EP0134162B1 - Alliages de néodyme et leur procédé de fabrication - Google Patents

Alliages de néodyme et leur procédé de fabrication Download PDF

Info

Publication number
EP0134162B1
EP0134162B1 EP84401307A EP84401307A EP0134162B1 EP 0134162 B1 EP0134162 B1 EP 0134162B1 EP 84401307 A EP84401307 A EP 84401307A EP 84401307 A EP84401307 A EP 84401307A EP 0134162 B1 EP0134162 B1 EP 0134162B1
Authority
EP
European Patent Office
Prior art keywords
neodymium
metal
process according
halide
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84401307A
Other languages
German (de)
English (en)
Other versions
EP0134162A1 (fr
Inventor
Françoise Seon
Bernard Boudot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Chimie SAS
Original Assignee
Rhone Poulenc Chimie SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR8311139A external-priority patent/FR2548687B1/fr
Application filed by Rhone Poulenc Chimie SA filed Critical Rhone Poulenc Chimie SA
Priority to AT84401307T priority Critical patent/ATE45989T1/de
Publication of EP0134162A1 publication Critical patent/EP0134162A1/fr
Application granted granted Critical
Publication of EP0134162B1 publication Critical patent/EP0134162B1/fr
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals

Definitions

  • the present invention relates to neodymium alloys and their manufacturing process.
  • ceric rare earth metals a designation which includes lanthanum, cerium, praseodymium and neodymium, the latter is the only metal that cannot be manufactured industrially by electrolysis of these salts. Indeed, it is mentioned in the article by T. KURITA (Denki Kagaku, 1967, 35 (7) p. 496-501) that yields of 6 to 20% of pure neodymium are obtained by electrolysis in a molten bath - neodymium chloride, potassium chloride -.
  • neodymium alloys more particularly neodymium and magnesium alloys, which consists in using neodymium chloride, an alkali metal and magnesium, all the reagents being introduced and kept in the molten state throughout the duration of the reaction.
  • the objective of the present invention is to have new neodymium alloys obtained according to an industrial manufacturing process.
  • the rare earth metal involved in said alloys is therefore any metal belonging to the group formed by yttrium and lanthanides, except samarium, europium and ytterbium.
  • a “rare earth metal” or a mixture of rare earth metals chosen from the group defined above will be simplifiedly designated by “metal TR”.
  • neodymium halide neodymium fluoride or neodymium chloride or a mixture thereof is used.
  • neodymium fluoride is used.
  • the halide used is of high purity, that is to say free of residual oxide and of oxyhalide and that it be dry: its water content must be less than 5% and preferably less than 2%.
  • Neodymium fluoride is available in an anhydrous state because it is a low hygroscopic product.
  • neodymium chloride exists in the form of hydrates containing 6 to 7 moles of water per mole of neodymium chloride. It is generally prepared by the reaction of hydrochloric acid and neodymium sesquioxide.
  • this chloride requires a drying step at a temperature between 100 ° C and 500 ° C but preferably between 200 ° C and 250 ° C.
  • This treatment is also suitable for neodymium fluoride.
  • the drying time can vary between 2 and 24 hours.
  • the particle size of the neodymium halide may vary. It is commercially available in the form of a powder, the particle size of which varies from 40 to 150 ⁇ m.
  • the particle size influencing the reduction speed it is recommended that the powder is fine which can lead to a grinding operation so that the average diameter of the particles of neodymium halide is less than 100 wm. There is no lower diameter limit.
  • halide of. TR metal you can choose a TR metal fluoride, a TR metal chloride or their mixture.
  • the fluoride of the metal TR is used.
  • the properties required and the conditions for using the metal halide TR are identical to those of the neodymium halide.
  • the reducing metal used in the process of the invention can be an alkali metal, an alkaline earth metal or a mixture thereof. Mention may be made, as alkali metal, of sodium, lithium or potassium and, as alkaline earth metal, of calcium or magnesium.
  • Calcium or magnesium is preferably used and even more preferably calcium.
  • the reducing metal is used in the form in which it is sold, whether it is in the state solid or in the form of pellets or balls.
  • a preferred variant of the process of the invention consists in adding to the reaction medium calcium chloride or calcium fluoride as the case may be in order to lower the melting point and the density of the slag formed in the reaction so that the formed alloy neodymium-iron separates more easily.
  • the aim being to obtain a CaF 2 -CaCI 2 slag, the addition when the source of neodymium is neodymium fluoride or neodymium chloride, respectively calcium chloride or calcium fluoride. If the neodymium halide is a mixture of fluoride and chloride, a mixture of chloride and calcium fluoride is added in order to obtain a CaF 2 -CaCI 2 mixture having the composition defined later.
  • calcium chloride should be added when using neodymium fluoride and a metal fluoride TR and calcium fluoride when using uses neodymium chloride and a metal chloride TR. If the neodymium halide or TR metal is a mixture of fluoride and chloride or if the neodymium halides and TR metal are different in nature, it is necessary to add a CaF 2 -CaCIp mixture in order to have the desired composition.
  • the process of the invention consists in mixing a neodymium halide, a metal halide TR, a reducing metal, iron and optionally a calcium halide in the proportions given below. '°
