EP0124559B1 - Broadband directional antenna - Google Patents

Broadband directional antenna Download PDF

Info

Publication number
EP0124559B1
EP0124559B1 EP83903501A EP83903501A EP0124559B1 EP 0124559 B1 EP0124559 B1 EP 0124559B1 EP 83903501 A EP83903501 A EP 83903501A EP 83903501 A EP83903501 A EP 83903501A EP 0124559 B1 EP0124559 B1 EP 0124559B1
Authority
EP
European Patent Office
Prior art keywords
antenna
wing
feed point
wings
apex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83903501A
Other languages
German (de)
French (fr)
Other versions
EP0124559A1 (en
Inventor
Gerd E. A. Meier
Rudolf Dvorak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEIER MESSTECHNIK
Original Assignee
MEIER MESSTECHNIK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEIER MESSTECHNIK filed Critical MEIER MESSTECHNIK
Priority to AT83903501T priority Critical patent/ATE25791T1/en
Publication of EP0124559A1 publication Critical patent/EP0124559A1/en
Application granted granted Critical
Publication of EP0124559B1 publication Critical patent/EP0124559B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines

Definitions

  • the invention relates to a broadband directional antenna according to the introductory part of claim 1.
  • Its longitudinal outline is approximately pear-shaped and symmetrical to the central straight line connecting the feeding point to the apex of the convexly curved end apex.
  • the longitudinal vertices of the antenna wings arranged in a common plane are arranged diametrically opposed to one another.
  • Known broadband antennas of this type either have only a low directivity or a disruptively large construction volume.
  • a directional antenna is known (DE-A-2921 856), which consists of two dipole-like planar halves fed by a symmetrical double line at a feed point, which start from the feed point to be approximately V-shaped and thereby widen to near the end of the radiator which they form a convex longitudinal apex.
  • the adjacent longitudinal contour lines of the radiator halves run convexly curved into the end apex from the feed point with decreasing radius of curvature, whereas the mutually opposed longitudinal contour lines are concavely curved from the feed point and then merge into the convex curved longitudinal apex.
  • the two radiator halves lie in parallel planes which are spaced from one another so that they overlap one another with their adjacent longitudinal edges up to their longitudinal apex and their longitudinal center lines at the feed point lie in the plane of symmetry perpendicular to the planes of the radiator halves, in which the Double line leading to the dining point.
  • This known directional antenna has a wide bandwidth from an upper limit wavelength, which is approximately twice the length of the directional antenna.
  • the invention solves the problem of creating a broadband directional antenna designed in the manner specified in the introductory part of claim 1, which, in a simple design, has the widest possible bandwidth with relatively small fluctuations in the input resistance over the broadband range and with good directional properties.
  • Charger longitudinal outline is understood here to mean that the antenna wing according to the invention has at least one longitudinal outline which has the shape described here.
  • the characteristic longitudinal outline is the course of the edge surrounding its area.
  • a spatial antenna wing on the other hand, it has at least and preferably a longitudinal outline of its longitudinal contours, which has the shape indicated here as characteristic.
  • the broadband directional antenna is designed as a planar double antenna, in which its two antenna wings are arranged mirror-inverted to one another with their transverse vertices facing away from one another, so that this double antenna is approximately heart-shaped in its longitudinal outline.
  • the feed takes place at the tip of the heart with an input resistance of 300 to 100 ohms over a frequency range which is determined by an upper cut-off wavelength which is approximately three times the longitudinal dimension of the heart shape.
  • the usable frequency spectrum ranges from this lower limit frequency with almost constant or only slightly decreasing input resistance and with increasing frequency the antenna gain increases to very high frequencies.
  • the main radiation direction of the heart-shaped radiator coincides with the axis of symmetry of the heart shape and is turned away from the feed point of the antenna wings. If the heart-shaped radiator is in a horizontal position, the vertical bundling is relatively strong and the horizontal diagram is not too narrow.
  • the horizontal diagram shows low radiation minima at higher frequencies, which can be used to suppress unwanted signals.
  • the horizontal characteristic changes into an all-round characteristic, which can be particularly advantageous for the reception of FM radio.
  • the antenna according to the invention can also consist of only one half of the heart-shaped radiator, that is to say only one antenna wing, which interacts with a conductive plane, in particular the ground, as a counter-element which determines the input resistance of the antenna by virtue of its position relative to the antenna wing, the plane preferably perpendicular to the longitudinal contour plane of the antenna wing containing the characteristic longitudinal contour on the latter Transverse apex side runs at a distance from the antenna wing.
  • the antenna can also be used as a broadband radiator for longer wavelengths, e.g. B. use in the shortwave range.
  • the input resistance is halved for this arrangement with a corresponding relative position of the antenna wing to the ground to an average value of about 100 ohms.
  • the directional characteristic now shows a relatively narrow horizontal concentration and a uniform, vertical radiation ranging from very small angles to a maximum elevation angle that decreases with increasing frequency. The latter is particularly advantageous because the vertical directional characteristic of shortwave antennas requires increasingly shallower bundling with increasing frequency.
  • the directional characteristic and the input impedance can be changed within certain limits by lifting the wing relative to the conductive earth surface in the vertical arrangement or by spreading the two antenna wings of the heart-shaped dipole arrangement.
  • the mode of operation of the antenna and its development can be most easily understood as the transition of a symmetrical double line defined wave resistance (e.g. 240 ohms) by widening and thickening the conductors to a wave resistance of the overall arrangement which is favorable for radiation. It is particularly important that this transition takes place gradually and that the end of the expanded radiator by turning outwards and rounding off results in a relatively high radiation even for low frequencies.
  • the flat radiator elements of the preferred embodiment can be thought of as being formed from horn-shaped radiator halves with a circular cross section by squeezing them together. In this respect, it is justified to call this antenna a two-wire horn antenna in analogy to exponential horns for waveguides.
  • the flat heart shape can also be imagined from a pair of flat conductors, the conductors of which run in a common plane, while the double horn configuration is developed from a pair of round conductors.
  • further radiating configurations can be derived from multi-core waveguides of different geometries by the transition from parallel conductors to antenna wings with gradually increasing dimensions. All these broadband radiators have in common that they radiate preferably in the direction of the line axis and have a very balanced frequency response.
  • a four-conductor arrangement leads in particular to two crossed heart radiators for the emission of circularly polarized waves.
  • the radiation patterns can also be influenced by tilting the antenna planes towards each other.
  • a particularly preferred arrangement of this type combines two individual antennas with an angle of 60 ° to 90 ° between the antenna planes in such a way that the feed points of all 4 antenna sheets lie on the corners of a square.
  • the antenna according to the invention is particularly suitable, particularly in a heart-shaped embodiment, as a transmitting or receiving antenna for concave mirror antennas, since it - arranged in the focal spot of the concave mirror with the feed point turned away from it - can develop its main sensitivity in the direction of the mirror surface and thus with its aperture optimally on the aperture of the beam is focused by the concave mirror.
  • the size and frequency dependency of the input resistance can still be changed within wide limits by the distance of the feed point from the line of symmetry or reference plane and by the spreading angle of the antenna blade to the line of symmetry or reference plane.
  • the distance of the feed point from the line of symmetry or reference plane depends strongly on the shape of the radiator edge for fixed input resistance. For thin spotlights made of sheet metal, for example, there are small distances of a few millimeters. For radiators bordered with profiles along the outline, the distances increase to the order of the diameter of the profile. If the antenna wing is spatial, the distances become correspondingly larger.
  • those cross sections of the antenna wing can each be circular in the cross-sectional planes running perpendicular to the tangents to the central curve.
  • these cross-sections can optionally also be angular or, preferably, elliptical, wherein the major axis of the elliptical cross-section can be set at any angle to the longitudinal contour plane containing the characteristic longitudinal contour. In particular, this angle can be 90 °.
  • a flat antenna wing arises which runs curved in accordance with the middle curve mentioned, so that the dipole antenna consists of two flat curved antenna wings, the convex curved sides of which face each other.
  • the antenna wings compared to the design according to the invention can be more or less distorted than similar plates or horns if less good properties than in the preferred embodiment according to the invention, z. B. a strong ripple of the input resistance or a poor directivity to be accepted.
  • FIG. 1 shows the characteristic, approximately half-heart-shaped longitudinal outline of the plane antenna wing in a right-angled X, Y coordinate system.
  • the feed point 3 of the antenna wing lies at its tip, which lies in the X, Y coordinate system in its origin.
  • One of the longitudinal outline 6 starting from the feed point 3 is initially almost straight following the feed point 3 and runs with gradually increasing convex curvature into the convexly curved end apex 5 of the antenna wing facing away from the feed point 3, while the other longitudinal outline 7 starting from the feed point 3 runs out of an almost straight part with a concave curvature with a large radius of curvature and then merges into a convexly curved cross apex 8, the radius of curvature of which is smaller than that of the end apex 5.
  • the longitudinal contour section between the end apex 5 and the cross apex 8 runs with a convex curvature, the radius of curvature of which is greater than that of the end apex 5 and that of the cross apex 8. Overall, therefore, the longitudinal contour 2 of the antenna wing 1 runs in a continuously curved curve, so that it is approximately half-heart-shaped is.
  • the ratio of the length L measured from the feed point 3 along the Y axis of the coordinate system shown to the end vertex 5 of the antenna wing 1 to the width B of the antenna wing measured up to the cross vertex 8 along the X axis is preferably 1.1 to 1.3, especially 1.2.
  • the opening angle 4 between the longitudinal contour lines 6, 7 of the antenna wing 1 starting from the feeding point 3 is preferably 30 ° to 40 °, in particular 36 °, following the feeding point 3.
  • the ratio of the length L of the antenna wing 1 to the distance A between the vertical projection of the vertex of the transverse vertex 8 onto the longitudinal direction (Y axis) of the antenna wing 1 and its feed point 3 is preferably 1.4 to 1.6, in particular 1.5 .
  • the preferred longitudinal outline of the antenna wing 1 from FIG. 1 can be described in the right-angled coordinate system with the same division of the X-axis and the Y-axis with a maximum of 146 abscissa parts and a maximum of 180 ordinate parts by the coordinate points assigned to one another in columns in the following table, the Curve connections of the coordinate points are curved and the feed point 3 is close to the origin of the coordinate system:
  • the wave impedance of the feed line should match the input resistance of the antenna if possible.
  • the wave resistance of the tip of the antenna wing must correspond approximately to the wave resistance of the line. This adjustment can be done by small displacements of the feed point 3 on the center line of the antenna wing 1 in the direction of the apex 5.
  • 1 can be designed as a sheet metal plate. 2 and 3, it can also consist of a wire mesh 9 or a wire / sheet metal strip mesh 10, 11, the wires 10 radiating from the feed point 3 of the antenna wing and arcuate in the direction of curvature of the longitudinal contour lines starting from the feed point 3 6, 7 run, whereas the sheet metal strips or wires 11 cross the wires 10 at an angle between 40 ° and 90 °.
  • Fig. 2 the antenna wing is shown in its arrangement perpendicular and at a distance from a conductive plane 16, the cross vertex facing away from this forms the highest point of the antenna wing above the conductive plane 16.
  • the 4 shows the preferred embodiment of the broadband directional antenna as an approximately heart-shaped double radiator.
  • the two antenna wings 1, 1 ' are arranged mirror-symmetrically to one another with respect to an axis of symmetry S at a distance D therefrom, so that their longitudinal vertices 5, 5' along the axis of symmetry S are at the same height and the transverse vertices 8.8 'of the antenna joint 1.1' are arranged facing away from one another are.
  • the mutually facing edges of the antenna wings 1, 1 initially run almost parallel to one another at their feed points at a distance D from one another which also determines the input resistance and is therefore to be taken into account for the optimization of the antenna properties, after which they gradually diverge.
  • the ratio of the span W of the antenna wings 1, 1 'determined by the distance between the cross vertices 8, 8' of the two antenna wings 1, 1 'to the length measured from the feed points 3 to the common tangent T to the end tips 5, 5' L is preferably 1.6 to 1.8, in particular 1.72.
  • the feed line is a coaxial cable 15, which is connected via a 4: 1 balun 14 and a short symmetrical line to the feed points 3 of the antenna wings 1, 1 '.
  • FIG. 5 shows the antenna from FIG. 4 in the form of an indoor antenna.
  • FIGS. 6 and 7 show a spatial antenna wing with the characteristic, approximately half-heart-shaped longitudinal outline in the longitudinal outline plane containing the feed point 3, the end apex 5 and the cross apex 8.
  • the spatial antenna wing from FIGS. 6 and 7 can be thought to have arisen from the flat antenna wing from FIG. 1 by its widening perpendicular to its longitudinal contour plane.
  • the plane antenna wing 1 arises from the spatial antenna wing from FIGS. 6 and 7 by flattening it in the direction perpendicular to its longitudinal contour plane containing the approximately half-hearted longitudinal contour.
  • the preferred dimensional relationships of the spatial antenna wing coincide with those of the flat antenna wing from FIG.
  • the center curve m of the antenna wing which runs in a continuously curved manner, corresponds to the double cross-sectional planes e of the plane antenna wing which is assigned along the center curve m and is measured in the longitudinal contour plane perpendicular to the respective tangent t to the center curve m.
  • the vertical radiator from FIG. 2 and the horizontal double radiator from FIG. 4 can be arranged so as to be rotatable about a vertical axis.
  • the arrangement of the antenna wings 1 above a reference plane 16 or to a line of symmetry S can be seen from FIGS. 2, 3, 4 and 6.
  • the antenna wing 1 is convex and continues in the direction of the edge curves 6 and 7.
  • the constant distance Q to width P ratio for the first half of the antenna wing 1 means that the assigned function F 7 results from the function F6 by multiplying by a factor (2k + 1) / (2k-1) .
  • the functions F6 and F7 are defined here in a coordinate system, the abscissa of which is formed by the reference plane 16 or the axis of symmetry S and the ordinate of which is the vertical through the feed point 3.
  • the antenna wing 1 dimensioned in FIG. 1 according to Table 1 has a k m 0.6 in an arrangement according to FIG. 4, thus a typical wave and input resistance of approximately 200 ohms.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Details Of Aerials (AREA)

