EP0135742B1 - Rundstrahlantenne - Google Patents

Rundstrahlantenne Download PDF

Info

Publication number
EP0135742B1
EP0135742B1 EP84109263A EP84109263A EP0135742B1 EP 0135742 B1 EP0135742 B1 EP 0135742B1 EP 84109263 A EP84109263 A EP 84109263A EP 84109263 A EP84109263 A EP 84109263A EP 0135742 B1 EP0135742 B1 EP 0135742B1
Authority
EP
European Patent Office
Prior art keywords
carrier body
antenna
radiator elements
section
omnidirectional antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84109263A
Other languages
English (en)
French (fr)
Other versions
EP0135742A1 (de
Inventor
Gerhard Tymann
Hans-Jürgen Dipl.-Ing. Steiner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Messerschmitt Bolkow Blohm AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messerschmitt Bolkow Blohm AG filed Critical Messerschmitt Bolkow Blohm AG
Publication of EP0135742A1 publication Critical patent/EP0135742A1/de
Application granted granted Critical
Publication of EP0135742B1 publication Critical patent/EP0135742B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • H01Q9/43Scimitar antennas

Definitions

  • the invention relates to an omnidirectional antenna according to the preamble of patent claim 1.
  • antenna arrangements of this type for example in the case of missiles or also in the case of spacecraft or satellites, for example for telemetry and steering command transmission purposes.
  • the antenna arrangement should be able to be designed flexibly with regard to the processing of different types of polarization and in particular for circularly polarized radiation.
  • the antenna arrangement should take up as little space as possible and should have high mechanical stability and low weight.
  • FIG. 272 shows a turnstile antenna as used in the third stage of the ELDO-A launch vehicle.
  • This has an axially symmetrical, cylindrical support body, on the circumference of which four radiator elements are each offset from one another by 90 °.
  • These are dipole rods, which initially protrude radially from the carrier body and are bent at right angles shortly above its surface, so that they run at a distance from the surface of the carrier body and parallel to its axis of symmetry.
  • the dipole rods are fed directly at their radially protruding ends, see also O. Zinke, H.
  • the invention is therefore based on the object of providing an omnidirectional antenna of the type mentioned at the outset with which an isotropic omnidirectional behavior can be achieved as far as possible.
  • radiator elements of the same type should be attached to the circumference of an axially symmetrical support body at regular angular intervals.
  • These radiator elements should be constructed according to the principle of transmission line, low silhouette blade or scimitar antennas known per se.
  • Their antenna rods can either be attached to a separate base plate, which is conductively fastened on the carrier body, or directly on the carrier body.
  • the base plate or carrier body are also referred to below as the antenna base.
  • Such a radiator element is usually supplied via a coaxial cable, the outer conductor of which is conductively connected to the antenna base and the inner conductor of which, after being insulated, is conductively connected to the antenna rod.
  • the position of the base point of the inner conductor on the antenna rod depends primarily on the operating wavelength and the distance from the antenna base.
  • the radiation behavior of such a radiator element is determined by two waves polarized orthogonally to one another.
  • the primary wave is excited essentially by the inner conductor crossing the gap between the antenna base and the antenna rod, resulting in an omnidirectional polarization parallel to the inner conductor, similar to the radiation of a monopole.
  • the secondary wave is excited by the antenna rod and is polarized parallel to it.
  • the entire spatial radiation diagram of such a radiator element results from the superposition of these two waves, which, depending on the radiation direction, leads to the occurrence of linear to circular polarization of both directions of rotation. This radiation behavior is also exhibited by the low-silhouette-blade radiator elements described in “Frequency”, 27 (1973), No. 3, pp. 74-77.
  • radiator elements of this type are arranged at regular intervals on the circumference of a symmetrical support body, as mentioned above, in such a way that their antenna rods with respect to the axis of symmetry of the support body or whose parallels are inclined.
  • the individual radiator elements are to be fed in a known manner with a phase shift which results from dividing the full angle by 360 ° by the number of radiator elements arranged overall on the circumference. This means that these phase shifts, which are rectified in one revolution, add up to 360 °.
  • the radiator elements should all have essentially the same geometric dimensions, and their antenna rods should all be inclined by the same angular amount with respect to the axis of symmetry of the carrier body.
  • the inclination will preferably take place in each case in a plane which is oriented parallel to the axis of symmetry and whose surface normal intersects the axis of symmetry.
  • the above-mentioned low silhouette blade antennas are only shown in the cited literature as single radiators, which are mounted on a base plate or on a cylindrical carrier body.
  • the radiation diagrams given for these individual radiators for the two orthogonal polarization directions are far from reflecting an isotropic omnidirectional behavior. It cannot even be concluded from these individual radiator diagrams that such an isotropic omnidirectional behavior can be achieved by attaching several individual radiator elements distributed around the circumference of the cylindrical support body. Rather, the associated individual diagrams, for example, Figures 3b and 4a, suggest that a strong dip in the radiation intensity will always remain in the direction of the axis of symmetry of the cylindrical support body.
  • the invention now surprisingly eliminates this deficiency in that the antenna rods of the individual radiating elements are no longer arranged parallel to the axis of symmetry of the support body, but rather are inclined to it.
  • the omnidirectional antenna follows with which direction of rotation the radiator elements are to be fed.
  • the antenna rods of the radiator elements are inclined with their free ends to the side that corresponds to the direction of rotation of the polarization and thus the rotating field. If the antenna rods are left in the previous position when there is a change in polarization and the associated change in the rotating field of the feed, there is a reduction in the isotropy in the rear region.
  • a cone-shaped reflector with a cross-section tapering towards the radiator elements or perpendicular to the axis of symmetry of a flat reflector is arranged coaxially to the axis of symmetry at the end of the carrier body facing away from the free ends of the antenna rods.
  • a metallic reflector which is conductively connected to the support body, ensures that the cross-polarized interference radiation, which is otherwise primarily directed into the rear space, is largely converted into useful radiation of the desired polarization by reflection on the reflector surface and simultaneous phase reversal. This effect can be optimized by correct positioning and dimensioning of the reflector. This is associated with a considerable reduction in the interference radiation component that is disorderly reflected on the satellite structure.