  • the quantity of TR metal halide used is calculated according to the composition of the desired alloy. It will preferably be defined so that the metal TR represents less than 50% of the weight of the mixture consisting of neodymium and the metal TR and more preferably still less than 10%.
  • the amount of reducing metal can vary within wide limits. However, it is advantageous to use a quantity sufficient to reduce the neodymium halide and possibly the metal halide TR but it should not be too large if one does not wish to find it, of a importantly, in the final alloy.
  • the amount of reducing metal is at least equal to the stoichiometric amount or even in slight excess, up to 20% of the stoichiometric amount.
  • the amount of iron is adjusted according to the desired composition of the alloy. It is such that a fusible alloy with neodymium and iron is obtained at the reaction temperature. It is calculated so that iron represents from 5 to 30% of the weight of the alloy obtained.
  • the amount of calcium halide added is adjusted in order to obtain a slag containing from 30 to 70% by weight of calcium chloride and preferably 60 to 70%.
  • the various halides of neodymium, of metal TR and of calcium and the abovementioned metals constitute “a filler” having the desired weight composition.
  • the constituents of this charge can be reacted in any order: by simultaneous mixing of all the constituents or by making premixes, on the one hand, the halides of neodymium, calcium, metal TR and d on the other hand the reducing metal and iron.
  • the reaction is carried out at a temperature between 800 ° C and 1100 ° C.
  • the upper temperature limit is not critical and can reach a value as high as 1400 ° C.
  • a temperature between 900 ° C and 1100 ° C is chosen.
  • the reaction is carried out at atmospheric pressure but in an inert gas atmosphere.
  • rare gases including argon. It is desirable to subject the rare gas to a dehydration and deoxygenation treatment carried out according to the usual techniques, for example by passage through a molecular sieve.
  • the inert atmosphere is maintained throughout the reduction.
  • the duration of the reaction depends on the capacity of the apparatus and its ability to rapidly rise in temperature. Generally, once the desired temperature is reached, it is maintained for a variable duration of approximately 30 minutes to 3 hours.
  • a metallic phase consisting of the neodymium-iron alloy on which floats a slag consisting of CaF 2 -CaCI 2 having a density lower than that of the alloy.
  • the alloy can be immediately separated from the slag by hot casting or allowed to cool under an inert gas atmosphere at room temperature (15 to 25 ° C) so that the alloy solidifies and can then be removed from the mold.
  • the yield of rare earth metals (neodymium + metal TR) expressed relative to to the rare earth metals contained in the halides used varies from 75 to 95%.
  • the reduction is carried out in a crucible placed in a reactor made of a material resistant to hydrofluoric and hydrochloric vapors.
  • refractory steel for example, steel containing 25% chromium and 20% nickel but preferably inconel which is an alloy containing nickel, chromium (20%), iron (5%), molybdenum (8-10%).
  • Said reactor is equipped with a temperature control device (for example thermocouple), an inlet and an outlet for inert gases. It is provided in its upper part with a double envelope in which circulates a coolant.
  • a temperature control device for example thermocouple
  • This reactor is placed in an induction furnace or in an furnace heated by electrical resistances.
  • a crucible in which the temperature control device is immersed is placed at the bottom of the reactor. It must be made of a material resistant to neodymium halides or have a coating resistant to them. Preferably, a tantalum crucible is used.
  • the molten alloy can be cast in molds, for example, cast iron.
  • the proportion of TR metal can represent less than 50% of the weight of the mixture constituted by neodymium and TR metal and, preferably, less than 10%.
  • the alloys obtained according to the present invention are very rich in neodymium since they can contain up to 95%.
  • They can be used as master alloys in particular in the manufacture of permanent magnets.
  • a premix containing 530.8 g of calcium chloride in the dry state and 390.8 g of a mixture containing 96.4% of neodymium fluoride and 3.6% of praseodymium fluoride is then made: said mixture having an average particle diameter of 60 ⁇ m.
  • the calciothermic reduction reaction of neodymium fluoride and praseodymium fluoride is carried out in a tantalum crucible of about 1 liter placed at the bottom of an inconel reactor which is equipped of an inlet and an outlet of argon and of a thermocouple introduced into a thermometric sheath which is immersed in the reaction medium contained in the crucible: the upper part of the reactor is provided with a double envelope in which circulates cold water (about 10 ° C).
  • a temperature rise is carried out at the same time until the temperature fixed at 1100 ° C. is obtained; this temperature being kept constant for another 30 minutes.
  • 717.2 g of slag are collected and 296 g of a neodymium-praseodymium-iron alloy are recovered by hot casting in a cast iron ingot mold.
  • the yield of rare earths in the alloy expressed relative to the rare earths contained in neodymium and praseodymium fluorides is 90%.
  • Example 2 is reproduced, except that a mixture of neodymium fluoride and praseodymium fluoride is used, but a mixture containing 58% of neodymium chloride and 42% of praseodymium chloride.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