Abstract

Wide spectrum directional antenna with at least one antenna wing (1). The antenna wing has a semi-heart shape in the longitudinal direction to obtain a simple construction form in the case of the largest possible spectrum width and relatively small variations of the input resistance in the field of the broadband of the antenna wing (1). The shape of the two antenna wings (1) as a double antenna is similar to the shape of a heart. The useful broadband frequency spectrum of this antenna extends uninterruptedly from a lower limit frequency of which the wavelength is substantially equal to the triple of the length L of the antenna. The input resistance is constant or decreases slightly and the antenna gain increases with the frequency up to arbitrarily high frequencies. The maximum broadcast direction of the double antenna coincides with the symmetry axis of heart-shaped radiation device and is turned away from the point of the heart forming the power supply (3) of the antenna wings.

Description

Die Erfindung betrifft eine Breitband-Richtantenne gemäß dem einleitenden Teil des Anspruchs 1.The invention relates to a broadband directional antenna according to the introductory part of claim 1.

Wie ein Blick auf die Dach-Antennenanlagen für den Empfang von UKW-Rundfunk und von Fernsehen für den VHF- und den UHF-Bereich zeigt, müssen heute noch für jeden dieser Bereiche gesonderte Antennen verwendet werden. Daraus ergibt sich von selbst das Bedürfnis nach einer Breitbandantenne einfacher Bauart, die für alle dieser Frequenzbereiche (etwa von 80 bis 900 MHz) gute Empfangseigenschaften bietet. Es gibt zwar eine Breitband-Richtantenne, die sogenannte logarithmischperiodische Antenne, die solche Eigenschaften hat. Nachteilig sind jedoch ihre relativ aufwendige Bauweise, ihr relativ kleiner Antennengewinn bei hohen Frequenzen und ihr relativ stark schwankender Eingangswiderstand. Es sind auch andere Breitbandantennen bekannt, wie die Konusantenne, die Doppelkonusantenne und der Breitbandstrahler nach Meinke (Eugen Philippow, Taschenbuch Elektrotechnik, Band 3, Carl Hanser-Verlag München-Wien 1978, Seite 569). Dessen Längsumriß ist etwa birnenförmig und symmetrisch zu der die Speisestelle mit dem Scheitelpunkt des konvex gekrümmten Endscheitels verbindenden Mittelgeraden. In der Ausbildung als Dipolantenne sind die Längsscheitel der in gemeinsamer Ebene angeordneten Antennenflügel einander diametral abgewendet angeordnet. Derartige bekannten Breitbandantennen haben entweder eine nur geringe Richtwirkung oder ein störend großes Bauvolumen. Ferner ist eine Richtantenne bekannt (DE-A-2921 856), die aus zwei dipolartig an einer Speisestelle von einer symmetrischen Doppelleitung gespeisten ebenen Strahlerhälften besteht, die von der Speisestelle ausgehend etwa V-förmig auseinanderlaufen und dabei bis nahe zum Strahlerende breiter werden, an welchem sie einen konvex gekrümmten Längsscheitel bilden. Die einander benachbarten Längsumrißlinien der Strahlerhälften verlaufen von der Speisestelle aus mit abnehmendem Krümmungsradius konvex gekrümmt in den Endscheitel ein, wohingegen die einander abgewendeten Längsumrißlinien von der Speisestelle aus konkav gekrümmt sind und dann in den konvex gekrümmten Längsscheitel übergehen. Die beiden Strahlerhälften liegen in parallelen Ebenen, die im Abstand voneinander angeordnet sind, so daß sie einander mit ihren einander benachbarten Längsrändern bis nahe zu ihrem Längsscheitel überlappen und ihre Längsmittellinien an der Speisestelle in der zu den Ebenen der Strahlerhälften senkrechten Symmetrieebene liegen, in welcher die zu der Speisestelle führende Doppelleitung verläuft. Diese bekannte Richtantenne hat eine große Bandbreite von einer oberen Grenzwellenlänge aus, die etwa bei der doppelten Länge der Richtantenne liegt.As a look at the roof antenna systems for the reception of VHF radio and television for the VHF and UHF range shows, separate antennas must still be used for each of these areas. This naturally results in the need for a simple broadband antenna that offers good reception properties for all of these frequency ranges (approximately from 80 to 900 MHz). There is a broadband directional antenna, the so-called log-periodic antenna, which has such properties. However, their relatively complex construction, their relatively small antenna gain at high frequencies and their relatively strongly fluctuating input resistance are disadvantageous. Other broadband antennas are also known, such as the cone antenna, the double cone antenna and the broadband radiator according to Meinke (Eugen Philippow, Taschenbuch Elektrotechnik, Volume 3, Carl Hanser-Verlag Munich-Vienna 1978, page 569). Its longitudinal outline is approximately pear-shaped and symmetrical to the central straight line connecting the feeding point to the apex of the convexly curved end apex. In the design as a dipole antenna, the longitudinal vertices of the antenna wings arranged in a common plane are arranged diametrically opposed to one another. Known broadband antennas of this type either have only a low directivity or a disruptively large construction volume. Furthermore, a directional antenna is known (DE-A-2921 856), which consists of two dipole-like planar halves fed by a symmetrical double line at a feed point, which start from the feed point to be approximately V-shaped and thereby widen to near the end of the radiator which they form a convex longitudinal apex. The adjacent longitudinal contour lines of the radiator halves run convexly curved into the end apex from the feed point with decreasing radius of curvature, whereas the mutually opposed longitudinal contour lines are concavely curved from the feed point and then merge into the convex curved longitudinal apex. The two radiator halves lie in parallel planes which are spaced from one another so that they overlap one another with their adjacent longitudinal edges up to their longitudinal apex and their longitudinal center lines at the feed point lie in the plane of symmetry perpendicular to the planes of the radiator halves, in which the Double line leading to the dining point. This known directional antenna has a wide bandwidth from an upper limit wavelength, which is approximately twice the length of the directional antenna.