  • a further, planar reflector can be arranged behind this first reflector at a distance from it and projecting beyond its edge.
  • This reflector reinforces the above effect by largely reducing diffraction of the interfering radiation around the edge of the first reflector and thus additionally contributing to the suppression of the cross-polarized radiation in the rear area, which reverses the direction of polarization when reflected, for example, on the satellite body would interfere with the useful radiation in an uncontrolled manner.
  • a further coordination of the radiation diagram can be made possible in that the carrier body projects in the axial direction beyond the free ends of the antenna rods. This is preferably done by an amount of a quarter to half the operating wavelength. In particular, this improves the isotropy of the radiation.
  • a preferred embodiment of the antenna arrangement according to the invention is given in that the carrier body has a constant square cross section and carries a radiating element on each of its four side surfaces.
  • the free ends of the respective antenna rods are inclined in planes parallel to the respective side surface by a predeterminable angle with respect to the axis of symmetry of the carrier body.
  • the four radiator elements are fed with a 90 ° phase difference to each other.
  • a hybrid network is expediently used, which can be integrated on the back of the further flat reflector.
  • the interconnection can be designed in such a way that the hybrid network is connected on the output side to the individual radiator elements via HF lines.
  • the carrier body is designed as a hollow body, so that the HF lines, for example coaxial cables, run in its interior and can be connected to the radiator elements through its side walls.
  • the omnidirectional antenna should be flexible with regard to the two possible directions of rotation of the circular polarization.
  • the hybrid network is expediently equipped on the input side with an input for left-handed and right-handed polarization or phase control.
  • the carrier body 1 shows a side view of an omnidirectional antenna, which essentially consists of a carrier body 1, four radiator elements 2, a frustoconical first reflector 12 and a flat reflector 13.
  • the carrier body has a square cross-section in its upper part, which supports the emitter elements 2, and in a subsequent part 10 changes to a circular cross-section, which it retains in its lower part 14.
  • the carrier body 1, 10, 14 is formed over its entire length as a hollow body and made of metal, such as aluminum. It has an axis of symmetry 5.
  • the radiator elements 2 are of the type of the so-called transmission line or low silhouette blade antennas and essentially consist of a metallic base plate 3 and a likewise metallic antenna rod 4, which is parallel to and at a certain distance over almost its entire length Base plate 3 out and is conductively connected to this.
  • the radiating element 2 is designed as a casting, so that the antenna rod 4 has electrically conductive contact with the carrier body via the base plate 3.
  • the radiator elements 2 are each fed via their own coaxial cable 6. This is shown in more detail by a partial section on the radiator element 2a. Accordingly, the coaxial cable 6, initially coming from the interior of the hollow carrier body 1, is passed through a corresponding opening in its wall. The outer conductor 9 is then brought into electrical contact with the base plate 3.
  • the inner conductor 7 with the insulation 8 surrounding it is then passed through an opening provided in the base plate 3.
  • the inner conductor 7 is expediently sunk into a bore in the antenna rod 4, providing good electrical contact.
  • the coaxial cable 6 can also be connected to the radiator elements 2 by means of HF plug connections. Instead of coaxial cables, other HF lines can also be used.
  • the coaxial cables of the four radiator elements are connected to the corresponding outputs of a hybrid network 16, which can be attached to the underside of the reflector plate 13. Power is supplied with a 90 ° phase shift between adjacent radiator elements with a rotating field that rotates clockwise with respect to the axis of symmetry.
  • the preferred direction of polarization is circularly clockwise.
  • the omnidirectional antenna is dimensioned such that the side length c of the square cross section and the length d of the part of the support body 1 protruding beyond the emitter elements 2 are each approximately ⁇ / 4 to A./2, the total length I of the omnidirectional antenna 1.5 ⁇ and the diameter D of the reflector plate 13 is approximately ⁇ .
  • the angle ⁇ by which the antenna rods 4 or the planes of symmetry 18 of the radiator elements 2 given by their longitudinal extension and their connection point 17 to the carrier body are inclined with respect to the direction given by the axis of symmetry 5, up to 45 ° , preferably between 18 ° and 36 °.
  • a favorable range for half the opening angle ⁇ / 2 of the frustoconical reflector 12 is ⁇ / 2> 45 °.
  • the solid curve R represents the relative radiation power of the right-hand circularly polarized radiation desired in the present case, depending on the angle of deposit 0.
  • the omnidirectional antenna shown schematically serves the simultaneous operation of right and left circular polarization.
  • the radiator elements 19 are arranged at a mutual spacing of 90 ° on a rotationally symmetrical support body 20 with a circular cylindrical cross section such that they are oriented parallel to the axis of symmetry 21 of the support body 20.
  • the radiator elements 19 are fed by a hybrid network via coaxial cables, each with a 90 ° phase difference.
  • the transition part 22 adjoining the part 15 of the carrier body 20 which is oriented towards the front with respect to the arrow direction 15 and has a constant circular cylindrical cross section has an expanding circular cross section and a longitudinally sectioned double-curved, namely double exponentially shaped outer contour. This design helps shape the diagram.
  • the surface currents generated by the radiator elements 19 flow on the surface of the carrier body 20 and, to a lesser extent, on the double exponentially shaped transition part 22. These currents in turn generate an electromagnetic field which interferes with the primary radiation field. Due to the curvature of the surface, however, there are no preferred spatial directions for the interfering radiation field. As a result, the radiation behavior of the antenna is largely preserved in the angular range 0 ° ⁇ A ⁇ 90 °.
  • the exponentially shaped transition part 22 acts as a geometrically optical shadow, which can be adjusted by changing the distance between the emitter elements 19 and the special shape of the exponential transition part. Due to the special shape of the transition part there is no diffracted radiation field.
  • a wave trap 24 of radial depth ⁇ / 4 is used in the end part 23 adjoining the transition part 22, which in turn has a constant circular cross section with an enlarged radius points.
  • the reduction of the cross-polar level in the angular range 90 ° ⁇ 0 ⁇ 150 ° is approx. 10 dB.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