  • La présente invention a trait à des alliages de néodyme et leur procédé de fabrication.
  • Parmi les métaux des terres rares cériques, appellation qui regroupe le lanthane, le cérium, le praséodyme et le néodyme, ce dernier est le seul métal qui ne puisse être fabriqué industriellement par électrolyse de ces sels. En effet, il est mentionné dans l'article de T. KURITA (Denki Kagaku, 1967, 35 (7) p. 496-501) que l'on obtient des rendements de 6 à 20 % de néodyme pur par électrolyse en bain fondu - chlorure de néodyme, chlorure de potassium -.
  • Par conséquent, l'obtention d'alliages de néodyme à partir de néodyme métallique n'apparaît pas comme une voie valable industriellement.
  • Un procédé de ce type a été utilisé pour l'élaboration du diagramme fer-néodyme [cf. Iron-Binary Phase Diagrams » O. Kubaschewski (1982) p. 101 et 102].
  • Il est également connu, selon AT-328 884, un procédé de fabrication d'alliages de néodyme, plus particulièrement d'alliages de néodyme et de magnésium, qui consiste à mettre en oeuvre un chlorure de néodyme, un métal alcalin et du magnésium, tous les réactifs étant introduits et maintenus à l'état fondu pendant toute la durée de la réaction.
  • L'objectif de la présente invention est de disposer de nouveaux alliages de néodyme obtenus selon un procédé industriel de fabrication.
  • L'un. des objets de la présente invention réside dans de nouveaux alliages de néodyme consistant en néodyme, fer et au moins un métal d'une autre terre rare choisie dans le groupe formé par l'yttrium, le lanthane, le cérium, le praséodyme, le gadolinium, le terbium, le dysprosium, l'holmium, l'erbium, le thulium, le lutécium et mis en oeuvre dans les proportions suivantes :
    • de 70 à 95 % d'un mélange de néodyme et de métal de terre rare
    • de" 5 à 30 % de fer
    • de 0 à 3 % de métal réducteur
  • Le métal d'une terre rare intervenant dans lesdits alliages est donc tout métal appartenant au groupe formé par l'yttrium et les lanthanides excepté le samarium, l'europium et l'ytterbium.
  • Dans l'exposé qui suit de l'invention, on dénommera de manière simplifiée, par « métal TR » un métal d'une terre rare ou un mélange de métaux de terres rares choisis dans le groupe précédemment défini.
  • Dans le procédé de fabrication des alliages précités, intervient un halogénure de néodyme.
  • Comme halogénure de néodyme, on utilise le fluorure de néodyme ou le chlorure de néodyme ou leur mélange.
  • D'une manière préférentielle, on emploie le fluorure de néodyme.
  • Il est souhaitable que l'halogénure mis en oeuvre soit d'une grande pureté c'est-à-dire exempt d'oxyde résiduaire et d'oxyhalogénure et qu'il soit sec : sa teneur en eau doit être inférieure à 5 % et de préférence inférieure à 2 %.
  • Le fluorure de néodyme est disponible à l'état anhydre car c'est un produit peu hygroscopique.
  • Par contre, le chlorure de néodyme existe sous forme d'hydrates contenant 6 à 7 moles d'eau par mole de chlorure de néodyme. Il est préparé généralement, par réaction de l'acide chlorhydrique et du sesquioxyde de néodyme.
  • La mise en oeuvre de ce chlorure nécessite une étape de séchage à une température comprise entre 100 °C et 500 °C mais de préférence entre 200 °C et 250 °C. Cette opération peut être faite à l'air ou sous pression réduite comprise par exemple entre 1 mm de mercure (= 133,322 Pa) et 100 mm de mercure (=13 332,2 Pa). Ce traitement convient également au fluorure de néodyme.
  • La durée de séchage peut varier entre 2 et 24 heures.
  • Les conditions énoncées ci-dessus de séchage de l'halogénure de néodyme ne présentent aucun caractère critique et sont données à titre préférentiel.
  • La taille des particules de l'halogénure de néodyme peut varier. On le trouve dans le commerce sous forme de poudre dont la taille des particules varie de 40 à 150 Pm.
  • La taille des particules influençant la vitesse de réduction, il est recommandé que la poudre soit fine ce qui peut entraîner une opération de broyage afin que le diamètre moyen des particules de l'halogénure de néodyme soit inférieur à 100 wm. Il n'y a aucune limite inférieure de diamètre.
  • Pour ce qui est de l'halogénure du. métal TR, on peut choisir un fluorure de métal TR, un chlorure de métal TR ou leur mélange.
  • D'une manière préférentielle, on emploie le fluorure du métal TR.
  • Les propriétés requises et les conditions de mise en oeuvre de l'halogénure du métal TR sont identiques à celles de l'halogénure de néodyme.
  • Compte tenu de ce qui est mentionné précédemment, il est possible de faire appel à un mélange d'halogénures de différents métaux de terres rares.
  • Le métal réducteur utilisé dans le procédé de l'invention peut être un métal alcalin, un métal alcalino-terreux ou leur mélange. Comme métal alcalin, on peut citer le sodium, le lithium ou le potassium et comme métal alcalino-terreux, le calcium ou le magnésium.
  • On emploie de préférence le calcium ou le magnésium et encore plus préférentiellement, le calcium.
  • Le métal réducteur est mis en oeuvre sous la forme sous laquelle il est commercialisé, qu'il soit à l'état massif ou sous forme de grenailles ou billes.
  • En ce qui concerne le fer qui intervient dans l'alliage avec le néodyme, il donne un alliage fusible à basse température ce qui rend le procédé industriellement avantageux.
  • On le met en oeuvre sous la forme telle que commercialisée, poudre ou écailles.
  • Une variante préférée du procédé de l'invention consiste à ajouter au milieu réactionnel du chlorure de calcium ou du fluorure de calcium selon le cas afin d'abaisser le point de fusion et la densité de la scorie formée dans la réaction de sorte que l'alliage formé néodyme-fer se sépare plus facilement.
  • Le but étant d'obtenir une scorie CaF2-CaCI2, on additionne lorsque la source de néodyme est le fluorure de néodyme ou le chlorure de néodyme, respectivement du chlorure de calcium ou du fluorure de calcium. Si l'halogénure de néodyme est un mélange de fluorure et de chlorure, on ajoute un mélange de chlorure et fluorure de calcium afin d'obtenir un mélange CaF2-CaCI2 ayant la composition définie ultérieurement.