Durch die Erfindung wird die Aufgabe gelöst, eine in der im einleitenden Teil des Anspruchs 1 angegebenen Art ausgebildete Breitband-Richtantenne zu schaffen, die in einfacher Bauform eine möglichst große Bandbreite bei relativ kleinen Schwankungen des Eingangswiderstandes über den Breitbandbereich hin und bei guten Richteigenschaften aufweist.The invention solves the problem of creating a broadband directional antenna designed in the manner specified in the introductory part of claim 1, which, in a simple design, has the widest possible bandwidth with relatively small fluctuations in the input resistance over the broadband range and with good directional properties.

Dies wird gemäß der Erfindung durch die Merkmale im kennzeichnenden Teil des Anspruchs 1 erreicht.This is achieved according to the invention by the features in the characterizing part of claim 1.

Bevorzugte Ausgestaltungen der Erfindung sind in den Ansprüchen 2 bis 10 beschrieben.Preferred embodiments of the invention are described in claims 2 to 10.

Unter « charakteristischer Längsumriß wird hier verstanden, daß der erfindungsgemäße Antennenflügel wenigstens einen Längsumriß hat, der die hier beschriebene Form aufweist.“Characteristic longitudinal outline is understood here to mean that the antenna wing according to the invention has at least one longitudinal outline which has the shape described here.

Beim einem flächigen Antennenflügel ist der charakteristische Längsumriß der Verlauf des seine Fläche umgrenzenden Randes. Bei einem räumlichen Antennenflügel hingegen weist dieser von seinen Längsumrissen wenigstens und vorzugsweise einen Längsumriß auf, der die hier als charakteristisch angegebene Form hat.In the case of a flat antenna wing, the characteristic longitudinal outline is the course of the edge surrounding its area. In the case of a spatial antenna wing, on the other hand, it has at least and preferably a longitudinal outline of its longitudinal contours, which has the shape indicated here as characteristic.

In der bevorzugten Ausführungsform ist die Breitband-Richtantenne als flächenhafte Doppelantenne ausgebildet, bei welcher ihre beiden Antennenflügel spiegelbildlich zueinander mit ihren Querscheiteln einander abgewendet angeordnet sind, so daß diese Doppelantenne in ihrem Längsumriß etwa herzförmig ausgebildet ist.In the preferred embodiment, the broadband directional antenna is designed as a planar double antenna, in which its two antenna wings are arranged mirror-inverted to one another with their transverse vertices facing away from one another, so that this double antenna is approximately heart-shaped in its longitudinal outline.

Die Einspeisung erfolgt an der Spitze des Herzens bei einem Eingangswiderstand von 300 bis 100 Ohm über einen Frequenzbereich hin, der von einer oberen Grenzwellenlänge, die gleich etwa dem Dreifachen der Längsabmessung der Herzform ist, bestimmt wird. Von dieser unteren Grenzfrequenz reicht das nutzbare Frequenzspektrum lückenlos mit nahezu konstantem bzw. nur leicht abnehmendem Eingangswiderstand und mit steigender Frequenz zunehmendem Antennengewinn bis zu sehr hohen Frequenzen. Die Hauptabstrahlrichtung des herzförmigen Strahlers fällt mit der Symmetrieachse der Herzform zusammen und ist der Speisestelle der Antennenflügel abgewendet. Bei horizontaler Lage des herzförmigen Flächenstrahlers ergibt sich eine verhältnismäßig starke Vertikalbündelung und ein nicht zu enges Horizontaldiagramm. Das Horizontaldiagramm weist bei höheren Frequenzen tiefe Strahlungsminima auf, die zur Ausblendung unerwünschter Signale dienen können. An der unteren Grenze des breitbandigen Verwendungsbereichs geht die Horizontalcharakteristik in eine Rundumcharakteristik über, was besonders für den Empfang von UKW-Rundfunk vorteilhaft sein kann.The feed takes place at the tip of the heart with an input resistance of 300 to 100 ohms over a frequency range which is determined by an upper cut-off wavelength which is approximately three times the longitudinal dimension of the heart shape. The usable frequency spectrum ranges from this lower limit frequency with almost constant or only slightly decreasing input resistance and with increasing frequency the antenna gain increases to very high frequencies. The main radiation direction of the heart-shaped radiator coincides with the axis of symmetry of the heart shape and is turned away from the feed point of the antenna wings. If the heart-shaped radiator is in a horizontal position, the vertical bundling is relatively strong and the horizontal diagram is not too narrow. The horizontal diagram shows low radiation minima at higher frequencies, which can be used to suppress unwanted signals. At the lower limit of the broadband range of use, the horizontal characteristic changes into an all-round characteristic, which can be particularly advantageous for the reception of FM radio.

Die erfindungsgemäße Antenne kann jedoch auch aus nur der einen Hälfte des herzförmigen Strahlers, d. i. nur einem Antennenflügel bestehen, der mit einer leitenden Ebene, insbesondere dem Erdboden, als durch deren Relativlage zu dem Antennenflügel den Eingangswiderstand der Antenne mitbestimmendes Gegenelement zusammenwirkt, wobei die Ebene vorzugsweise senkrecht zu der den charakteristischen Längsumriß enthaltenden Längsumrißebene des Antennenflügels an der dessen Querscheitel abgewendeten Seite im Abstand von dem Antennenflügel verläuft.However, the antenna according to the invention can also consist of only one half of the heart-shaped radiator, that is to say only one antenna wing, which interacts with a conductive plane, in particular the ground, as a counter-element which determines the input resistance of the antenna by virtue of its position relative to the antenna wing, the plane preferably perpendicular to the longitudinal contour plane of the antenna wing containing the characteristic longitudinal contour on the latter Transverse apex side runs at a distance from the antenna wing.

Bei entsprechend großer Bauweise läßt sich die Antenne auch als Breitbandstrahler für größere Wellenlängen, also z. B. im Kurzwellenbereich verwenden. Dabei wird, um den Bauaufwand zu verringern, vorteilhaft nur eine Hälfte des herzförmigen Strahlers, d. i. nur ein Antennenflügel verwendet, der als Vertikalstrahler mit seiner Längsumrißebene bei nach oben weisendem Querscheitel senkrecht zur Erdoberfläche angeordnet ist. Der Eingangswiderstand halbiert sich für diese Anordnung bei entsprechender Relativlage des Antennenflügels zum Erdboden auf einen Wert von im Mittel etwa 100 Ohm. Die Richtcharakteristik zeigt nun eine relativ enge Horizontalbündelung und eine gleichmäßige, von sehr kleinen Winkeln bis zu einem mit steigender Frequenz abnehmenden maximalen Erhebungswinkel reichende vertikale Abstrahlung. Dies Letztere ist besonders vorteilhaft, weil die vertikale Richtcharakteristik bei Kurzwellenantennen mit steigender Frequenz eine zunehmed flachere Bündelung verlangt.With a correspondingly large design, the antenna can also be used as a broadband radiator for longer wavelengths, e.g. B. use in the shortwave range. In order to reduce the construction effort, advantageously only half of the heart-shaped radiator, i. i. only one antenna wing is used, which is arranged as a vertical radiator with its longitudinal contour plane with the transverse apex pointing upwards perpendicular to the earth's surface. The input resistance is halved for this arrangement with a corresponding relative position of the antenna wing to the ground to an average value of about 100 ohms. The directional characteristic now shows a relatively narrow horizontal concentration and a uniform, vertical radiation ranging from very small angles to a maximum elevation angle that decreases with increasing frequency. The latter is particularly advantageous because the vertical directional characteristic of shortwave antennas requires increasingly shallower bundling with increasing frequency.

Durch Anheben des Flügels gegenüber der leitenden Erdoberfläche bei der Vertikalanordnung bzw. durch Spreizen der beiden Antennenflügel der herzförmigen Dipolanordnung können die Richtcharakteristik und die Eingangsimpedanz in gewissen Grenzen verändert werden.The directional characteristic and the input impedance can be changed within certain limits by lifting the wing relative to the conductive earth surface in the vertical arrangement or by spreading the two antenna wings of the heart-shaped dipole arrangement.

Die Wirkungsweise der Antenne und ihre Entwicklung läßt sich am einfachsten als Übergang einer symmetrischen Doppelleitung definierten Wellenwiderstandes (z. B. 240 Ohm) durch Aufweitung und Verdickung der Leiter auf einen für die Abstrahlung günstigen Wellenwiderstand der Gesamtanordnung verstehen. Dabei ist besonders wichtig, daß dieser Übergang allmählich erfolgt und das Ende des aufgeweiteten Strahlers durch Abbiegen nach außen und Abrundung auch für niedrige Frequenzen eine relativ hohe Abstrahlung ergibt. Die flächigen Strahlerelemente der bevorzugten Ausführungsform kann man sich aus hornförmigen Strahlerhälften mit Kreisquerschnitt durch Zusammenquetschen entstanden denken. Insoweit ist es berechtigt, diese Antenne als eine Zweileiter-Hornantenne in Analogie zu Exponential-Hörnern für Hohlleiter zu bezeichnen. Es handelt sich also um die strahlende Fortsetzung einer nichtstrahlenden Doppelleitung bei nur langsam veränderlichem Wellenwiderstand. Insbesondere kann man die flächige Herzform sich auch aus einem Flachleiterpaar entstanden denken, dessen Leiter in gemeinsamer Ebene verlaufen, während die Doppelhornkonfiguration aus einem Rundleiterpaar entwickelt wird. Aus mehradrigen Wellenleitern anderer Geometrie lassen sich dementsprechend weitere strahlende Konfigurationen durch Übergang von parallelen Leitern auf Antennenflügeln mit allmählich zunehmenden Abmessungen ableiten. All diesen Breitband-Strahlern ist gemeinsam, daß sie bevorzugt in Richtung der Leitungsachse strahlen und einen sehr ausgeglichenen Frequenzgang haben. Eine Vier-Leiteranordnung führt insbesondere zu zwei gekreuzten Herzstrahlern zur Abstrahlung zirkular-polarisierter Wellen.The mode of operation of the antenna and its development can be most easily understood as the transition of a symmetrical double line defined wave resistance (e.g. 240 ohms) by widening and thickening the conductors to a wave resistance of the overall arrangement which is favorable for radiation. It is particularly important that this transition takes place gradually and that the end of the expanded radiator by turning outwards and rounding off results in a relatively high radiation even for low frequencies. The flat radiator elements of the preferred embodiment can be thought of as being formed from horn-shaped radiator halves with a circular cross section by squeezing them together. In this respect, it is justified to call this antenna a two-wire horn antenna in analogy to exponential horns for waveguides. It is therefore the radiating continuation of a non-radiating double line with only slowly changing wave resistance. In particular, the flat heart shape can also be imagined from a pair of flat conductors, the conductors of which run in a common plane, while the double horn configuration is developed from a pair of round conductors. Correspondingly, further radiating configurations can be derived from multi-core waveguides of different geometries by the transition from parallel conductors to antenna wings with gradually increasing dimensions. All these broadband radiators have in common that they radiate preferably in the direction of the line axis and have a very balanced frequency response. A four-conductor arrangement leads in particular to two crossed heart radiators for the emission of circularly polarized waves.