  • Die Erfindung betrifft eine Rundstrahlantenne gemäß dem Oberbegriff des Patentanspruchs 1.
  • Ein Bedarf zum Einsatz derartiger Antennenanordnungen besteht beispielsweise bei Flugkörpern oder auch bei Raumflugkörpern bzw. Satelliten, etwa zu Telemetrie- und Lenkkommando- übertragungszwecken. Dabei wird vor allem verlangt, daß eine möglichst isotrope Rundstrahlcharakteristik erzielbar ist und über einen weiten Raumwinkelbereich keine Einbrüche im Strahlungsdiagramm auftreten. Weiterhin soll die Antennenanordnung flexibel hinsichtlich der Verarbeitung verschiedener Polarisationsarten und insbesondere für zirkular polarisierte Strahlung auslegbar sein. Bei der Verwendung für Flugkörper oder Satelliten ergibt sich als besondere Forderung, daß die Antennenanordnung möglichst wenig Raum beanspruchen und eine hohe mechanische Stabilität bei geringem Gewicht besitzen soll.
  • Eine Rundstrahlantenne der eingangs genannten Art ist aus NTZ, 1969, H. 5, S. 271-275 bekannt. Dort ist in Bild 1 auf Seite 272 eine Turnstile-Antenne abgebildet, wie sie bei der dritten Stufe der Trägerrakete ELDO-A verwendet wurde. Diese hat einen achssymmetrischen, zylindrischen Trägerkörper, an dessen Umfang jeweils um 90° gegeneinander versetzt vier Strahlerelemente angebracht sind. Dabei handelt es sich um Dipolstäbe, welche zunächst radial aus dem Trägerkörper herausragen und kurz über dessen Oberfläche rechtwinkelig abgebogen sind, so daß sie mit Abstand zur Oberfläche des Trägerkörpers und parallel zu dessen Symmetrieachse verlaufen. Wie bei Turnstile-Antennen üblich, erfolgt die Speisung der Dipolstäbe direkt an ihren radial aus dem Trägerkörper herausragenden Enden, siehe hierzu auch O. Zinke, H. Brunswig, «Lehrbuch der Hochfrequenztechnik», 1965, S. 218. Die vier Strahlerelemente sind mit jeweils 90° Phasenverschiebung gegeneinander gespeist, d. h. mit einer Phasendifferenz, welche dem Winkelabstand zwischen den einzelnen Strahlerelementen entspricht. Aus dem Strahlungsdiagramm dieser bekannten Rundstrahlantenne folgt, daß zwar nahezu in alle Raumrichtungen abgestrahlt wird, das gewünschte isotrope Strahlungsverhalten jedoch bei weitem noch nicht erreicht ist. Eine ähnliche Antenne, aber mit halbsichelförmigen (Scimitar) Antennenelementen ist aus der US-A 3015101 bekannt (siehe dort Fig. 15).
  • Der Erfindung liegt daher die Aufgabe zugrunde, eine Rundstrahlantenne der eingangs genannten Art bereitzustellen, mit der so weitgehend wie möglich ein isotropes Rundstrahlverhalten erzielbar ist.
  • Diese Aufgabe wird gemäß der Erfindung durch die im kennzeichnenden Teil des Patentanspruchs 1 genannten konstruktiven Maßnahmen gelöst.
  • Eine weitere Lösung der o.g. Aufgabe ist gemäß der Erfindung durch die im kennzeichnenden Teil des Patentanspruchs 6 genannten konstruktiven Maßnahmen gegeben.
  • Demnach sollen am Umfang eines achssymmetrischen Trägerkörpers in regelmäßigen Winkelabständen gleichartige Strahlerelemente angebracht sein. Diese Strahlerelemente sollen nach dem an sich bekannten Prinzip der Transmission-Line-, Low-Silhouette-Blade- oder Scimitar-Antennen aufgebaut sein. Deren Antennenstäbe können entweder jeweils auf einer separaten, auf dem Trägerkörper leitend befestigten Basisplatte oder direkt auf dem Trägerkörper angebracht sein. Basisplatte bzw. Trägerkörper werden in diesem Zusammenhang im folgenden auch als Antennenbasis bezeichnet. Die Speisung eines derartigen Strahlerelements erfolgt gewöhnlich über ein Koaxialkabel, dessen Außenleiter mit der Antennenbasis und dessen Innenleiter nach isolierter Durchführung durch letztere mit dem Antennenstab leitend verbunden ist. Die Lage des Fußpunktes des Innenleiters auf dem Antennenstab hängt dabei in erster Linie von der Betriebswellenlänge und dem Abstand von der Antennenbasis ab. Das Strahlungsverhalten eines derartigen Strahlerelements ist durch zwei orthogonal zueinander polarisierte Wellen bestimmt. Die primäre Welle wird dabei im wesentlichen durch den den Spalt zwischen Antennenbasis und Antennenstab durchquerenden Innenleiter erregt, wobei sich eine parallel zum Innenleiter polarisierte Rundstrahlung ergibt, ähnlich der Strahlung eines Monopols. Die sekundäre Welle wird durch den Antennenstab erregt und ist parallel zu diesem polarisiert. Das gesamte räumliche Strahlungsdiagramm eines derartigen Strahlerelementes ergibt sich aus der Überlagerung dieser beiden Wellen, die in Abhängigkeit von der Abstrahlrichtung zum Auftreten von linearer bis zirkularer Polarisation beider Drehrichtungen führt. Dieses Strahlungsverhalten weisen auch die in «Frequenz», 27 (1973), Heft 3, S. 74-77, beschriebenen Strahlerelemente vom Low-Silhouette-Blade-Typ auf.