  • Dans le cas où il y a présence d'un halogénure de métal T.R., il y a lieu d'additionner du chlorure de calcium lorsque l'on utilise le fluorure de néodyme et un fluorure de métal TR et du fluorure de calcium lorsqu'on fait appel au chlorure de néodyme et à un chlorure de métal TR. Si l'halogénure de néodyme ou du métal TR est un mélange de fluorure et de chlorure ou si les halogénures de néodyme et du métal TR sont de nature différente, il est nécessaire d'ajouter un mélange CaF2-CaCIp afin d'avoir la composition souhaitée.
  • On peut utiliser, selon l'invention, les halogénures de calcium disponibles sur le marché : fluorure de calcium et chlorure de calcium anhydre, chlorure de calcium dihydraté qui doit être séché entre 300 °C et 400 °C sous pression réduite de l'ordre de 1 mm de mercure (= 133,322 Pa) à 100 mm de mercure (= 13 332,2 Pa).
  • Le procédé de l'invention consiste à mélanger un halogénure de néodyme, un halogénure de métal TR, uri métal réducteur, le fer et éventuellement un halogénure de calcium dans les proportions données ci-dessous. ' °
  • La quantité de l'halogénure du métal TR engagée est calculée en fonction de la composition de l'alliage souhaitée. Elle sera définie, de préférence, de telle sorte que le métal TR représente moins de 50 % du poids du mélange constitué par le néodyme et- le métal TR et encore, plus préférentiellement, moins de 10 %.
  • La quantité de métal réducteur peut varier dans de larges limites. Cependant, il y a intérêt à en mettre en œuvre une quantité suffisante pour réduire l'halogénure de néodyme et éventuellement l'halogénure de métal TR mais elle ne doit pas être trop grande si l'on ne souhaite pas en retrouver, d'une manière importante, dans l'alliage final. La quantité de métal réducteur est au moins égale à la quantité stoechiométrique voire-même en léger excès, pouvant atteindre 20 % de la quantité stoechiométrique.
  • La quantité de fer est réglée suivant la composition désirée de l'alliage. Elle est telle que l'on obtienne un alliage fusible avec le néodyme et le fer à la température de réaction. Elle est calculée de sorte que le fer représente de 5 à 30 % du poids de l'alliage obtenu.
  • La quantité d'halogénure de calcium ajoutée est ajustée afin d'obtenir une scorie contenant de 30 à 70 % en poids de chlorure de calcium et de préférence 60 à 70 %.
  • Les différents halogénures de néodyme, de métal TR et de calcium et les métaux précités constituent « une charge » ayant la composition pondérale souhaitée. Les constituants de cette charge peuvent être mis à réagir dans n'importe quel ordre : par mélange simultané de tous les constituants ou en faisant des pré-mélanges, d'une part, les halogénures de néodyme, de calcium, de métal TR et d'autre part le métal réducteur et le fer.
  • La réaction est effectuée à une température comprise entre 800 °C et 1 100°C. La borne supérieure de température n'a aucun caractère critique et peut atteindre une valeur aussi élevée que 1 400 °C. D'une manière préférentielle, on choisit une température comprise entre 900 °C et 1 100 °C.
  • On effectue la réaction sous pression atmosphérique mais en atmosphère de gaz inerte. A cet effet, on exclut l'air par abaissement de la pression jusqu'à une valeur non critique, par exemple comprise entre 1 mm de mercure (= 133,322 Pa) et 100 mm de mercure (= 13 332,2 Pa) puis on assure un balayage de gaz inertes : gaz rares notamment l'argon. Il est souhaitable de soumettre le gaz rare à un traitement de déshydratation et de désoxygénation réalisé selon les techniques usuelles par exemple par passage au travers d'un tamis moléculaire.
  • On maintient l'atmosphère inerte tout au cours de la réduction.
  • La durée de la réaction est fonction de la capacité de l'appareillage et de son aptitude à monter rapidement en température. Généralement, une fois la température souhaitée atteinte, on la maintient pendant une durée variable d'environ 30 minutes à 3 heures.
  • Au cours du chauffage, il se forme deux phases dans le milieu réactionnel : une phase métallique constituée par l'alliage néodyme-fer sur laquelle surnage une scorie constituée de CaF2-CaCI2 ayant une densité inférieure à celle de l'alliage.
  • Au bout du temps de chauffage précité, on arrête le chauffage.
  • On peut immédiatement séparer l'alliage de la scorie par coulée à chaud ou le laisser refroidir sous atmosphère de gaz inerte à température ambiante (de 15 à 25 °C) de sorte que l'alliage se solidifie et peut être alors démoulé.
  • On constate que le rendement en métaux de terres rares (néodyme + métal TR) exprimé, par rapport aux métaux de terres rares contenus dans les halogénures engagés varie de 75 à 95 %.
  • Le procédé de l'invention tel que décrit, peut être mis en oeuvre dans un appareillage de type classique, utilisé en métallurgie.
  • La réduction est conduite dans un creuset placé dans un réacteur constitué par un matériau résistant aux vapeurs fluorhydrique et chlorhydrique.
  • Il peut être choisi en acier réfractaire, par exemple, en acier contenant 25 % de chrome et 20 % de nickel mais de préférence en inconel qui est un alliage contenant du nickel, du chrome (20 %), du fer (5 %), du molybdène (8-10 %).
  • Ledit réacteur est équipé d'un dispositif de contrôle de température (par exemple thermocouple), d'une arrivée et d'une sortie de gaz inertes. Il est muni dans sa partie supérieure d'une double enveloppe dans laquelle circule un liquide de refroidissement.
  • Ce réacteur est placé dans un four à induction ou dans un four chauffé par résistances électriques.
  • Un creuset dans lequel plonge le dispositif de contrôle de température est placé au fond du réacteur. Il doit être constitué d'un matériau résistant aux halogénures de néodyme ou posséder un revêtement leur résistant. D'une manière préférentielle, on utilise un creuset en tantale.
  • Une fois la réaction effectuée, l'alliage fondu peut être coulé en lingotières, par exemple, en fonte.
  • Les alliages obtenus selon la présente invention ont la composition pondérale suivante :