Im folgenden werden einige besondere Eigenschaften der Breitband-Richtantenne gemäß der Erfindung aufgezählt :

  • 1. Durch die große Kapazität der beiden Antennenflügel ergibt sich eine gute Anpassung an den Raum, so daß keine oder nur geringe Anteile der eingespeisten Leistung im Falle der Verwendung als Sendeantenne reflektiert werden. Insbesondere entstehen bei dieser Anwendung keine hohen Spannungen auf dieser Antenne, so daß sie für sehr große Sendeleistungen geeignet ist. Außerdem bewirkt die hohe Kapazität der Antennenflügel eine geringe Empfindlichkeit gegenüber Umgebungseinflüssen (keine Verstimmung). Außerdem ergibt sich durch die relativ große räumliche Ausdehnung der Antennenflügel ein gewisser Integrationseffekt durch die Antenne in einem Stehwellenfeld. In der Nähe von reflektierenden Strukturen nämlich, z. B. in Gebäuden oder vor anderen Hindernissen, bei denen bekannte Antennen in den Minima des Stehwellenfeldes nur geringe Signale empfangen und wo eine Bewegung solcher Antennen starke Schwankungen der Signalamplitude bewirken, können durch die erfindungsgemäße Antenne bei weiterhin vorhandener Richtwirkung solche Welligkeiten, und zwar besonders für kurze Wellenlängen, überbrückt oder ausgeglichen werden.
  • 2. Die Antennenflügel können aus Blech oder Maschendraht gefertigt sein, wobei im letzteren Fall die Spitzen der beiden Antennenflügel, an denen die Speiseleitung angeschlossen wird, durch zusätzliche Drähte oder Blechauflagen verstärkt sein sollten. Bei der Ausführung aus Maschendraht kann durch Veränderung der Orientierung der Maschen, durch Veränderung der Größe der Maschen, durch Veränderung der Lage der Einzeldrähte, durch eine leitende Umrandung des Maschenwerkes und durch Wellung der Fläche eine Veränderung des Eingangswiderstandes und der unteren Grenzfrequenz und ggf. auch der Abstrahlrichtung herbeigeführt werden.
  • 3. Durch Anordnung der Antennenflügel als Gruppen sowie durch den Einsatz von Reflektoren vor oder hinter der Antenne lassen sich eine Verstärkung der Richtwirkung und eine Veränderung des Eingangswiderstandes erzielen. So lassen sich aus der erfindungsgemäßen Antenne in vielfältiger Weise Antennengruppen zusammenstellen, durch welche die Richtwirkungen verstärkt oder verändert werden. Insbesondere lassen sich die Strahlungsdiagramme der Einzelantennen hinsichtlich ihrer Strahlungsminima und auch Strahlungsmaxima mit einer Antennengruppe beeinflussen, die mindestens zwei Einzelantennen unterschiedlicher Größe in Anordnung über- oder nebeneinander aufweist. Hierdurch läßt sich beispielsweise erreichen, daß die weiter vorn erwähnten tiefen Strahlungsminima der Einzelantenne bei höheren Frequenzen für bestimmte Richtungen von der Zusatzantenne ausgefüllt werden. Auch der Impedanzverlauf kann durch Antennengruppen mit erfindungsgemäßen Strahlern unterschiedlicher Größen noch weiter geglättet werden.
Some special properties of the broadband directional antenna according to the invention are listed below:
  • 1. The large capacity of the two antenna wings results in a good adaptation to the room, so that no or only a small proportion of the power fed in is reflected when used as a transmitting antenna. In particular, no high voltages arise on this antenna in this application, so that it is suitable for very large transmission powers. In addition, the high capacity of the antenna wings means that they are not very sensitive to environmental influences (no detuning). In addition, due to the relatively large spatial expansion of the antenna wings, there is a certain integration effect by the antenna in a standing wave field. In the vicinity of reflective structures, e.g. B. in buildings or in front of other obstacles, in which known antennas receive only small signals in the minima of the standing wave field and where a movement of such antennas cause strong fluctuations in the signal amplitude, such ripples can be caused by the antenna according to the invention with directionality still present, especially for short wavelengths, bridged or balanced.
  • 2. The antenna wings can be made of sheet metal or wire mesh, in the latter case the tips of the two antenna wings, to which the feed line is connected, should be reinforced by additional wires or sheet metal supports. In the version made of wire mesh, by changing the orientation of the mesh, by changing the size of the mesh, by changing the position of the individual wires, by a conductive border around the meshwork and by corrugating the surface, a change in the input resistance and the lower limit frequency and possibly also the radiation direction are brought about.
  • 3. By arranging the antenna wings as groups and by using reflectors in front of or behind the antenna, an increase in the directional effect and a change in the input resistance can be achieved. In this way, antenna groups can be put together from the antenna according to the invention, by means of which the directional effects are amplified or changed. In particular, the radiation diagrams of the individual antennas can be influenced with regard to their radiation minima and also radiation maxima with an antenna group which has at least two individual antennas of different sizes arranged one above the other or next to one another. In this way it can be achieved, for example, that the deep radiation minima of the individual antenna mentioned above higher frequencies for certain directions are filled in by the additional antenna. The impedance profile can also be smoothed further by antenna groups with radiators of different sizes according to the invention.

Auch durch eine Neigung der Antennenebenen gegeneinander lassen sich die Strahlungsdiagramme beeinflussen. Eine besonders bevorzugte Anordnung dieser Art vereint zwei Einzelantennen mit einem Winkel von 60° bis 90° zwischen den Antennenebenen in einer Weise, daß die Speisungspunkte aller 4 Antennenblätter auf den Ecken eines Quadrates liegen.The radiation patterns can also be influenced by tilting the antenna planes towards each other. A particularly preferred arrangement of this type combines two individual antennas with an angle of 60 ° to 90 ° between the antenna planes in such a way that the feed points of all 4 antenna sheets lie on the corners of a square.

Ferner eignet sich die erfindungsgemäße Antenne insbesondere in herzförmiger Ausführungsform besonders als Sende- oder Empfangsantenne für Hohlspiegelantennen, da sie-im Brennfleck des Hohlspiegels mit diesem abgewendeter Speisestelle angeordnet - ihre Hauptempfindlichkeit in Richtung der Spiegelfläche entwickeln kann und so mit ihrer Apertur optimal auf die Apertur des vom Hohlspiegel fokussierten Strahles abgestimmt ist.Furthermore, the antenna according to the invention is particularly suitable, particularly in a heart-shaped embodiment, as a transmitting or receiving antenna for concave mirror antennas, since it - arranged in the focal spot of the concave mirror with the feed point turned away from it - can develop its main sensitivity in the direction of the mirror surface and thus with its aperture optimally on the aperture of the beam is focused by the concave mirror.

Ferner kann die erfindungsgemäße Antenne nicht nur ohne Schaden für ihre Wirkung, sondern eventuell sogar unter Verbesserung ihres Richtdiagramms vor einer Reflektorwand betrieben werden, die senkrecht zu der Symmetrieachse der Antenne angeordnet ist und mit ihrer Ebene durch die Speisestelle der Antennenflügel verläuft.

  • 4. Ein besonderer Vorteil liegt in der einfachen Herstellung der Antenne, die aus zwei identischen Hälften (zwei Antennenflügel) zusammengesetzt werden kann. Bei einer Ausführung aus Maschendraht können die Ränder zur Einfassung und Versteifung aus Kunststoffrahmen bestehen, welche im Flächenschwerpunkt der Antenne zugleich eine Ständerhalterung aufweisen.
  • 5. Als gegen Erde erregte Halbantenne, deren Fläche senkrecht zur Erdoberfläche verläuft, kann die Antenne mittels einer Seilkonstruktion an einem oder mehreren Tragemasten aufgehängt werden. Sie kann auch über ein Seilnetz zwischen Masten verspannt werden. Besonders vorteilhaft ist die hohe Kapazität der Antenne bei großen Sendeleistungen.
  • 6. Durch Verkürzen oder Verbreitern der Flügel läßt sich der Eingangswiderstand beeinflussen. Dies ist bei Netzen auch durch Orientierung der Maschen möglich.
Furthermore, the antenna according to the invention can be operated not only without damage to its effect, but possibly even with an improvement in its directional diagram in front of a reflector wall which is arranged perpendicular to the axis of symmetry of the antenna and runs with its plane through the feed point of the antenna wings.
  • 4. A particular advantage lies in the simple manufacture of the antenna, which can be composed of two identical halves (two antenna wings). In the case of a version made of wire mesh, the edges for binding and stiffening can consist of plastic frames, which at the same time have a stand holder in the center of gravity of the antenna.
  • 5. As a semi-antenna excited against earth, the surface of which is perpendicular to the earth's surface, the antenna can be suspended from one or more masts by means of a rope construction. It can also be tensioned between masts via a cable network. The high capacity of the antenna is particularly advantageous with high transmission powers.
  • 6. The input resistance can be influenced by shortening or widening the wings. With nets, this is also possible by orienting the mesh.