  • Es hat sich nun gezeigt, daß ein isotropes Rundstrahlverhalten in sehr guter Annäherung dadurch erzielbar ist, daß am Umfang eines, wie oben erwähnt, symmetrischen Trägerkörpers in regelmäßigen Abständen derartige Strahlerelemente so angeordnet werden, daß deren Antennenstäbe in bezug auf die Symmetrieachse des Trägerkörpers bzw. deren Parallelen geneigt sind. Dabei sind in bekannter Weise die einzelnen Strahlerelemente mit einer Phasenverschiebung zu speisen, die sich durch Division des Vollwinkels von 360° durch die Anzahl der am Umfang insgesamt angeordneten Strahlerelemente ergibt. Somit addieren sich diese bei einem Umlauf gleichgerichteten Phasenverschiebungen zu 360°. Die Strahlerelemente sollen sämtlich im wesentlichen die gleichen geometrischen Abmessungen besitzen, und ihre Antennenstäbe sollen gegenüber der Symmetrieachse des Trägerkörpers sämtlich um den gleichen Winkelbetrag geneigt sein. Die Neigung wird dabei bevorzugt jeweils in einer Ebene erfolgen, die parallel zur Symmetrieachse orientiert ist und deren Flächennormale die Symmetrieachse schneidet.
  • Die oben erwähnten Low-Silhouette-Blade-Antennen sind in der genannten Literaturstelle lediglich als Einzelstrahler dargestellt, welche auf einer Grundplatte oder auf einem zylindrischen Trägerkörper montiert sind. Die für diese Einzelstrahler jeweils angegebenen Strahlungsdiagramme für die zwei orthogonalen Polarisationsrichtungen sind weit davon entfernt, ein isotropes Rundstrahlverhalten wiederzugeben. Aus diesen Einzelstrahlerdiagrammen kann noch nicht einmal geschlossen werden, daß ein solches isotropes Rundstrahlverhalten durch Anbringung mehrerer am Umfang des zylindrischen Trägerkörpers verteilter Einzelstrahlerelemente erzielbar ist. Vielmehr lassen die zusammengehörigen Einzeldiagramme, beispielsweise der Bilder 3b sowie 4a, darauf schließen, daß in der Richtung der Symmetrieachse des zylindrischen Trägerkörpers immer ein starker Einbruch der Strahlungsintensität verbleiben wird. Diesen Mangel beseitigt die Erfindung nun auf überraschende Weise dadurch, daß die Antennenstäbe der einzelnen Strahlerelemente nicht mehr parallel zur Symmetrieachse des Trägerkörpers, sondern geneigt dazu angeordnet sind.
  • Aus der gewünschten Polarisation, d.h. links oder rechts zirkular, der Rundstrahlantenne folgt, mit welchem Drehsinn die Strahlerelemente zu speisen sind. Um eine Optimierung der Rundstrahleigenschaften zu erhalten, sind die Antennenstäbe der Strahlerelemente mit ihren freien Enden nach der Seite geneigt, die dem Drehsinn der Polarisation und damit des Drehfeldes entspricht. Werden die Antennenstäbe bei Polarisationswechsel und damit verbundenem Wechsel des Drehfeldes der Speisung in der vorherigen Stellung belassen, so ergibt sich eine Verminderung der Isotropie im rückwärtigen Bereich.
  • Gemäß einer vorteilhaften Weiterbildung der Erfindung ist vorgesehen, an dem den freien Enden der Antennenstäbe abgewandten Ende des Trägerkörpers koaxial zu dessen Symmetrieachse einen kegelstumpfförmigen Reflektor mit zu den Strahlerelementen hin sich verjüngendem Querschnitt oder senkrecht zur Symmetrieachse einen ebenen Reflektor anzuordnen. Durch einen derartigen, mit dem Trägerkörper leitend verbundenen, metallischen Reflektor wird erreicht, daß die sonst vor allem in den rückwärtigen Raum gerichtete, kreuzpolarisierte Störstrahlung zum großen Teil durch Reflexion an der Reflektorfläche und gleichzeitige Phasenumkehr in Nutzstrahlung der gewünschten Polarisation umgewandelt wird. Dieser Effekt kann durch richtige Positionierung und Dimensionierung des Reflektors optimiert werden. Damit verbunden ist eine erhebliche Verminderung des an der Satellitenstruktur ungeordnet reflektierten Störstrahlungsanteils. Darüber hinaus kann zusätzlich bezüglich der Strahlerelemente hinter diesem ersten Reflektor mit Abstand zu diesem und über dessen Rand hinausragend, ein weiterer, ebener Reflektor angeordnet sein. Dieser Reflektor verstärkt den obigen Effekt, indem er eine Beugung der Störstrahlung um den Rand des ersten Reflektors herum weitgehend reduziert und somit zusätzlich zur Unterdrückung der kreuzpolarisierten Strahlung in den rückwärtigen Raumbereich beiträgt, die bei einer Reflexion beispielsweise am Satellitenkörper den Drehsinn der Polarisierung umkehren und somit mit der Nutzstrahlung unkontrolliert interferieren würde.