    • - de 70 à 95 % d'un mélange de néodyme et de métal TR
    • - de 5 à 30 % de fer.
  • Dans le mélange de néodyme et du métal TR, la proportion de métal TR peut représenter moins de 50 % du poids du mélange constitué par le néodyme et le métal TR et, de préférence, moins de 10 %.
  • On note également la présence d'une très faible quantité de métal réducteur allant de 0 à 3 % en poids.
  • On donne, ci-après, à titre illustratif et non limitatif, des compositions préférées des alliages obtenus : alliage néodyme-fer-métal TR
    • de 83 à 91 % d'un mélange de néodyme et de métal TR
    • de 9 à 16 % de fer
    • de 0 à 3 % de calcium
  • Les alliages obtenus selon la présente invention sont très riches en néodyme puisqu'ils peuvent en contenir jusqu'à 95 %.
  • Ils peuvent être utilisés comme alliages-mères notamment dans la fabrication d'aimants permanents.
  • Avant de détailler les exemples concrétisant la réalisation pratique de l'invention, on exposera succinctement les méthodes de dosage des différents constituants de l'alliage par les techniques suivantes :
    • le néodyme et l'autre métal d'une terre rare lorsqu'il est présent sont dosés, ensemble, selon la méthode chimique exposée ci-après et séparément, par fluorescence X. La méthode chimique de dosage consiste :
      • à dissoudre l'échantillon d'alliage en milieu acide,
      • à porter à ébullition la solution obtenue,
      • à précipiter le métal réducteur, le fer et les terres rares sous la forme de leur hydroxyde à pH 9, par traitement à l'ammoniaque, puis à filtrer et laver les précipités obtenus,
      • à redissoudre le précipité d'hydroxydes de terres rares en milieu acide,
      • à ajouter à ébullition à la solution obtenue, de l'oxalate d'ammonium afin d'obtenir les oxalates de terres rares,
      • à calciner les oxalates de terres rares à 900 °C pendant 1 heure pour les transformer en oxyde,
      • à peser la quantité d'oxydes obtenus permettant ainsi de calculer la quantité de terres rares contenus dans l'alliage,
      • les autres métaux, métal réducteur et fer sont titrés par absorption atomique.
  • Dans l'exposé qui suit de l'invention, on donne deux exemples de préparation d'un alliage néodyme-praséodyme-fer (exemples 1 et 2).
  • Exemple 1 Préparation d'un alliage néodyme-praséodyme-fer contenant 13 % de fer
  • On commence par broyer, grossièrement, 530,8 g de chlorure de calcium puis on le sèche pendant 3 heures, à une température de 350 °C-400 °C et sous pression réduite de 1 mm de mercure (= 133,322 Pa).
  • On fait ensuite un prémélange contenant 530,8 g de chlorure de calcium à l'état sec et 390,8 g d'un mélange contenant 96,4 % de fluorure de néodyme et 3,6 % de fluorure de praséodyme : ledit mélange ayant un diamètre moyen de particules de 60 flom. On réalise le séchage dudit mélange pendant 24 heures dans une étuve à vide à une température de 225 °C et sous pression réduite de 1 mm de mercure (= 133,322 Pa). La charge précédemment définie est alors prête à l'emploi.
  • La réaction de réduction calciothermique du fluorure de néodyme et du fluorure de praséodyme est réalisée dans un creuset en tantale de 1 litre environ placé au fond d'un réacteur en inconel qui est équipé d'une arrivée et d'une sortie d'argon et d'un thermocouple introduit dans une gaîne thermométrique qui est plongée dans le milieu réactionnel contenu dans le creuset : la partie supérieure du réacteur est munie d'une double enveloppe dans laquelle circule de l'eau froide (environ 10 °C).
  • On définit la proportion des constituants de la charge de telle sorte que les conditions énoncées, ci-après, soient remplies :
    • que l'on obtienne un alliage contenant 13 % de fer
    • que l'on ait un excès de calcium de 20 % par rapport au poids stoechiométrique requis
    • que l'on forme une scorie contenant 70 % de chlorure de calcium.
  • On introduit successivement au fond du creuset, 38,2 g de fer sous forme d'écailles, 140,3 g de calcium sous forme de grenailles et la charge précitée contenant 530,8 g de chlorure de calcium et 390,8 g d'un mélange de fluorure de néodyme et de fluorure de praséodyme.
  • Une fois le creuset replacé dans le réacteur que l'on ferme, on abaisse la pression aux environs de 100 mm de mercure (= 13332,2 Pa) pour chasser l'air puis on établit un balayage à l'argon sec qui sera maintenu tout au long de la réaction.
  • On effectue en même temps une montée en température jusqu'à obtention de la température fixée à 1 100 °C ; cette température étant tenue constante encore 30 minutes.
  • On recueille 717,2 g de scorie et on récupère 296 g d'un alliage néodyme-praséodyme-fer, par coulage à chaud dans une lingotière en fonte. Le rendement en terres rares dans l'alliage exprimé par rapport aux terres rares contenues dans les fluorures de néodyme et de praséodyme est de 90 %.
  • L'analyse de l'alliage obtenu est la suivante :
    • 86 % d'un mélange contenant 96,4 % de néodyme et 3,6 % de praséodyme
    • 13 % de fer
    • . 1 % de calcium.
    Exemple 2 Préparation d'un alliage néodyme-praséodyme-fer contenant 13 % de fer
  • On reproduit l'exemple 2 à la différence près que l'on met en oeuvre non pas un mélange de fluorure de néodyme et de fluorure de praséodyme mais un mélange contenant 58 % de chlorure de néodyme et 42 % de chlorure de praséodyme. Dans ce cas, les chlorures de néodyme et de praséodyme sont séchés pendant 3 heures dans une étuve à vide à une température de 220 °C et sous pression réduite de 1 mm de mercure (= 133,322 Pa).
  • La charge mise en oeuvre selon le même mode opératoire est la suivante :
    • 39,3 g de fer
    • 144 g de calcium
    • 142,7 g de fluorure de calcium
    • 498,6 g d'un mélange de chlorure de néodyme et de chlorure de praséodyme.
  • A la fin de la réaction, on obtient 519 g de scorie et 275 g d'un alliage néodyme-praséodyme-fer ce qui correspond à un rendement en terres rares de 81 %.
  • L'alliage obtenu contient :
    • 84 % d'un mélange contenant 58 % de néodyme et 42 % de praséodyme
    • 13 % de fer
    • 3 % de calcium