Bei bereits gewählter Form und Ausführung läßt sich der Eingangswiderstand in Größe und Frequenzabhängigkeit noch in weiten Grenzen durch den Abstand des Speisungspunktes von der Symmetrielinie oder Bezugsebene und durch den Spreizungswinkel des Antennenblattes zur Symmetrielinie oder Bezugsebene verändern.If the shape and design have already been selected, the size and frequency dependency of the input resistance can still be changed within wide limits by the distance of the feed point from the line of symmetry or reference plane and by the spreading angle of the antenna blade to the line of symmetry or reference plane.

Der Abstand des Speisungspunktes von der Symmetrielinie oder Bezugsebene hängt für festen Eingangswiderstand stark von der Form des Strahlerrandes ab. Für dünne Strahler etwa aus Blech ergeben sich kleine Abstände von wenigen Millimetern. Für mit Profilen längs der Umrißlinie eingefaßte Strahler vergrößern sich die Abstände in die Größenordnung des Profildurchmessers. Ist der Antennenflügel räumlich, werden die Abstände entsprechend noch größer.The distance of the feed point from the line of symmetry or reference plane depends strongly on the shape of the radiator edge for fixed input resistance. For thin spotlights made of sheet metal, for example, there are small distances of a few millimeters. For radiators bordered with profiles along the outline, the distances increase to the order of the diameter of the profile. If the antenna wing is spatial, the distances become correspondingly larger.

Entscheidend für eine gute Kabelanpassung ist immer, daß ein stoßfreier Übergang von der Speiseleitung auf die Strahlerspitze hergestellt wird. Daher wird der theoretisch spitze Strahler an einer Stelle, die den optimalen Übergang auf das Kabel ermöglicht, abgebrochen. Bei Strahlern mit Randeinfassung aus Blech oder Rohr kann diese von der richtigen Stelle in der Nähe der Strahlerspitze an als Wellenleiter ohne Abstrahlung weitergeführt werden.

  • 7. Nach den Regeln für die Herstellung komplementärer Antennen als Schlitz-Strahler läßt sich die Antenne gemäß der Erfindung in der ihr zugeordneten Komplementärform auch als Öffnung in einer ausgedehnten leitenden Fläche herstellen.
  • 8. Die Breitband-Richtantenne gemäß der Erfindung hat eine Grund- oder Halbwellenresonanz bei einer Wellenlänge, bei der die Längsabmessung etwa 1/6 der Resonanzwellenlänge ist. Bei dieser Grundresonanz hat die Antenne einen kleinen Eingangswiderstand (10 bis 20 Ohm), die Halbantenne davon wiederum den halben Eingangswiderstand, und verfügt über eine gleichmäßige Rundumempfindlichkeit. Bei Ausnutzung dieser Grundresonanz für den Empfang von UKW-Rundfunk bei 80 bis 110 MHz beginnt der eigentliche Breitband-Empfangsbereich bei etwa 180 MHz, also gerade am unteren Ende der üblichen Fernsehfrequenzen. Damit läßt sich durch Ausnutzung der Grundresonanz eine besonders kleine Bauform der erfindungsgemäßen Breitband-Richtantenne als Kombinationsantenne für den UKW-Rundfunk und für den Fernsehempfang z. B. als Zimmerantenne bauen.
It is crucial for a good cable adaptation that a smooth transition from the feed line to the radiator tip is made. Therefore, the theoretically pointed radiator is broken off at a point that enables the optimal transition to the cable. In the case of spotlights with edge edging made of sheet metal or tube, this can be continued as a waveguide without radiation from the correct location near the tip of the spotlight.
  • 7. According to the rules for the production of complementary antennas as slot radiators, the antenna according to the invention in its complementary form can also be produced as an opening in an extensive conductive surface.
  • 8. The broadband directional antenna according to the invention has a fundamental or half-wave resonance at a wavelength at which the longitudinal dimension is approximately 1/6 of the resonance wavelength. With this basic resonance, the antenna has a small input resistance (10 to 20 ohms), the half antenna of which in turn has half the input resistance, and has an even all-round sensitivity. If this basic resonance is used for the reception of FM radio at 80 to 110 MHz, the actual broadband reception range begins at around 180 MHz, i.e. just at the lower end of the usual television frequencies. This allows a particularly small design of the broadband directional antenna according to the invention as a combination antenna for FM radio and for television reception z. B. build as indoor antenna.

Bei einem erfindungsgemäßen räumlichen Antennenflügel, dessen von der Speisestelle desselben bis zum Scheitelpunkt des Querscheitels seines charakteristischen Längsumrisses in dessen Längsumrißebene verlaufende Mittelkurve stetig gekrümmt verläuft, können diejenigen Querschnitte des Antennenflügels jeweils in den senkrecht zu den Tangenten an die Mittelkurve verlaufenden Querschnittsebenen kreisrund sein. Diese Querschnitte können jedoch ggf. auch eckig oder, vorzugsweise, ellipsenförmig sein, wobei die große Hauptachse des ellipsenförmigen Querschnitts in einem beliebigen Winkel zu der den charakteristischen Längsumriß enthaltenden Längsumrißebene angestellt sein kann. Insbesondere kann dieser Winkel 90° betragen. Hierbei ergibt sich insbesondere durch immer stärkere Verkürzung des Querschnittsdurchmessers entlang der kleinen Hauptachse des ellipsenförmigen Querschnitts im Grenzfall ein flächiger Antennenflügel, der entsprechend der genannten Mittelkurve gekrümmt verläuft, so daß die Dipolantenne aus zwei flächigen gekrümmten Antennenflügeln besteht, deren konvex gekrümmte Seiten einander zugewendet sind.In the case of a spatial antenna wing according to the invention, the central curve of which extends from the feed point thereof to the vertex of the transverse vertex of its characteristic longitudinal contour in its longitudinal contour plane, those cross sections of the antenna wing can each be circular in the cross-sectional planes running perpendicular to the tangents to the central curve. However, these cross-sections can optionally also be angular or, preferably, elliptical, wherein the major axis of the elliptical cross-section can be set at any angle to the longitudinal contour plane containing the characteristic longitudinal contour. In particular, this angle can be 90 °. In this case, in particular due to ever increasing shortening of the cross-sectional diameter along the small main axis of the elliptical cross-section, a flat antenna wing arises which runs curved in accordance with the middle curve mentioned, so that the dipole antenna consists of two flat curved antenna wings, the convex curved sides of which face each other.

Ferner können Abwandlungen der vorstehend beschriebenen Ausführungsform vorteilhaft sein, bei denen die Antennenflügel entlang der genannten Mittelkurve in sich verwunden verlaufen.Furthermore, modifications of the above-described embodiment can be advantageous in which the antenna wings run in a twisted manner along the middle curve mentioned.

Im übrigen wird darauf hingewiesen, daß die Antennenflügel gegenüber der erfindungsgemäßen Gestaltung mehr oder weniger verzerrt als dieser ähnliche Platten oder Hörner ausgebildet sein können, wenn weniger gute Eigenschaften als bei der erfindungsgemäß bevorzugten Ausführungsform, z. B. eine starke Welligkeit des Eingangswiderstandes oder eine schlechtere Richtwirkung, in Kauf genommen werden.Incidentally, it is pointed out that the antenna wings compared to the design according to the invention can be more or less distorted than similar plates or horns if less good properties than in the preferred embodiment according to the invention, z. B. a strong ripple of the input resistance or a poor directivity to be accepted.

Die Erfindung wird im folgenden anhand von bevorzugten Ausführungsformen erläutert, die aus der Zeichnung wenigstens schematisch ersichtlich sind. In der Zeichnung zeigt :

  • Figur 1 den charakteristischen Längsumriß eines gemäß der Erfindung ausgebildeten Antennenflügels,
  • Figuren 2 und 3 jeweils einen erfindungsgemäßen Antennenflügel mit einer Belegung aus einem Draht-Gitterwerk, oder einem Draht/Biechstreifen-Gitterwerk,
  • Figur 4 die bevorzugte Ausführungsform der erfindungsgemäßen Breitband-Richtantenne in der Ausbildung als herzförmige Doppelantenne,
  • Figur 5 die Antenne aus Fig. 4 in der Ausbildung als Zimmerantenne,
  • Figur 6 einen räumlichen Antennenflügel gemäß der Erfindung in der Ansicht seines für die erfindungsgemäße Antenne charakteristischen, etwa halbherzförmigen Längsumrisses und
  • Figur 7 den räumlichen Antennenflügel aus Fig. 6 in der Ansicht auf den Endscheitel.
The invention is explained below on the basis of preferred embodiments, which can be seen at least schematically from the drawing. The drawing shows:
  • FIG. 1 shows the characteristic longitudinal outline of an antenna wing designed according to the invention,
  • FIGS. 2 and 3 each show an antenna wing according to the invention with an assignment of a wire lattice or a wire / lead strip lattice,
  • FIG. 4 shows the preferred embodiment of the broadband directional antenna according to the invention in the form of a heart-shaped double antenna,
  • FIG. 5 shows the antenna from FIG. 4 in the form of an indoor antenna,
  • 6 shows a spatial antenna wing according to the invention in the view of its approximately half-heart-shaped longitudinal contour and characteristic of the antenna according to the invention
  • 7 shows the spatial antenna wing from FIG. 6 in a view of the end apex.