  • Eine weitere Abstimmung des Strahlungsdiagramms kann dadurch ermöglicht werden, daß der Trägerkörper in axialer Richtung über die freien Enden der Antennenstäbe hinausragt. Dies geschieht vorzugsweise um einen Betrag von einem Viertel bis der Hälfte der Betriebswellenlänge. Hierdurch wird vor allem die Isotropie der Strahlung verbessert.
  • Eine bevorzugte Ausführungsform der erfindungsgemäßen Antennenanordnung ist dadurch gegeben, daß der Trägerkörper einen gleichbleibend quadratischen Querschnitt aufweist und an jeder seiner vier Seitenflächen ein Strahlerelement trägt. Dabei sind die jeweiligen Antennenstäbe mit ihren freien Enden in zur jeweiligen Seitenfläche parallelen Ebenen um einen vorgebbaren Winkel gegenüber der Symmetrieachse des Trägerkörpers geneigt. Die vier Strahlerelemente werden mit jeweils 90° Phasendifferenz zueinander gespeist.
  • Zum Zwecke der phasenverschobenen Speisung der Strahlerelemente wird zweckmäßig ein Hybridnetzwerk verwendet, welches auf der Rückseite des weiteren ebenen Reflektors integriert sein kann. Die Verschaltung kann dabei derart gestaltet sein, daß das Hybridnetzwerk ausgangsseitig über HF-Leitungen mit den einzelnen Strahlerelementen verbunden ist. Dazu wird der Trägerkörper als Hohlkörper ausgebildet, so daß die HF-Leitungen, beispielsweise Koaxialkabel, in seinem Inneren verlaufen und durch seine Seitenwände hindurch mit den Strahlerelementen verbunden werden können.
  • Die Rundstrahlantenne soll flexibel hinsichtlich der beiden möglichen Drehrichtungen der zirkularen Polarisation sein. Daher wird das Hybridnetzwerk zweckmäßig eingangsseitig mit je einem Eingang für links- und rechtsdrehende Polarisation bzw. Phasenansteuerung ausgestattet. Beim Wechsel der Polarisationsdrehrichtung ist es zweckmäßig, die Strahlerelemente selbst, bezogen auf deren Antennenstäbe, ebenfalls in die andere Drehrichtung zu neigen.
  • Schließlich besteht bei einem Hybridnetzwerk mit zwei Eingängen noch die Möglichkeit, auch eine simultane Einspeisung einer links- und rechtsdrehenden Welle vorzunehmen.
  • Im folgenden wird die Erfindung anhand von in den Abbildungen dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:
    • Fig. 1 eine Rundstrahlantenne gemäß der Erfindung mit einem Trägerkörper quadratischen Querschnitts und vier Strahlerelementen in Seitenansicht;
    • Fig. 2 ein durch die Rundstrahlantenne der Fig. 1 erzielbares Strahlungsdiagramm.
    • Fig. 3 eine weitere Rundstrahlantenne gemäß der Erfindung.
  • In Fig. 1 ist in schematischer Weise in Seitenansicht eine Rundstrahlantenne dargestellt, die im wesentlichen aus einem Trägerkörper 1, vier Strahlerelementen 2, einem kegelstumpfförmigen, ersten Reflektor 12 sowie einem ebenen Reflektor 13 besteht. Der Trägerkörper hat in seinem oberen, die Strahlerelemente 2 tragenden Teil einen quadratischen Querschnitt, geht in einem anschließenden Teil 10 auf einen kreisförmigen Querschnitt über, den er in seinem unteren Teil 14 beibehält. Der Trägerkörper 1, 10, 14 ist über seine ganze Länge als Hohlkörper ausgebildet und aus Metall, etwa Aluminium, gefertigt. Er besitzt eine Symmetrieachse 5.
  • Die Strahlerelemente 2 sind hier vom Typ der sogenannten Transmission-Line- oder Low-Silhouette-Blade-Antennen und bestehen im wesentlichen aus je einer metallischen Basisplatte 3 und einem ebenfalls metallischen Antennenstab 4, der über nahezu seine gesamte Länge in einem gewissen Abstand parallel zur Basisplatte 3 geführt und mit dieser leitend verbunden ist. Das Strahlerelement 2 ist als Gußstück ausgeführt, so daß der Antennenstab 4 über die Basisplatte 3 elektrisch leitenden Kontakt zum Trägerkörper hat. Die Speisung der Strahlerelemente 2 erfolgt jeweils über ein eigenes Koaxialkabel 6. Dies ist durch einen Teilschnitt am Strahlerelement 2a näher dargestellt. Demnach wird das Koaxialkabei 6 zunächst, aus dem Inneren des hohlen Trägerkörpers 1 kommend, durch eine entsprechende Öffnung in dessen Wand hindurchgeführt. Der Außenleiter 9 wird dann mit der Basisplatte 3 in elektrischen Kontakt gebracht. Der Innenleiter 7 mit der ihn umgebenden Isolierung 8 ist dann durch eine dafür vorgesehene Öffnung in der Basisplatte 3 hindurchgeführt. Der Innenleiter 7 ist zweckmäßig unter Schaffung eines guten elektrischen Kontaktes in eine Bohrung des Antennenstabes 4 eingesenkt. Der Anschluß des Koaxialkabels 6 an die Strahlerelemente 2 kann auch mittels HF-Steckverbindungen erfolgen. Anstelle von Koaxialkabeln können auch andere HF-Leitungen verwendet werden.