Claims (23)

1. Nouveaux alliages de néodyme consistant en néodyme, fer et au moins un métal d'une autre terre rare choisie dans le groupe formé par l'yttrium, le lanthane, le cérium, le praséodyme, le gadolinium, le terbium, le dysprosium, l'holmium, l'erbium, le thulium, le lutécium et mis en oeuvre dans les proportions suivantes :
de 70 à 95 % d'un mélange de néodyme et de métal de terre rare
de 5 à 30 % de fer
de 0 à 3 % de métal réducteur.
2. Alliages de néodyme selon la revendication 1 caractérisés par le fait que le métal TR est le praséodyme.
3. Alliages de néodyme selon l'une des revendications 1 et 2 caractérisés par le fait qu'ils consistent en :
83 à 91 % d'un mélange de néodyme et de métal TR
9 à 6 % de fer
de 0 à 3 % de calcium.
4. Alliages de néodyme selon l'une des revendications 1 à 3 caractérisés par le fait que la proportion de métal TR représente moins de 50 % du poids du mélange constitué par le néodyme et le métal TR.
5. Alliages de néodyme selon la revendication 4 caractérisés par le fait que la proportion de métal TR représente moins de 10 % du poids du métal constitué par le néodyme et le métal TR.
6. Procédé de fabrication des alliages décrits dans l'une des revendications 1 à 4 caractérisé par le fait qu'il consiste à réduire un halogénure de néodyme et un halogènure de métal TR avec un métal réducteur, en présence de fer.
7. Procédé selon la revendication 6 caractérisé par le fait que l'halogénure de néodyme est le fluorure de néodyme, le chlorure de néodyme ou leur mélange.
8. Procédé selon la revendication 7 caractérisé par le fait que l'halogénure de néodyme est soumis à un séchage entre 100 °C et 500 °C, à l'air ou sous pression réduite comprise entre 1 mm de mercure (= 133,322 Pa) et 100 mm de mercure (= 13 332,2 Pa).
9. Procédé selon la revendication 6 caractérisé par le fait que le métal réducteur est un métal alcalin tel que le sodium, le lithium, le potassium ou un métal alcalino-terreux tel que le calcium ou le magnésium.
10. Procédé selon la revendication 4 caractérisé par le fait que le métal réducteur est le calcium.
11. Procédé selon la revendication 6 caractérisé par le fait que l'halogénure de métal TR est soumis à un séchage entre 100 °C et 500 °C, à l'air ou sous pression réduite comprise entre 1 mm de mercure (= 133,322 Pa) et 100 mm de mercure (= 13 322,2 Pa).
12. Procédé selon l'une des revendications 6 à 11 caractérisé par le fait que l'on ajoute au milieu réactionnel du chlorure de calcium lorsqu'on met en oeuvre le fluorure de néodyme et un fluorure de métal TR ; du fluorure de calcium lorsque l'on fait appel au chlorure de néodyme et à un chlorure de métal TR ; un mélange de fluorure de calcium et de chlorure de calcium si l'halogénure de néodyme ou de métal TR est un mélange de fluorure ou de chlorure ou si les halogénures de néodyme et du métal TR sont de nature différente.
13. Procédé selon la revendication 12 caractérisé par le fait que l'halogénure de calcium est soumis à un séchage entre 300 °C et 400 °C, sous pression réduite de 1 mm de mercure (= 133,322 Pa) à 100 mm de mercure (= 13 332,2 Pa).
14. Procédé selon l'une des revendications 6 à 13 caractérisé par le fait que la quantité d'halogénure de métal TR est telle que l'on obtienne un alliage dans lequel la proportion de métal TR représente moins de 50 % du poids du mélange constitué par le néodyme et le métal TR.
15. Procédé selon la revendication 14 caractérisé par le fait que la quantité d'halogénure de métal TR est telle que l'on obtienne un alliage dans lequel la proportion de métal TR représente moins de 10 % du poids du mélange constitué par le néodyme et le métal TR.
16. Procédé selon l'une des revendications 6 à 15 caractérisé par le fait que la quantité de métal réducteur est égale à la quantité stœchiométrique ou en léger excès pouvant atteindre 20 % de la quantité stcechiométrique.
17. Procédé selon l'une des revendications 6 à 16 caractérisé par le fait que la quantité d'halogénure de calcium ajoutée est telle que l'on obtienne une scorie contenant de 30 à 70 % de chlorure de calcium.
18. Procédé selon la revendication 17 caractérisé par le fait que la quantité d'halogénure de calcium ajoutée est telle que l'on obtienne une scorie contenant de 60 à 70 % de chlorure de calcium.
19. Procédé selon l'une des revendications 6 à 18 caractérisé par le fait que la réaction est effectuée entre 800 °C et 1 100 °C sous pression atmosphérique, mais en atmosphère de gaz inerte.
20. Procédé selon la revendication 19 caractérisé par le fait que la réaction est effectuée entre 900 °C et 100°C.
21. Procédé selon la revendication 19 caractérisé par le fait que l'on réalise une atmosphère de gaz inerte par exclusion de l'air, puis, par balayage d'argon sec.
22. Procédé selon la revendication 19 ou 20 caractérisé par le fait que l'on maintient la température choisie pendant une durée allant de 30 minutes à 3 heures.
23. Procédé selon l'une des revendications 6 à 22 caractérisé par le fait que l'on sépare, en fin de réaction, l'alliage obtenu de la scorie, soit par coulée à chaud, soit par démoulage après refroidissement sous atmosphère de gaz inerte.
EP84401307A 1983-07-05 1984-06-22 Alliages de néodyme et leur procédé de fabrication Expired EP0134162B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84401307T ATE45989T1 (de) 1983-07-05 1984-06-22 Neodymlegierungen und verfahren zur herstellung derselben.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR8311139 1983-07-05
FR8311139A FR2548687B1 (fr) 1983-07-05 1983-07-05 Alliages de neodyme et leur procede de fabrication
FR838314392A FR2551769B2 (fr) 1983-07-05 1983-09-09 Alliages de neodyme et leur procede de fabrication
FR8314392 1983-09-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP88100014.5 Division-Into 1984-06-22