In Fig. 1 ist der charakteristische, etwa halbherzförmige Längsumriß des ebenen Antennenflügels in einem rechtwinkligen X, Y-Koordinatensystem gezeigt. Der Speisepunkt 3 des Antennenflügels liegt an seiner Spitze, die in dem X, Y-Koordinatensystem in dessen Ursprung liegt. Die eine von dem Speisepunkt 3 ausgehende Längsumrißlinie 6 ist im Anschluß an den Speisepunkt 3 zunächst fast gerade und verläuft mit allmählich zunehmender konvexer Krümmung in den dem Speisepunkt 3 abgewendeten, konvex gekrümmten Endscheitel 5 des Antennenflügels, während die andere von dem Speisepunkt 3 ausgehende Längsumrißlinie 7 aus einem fast geraden Teil heraus mit konkaver Krümmung mit großem Krümmungsradius verläuft und dann in einen konvex gekrümmten Querscheitel 8 übergeht, dessen Krümmungsradius kleiner als der des Endscheitels 5 ist. Der Längsumrißabschnitt zwischen dem Endscheitel 5 und dem Querscheitel 8 verläuft mit konvexer Krümmung, deren Krümmungsradius größer ist als der des Endscheitels 5 und der des Querscheitels 8. Insgesamt verläuft daher der Längsumriß 2 des Antennenflügels 1 in stetig gekrümmter Kurve, so daß er etwa halbherzförmig ausgebildet ist.1 shows the characteristic, approximately half-heart-shaped longitudinal outline of the plane antenna wing in a right-angled X, Y coordinate system. The feed point 3 of the antenna wing lies at its tip, which lies in the X, Y coordinate system in its origin. One of the longitudinal outline 6 starting from the feed point 3 is initially almost straight following the feed point 3 and runs with gradually increasing convex curvature into the convexly curved end apex 5 of the antenna wing facing away from the feed point 3, while the other longitudinal outline 7 starting from the feed point 3 runs out of an almost straight part with a concave curvature with a large radius of curvature and then merges into a convexly curved cross apex 8, the radius of curvature of which is smaller than that of the end apex 5. The longitudinal contour section between the end apex 5 and the cross apex 8 runs with a convex curvature, the radius of curvature of which is greater than that of the end apex 5 and that of the cross apex 8. Overall, therefore, the longitudinal contour 2 of the antenna wing 1 runs in a continuously curved curve, so that it is approximately half-heart-shaped is.

Das Verhältnis der von dem Speisepunkt 3 aus entlang der Y-Achse des gezeigten Koordinatensystems bis zu dem Endscheitel 5 des Antennenflügels 1 gemessenen Länge L zu der bis zu dem Querscheitel 8 entlang der X-Achse gemessenen Breite B des Antennenflügels beträgt vorzugsweise 1,1 bis 1,3, insbesondere 1,2. Der Öffnungswinkel 4 zwischen den von der Speisestelle 3 ausgehenden Längsumrißlinien 6, 7 des Antennenflügels 1 beträgt im Anschluß an die Speisestelle 3 vorzugsweise 30° bis 40°, insbesondere 36°. Das Verhältnis der Länge L des Antennenflügels 1 zu dem Abstand A zwischen der senkrechten Projektion des Scheitelpunktes des Querscheitels 8 auf die Längsrichtung (Y-Achse) des Antennenflügels 1 und dessen Speisestelle 3 beträgt vorzugsweise 1,4 bis 1,6, insbesondere 1,5.The ratio of the length L measured from the feed point 3 along the Y axis of the coordinate system shown to the end vertex 5 of the antenna wing 1 to the width B of the antenna wing measured up to the cross vertex 8 along the X axis is preferably 1.1 to 1.3, especially 1.2. The opening angle 4 between the longitudinal contour lines 6, 7 of the antenna wing 1 starting from the feeding point 3 is preferably 30 ° to 40 °, in particular 36 °, following the feeding point 3. The ratio of the length L of the antenna wing 1 to the distance A between the vertical projection of the vertex of the transverse vertex 8 onto the longitudinal direction (Y axis) of the antenna wing 1 and its feed point 3 is preferably 1.4 to 1.6, in particular 1.5 .

Der bevorzugte Längsumrißverlauf des Antennenflügels 1 aus Fig. 1 läßt sich in dem rechtwinkligen Koordinatensystem mit gleicher Teilung der X-Achse und der Y-Achse bei maximal 146 Abszissenteilen und maximal 180 Ordinatenteilen durch die in der folgenden Tabelle einander spaltenweise zugeordneten Koordinatenpunkte beschreiben, wobei die Kurvenverbindungen der Koordinatenpunkte gekrümmt verlaufen und der Speisepunkt 3 nahe dem Ursprung des Koordinatensystems liegt :

Figure imgb0001
The preferred longitudinal outline of the antenna wing 1 from FIG. 1 can be described in the right-angled coordinate system with the same division of the X-axis and the Y-axis with a maximum of 146 abscissa parts and a maximum of 180 ordinate parts by the coordinate points assigned to one another in columns in the following table, the Curve connections of the coordinate points are curved and the feed point 3 is close to the origin of the coordinate system:
Figure imgb0001

Im Speisepunkt soll der Wellenwiderstand der Speiseleitung nach Möglichkeit mit dem Eingangswiderstand der Antenne übereinstimmen. Dazu muß auch der Wellenwiderstand der Spitze des Antennenflügels in etwa dem Wellenwiderstand der Leitung entsprechen. Diese Anpassung kann durch kleine Verlagerungen des Speisepunktes 3 auf der Mittellinie des Antennenflügels 1 in Richtung des Scheitels 5 erfolgen.At the feed point, the wave impedance of the feed line should match the input resistance of the antenna if possible. For this purpose, the wave resistance of the tip of the antenna wing must correspond approximately to the wave resistance of the line. This adjustment can be done by small displacements of the feed point 3 on the center line of the antenna wing 1 in the direction of the apex 5.

Der Antennenflügel aus Fig. 1 kann als Blechplatte gestaltet sein. Gemäß den Fig. 2 und 3 kann er auch aus einem Drahtgitterwerk 9 oder einem Draht/Blechstreifen-Gitterwerk 10, 11 bestehen, wobei die Drähte 10 von dem Speisepunkt 3 des Antennenflügels aus strahlenförmig ausgehen und bogenförmig im Krümmungssinn der von der Speisestelle 3 ausgehenden Längsumrißlinien 6, 7 verlaufen, wohingegen die Blechstreifen oder Drähte 11 die Drähte 10 unter einem Winkel zwischen 40° und 90° kreuzen.1 can be designed as a sheet metal plate. 2 and 3, it can also consist of a wire mesh 9 or a wire / sheet metal strip mesh 10, 11, the wires 10 radiating from the feed point 3 of the antenna wing and arcuate in the direction of curvature of the longitudinal contour lines starting from the feed point 3 6, 7 run, whereas the sheet metal strips or wires 11 cross the wires 10 at an angle between 40 ° and 90 °.

In Fig. 2 ist der Antennenflügel in seiner Anordnung senkrecht und im Abstand zu einer leitenden Ebene 16 gezeigt, wobei der dieser abgewendete Querscheitel die höchste Stelle des Antennenflügels über der leitenden Ebene 16 bildet.In Fig. 2 the antenna wing is shown in its arrangement perpendicular and at a distance from a conductive plane 16, the cross vertex facing away from this forms the highest point of the antenna wing above the conductive plane 16.

Aus Fig. 4 ist die bevorzugte Ausführungsform der Breitband-Richtantenne als etwa herzförmiger Doppelstrahler ersichtlich. Die beiden Antennenflügel 1, 1' sind bezüglich einer Symmetrieachse S im Abstand D von dieser spiegelbildlich zueinander angeordnet, so daß ihre Längsscheitel 5, 5' entlang der Symmetrieachse S auf derselben Höhe liegen und die Querscheitel 8.8' derAntennenftüget 1,1' einander abgewendet angeordnet sind. Die einander zugewendeten Ränder der Antennenflügel 1, 1 verlaufen im Anschluß an ihre Speisepunkte zunächst fast parallel in einem den Eingangswiderstand mitbestimmenden und daher für die Optimierung der Antenneneigenschaften zu beachtenden Abstand D voneinander, wonach sie allmählich auseinanderstreben. Das Verhältnis der durch den Abstand der Querscheitel 8, 8' der beiden Antennenflügel 1, 1' voneinander bestimmten Spannweite W der Antennenflügel 1, 1' zu der von den Speisepunkten 3 aus zu der gemeinsamen Tangente T an die Endscheitel 5, 5' gemessenen Länge L beträgt vorzugsweise 1,6 bis 1,8, insbesondere 1,72.4 shows the preferred embodiment of the broadband directional antenna as an approximately heart-shaped double radiator. The two antenna wings 1, 1 'are arranged mirror-symmetrically to one another with respect to an axis of symmetry S at a distance D therefrom, so that their longitudinal vertices 5, 5' along the axis of symmetry S are at the same height and the transverse vertices 8.8 'of the antenna joint 1.1' are arranged facing away from one another are. The mutually facing edges of the antenna wings 1, 1 initially run almost parallel to one another at their feed points at a distance D from one another which also determines the input resistance and is therefore to be taken into account for the optimization of the antenna properties, after which they gradually diverge. The ratio of the span W of the antenna wings 1, 1 'determined by the distance between the cross vertices 8, 8' of the two antenna wings 1, 1 'to the length measured from the feed points 3 to the common tangent T to the end tips 5, 5' L is preferably 1.6 to 1.8, in particular 1.72.

Bei der Ausführungsform aus Fig. 4 ist die Speiseleitung ein Koaxialkabel 15, welches über einen 4 : 1 Symmetrierübertrager 14 und eine kurze symmetrische Leitung an die Speisepunkte 3 der Antennenflügel 1, l' angeschlossen ist.In the embodiment from FIG. 4, the feed line is a coaxial cable 15, which is connected via a 4: 1 balun 14 and a short symmetrical line to the feed points 3 of the antenna wings 1, 1 '.