  • Die Koaxialkabel der vier Strahlerelemente sind an die entsprechenden Ausgänge eines Hybridnetzwerkes 16 angeschlossen, welches an der Unterseite der Reflektorplatte 13 angebracht sein kann. Die Speisung erfolgt mit jeweils 90° Phasenverschiebung zwischen benachbarten Strahlerelementen mit einem bezüglich der Symmetrieachse rechtsdrehenden Drehfeld. Die bevorzugte Polarisationsrichtung ist damit zirkular rechtsdrehend.
  • In Abhängigkeit von der Betriebswellenlänge λ ist die Rundstrahlantenne so dimensioniert, daß die Seitenlänge c des quadratischen Querschnitts sowie die Länge d des über die Strahlerelemente 2 hinausragenden Teils des Trägerkörpers 1 je ca. λ/4 bis A./2, die Gesamtlänge I der Rundstrahlantenne ca. 1,5 λ und der Durchmesser D der Reflektorplatte 13 ca. λ beträgt. Für die Erzielung eines optimalen Strahlungsdiagramms sollte der Winkel α, um den die Antennenstäbe 4 bzw. die durch deren Längserstreckung und deren Verbindungsstelle 17 zum Trägerkörper gegebenen Symmetrieebenen 18 der Strahlerelemente 2 gegenüber der durch die Symmetrieachse 5 gegebenen Richtung geneigt sind, bis zu 45° betragen, vorzugsweise zwischen 18° und 36°. Ein günstiger Bereich für den halben Öffnungswinkel β/2 des kegelstumpfförmigen Reflektors 12 ist ß/2 > 45°.
  • Fig. 2 zeigt ein bei einer Betriebsfrequenz von 2,1 GHz mit der Rundstrahlantenne der Fig. 1 aufgenommenes Strahlungsdiagramm. Dargestellt ist eine zur Zeichenebene der Fig. 1 parallele, durch die Symmetrieachse 5 verlaufende Ebene, wobei die Richtung der Symmetrieachse 5 gleichzeitig mit der Richtung 8 = 0° identisch ist. Die ausgezogene Kurve R gibt in Abhängigkeit vom Ablagewinkel 0 die relative Strahlungsleistung der im vorliegenden Falle gewünschten, rechtszirkular polarisierten Strahlung wieder.
  • Fig. 3 zeigt eine weitere, mit Vorteil anzuwendende Ausführungsform der Erfindung. Die schematisch dargestellte Rundstrahlantenne dient dem simultanen Betrieb von rechts- und linkszirkularer Polarisation. Die Strahlerelemente 19 sind im gegenseitigen Abstand von jeweils 90° auf einem rotationssymmetrischen Trägerkörper 20 mit kreiszylindrischem Querschnitt so angeordnet, daß sie parallel zur Symmetrieachse 21 des Trägerkörpers 20 orientiert sind. Die Strahlerelemente 19 werden über Koaxialkabel mit jeweils 90° Phasendifferenz von einem Hybridnetzwerk gespeist. Der sich an den bezüglich der Pfeil richtung 15 nach vorn orientierten, mit konstantem kreiszylindrischen Querschnitt ausgestatteten Teil des Trägerkörpers 20 nach hinten anschließende Übergangsteil 22 hat einen sich aufweitenden kreisförmigen Querschnitt und im Längsschnitt eine doppelt gegensinnig gekrümmte, nämlich doppelt exponentiell geformte Außenkontur. Diese Gestaltung trägt zur Diagrammformung bei.
  • Die von den Strahlerelementen 19 erzeugten Oberflächenströme fließen auf der Oberfläche des Trägerkörpers 20 und in Fortsetzung vermindert auf dem doppelt exponentiell geformten Übergangsteil 22. Diese Ströme erzeugen ihrerseits ein elektromagnetisches Feld, das mit dem primären Strahlungsfeld interferiert. Durch die Krümmung der Oberfläche entstehen allerdings keine bevorzugten Raumrichtungen für das interferierende Strahlungsfeld. Infolgedessen bleibt das Strahlungsverhalten der Antenne im Winkelbereich 0° < A < 90° weitgehend erhalten. Für die rückwärtig gerichtete primäre Strahlung wirkt der exponentiell geformte Übergangsteil 22 als geometrisch optischer Schatten, der durch Veränderung des Abstandes zwischen den Strahlerelementen 19 sowie die spezielle Formung des exponentiellen Übergangsteils eingestellt werden kann. Durch die spezielle Formgebung des Übergangsteils entsteht kein gebeugtes Strahlungsfeld. Zur Verminderung der rückwärtig gerichteten, kreuzpolaren Störstrahlung dient eine Wellenfalle 24 der radialen Tiefe λ/4 in dem an den Übergangsteil 22 anschließenden Abschlußteil 23, der wiederum einen konstanten kreisförmigen Querschnitt mit allerdings vergrößertem Radius aufweist. Die Verminderung des kreuzpolaren Pegels im Winkelbereich 90° < 0 < 150° beträgt ca. 10 dB.