Publications (2)

Publication Number Publication Date
EP0134162A1 EP0134162A1 (fr) 1985-03-13
EP0134162B1 true EP0134162B1 (fr) 1989-08-30

Family

ID=26223515

Family Applications (2)

Application Number Title Priority Date Filing Date
EP84401307A Expired EP0134162B1 (fr) 1983-07-05 1984-06-22 Alliages de néodyme et leur procédé de fabrication
EP88100014A Expired - Lifetime EP0272250B1 (fr) 1983-07-05 1984-06-22 Procédé de fabrication d'alliages de néodyme

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP88100014A Expired - Lifetime EP0272250B1 (fr) 1983-07-05 1984-06-22 Procédé de fabrication d'alliages de néodyme

Country Status (9)

Country Link
US (1) US4636353A (fr)
EP (2) EP0134162B1 (fr)
JP (1) JPS6046346A (fr)
KR (1) KR920006603B1 (fr)
AU (1) AU579579B2 (fr)
BR (1) BR8403289A (fr)
CA (1) CA1253721A (fr)
DE (2) DE3479595D1 (fr)
FR (1) FR2551769B2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2596563C1 (ru) * 2015-04-23 2016-09-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ получения магнитотвердого материала

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4612047A (en) * 1985-10-28 1986-09-16 The United States Of America As Represented By The United States Department Of Energy Preparations of rare earth-iron alloys by thermite reduction
US4837109A (en) * 1986-07-21 1989-06-06 Hitachi Metals, Ltd. Method of producing neodymium-iron-boron permanent magnet
FR2607520B1 (fr) * 1986-11-27 1992-06-19 Comurhex Procede d'elaboration par metallothermie d'alliages purs a base de terres rares et de metaux de transition
US4917724A (en) * 1988-10-11 1990-04-17 General Motors Corporation Method of decalcifying rare earth metals formed by the reduction-diffusion process
US4992096A (en) * 1989-06-09 1991-02-12 The Dow Chemical Company Metallothermic reduction or rare earth metals
US5073337A (en) * 1990-07-17 1991-12-17 Iowa State University Research Foundation, Inc. Rare earth/iron fluoride and methods for making and using same
US5174811A (en) * 1990-10-01 1992-12-29 Iowa State University Research Foundation, Inc. Method for treating rare earth-transition metal scrap
US5087291A (en) * 1990-10-01 1992-02-11 Iowa State University Research Foundation, Inc. Rare earth-transition metal scrap treatment method
US5240513A (en) * 1990-10-09 1993-08-31 Iowa State University Research Foundation, Inc. Method of making bonded or sintered permanent magnets
US5242508A (en) * 1990-10-09 1993-09-07 Iowa State University Research Foundation, Inc. Method of making permanent magnets
US5129945A (en) * 1990-10-24 1992-07-14 The United States Of America As Represented By The Secretary Of The Interior Scrap treatment method for rare earth transition metal alloys
US5314526A (en) * 1990-12-06 1994-05-24 General Motors Corporation Metallothermic reduction of rare earth fluorides
US5238489A (en) * 1992-06-30 1993-08-24 The United States Of America As Represented By The Secretary Of The Interior Leaching/flotation scrap treatment method
US6755924B2 (en) 2001-12-20 2004-06-29 General Electric Company Method of restoration of mechanical properties of a cast nickel-based super alloy for serviced aircraft components
US8109349B2 (en) 2006-10-26 2012-02-07 Schlumberger Technology Corporation Thick pointed superhard material
US8622155B2 (en) * 2006-08-11 2014-01-07 Schlumberger Technology Corporation Pointed diamond working ends on a shear bit
US8590644B2 (en) * 2006-08-11 2013-11-26 Schlumberger Technology Corporation Downhole drill bit
US9051795B2 (en) 2006-08-11 2015-06-09 Schlumberger Technology Corporation Downhole drill bit
US8714285B2 (en) * 2006-08-11 2014-05-06 Schlumberger Technology Corporation Method for drilling with a fixed bladed bit
US7637574B2 (en) 2006-08-11 2009-12-29 Hall David R Pick assembly
US8215420B2 (en) * 2006-08-11 2012-07-10 Schlumberger Technology Corporation Thermally stable pointed diamond with increased impact resistance
US9145742B2 (en) 2006-08-11 2015-09-29 Schlumberger Technology Corporation Pointed working ends on a drill bit
US8567532B2 (en) 2006-08-11 2013-10-29 Schlumberger Technology Corporation Cutting element attached to downhole fixed bladed bit at a positive rake angle
US9068410B2 (en) 2006-10-26 2015-06-30 Schlumberger Technology Corporation Dense diamond body
US8960337B2 (en) 2006-10-26 2015-02-24 Schlumberger Technology Corporation High impact resistant tool with an apex width between a first and second transitions
US8540037B2 (en) 2008-04-30 2013-09-24 Schlumberger Technology Corporation Layered polycrystalline diamond
WO2010003926A1 (fr) * 2008-07-08 2010-01-14 Technical University Of Denmark Réfrigérateurs magnétocaloriques
WO2010117765A1 (fr) * 2009-03-30 2010-10-14 Schlumberger Canada Limited Eléments de découpe en diamant polycristallin thermiquement stable à double frittage
ES2624144T3 (es) 2011-10-20 2017-07-13 Akzo Nobel Chemicals International B.V. Procedimiento para la purificación de una alimentación líquida que comprende MCA y DCA
RU2608630C2 (ru) 2011-10-20 2017-01-23 Акцо Нобель Кемикалз Интернэшнл Б.В. Способ гидродехлорирования жидкого сырья, содержащего дихлоруксусную кислоту
CN114891953B (zh) * 2022-03-31 2024-03-08 包头市英思特稀磁新材料股份有限公司 一种提高烧结钕铁硼出材率的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR489155A (fr) * 1917-04-19 1918-12-28 Maurice Duburguet Préparation des métaux des terres rares
US1648954A (en) * 1921-09-29 1927-11-15 Westinghouse Lamp Co Production of rare metals and alloys thereof
FR986924A (fr) * 1943-12-11 1951-08-07 Procédé de préparation de métaux des terres rares
US3186834A (en) * 1961-03-02 1965-06-01 Dow Chemical Co Preparation of rare earth metal sponge
FR1336858A (fr) * 1962-07-27 1963-09-06 Pechiney Prod Chimiques Sa Alliages contenant des métaux des terres rares
AT329884B (de) * 1973-07-19 1976-06-10 Treibacher Chemische Werke Ag Verfahren zur herstellung von lanthan-, cer-,praseodym- und neodym-metall und -legierungen derselben sowie von mischmetallen
JPS5696834A (en) * 1979-12-28 1981-08-05 Mitsubishi Monsanto Chem Co Compound semiconductor epitaxial wafer and manufacture thereof
US4496395A (en) * 1981-06-16 1985-01-29 General Motors Corporation High coercivity rare earth-iron magnets
JPS5976A (ja) * 1982-06-22 1984-01-05 日本電気株式会社 放射線治療用高エネルギct
EP0108474B2 (fr) * 1982-09-03 1995-06-21 General Motors Corporation Alliages de RE-TM-B, procédé de production et aimants permanents contenant tels alliages
JPS6263642A (ja) * 1986-09-12 1987-03-20 Sumitomo Special Metals Co Ltd 磁石素材用希土類合金及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Iron-Binary Phase Diagrams", O. Kubaschewski, (1982), pp. 101+102 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2596563C1 (ru) * 2015-04-23 2016-09-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ получения магнитотвердого материала