Aus Fig. 5 ist die Antenne aus Fig. 4 in Form einer Zimmerantenne ersichtlich. Die Antennenflügel 1,1' sind entlang ihres Längsumrisses von einem Kunststoffrahmen 12 eingerahmt, der im gemeinsamen Flächenschwerpunkt der Antennenflügel 1 auf einem senkrecht zu den Antennenflügeln 1, 1' verlaufenden Ständer 13 abgestützt ist. Die Antennenflügel 1, 1' stehen daher horizontal. Sie bilden in Richtung der Leitungsadern des Zuleitungskabels 15 deren sich allmählich verbreiternde und auseinandergebogene Fortsetzung.5 shows the antenna from FIG. 4 in the form of an indoor antenna. The antenna wings 1, 1 'are framed along their longitudinal outline by a plastic frame 12 which is supported in the common area center of gravity of the antenna wings 1 on a stand 13 running perpendicular to the antenna wings 1, 1'. The antenna wings 1, 1 'are therefore horizontal. They form in the direction of the line cores of the supply cable 15, their gradually widening and bent continuation.

Aus den Fig. 6 und 7 ist ein räumlicher Antennenflügel mit dem charakteristischen, etwa halbherzförmigen Längsumriß in der den Speisepunkt 3, den Endscheitel 5 und den Querscheitel 8 enthaltenden Längsumrißebene ersichtlich. Den räumlichen Antennenflügel aus den Fig. 6 und 7 kann man sich aus dem ebenen Antennenflügel aus Fig. 1 durch dessen Aufweitung senkrecht zu seiner Längsumrißebene entstanden denken. Umgekehrt entsteht der ebene Antennenflügel 1 aus dem räumlichen Antennenflügel aus Fig. 6 und 7 durch dessen Flachdrücken in Richtung senkrecht zu seiner den etwa halbherzförmigen Längsumriß enthaltenden Längsumrißebene. Die bevorzugten Abmessungsverhältnisse des räumlichen Antennenflügels stimmen mit denen des ebenen Antennenflügels aus Fig. 1 in der Weise überein, daß die Umfangsabmessung U des räumlichen Antennenflügels, gemessen jeweils in den senkrecht zu den Tangenten t an die in der Längsumrißebene des Antennenflügels von dem Speisepunkt 3 bis zum Scheitelpunkt des Querscheitels 8 stetig gekrümmt verlaufende Mittelkurve m des Antennenflügels liegenden Querschnittsebenen e der doppelten jeweils längs dieser Mittelkurve m zugeordneten, in der Längsumrißebene senkrecht zur jeweiligen Tangente t an die Mittelkurve m gemessenen Breitenabmessung des ebenen Antennenflügels entspricht. Durch Verdickung oder Verdünnung der Form des Antennenflügels gegenüber der bevorzugten Form lassen sich geänderte Eingangswiderstände erzielen.6 and 7 show a spatial antenna wing with the characteristic, approximately half-heart-shaped longitudinal outline in the longitudinal outline plane containing the feed point 3, the end apex 5 and the cross apex 8. The spatial antenna wing from FIGS. 6 and 7 can be thought to have arisen from the flat antenna wing from FIG. 1 by its widening perpendicular to its longitudinal contour plane. Conversely, the plane antenna wing 1 arises from the spatial antenna wing from FIGS. 6 and 7 by flattening it in the direction perpendicular to its longitudinal contour plane containing the approximately half-hearted longitudinal contour. The preferred dimensional relationships of the spatial antenna wing coincide with those of the flat antenna wing from FIG. 1 in such a way that the circumferential dimension U of the spatial antenna wing, measured in each case in the perpendicular to the tangents t to that in the longitudinal outline plane of the antenna wing from the feed point 3 to to the vertex of the cross vertex 8, the center curve m of the antenna wing, which runs in a continuously curved manner, corresponds to the double cross-sectional planes e of the plane antenna wing which is assigned along the center curve m and is measured in the longitudinal contour plane perpendicular to the respective tangent t to the center curve m. By thickening or thinning the shape of the antenna wing compared to the preferred shape, changed input resistances can be achieved.

Zur Verwendung der Antenne als nachführbare oder verstellbare Richtantenne können der Vertikalstrahler aus Fig. 2 und der horizontale Doppelstrahler aus Fig. 4 um eine vertikale Achse verdrehbar angeordnet sein. Die Anordnung der Antennenflügel 1 über einer Bezugsebene 16 bzw. zu einer Symmetrielinie S wird aus den Fig. 2, 3, 4 und 6 ersichtlich. Zur weitgehenden Konstanthaltung des Wellenwiderstandes vom Speisungspunkt 3 an ist es nützlich, das Verhältnis des Abstandes eines beliebigen Punktes der Mittelkurve m des Antennenflügels 1 von der Bezugsebene 16 oder von der Symmetrielinie S zur Breite P des Antennenflügels 1 - durch denselben Punkt der Mittelkurve m gemessen - annähernd konstant zu halten. Dies gelingt jedoch nur in der ersten Hälfte des Antennenflügels, gemessen von der Speisestelle 3 an oder bis zum Wendepunkt der Randkurve 7. In der zweiten Hälfte wird der Antennenflügel 1 konvex und in Forsetzung der Richtung der Randkurven 6 und 7 abgeschlossen. Für die Randkurven 6 und 7 bedeutet das konstante Abstand Q zu Breite P Verhältnis für die erste Hälfte des Antennenflügels 1, daß die zugeordnete Funktion F 7 durch Multiplizieren mit einem Faktor (2k + 1)/(2k-1) aus der Funktion F6 hervorgeht. Die Funktionen F6 und F7 sind hier in einem Koordinatensystem, dessen Abszisse durch die Bezugsebene 16 bzw. die Symmetrieachse S und dessen Ordinate durch die Senkrechte durch den Speisepunkt 3 gebildet wird, definiert. k = Q/P größer ein Halb ist dabei das gewünschte Verhältnis Abstand Q zu Breite P und bestimmt nach den bekannten Formeln für Wellenleiter wesentlich den Wellen- und Eingangswiderstand der Antenne. Wenn das Verhältnis k stets größer ein Halb ist, bedeutet dies auch, daß der Antennenflügel 1 die Symmetrielinie S oder die Bezugsebene 16 nicht berühren oder schneiden kann. Als Funktionen F6 und F7 für die Randkurven kommen im Prinzip alle stetigen, monoton anwachsenden Funktionen für die erste Hälfte des Antennenflügels in Betracht. Vorzugsweise sollen jedoch die Breite des Antennenflügels und damit auch die den Randkurven 6 und 7 zuzuordnenden Funktionen progressiv mit dem Abstand vom Speisepunkt 3 zunehmen. Der in Fig. 1 nach Tabelle 1 bemessene Antennenflügel 1 hat in einer Anordnung nach Fig. 4 ein k m 0,6, damit einen typischen Wellen- und Eingangswiderstand von ca. 200 Ohm.To use the antenna as a directional or adjustable directional antenna, the vertical radiator from FIG. 2 and the horizontal double radiator from FIG. 4 can be arranged so as to be rotatable about a vertical axis. The arrangement of the antenna wings 1 above a reference plane 16 or to a line of symmetry S can be seen from FIGS. 2, 3, 4 and 6. To keep the wave resistance constant from the supply point 3, it is useful to determine the ratio of the distance of any point on the center curve m of the antenna wing 1 from the reference plane 16 or from the line of symmetry S to the width P of the antenna wing 1 - measured by the same point on the center curve m - to keep almost constant. However, this is only possible in the first half of the antenna wing, measured from the feeding point 3 at or up to the turning point of the edge curve 7. In the second half, the antenna wing 1 is convex and continues in the direction of the edge curves 6 and 7. For the edge curves 6 and 7, the constant distance Q to width P ratio for the first half of the antenna wing 1 means that the assigned function F 7 results from the function F6 by multiplying by a factor (2k + 1) / (2k-1) . The functions F6 and F7 are defined here in a coordinate system, the abscissa of which is formed by the reference plane 16 or the axis of symmetry S and the ordinate of which is the vertical through the feed point 3. k = Q / P greater than half is the desired ratio of distance Q to width P and essentially determines the wave and input resistance of the antenna according to the known formulas for waveguides. If the ratio k is always greater than half, this also means that the antenna wing 1 cannot touch or intersect the line of symmetry S or the reference plane 16. In principle, all continuous, monotonically increasing functions for the first half of the antenna wing can be considered as functions F6 and F7 for the edge curves. Preferably, however, the width of the antenna wing and thus also the functions to be assigned to the edge curves 6 and 7 should increase progressively with the distance from the feed point 3. The antenna wing 1 dimensioned in FIG. 1 according to Table 1 has a k m 0.6 in an arrangement according to FIG. 4, thus a typical wave and input resistance of approximately 200 ohms.