Claims (8)

1. Rundstrahlantenne mit einem an seiner Oberfläche elektrisch leitenden Trägerkörper (1) achssymmetrischen Querschnitts sowie mehreren, am Umfang des Trägerkörpers in gleichmäßigem Winkelabstand voneinander angeordneten Strahlerelementen (2), welche in Bezug auf die jeweils benachbarten Strahlerelemente mit dem Winkelabstand entsprechender Phasenverschiebung gespeist sind und jeweils mit Abstand zur Oberfläche des Trägerkörpers geführte Antennenstäbe (4) aufweisen, dadurch gekennzeichnet, daß die Antennenstäbe (4) jeweils an einer Seite mit dem Trägerkörper (1) elektrisch leitend verbunden sind, daß die Antennenstäbe je mit einem eigenen, durch den Spalt zwischen Trägerkörper (1) und Antennenstab (4) hindurchgeführten, gegenüber der leitenden Oberfläche des Trägerkörpers (1) isolierten Speiseleiter (7) verbunden sind und daß die durch die Längserstreckung der Antennenstäbe (4) sowie deren Verbindungsstellen mit dem Trägerkörper (1) gegebenen Symmetrieebenen in Bezug auf die Symmetrieachse des Trägerkörpers (1) geneigt sind.
2. Rundstrahlantenne nach Anspruch 1, dadurch gekennzeichnet, daß an dem den freien Enden der Antennenstäbe (4) abgewandten Ende des Trägerkörpers (1) koaxial zu dessen Symmetrieachse (5) ein kegelstumpfförmiger Reflektor (12) mit zu den Strahlerelementen (2) hin sich verjüngendem Querschnitt angeordnet ist.
3. Rundstrahlantenne nach Anspruch 1, dadurch gekennzeichnet, daß an dem den freien Enden der Antennenstäbe (4) abgewandten Ende des Trägerkörpers (1) senkrecht zu dessen Symmetrieachse (5) ein ebener Reflektor angeordnet ist.
4. Rundstrahlantenne nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß in Bezug auf die Strahlerelemente (2) hinter dem kegelstumpfförmigen Reflektor (12) bzw. ebenen Reflektor mit Abstand zu diesem und über dessen Rand hinausragend, ein weiterer ebener Reflektor (13) angeordnet ist.
5. Rundstrahlantenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß bei einem Trägerkörper (1) mit quadratischem Querschnitt an jeder seiner vier Seitenflächen ein Strahlerelement (2) angeordnet ist.
6. Rundstrahlantenne mit einem an seiner Oberfläche elektrisch leitenden Trägerkörper (20) achssymmetrischen Querschnitts sowie mehreren, am Umfang des Trägerkörpers in gleichmäßigem Winkelabstand voneinander angeordneten Strahlerelementen (19), welche in Bezug auf die jeweils benachbarten Strahlerelemente mit dem Winkelabstand entsprechender Phasenverschiebung gespeist sind und jeweils mit Abstand zur Oberfläche des Trägerkörpers achsparallel geführte gerade Antennenstäbe (4) aufweisen, dadurch gekennzeichnet, daß die Antennenstäbe (4) jeweils an einer Seite elektrisch leitend mit dem Trägerkörper (20) und weiterhin je mit einem eigenen, durch den Spalt zwischen Trägerkörper (20) und Antennenstab (4) hindurchgeführten, gegenüber der leitenden Oberfläche des Trägerkörpers (20) isolierten Speiseleiter verbunden sind.
7. Rundstrahlantenne nach Anspruch 6, dadurch gekennzeichnet, daß der Trägerkörper (20) einen die Strahlerelemente (19) tragenden Teil mit konstantem, kreiszylindrischem Querschnitt sowie einen daran anschließenden Übergangsteil (22) mit sich erweiterndem, kreisförmigem Querschnitt aufweist, der wiederum in einem anschließenden, kreiszylindrischen Abschlußteil (23) ausläuft, wobei der Übergangsteil (22) im Längsschnitt eine doppelt gegensinnig, vorzugsweise doppelt exponentiell gekrümmte Außenkontur besitzt.
8. Rundstrahlantenne nach Anspruch 7, dadurch gekennzeichnet, daß im kreiszylindrischen Abschlußteil (23) eine durch eine ringförmige Ausnehmung der radialen Tiefe λ/4 gebildete Wellenfalle (24) vorhanden ist.
EP84109263A 1983-08-04 1984-08-03 Rundstrahlantenne Expired EP0135742B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3328115 1983-08-04
DE19833328115 DE3328115A1 (de) 1983-08-04 1983-08-04 Antennenanordnung zur erzielung isotropen rundstrahlverhaltens