Also Published As

Publication number Publication date
AU579579B2 (en) 1988-12-01
KR920006603B1 (ko) 1992-08-10
DE3479595D1 (en) 1989-10-05
AU3008184A (en) 1985-01-10
FR2551769A2 (fr) 1985-03-15
FR2551769B2 (fr) 1990-02-02
EP0272250B1 (fr) 1992-09-30
CA1253721A (fr) 1989-05-09
DE3485950T2 (de) 1993-02-25
JPS6046346A (ja) 1985-03-13
EP0134162A1 (fr) 1985-03-13
EP0272250A1 (fr) 1988-06-22
JPH0224902B2 (fr) 1990-05-31
US4636353A (en) 1987-01-13
KR850001297A (ko) 1985-03-18
BR8403289A (pt) 1985-06-18
DE3485950D1 (de) 1992-11-05

Similar Documents

Publication Publication Date Title
EP0134162B1 (fr) Alliages de néodyme et leur procédé de fabrication
EP1409406B1 (fr) Silicium metallurgique de moyenne purete et procede d'elaboration
FR2589763A1 (fr) Procede de production d'une poudre d'alliage contenant des metaux de terres rares.
CH624148A5 (fr)
EP2912202B1 (fr) Procédé pour isoler les terres rares et élément(s) métallique(s) annexe(s) contenus dans la phase magnétique d'aimants permanents
FR2607520A1 (fr) Procede d'elaboration par metallothermie d'alliages purs a base de terres rares et de metaux de transition
FR2555611A1 (fr) Procede de preparation d'alliages d'aluminium et de terres rares
EP2454390A1 (fr) Procede d'extraction d'au moins un element chimique d'un milieu sel fondu
EP0161975B1 (fr) Procédé de fabrication de produits poreux en bore ou en composés du bore
EP0318362B1 (fr) Procédé de préparation de borures de terres rares
EP0341106B1 (fr) Procédé de préparation de borures de terres rares
FR2548687A1 (fr) Alliages de neodyme et leur procede de fabrication
RU2124574C1 (ru) Способ получения лигатуры скандий-алюминий (его варианты)
FR2677798A1 (fr) Procede de vitrification reductrice de volume de dechets hautement radioactifs.
JP2926280B2 (ja) 稀土類−鉄合金の製造方法
JP2010208862A (ja) シリコン精製方法
FR2561665A1 (fr) Procede pour l'elaboration d'un alliage a absorption d'hydrogene contenant du titane
AU2004201727B2 (en) Method for grain refinement of magnesium alloy castings
FR2697030A1 (fr) Procédé de production d'alliages de magnésium de haute pureté et alliage ainsi obtenu.
JPH04235231A (ja) 軽金属−希土類金属合金を製造する方法
BE409100A (fr)
FR2581397A1 (fr) Procede de reduction thermique de preparation de calcium avec utilisation d'aluminium comme reducteur
BE517293A (fr)
BE461124A (fr)
BE538989A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19850425

17Q First examination report despatched

Effective date: 19860729

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RHONE-POULENC CHIMIE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 45989

Country of ref document: AT

Date of ref document: 19890915

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3479595

Country of ref document: DE

Date of ref document: 19891005

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920505

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920609

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920616

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920623

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920625

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920630

Year of fee payment: 9

Ref country code: CH

Payment date: 19920630

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19920703

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920709

Year of fee payment: 9

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930622

Ref country code: GB

Effective date: 19930622

Ref country code: AT

Effective date: 19930622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930630

Ref country code: CH

Effective date: 19930630

Ref country code: BE

Effective date: 19930630

BERE Be: lapsed

Owner name: RHONE-POULENC CHIMIE

Effective date: 19930630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930622

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84401307.8

Effective date: 19940110