Claims (10)

1. Broad-band directional antenna having at least one antenna wing (1) which can be of flat construction and which has a characteristic longitudinal outline (2) that extends in a steady curve and that, starting from the feed point (3) of the antenna wing (1), widens increasingly at an acute opening angle (4) and forms at the end of the wing that is remote from the feed point (3) a convexly curved end apex (5) into which, starting from the feed point (3), one longitudinal outline (6) of the characteristic longitudinal outline makes a transition with convex curvature, the radius of curvature of which decreases as the distance from the feed point (3) increases, whereas the other longitudinal outline line (7), starting from the feed point (3), makes a transition with concave curvature into a convexly curved transverse apex (8) and, from there, passes with convex curvature into the end apex (5), and in the case where a second antenna wing (1') is present, the antenna wing (1) is arranged symmetrically with respect to this identically constructed second antenna wing (1') relative to an axis of symmetry (S) in such a manner that the transverse apexes (8, 8') of the two antenna wings (1, 1') are directed away from one another, characterised in that the two longitudinal outline lines (6, 7) each originate at the feed point (3), that the radius of curvature of the concave curve of the other longitudinal outline line (7) decreases as the distance from the feed point (3) increases, that the transverse apex (8) is curved more sharply than the end apex (5), that in the case of an antenna wing (1) of flat construction the ratio of the length (L), measured from the feed point (3) to the end apex (5) of the antenna wing (1), to the width (B) of the antenna wing, measured from the feed point (3) to the transverse apex (8), is from 1.1 to 1.3, expecially 1.2, and the ratio of the length (L) of the antenna wing (1) to the distance (A) between the perpendicular projection of the apex point of the transverse apex (8) in the longitudinal direction of the antenna wing (1) and the feed point thereof (3) is from 1.4 to 1.6, expecially 1.5, and that in the case where the second antenna wing (1') is present the antenna wings (1, 1') are arranged on each side of the axis of symmetry (S) and at a distance therefrom with their characteristic longitudinal outlines being in the same plane, or that in the case where a conductive reference plane (16) is present the antenna wing (1) is arranged as a single wing having the plane of its characteristic longitudinal outline perpendicular to this conductive reference plane (16) and at a distance therefrom and having the transverse apex (8) facing upwards.
2. Broad-band directional antenna according to claim 1, characterised in that, in the case of an antenna wing (1) of flat construction, the opening angl (4) between the longitudinal outline lines (6, 7), originating at the feed point (3), of the characteristic longitudinal outline of the antenna wing (1) is from 30° to 40°, especially 36°, at the point of connection to the feed point (3).
3. Broad-band directional antenna according to claim 1, characterised in that in a rectangular coordinate system with the abscissa (X) and the ordinate (Y) divided into the same units, the shape of the characteristic longitudinal outline (2) of the flat antenna wing (1), at a maximum of 146 abscissa units and a maximum of 180 ordinate units, is determined by the coordinate points arranged in columns in the following table, the connections of the coordinate points extending in a curve and the feed point (3) lying close to the origin of the coordinate system :
Figure imgb0003
4. Broad-band directional antenna according to claim 1, characterised in that the antenna wing (1) is of three-dimensional construction and its circumferential measurement (U), measured in any crosssectional plane (e) lying perpendicular to a tangent (t) to the central curve (m) of the characteristic longitudinal outline (2), which central curve (m) extends in the longitudinal outline plane of the characteristic longitudinal outline of the antenna wing (1) and curves steadily from the feed point (3) to the apex point of the transverse apex (8), corresponds to twice the widthways measurement of the flat antenna wing (1), which measurement is assigned along this central curve (m) and is measured in the longitudinal outline plane perpendicular to the respective tangent (t) to the central curve (m).
5. Broad-band directional antenna according to claim 4, characterised in that the cross-sections of the antenna wing (1), measured in the crosssectional planes, are at least approximately elliptical.
6. Broad-band directional antenna according to claim 5, charcterised in that the major axis of the elliptical cross-sections extends perpendicularly to the plane of the characteristic longitudinal outline of the antenna wing.
7. Braod-band directional antenna according to claim 1 wherein the antenna wing (1) comprises a lattice, characterised in that the lattice is formed by wires (10) which radiate from the feed point of the antenna wing (1) and curve in the same direction of curvature as the longitudinal outline line (6, 7) originating at the feed point (3) and by sheet metal strips or wires (11) crossing these wires (10), it being possible for wire, metal sheets, profiles or tubes to extend along the longitudinal outline lines (6, 7) as an edging frame.
8. Broad-band directional antenna according to claim 1 having two antenna wings (1, 1'), characterised in that the ratio of the overall width (W) of the antenna wings (1, 1'), which width is determined by the distance of the transverse apexes (8, 8') of the two antenna wings (1, 1') from one another to the length (L), measured from the feed point to the common tangent (T) to the end apexes (5, 5'), is from 1.6 to 1.8, especially 1.72.
9. Broad-band directional antenna according to claim 1 having two flat antenna wings (1, 1'), characterised in that the antenna wings (1, 1') are edged by a metal or plastics frame (12), which extends along the characteristic longitudinal outlines and mechanically connects the two antenna wings (1, 1'), on a stand (13) that extends in the common superficial centre of gravity of the antenna wings (1, 1') perpendicular to their longitudinal outline planes.
10. Broad-band directional antenna according to claim 1, characterised in that in an arrangement of the antenna wing (1) above a reference plane (16) or relative to an axis of symmetry (S), the ratio of the distance (Q) of any point on the central curve (m) of the antenna wing (1) from the axis of symmetry (S) and the reference plane (16), respectively, to the width (P) of the antenna wing (1) is approximately constant for the first half of the antenna wing (1) calculated starting from the feed point (3) or as far as the turning point of the longitudinal outline line (7) that passes into the transverse apex (8), and is always greater than one half.
EP83903501A 1982-11-15 1983-11-15 Broadband directional antenna Expired EP0124559B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83903501T ATE25791T1 (en) 1982-11-15 1983-11-15 BROADBAND DIRECTIONAL ANTENNA.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19823242272 DE3242272A1 (en) 1982-11-15 1982-11-15 BROADBAND DIRECTIONAL ANTENNA
DE3242272 1982-11-15

Publications (2)

Publication Number Publication Date
EP0124559A1 EP0124559A1 (en) 1984-11-14
EP0124559B1 true EP0124559B1 (en) 1987-03-04

Family

ID=6178212

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83903501A Expired EP0124559B1 (en) 1982-11-15 1983-11-15 Broadband directional antenna

Country Status (3)

Country Link
EP (1) EP0124559B1 (en)
DE (2) DE3242272A1 (en)
WO (1) WO1984002038A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988009065A1 (en) * 1987-05-08 1988-11-17 Darrell Coleman Broad frequency range aerial
US5428364A (en) * 1993-05-20 1995-06-27 Hughes Aircraft Company Wide band dipole radiating element with a slot line feed having a Klopfenstein impedance taper
US6351246B1 (en) * 1999-05-03 2002-02-26 Xtremespectrum, Inc. Planar ultra wide band antenna with integrated electronics
FR2822300B1 (en) * 2001-03-14 2004-04-16 Cie D Etudes De Realisations E BROADBAND ANTENNA
JP2005094437A (en) * 2003-09-18 2005-04-07 Mitsumi Electric Co Ltd Antenna for uwb
GB2427966B (en) * 2003-09-22 2007-05-16 Thales Holdings Uk Plc An antenna
JP3964382B2 (en) * 2003-11-11 2007-08-22 ミツミ電機株式会社 Antenna device
DE102005003685B4 (en) * 2005-01-26 2021-02-11 Rohde & Schwarz GmbH & Co. Kommanditgesellschaft Antenna with reflector
CN114976603A (en) * 2022-07-28 2022-08-30 南京天朗防务科技有限公司 Low-profile broadband wide-angle scanning metal antenna unit

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2181870A (en) * 1938-02-15 1939-12-05 Rca Corp Wide band, short wave antenna and transmission line system
US2635189A (en) * 1945-09-14 1953-04-14 Lester C Van Atta Wave guide antenna with bisectional radiator
US2985877A (en) * 1954-08-30 1961-05-23 John Rolind Holloway Directive antenna system
US3015101A (en) * 1958-10-31 1961-12-26 Edwin M Turner Scimitar antenna
GB964458A (en) * 1961-08-23 1964-07-22 Telefunken Patent Improvements in or relating to directional acrials
DE1920671A1 (en) * 1969-04-23 1970-11-05 Siemens Ag Receiving antenna with two surface-like radiators
DE2921856C2 (en) * 1979-05-30 1985-09-12 Siemens AG, 1000 Berlin und 8000 München Directional antenna consisting of two strip conductors forming a double radiating line and a group antenna using several such directional antennas

Also Published As

Publication number Publication date
WO1984002038A1 (en) 1984-05-24
DE3370101D1 (en) 1987-04-09
DE3242272A1 (en) 1984-05-17
EP0124559A1 (en) 1984-11-14

Similar Documents

Publication Publication Date Title
DE69633986T2 (en) Broadband antenna with a semi-circular steel blade
DE69608779T2 (en) PRINTED ANTENNA
DE60001709T2 (en) Possibility to correct the radiation pattern of a linear antenna
DE2262511B2 (en) Combined VHF-UHF antenna
DE29925006U1 (en) Multilevel antenna
EP3178129B1 (en) Multi-structure broadband monopole antenna for two frequency bands in the decimeter wave range separated by a frequency gap, for motor vehicles
DE3241570A1 (en) ANTENNA
EP2784874A2 (en) Broadband monopole antenna for vehicles for two frequency bands separated by a frequency gap in the decimeter wavelength
EP0124559B1 (en) Broadband directional antenna
DE69701837T2 (en) Logarithmic periodic antenna with microstrip feed
DE102006006144A1 (en) dipole antenna
DE69626565T2 (en) Dielectric antenna
DE2115704A1 (en) Antenna with a loop antenna element
DE2423420A1 (en) RADIO-ELECTRIC DIRECTIONAL ANTENNA
DE2337997C3 (en) Shortwave curtain antenna
DE102005003685B4 (en) Antenna with reflector
DE69712769T2 (en) HIGH FREQUENCY ANTENNA
DE2052171A1 (en) Transmitting or receiving antenna
DE1043425B (en) Antenna feeder
DE102018116631A1 (en) Spiral antenna system
DE957857C (en) Slot antenna
WO2018188687A1 (en) Broad-band slot antenna covered on the rear side, and antenna group comprising same
DE1105927B (en) Antenna system with slot radiators
DE4219165A1 (en) antenna
DE2342882C3 (en) Horn or horn parabolic antenna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT DE FR GB

17P Request for examination filed

Effective date: 19841123

17Q First examination report despatched

Effective date: 19860708

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB

REF Corresponds to:

Ref document number: 25791

Country of ref document: AT

Date of ref document: 19870315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3370101

Country of ref document: DE

Date of ref document: 19870409

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19901019

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19901114

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19901115

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19911115

Ref country code: AT

Effective date: 19911115

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930730

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940802