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19851230

17Q First examination report despatched

Effective date: 19870108

D17Q First examination report despatched (deleted)
ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3471279

Country of ref document: DE

Date of ref document: 19880623

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19881215

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19881231

Ref country code: CH

Effective date: 19881231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19891220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19891221

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900901

EUG Se: european patent has lapsed

Ref document number: 84890252.4

Effective date: 19900830