Publications (2)

Publication Number Publication Date
EP0135742A1 EP0135742A1 (de) 1985-04-03
EP0135742B1 true EP0135742B1 (de) 1989-03-22

Family

ID=6205732

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84109263A Expired EP0135742B1 (de) 1983-08-04 1984-08-03 Rundstrahlantenne

Country Status (2)

Country Link
EP (1) EP0135742B1 (de)
DE (1) DE3328115A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3503440A1 (de) * 1983-08-04 1986-08-07 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Antennenanordnung zur erzielung isotropen rundstrahlverhaltens
DE102006024129B3 (de) * 2006-05-22 2007-09-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. L- oder S-Band-Antenne für Wiedereintrittskörper
CN112864596B (zh) * 2021-01-08 2022-09-13 中国电子科技集团公司第二十研究所 旋转对称排布的弹载高增益后向辐射调相阵列天线

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3015101A (en) * 1958-10-31 1961-12-26 Edwin M Turner Scimitar antenna
US3087159A (en) * 1960-01-08 1963-04-23 Boeing Co Microwave scimitared antenna
DE2660313C2 (de) * 1976-06-30 1982-05-27 Siemens AG, 1000 Berlin und 8000 München Doppelrundstrahlantenne
US4315264A (en) * 1978-03-10 1982-02-09 Duhamel Raymond H Circularly polarized antenna with circular arrays of slanted dipoles mounted around a conductive mast
US4349824A (en) * 1980-10-01 1982-09-14 The United States Of America As Represented By The Secretary Of The Navy Around-a-mast quadrifilar microstrip antenna

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Frequenz 27 (1973), Heft 3, 74-77 *
NTZ, 1969, Heft 5, 271-275 *

Also Published As

Publication number Publication date
EP0135742A1 (de) 1985-04-03
DE3328115C2 (de) 1989-02-02
DE3328115A1 (de) 1985-02-21

Similar Documents

Publication Publication Date Title
DE3624897C2 (de)
EP0027643B1 (de) Einem mit Radar arbeitenden Ziel nachführbare Störsender-Richtantennenanordnung
DE60113671T2 (de) Sende-Empfangssatellitenantenne mit hoher Leistung und niedrigem Kostenaufwand
DE68906016T2 (de) Antennensystem mit richtkeulenabtaster in azimut und einer auswaehlbaren polarisation.
DE3931752A1 (de) Koaxialschlitzantenne des wanderwellenleitungstyps
DE2727883A1 (de) Mikrowellen-antennensystem
DE2339156A1 (de) Antenne fuer den betrieb in ersten und zweiten frequenzbereichen
DE2427505C2 (de) Reflektorantenne mit parallelen Reflektorstäben
DE4010101A1 (de) Flachantenne
DE1166297B (de) Axial strahlende Wendelantenne
DE2307398A1 (de) Reflektorantenne
DE3218690C1 (de) Bikonische Rundstrahlantenne
DE60019412T2 (de) Antenne mit vertikaler polarisation
EP0135742B1 (de) Rundstrahlantenne
DE69308036T2 (de) Reflektor fur polarimetrisches radar, insbesondere zur verwendung als lehre oder bake
DE2810483C2 (de) Antenne mit einem Schlitze aufweisenden Speisehohlleiter und einer mit diesem einen Winkel einschließenden Strahlerzeile
DE4014133A1 (de) Planarantenne
DE2041299A1 (de) Drehbare Richtantenne
DE2921856C2 (de) Richtantenne aus zwei eine strahlende Doppelleitung bildenden Streifenleitern und Gruppenantenne unter Verwendung mehrerer derartiger Richtantennen
DE602004009460T2 (de) Ultrabreitbandige Antenne
DE3627597C2 (de) Konforme Antenne für Flugkörper
DE2928370C2 (de) Antennenanordnung zur strahlungspegelmäßigen Überdeckung aller Nebenzipfel einer scharf bündelnden Hauptantenne
DE1516823A1 (de) Richtantennenanordnung fuer kurze elektromagnetische Wellen
DE2828807C2 (de) Radar-Cassegrain-Antenne mit einem Primärstrahler, der mit zwei senkrecht zueinander polarisierten elektromagnetischen Wellen betrieben wird
DE1006910B (de) Metallische, rohrfoermige Antenne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): FR GB IT

RTI1 Title (correction)
17P Request for examination filed

Effective date: 19850709

17Q First examination report despatched

Effective date: 19870928

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020730

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020812

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030803

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST