EP0123116B1 - Verfahren zur Verbesserung der Füllfähigkeit von Tabak - Google Patents

Verfahren zur Verbesserung der Füllfähigkeit von Tabak Download PDF

Info

Publication number
EP0123116B1
EP0123116B1 EP84102907A EP84102907A EP0123116B1 EP 0123116 B1 EP0123116 B1 EP 0123116B1 EP 84102907 A EP84102907 A EP 84102907A EP 84102907 A EP84102907 A EP 84102907A EP 0123116 B1 EP0123116 B1 EP 0123116B1
Authority
EP
European Patent Office
Prior art keywords
autoclave
tobacco
treatment gas
treatment
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84102907A
Other languages
English (en)
French (fr)
Other versions
EP0123116A2 (de
EP0123116A3 (en
Inventor
Klaus-Dieter Dr. Dipl.-Chem. Ziehn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reemtsma Cigarettenfabriken GmbH
Original Assignee
HF and PhF Reemtsma GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HF and PhF Reemtsma GmbH and Co filed Critical HF and PhF Reemtsma GmbH and Co
Priority to AT84102907T priority Critical patent/ATE34284T1/de
Publication of EP0123116A2 publication Critical patent/EP0123116A2/de
Publication of EP0123116A3 publication Critical patent/EP0123116A3/de
Application granted granted Critical
Publication of EP0123116B1 publication Critical patent/EP0123116B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B3/00Preparing tobacco in the factory
    • A24B3/18Other treatment of leaves, e.g. puffing, crimpling, cleaning
    • A24B3/182Puffing

Definitions

  • the invention relates to a process for improving the filling capacity of tobacco, such as cut tobacco leaves or ribs or tobacco additives, by treatment with a treatment gas containing nitrogen and / or argon at pressures up to 1000 bar in an autoclave and a heat treatment which follows after decompression.
  • gas pressure treatment with nitrogen is carried out in the range from 150 to 1000 bar and treatment with argon in the pressure range from 50 to 800 bar
  • the object of the present invention is to improve these known methods and in particular to carry them out economically and continuously, and also to achieve an improvement in the fillability of those types of tobacco or tobacco additives which are less easy to expand by known methods.
  • tobacco not only includes cut tobacco leaves and ribs, but also torn tobacco leaves as used for the production of cigars, other tobacco products and tobacco additives.
  • the following fibrous natural products come into question as tobacco additives: buds of Cinnamomum lassia, seeds of Apium graveoleus, cellulose fibers, Eugenia caryophyllata, seeds of Cumium cymium, various dried fruits of e.g. B. apples, plums, figs, roots of Glycyrrhiza glabra, and Folium liatris.
  • the main advantage of maintaining a minimum inlet temperature of the tobacco for the heat treatment of below 0 ° C is based on the fact that better blowing effects are obtained compared to a tobacco that has a higher inlet temperature during the heat treatment and that better filling capacities can be achieved, in particular with low-expandable material.
  • the temperature of the autoclave can be reduced, for example by means of jacket cooling, to such an extent that part of the heat of compression is removed.
  • the treatment gas can be supplied in a cooled manner, as a result of which the heat of compression which builds up is compensated and the temperature at which the tobacco is discharged after the decompression is thereby considerably reduced.
  • the treatment gas can be cooled either before or during the application; in the latter case, the nitrogen in the autoclave can be cooled by recirculation via an external cooler
  • the treatment gas can preferably be introduced into an annular space provided inside the autoclave, which is delimited on the outside by the inner wall of the autoclave and on the inside by a cylinder wall with passage openings which lead into the interior of the autoclave.
  • the main advantage of such an introduction via an annular space formed by an inner cylinder wall with through openings is the larger and more uniform distribution of the treatment gas in the autoclave, as a result of which a compacting of the material to be treated is avoided.
  • Such compacting can also be avoided by applying the treatment gas to the autoclave from below or from the side.
  • the autoclave can also be charged with the treatment gas after reaching the final pressure and can be relaxed overhead or downward.
  • the compression and decompression are carried out in a cascade manner in several stages in such a way that an autoclave is charged with a treatment gas under higher pressure from another autoclave which is expanded in stages.
  • a cascade-like compression and decompression not only serves to make better use of the energy used for the compression in in the sense that treatment gas under higher pressure is used at its decompression to build up the pressure of the treatment gas for another reactor, but also to introduce a cooler treatment gas for the reactor, which is filled with treatment gas from the reactor under higher pressure, since the expansion enthalpy in leads primarily to a colder gas and to a much lesser extent to cooling the reactor wall and tobacco.
  • the gas entering the lower pressure reactor in the case of cascade-type pressure compensation is additionally cooled during the transition. This cooling can be taken, for example, from the last decompression stage of a reactor by means of the expansion enthalpy.
  • the treatment gas or a part thereof is preferably supplied in the last compression stage in supercooled or liquefied form.
  • the discharge temperature of the tobacco from the autoclave corresponds to the minimum inlet temperature of the tobacco for the heat treatment or is slightly lower, care must be taken that the tobacco is fed directly to the heat treatment and does not absorb heat on the way from the autoclave to the heat treatment station. Since in continuous systems with several autoclaves the transport routes to the heat treatment station are relatively long, according to a further aspect of the invention it is necessary to keep the tobacco insulated against heat absorption after decompression so that the temperature of the tobacco does not exceed after it has been discharged from the autoclave the inlet temperature of the tobacco required for the heat treatment increases according to the invention.
  • the pressure build-up times should be chosen so that the tobacco does not heat up too much.
  • the pressure reduction times are about 1 to 10 and preferably 4 minutes.
  • a total of twelve autoclaves 1, 2 ... to 12 are provided, which are treated with treatment gas via a main line 20 and branch lines 21.
  • the treatment gas passes from a liquefied gas container 24, which contains liquid nitrogen, for example, via an evaporator 26 into a storage container 28, from where the treatment gas is fed to a compressor 22 and from there under a certain initial pressure of, for example, 2 to 10 bar via a line 30 the main line 20 is pressed.
  • the reactors are also connected to one another via connecting lines 23, the respective opening and closing of the valves for the connecting lines being electronically controlled.
  • the individual autoclaves are charged with tobacco from above, the tobacco being able to have any moisture of 10 to 30% by weight of water and preferably 12 to 24% by weight of water, while tobacco additives such as Cloves, a higher humidity of e.g. B. 50% may be appropriate.
  • the entry temperature of the tobacco can correspond to the ambient temperature; depending on the pretreatment of the cut tobacco, it can also be higher and, in a variant of the present method according to the invention, can also be just above the freezing point of the water present in the tobacco.
  • the tobacco is fed via conveyor belts 42 to a metering or dividing device 44, where it is fed to a heat treatment station 46 on a belt.
  • a heat treatment station 46 on a belt.
  • This is preferably a saturated steam treatment tunnel, but can also be a station with a different heat supply.
  • the inlet temperature of the tobacco for the heat treatment is below 0 ° C.
  • the tobacco swells spontaneously as it passes through the heat treatment station.
  • the saturated steam can have a water vapor density of 0.5 to 10 kg / m 3 depending on the temperature. Higher saturated steam densities or saturated steam at a higher temperature should generally be avoided from an energy-economic point of view and to avoid damage to the tobacco, although it is essential for this heat treatment to heat the tobacco that is at its minimum inlet temperature below 0 ° C as quickly as possible feed so that the blowing effect reaches a maximum value.
  • the blown tobacco and over-moistened by the saturated steam is then passed through a drying tunnel 48 and a downstream cooling device 50 in order to be removed at the desired processing moisture and processing temperature for further processing.
  • the conveyor belts 42 can be clad with a cooling tunnel 52.
  • the tobacco can also be conveyed into heat-insulated storage containers (not shown here) in order then to be fed batchwise to the heat treatment 46 via the metering device 44; this enables a more flexible way of working.
  • liquid treatment gas directly to the line system 21 via a separate line 54, preferably in the final stage of the compression.
  • cooling units can be provided in the connecting lines 23 between the individual autoclaves.
  • the autoclave 1 is at a pressure of 750 bar and is connected for decompression via the connecting line 23 to the autoclave 2, which is under a pressure of 220 bar and is further to be pressurized with compressed gas.
  • the autoclave No. 3 which is at normal pressure and has just been exposed to tobacco, is connected to the autoclave No. 4, which contains a treatment gas under a pressure of 220 bar and is to be further expanded.
  • stage 2 a pressure equalization has now taken place between autoclave 1 and autoclave 2, the treatment gas of which now has a pressure of 410 bar in both cases, while the autoclaves 3 and 4 have a pressure of 100 bar due to pressure equalization.
  • the further decompression of the autoclave 1 takes place via a connection to the autoclave 3 and the further application of compressed gas to the autoclave 2 takes place via the compressor or by supplying liquefied treatment gas.
  • the autoclave 4 is expanded, the treatment gas being discharged into the collecting container 28.
  • the expansion enthalpy can be used to cool treatment gas.
  • stage 3 pressure equalization took place in autoclaves 1 and 3, in which the treatment gas in autoclave 1 was reduced from 410 to 220 bar and the treatment gas in autoclave 3 was increased from 100 to 220 bar.
  • the autoclave 2 which has been brought to the final treatment pressure of 750 bar, is now ready for decompression.
  • the tobacco treated in the autoclave 4 is discharged and replaced with new, if necessary, pre-cooled tobacco.
  • the former is further expanded and the latter is again charged with treatment gas.
  • the autoclave 3 is further acted upon by the connection to the autoclave 2 ready for compression.
  • stage 4 an equilibrium has now been established between the autoclave 1 in the decompression stage, which has been brought down to 100 bar; and the autoclave 4, which has been raised to 100 bar, while the autoclaves 2 and 3 have been brought to 410 bar by appropriate compensation.
  • the autoclave 1 is decompressed, the treatment gas being fed into the storage container 28, and if necessary using the enthalpy of expansion for cooling a treatment gas supplied elsewhere.
  • the autoclave 3 is charged with further, if necessary, precooled treatment gas up to a pressure of 750 bar, unless liquid gas is injected according to a preferred form of the process according to the invention.
  • the further stages 5 to 8 are carried out analogously as previously described.

Landscapes

  • Manufacture Of Tobacco Products (AREA)
  • Glass Compositions (AREA)

Description

  • Die Erfindung betrifft ein verfahren zur Verbesserung der Füllfähigkeit von Tabak, wie geschnittenen Tabakblättern oder -rippen bzw. Tabakzusatzstoffen durch Behandlung mit einem Stickstoff und/oder Argon enthaltenden Behandlungsgas bei Drücken bis zu 1000 bar in einem Autoklaven und einer sich nach der Dekompression anschließenden Wärmebehandlung.
  • Derartige Verfahren sind aus der DE-C-2 903 300 und 3 119 330 bekannt. Bei diesen Verfahren wird bei der Gashochdruckbehandlung mit Stickstoff in Bereichen von 150 bis 1000 bar und bei Behandlung mit Argon in Druckbereichen von 50 bis 800 bar gearbeitet
  • Die vorliegende Erfindung hat sich die Aufgabe gestellt, diese bekannten Verfahren zu verbessern und insbesondere diese wirtschaftlich und kontinuierlich durchzuführen, und ferner auch eine Verbesserung der Füllfähigkeit bei solchen Tabaksorten oder Tabakzusatzstoffen zu erzielen, die sich nach bekannten Verfahren weniger gut blähen lassen.
  • Der Begriff Tabak umfaßt im folgenden nicht nur geschnittene Tabakblätter und -rippen, sondern auch gerissene Tabakblätter, wie sie für die Zigarrenherstellung eingesetzt werden, andere Tabakpfodukte und Tabakzusatzstoffe.
  • Als Tabakzusatzstoffe, kommen unter anderem die folgenden faserförmigen Naturprodukte in Frage: Knospen von Cinnamomum lassia, Samen von Apium graveoleus, Cellulosefasern, Eugenia caryophyllata, Samen von Cumium cymium, verschiedene Trockenfrüchte von z. B. Äpfeln, Pflaumen, Feigen, ferner Wurzeln von Glycyrrhiza glabra, sowie Folium liatris.
  • Zur Lösung dieser Aufgabe wird daher ein Verfahren der eingangs gekennzeichneten Art vorgeschlagen, daß gemäß Kennzeichen des unabhängigen Anspruchs durchgeführt wird. Weitere vorteilhafte Verfahrensweisen sind in den abhängigen Ansprüchen erwähnt.
  • Überraschenderweise wurde festgestellt, daß es zur Erzielung der Verbesserung der Füllfähigkeit oder eines hohen Blähgrades Wesentlich ist, daß der Tabak nach der Druckbehandlung, d.h. nach der Dekompression des Autoklaven und nach Austragung aus diesem mit einer Eingangstemperatur von unter 0° C der anschließenden Wärmebehandlung zugeführt wird. Wird dagegen der Tabak bei einer höheren Temperatur aus dem Autoklaven ausgetragen oder nimmt der Tabak nach der Austragung beispielsweise auf einem längeren Transportweg vom Autoklaven bis zur Wärmebehandlungstation Wärme auf, lassen sich weniger gute Bläheffekte erzielen.
  • Die Erkenntnis, daß man die Beaufschlagung des Autoklaven mit Tabak bzw. mit dem Behandlungsgas und/oder dessen Dekompression derart steuern muß, daß der ausgetragene und der anschließenden Wärmebehandlung zugeführte Tabak eine Eingangstemperatur fur die Wärmebehandlung von unter 0° C hat, ist für die Erzielung eines guten Bläheffektes insbesondere bei an sich gering blähbarem Gut überraschend.
  • Der wesentliche Vorteil der Beibehaltung einer Mindesteingangstemperatur des Tabaks für die Wärmebehandlung von unter 0°C beruht darauf, daß man bessere Bläheffekte gegenüber einem Tabak erhält, der eine höhere Eingangstemperatur bei der Wärmebehandlung besitzt und daß man insbesondere bei gering blähbarem Gut bessere Füllfähigkeiten erzielen kann.
  • Um die erfindungsgemäß geforderte niedrige Mindesteingangstemperatur des Tabaks für die Wärmebehandlung zu erreichen, sind mehrere Möglichkeiten gegeben.
  • Einmal kann man erfindungsgemäß die Temperatur des Autoklaven beispielsweise mittels einer Mantelkühlung soweit herabdrücken, daß ein Teil der Kompressionswärme abgeführt wird.
  • Ferner ist es erfindungsgemäß möglich, den in den Autoklaven beaufschlagten Tabak bereits vorgekühlt, vorzugsweise bis kurz oberhalb des Gefrierpunktes des im Tabak enthaltenen Wassers einzubringen.
  • Ferner kann bei einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens das Behandlungsgas gekühlt zugeführt werden, wodurch die sich aufbauende Kompressionswärme kompensiert und dadurch die Austragetemperatur des Tabaks nach der Dekompression erheblich abgesenkt wird. "
  • Das Behandlungsgas kann entweder vor der Beaufschlagung oder bei der Beaufschlagung gekühlt Werden; im letzteren Falle kann man die Kühlung des im Autoklaven befindlichen Stickstoffs durch Umwälzung über einen außen liegenden Kühler vornehmen
  • Vorzugsweise kann man das Behandlungsgas in einen innerhalb des Autoklaven vorgesehenen Ringraum einleiten, der außen von der Autoklaven-Innenwand und innen von einer Zylinderwand mit Durchtrittsöffnungen begrenzt wird, die in das Innere des Autoklaven führen. Der Hauptvorteil einer derartigen Einleitung über einen von iner Zylinderwand mit Durchtrittsöffnungen gebildeten Ringraum ist die größere und gleichmäßigere Verteilung des Behandlungsgases im Autoklaven, wodurch eine Kompaktierung des Behandlungsgutes vermieden wird.
  • Eine derartige Kompaktierung läßt sich auch dadurch vermeiden, daß man den Autoklaven von unten oder von der Seite mit dem Behandlungsgas beaufschlagt. Alternativ kann man zur Vermeidung einer derartigen Kompaktierung den Autoklaven nach Erreichung des Enddruckes auch mit dem Behandlungsgas beaufschlagen und über Kopf bzw. nach unten entspannen.
  • Bei einer besonders wirtschaftlichen Abwandlung des erfindungsgemäßen Verfahrens wird so vorgegangen, daß die Kompression und Dekompression kaskadenartig in mehreren Stufen derart durchgeführt wird, daß ein Autoklav mit einem unter höherem Druck stehenden Behandlungsgas aus einem anderen Autoklav, der stufenweise entspannt wird, beschickt wird. Ein derartiges kaskadenartiges Komprimieren und Dekomprimieren dient nicht nur der besseren Ausnutzung der für die Kompression aufgewandten Energie in dem Sinne, daß Behandlungsgas unter höherem Druck bei dessen Dekompression zum Druckaufbau des Behandlungsgases für einen anderen Reaktor verwendet wird, sondern auch zur Einführung eines kühleren Behanlungsgases für den Reaktor, der von dem unter höherem Druck stehenden Reaktor mit Behandlungsgas aufgefüllt wird, da die Entspannungsenthalpie in erster Linie zu einem kälteren Gas und in sehr viel geringerem Ausmaß zu einer Kühlung der Reaktorwand und des Tabaks führt.
  • Wenn der Druckaufbau und der Druckabbau stufenweise erfolgt, ist es erforderlich, in der letzten Kompressionsstufe Behandlungsgas bis zum gewünschten Enddruck aufzudrücken.
  • Ferner ist es von Vorteil, wenn das bei kaskadenartigem Druckausgleich in den Reaktor niedrigeren Drucks eintretende Gas beim Übergang noch zusätzlich gekühlt wird. Diese Kühlung kann beispielsweise mittels der Entspannungsenthalpie, aus der letzten Dekompressionsstufe eines Reaktors entnommen werden.
  • Ferner ist es bei einer weiteren Ausführung des erfindungsgemäßen Verfahrens zweckmäßig, wenn man das Behandlungsgas oder einen Teil desselben vorzugsweise in der letzten Kompressionsstufe in unterkühlter oder verflüssigter Form zuführt.
  • Alle diese Möglichkeiten der Beaufschlagung mit dem Behandlungsgas und dessen Dekompression einschließlich der Zufuhr eines vorgekühlten Tabaks können einzeln oder in Kombination durchgeführt werden, wobei es nur wesentlich ist, daß die Mindesttemperatur des der Wärmebehandlung zugeführten Tabaks unter 0°C liegt, wobei noch tiefere Eingangstemperaturen des Tabaks oder des Behandlungsgutes den Bläheffekt verbessern.
  • Falls die Austragetemperatur des Tabaks aus dem Autoklaven der Mindesteingangstemperatur des Tabaks für die Wärmebehandlung entspricht oder etwas niedriger ist, muß dafür Sorge getragen werden, daß der Tabak unmittelbar der Wärmebehandlung zugeführt wird und nicht auf dem Wege vom Autoklaven zur Wärmebehandlungsstation Wärme aufnimmt. Da bei kontinuierlichen Anlagen mit mehreren Autoklaven die Transportwege bis zur Wärmebehandlungsstation verhältnismäßig lang sind, ist es nach einem weiteren Gesichtspunkt der Erfindung erforderlich, den Tabak nach der Dekompression gegen Wärmeaufnahme isoliert zu halten, damit die Temperatur des Tabaks nach dem Austragen aus dem Autoklaven nicht über die erfindungsgemäß erforderliche Eingangstemperatur des Tabaks für die Wärmebehandlung ansteigt. Dieses läßt sich beispielsweise durch Lagerung des frisch ausgetragenen Tabaks in abgedeckten Isoliergefäßen ermöglichen oder dadurch, daß man den frisch ausgetragenen Tabak über einen Kühltunnel der Wärmebehandlung zuführt, wobei die Energie zur Aufrechterhaltung einer niedrigeren Umgebungstemperatur im Kühltunnel beispiels weise durch die Dekompressionsenthalpie der letzten Stufe der Kaskadendekompression erhalten werden kann.
  • Die Druckaufbauzeiten sollen so gewählt werden, daß keine zu starke Erwärmung des Tabaks erfolgt. Die Druckabbauzeiten betragen etwa 1 bis 10 und vorzugsweise 4 Minuten.
  • Im folgenden soll die Erfindung anhand von Zeichnungen und Beispielen näher erläutert werden; es zeigen:
    • Figur 1 eine schematische Darstellung einer Anlage zur Durchführung des erfindungsgemäßen Verfahrens;
    • Figur 2 eine schematische Darstellung einer bevorzugten Ausführungsform des Kaskadenprinzips;
    • Figur 3 eine graphische Darstellung, aus der sich die Abhängigkeit der Verbesserung der Füllfähigkeit von der Eingangstemperatur des Tabaks für die Wärmebehandlung ergibt;
  • Bei dem in Figur 1 gezeigten Schaubild sind insgesamt zwölf Autoklaven 1, 2... bis 12-vorgesehen, die über eine Hauptleitung 20 und Zweigleitungen 21 mit Behandlungsgas beaufschlagt werden. Das Behandlungsgas gelangt von einem Flüssiggasbehälter 24, der beispielsweise flüssigen Stickstoff enthält, über einen Verdampfer 26 in einen Lagerbehälter 28, von wo aus das Behandlungsgas unter einem gewissen Anfangsdruck von beispielsweise 2 bis 10 bar über eine Leitung 30 einem Kompressor 22 zugeführt und von diesem in die Hauptleitung 20 gedrückt wird.
  • Die Reaktoren sind ferner untereinander über Verbindungsleitungen 23 verbinden, wobei das jeweiligen Öffnen und Schließen der Ventile für die Verbindungsleitungen elektronisch gesteuert wird.
  • Die einzelnen Autoklaven werden, wie mit Pfeil 40 angedeutet, von oben mit Tabak beschickt, wobei der Tabak eine beliebige Feuchte von 10 bis 30 Gew.-% Wasser und vorzugsweise 12 bis 24 Gew.-% Wasser haben kann, während bei Tabakzusatzstoffen, wie Gewürznelken, eine höhere Feuchte von z. B. 50 % zweckmäßig sein kann. Die Eintragetemperatur des Tabaks kann der Umgebungstemperatur entsprechen; sie kann je nach der Vorbehandlung des geschnittenen Tabaks auch höher sein und kann bei einer erfindungsgemäßen Variante des vorliegenden Verfahrens auch kurz oberhalb des Gefrierpunktes des im Tabak vorhandenen Wassers liegen.
  • Nach der Druckbehandlung und nach Dekompression des Behandlungsgases wird der Tabak über Transportbänder 42 einer Dosier- oder Aufteilvorrichtung 44 zugeführt, wo er ausgebreitet auf einem Band einer Wärmebehandlungsstation 46 zugeführt wird. Diese ist vorzugsweise ein Sattdampfbehandlungstunnel, kann aber auch eine Station mit anderer Wärmezufuhr sein.
  • Bei dem erfindungsgemäßen verfahren is es wesentich, daß bei dieser Wärmebehandlungsstation 46 die Eingangstemperatur des Tabaks für die Wärmebehandlung unter 0°C liegt. Die Aufblähung des Tabaks erfolgt spontan bei Durchgang durch die Wärmebehandlungsstation. Der Sattdampf kann je nach Temperatur eine Wasserdampfdichte von 0,5 bis 10 kg/m3 haben. Höhere Sattdampfdichten bzw. ein Sattdampf höherer Temperatur ist in der Regel aus energiewirtschaftlichen Gesichtspunkten und zur Vermeidung von Schädigungen des Tabaks zu vermeiden, wenngleich es wesentlich ist, bei dieser Wärmebehandlung dem Tabak, der sich auf seiner Mindesteingangstemperatur unter 0°C befindet, möglichst schnell Wärmeenergie zuzuführen, damit der Bläheffekt einen Höchstwert erreicht.
  • Anschließend wird der geblähte und durch den Sattdampf überfeuchtete Tabak durch einen Trockentunnel 48 und eine nachgeschaltete Kühlvorrichtung 50 geführt, um mit der gewünschten Verarbeitungsfeuchte und Verarbeitungstemperatur zur Weiterverarbeitung abgeführt zu werden.
  • Um eine Erwärmung des Tabaks zu vermeiden, der beispielsweise mit einer Temperatur von -40° C, aus dem Autoklaven ausgetragen wird, können die Transportbänder 42 mit einem Kühltunnel 52 umkleidet sein. Anstelle des Kühltunnels 52 kann der Tabak auch in wärmeisolierte Vorratsbehälter (hier nicht gezeigt) gefördert werden, um dann absatzweise über die Dosiervorrichtung 44 der Wärmebehandlung 46 zugeführt zu werden; dieses ermöglicht eine flexiblere Arbeitsweise.
  • Bei einer erfindungsgemäß bevorzugten Ausführungsform ist es möglich, über eine getrennte Leitung 54 flüssiges Behandlungsgas direkt - und zwar vorzugsweise in der Endstufe der Kompression dem Leitungssystem 21 zuzuführen.
  • Ferner ist es möglich, das Behandlungsgas in Leitung 30 vor dem Kompressor 22 oder in den Leitungen 20 bzw. 21 zusätzlich durch ein Kühlaggregat (hier nicht gezeigt) zu kühlen. Gleichermaßen können Kühlaggregate in den Verbindungsleitungen 23 zwischen den einzelnen Autoklaven vorgesehen sein.
  • Bei der in Figur 2 gezeigten beispielsweisen Darstellung des erfindungsgemäß bevorzugten Kaskadenprinzips wird mit vier Autoklaven gearbeitet, wobei der Druckaufbau und die Dekompression in jeweils 4 Stufen also insgesamt in 8 Schritten erfolgt.
  • In der ersten Stufe befindet sich der Autoklav 1 bei einem Druck von 750 bar und wird zur Dekompression über die Verbindungsleitung 23 mit dem Autoklaven 2 verbunden, der unter einem Druck von 220 bar steht und weiter mit Druckgas beaufschlagt werden soll. Der sich bei Normaldruck befindende Autoklav Nr 3, der gerade mit Tabak beaufschlagt worden ist, wird durch eine weitere Verbindungsleitung mit dem Autoklaven Nr. 4 verbunden, der ein Behandlungsgas unter einem Druck von 220 bar enthält und weiter entspannt werden soll.
  • Bei der Stufe 2 hat nunmehr ein Druckausgleich zwischen Autoklav 1 und Autoklav 2 stattgefunden, deren Behandlungsgas nunmehr in beiden Fällen einen Druck von 410 bar aufweist während die Autoklaven 3 und 4 durch Druckausgleich einen Druck von 100 bar aufweisen. Die weitere Dekompression des Autoklaven 1 erfolgt über eine Verbindung mit dem Autoklaven 3 und die weitere Beaufschlagung mit Druckgas des Autoklaven 2 erfolgt über den Kompressor oder durch Zufuhr von verflüssigtem Behandlungsgas. Der Autoklav 4 wird entspannt, wobei das Behandlungsgas in den Sammelbehälter 28 abgeführt wird. Hierbei kann die Entspannungsenthalpie zur Kühlung von Behandlungsgas verwendet werden.
  • In der Stufe 3 hat ein Druckausgleich dem Autoklaven 1 und 3 stattgefunden, bei dem das Behandlungsgas in dem Autoklaven 1 von 410 auf 220 bar absenkt und das Behandlungsgas im Autoklaven 3 von 100 auf 220 bar erhöht worden ist. Der auf den Endbehandlungsdruck von 750 bar gebrachte Autoklav 2 ist nun für die Dekompression bereit. Der im Autoklav 4 behandelte Tabak wird ausgetragen und durch neuen gegebenenfalls vorgekühlten Tabak ersetzt. Durch Verbindung des Autoklaven 1 mit dem Autoklaven 4 wird ersterer weiter entspannt und letzterer wieder mit Behandlungsgas beschickt. Gleichzeitig erfolgt eine weitere Beaufschlagung des Autoklaven 3 durch die Verbindung mit dem zur Kompression bereiten Autoklaven 2.
  • In der Stufe 4 hat sich nunmehr ein Gleichgewicht eingestellt zwischen dem in der Dekompressionsstufe befindlichen Autoklaven 1, der auf 100 bar heruntergefahren orden ist; und dem Autoklaven 4 der auf 100 bar heraufgefahren worden ist, während die Autoklaven 2 und 3 durch entsprechenden Ausgleich auf 410 bar gebracht worden sind. Der Autoklav 1 wird entspannt, wobei das Behandlungsgas in den Vorratsbehälter 28 geleitet wird, und zwar gegebenenfalls unter Ausnutzung der Entspannungsenthalpie zur Kühlung eines an anderer Stelle zugeführten Behandlungsgases ausgenutzt wird. Der Autoklav 3 wird mit weiterem gegebenenfalls vorgekühltem Behandlungsgas bis zu einem Druck von 750 bar beschickt, sofern nicht nach einer bevorzugten Form des erfindungsgemäßen Verfahrens Flüssiggas eingespritzt wird. Die weiteren Stufen 5 bis 8 werden analog wie vorher beschrieben durchgeführt.
  • Beispiel 1
  • Es wurden 30 kg einer fertigen Tabakmischung in einem 200 Liter-Autoklaven mit Stickstoff bis zu einem Enddruck von 750 bar behandelt, wobei so vorgegangen wurde, daß verschiedene Eingangstemperaturen bei der Wärmebehandlung erhalten wurden. Die von 2 bzw. 4 Ansätzen erhaltenen Mittelwerte der prozentualen Füllfähigkeitsverbesserung wurden in der graphischen Darstellung gemäß Fig. 3 gegen die auf übliche Weise bestimmten Eingangstemperaturen aufgetragen. Die Kurve zeigt eindeutig die ausgezeichnete Verbesserung der Füllfähigkeit bei Einhaltung von unter 0°C liegenden Eingangstemperaturen.
  • Beispiel 2
  • Um den Einfluß der Mantelkühlung zur Verbesserung der Füllfähigkeit zu zeigen, wurden folgende Versuche durchgeführt:
  • In einem 200 I-Autoklaven wurden 30 kg einer Schnitttabakmischung mit Stickstoff bis zu einem Enddruck von 750 bar bei unterschiedlicher Kühlwassertemperatur der Autoklavenkühlung behandelt. Die restlichen Prozeßparameter waren bei allen Versuchen identisch. Die Ergebnisse sind in der folgenden Tabelle aufgeführt.
    Figure imgb0001
  • Beispiel 3
  • Um den Einfluß der Kälteisolierung des Tabaks ex Autoklav auf die Füllfähigkeitsverbesserung zu zeigen, wurden die folgenden Versuche durchgeführt:
  • In einem 200 I-Autoklaven wurden 30 kg einer Schnitttabakmischung mit Stickstoff bis zu einem Enddruck von 750 bar bei konstanter Mantelkühlung behandelt und nach Druckabbau direkt, nach Lagerung von 20 Stunden bei -50°C und nach Lagerung von 20 Stunden bei Raumtemperatur der Wärmebehandlung zugeführt. Die Ergebnisse sind in der Tabelle zusammengestellt.
    Figure imgb0002

Claims (14)

1. Verfahren zur Verbesserung der Füllfähigkeit von Tabak, wie geschnittenen Tabakblättern oder -rippen bzw. Tabakzusatzstoffen, durch Behandlung des Tabaks mit einem Stickstoff und/oder Argon enthaltenden Behandlungsgas bei Drücken bis 1000 bar in einem Autoklaven und einer sich nach Dekompression anschließenden Wärmebehandlung dadurch gekennzeichnet, daß man die Beaufschlagung des Autoklaven mit Tabak bzw. mit dem Behandlungsgas und/oder dessen Dekompression derart durchführt, daß der aus dem Autoklaven ausgetragene und der anschließenden Wärmebehandlung zugeführte Tabak eine Eingangstemperatur für die Wärmebehandlung unter 0° C hat.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man das Behandlungsgas bei oder vor der Beaufschlagung kühlt.
3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß man den Autoklaven in dem die Behandlung des Tabaks mit dem Behandlungsgas erfolgt, zusätzlich kühlt.
4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß man den Tabak vor dem Einbringen in den Autoklaven vorkühlt.
5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß man während der Behandlung des Tabaks mit dem Behandlungsgas unterkühltes oder verflüssigtes Behandlungsgas in den Autoklaven einspritzt.
6. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß man die Beaufschlagung mit dem Behandlungsgas und die Dekompression kaskadenartig mit mehreren Autoklaven durchführt und daß zum Druckaufbau des Behandlungsgases in dem einen Autoklaven stufenweise ein unter höherem Druck befindliches Behandlungsgas aus einem anderen Autoklaven im Verfolge der Dekompression dieses anderen Autoklaven verwendet wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß der Druckaufbau und der Druckabbau stufenweise erfolgt, wobei in der letzten Kompressionsstufe Behandlungsgas bis zum gewünschten Enddruck eingepreßt wird.
8. Verfahren nach Anspruch 6 bis 7, dadurch gekennzeichnet, daß das kaskadenartig dem einen Autoklaven zugeführte Behandlungsgas von einem unter höheren Druck stehenden anderen Autoklaven während des Überganges zu dem Autoklaven niederen Druckes zusätzlich gekühlt wird.
9. Verfahren nach Anspruch 6 bis 8, dadurch gekennzeichnet, daß man den Autoklaven mit unterkühltem bzw. verflüssigtem Behandlungsgas in der Endstufe der Kompression beschickt.
10. Verfahren nach Anspruch 1 bis 9, dadurch gekennzeichnet, daß man den Tabak nach der Dekompression bis zur anschließenden Wärmebehandlung zur Vermeidung einer Erwärmung kälteisoliert hält.
11. Verfahren nach Anspruch 1 bis 9, dadurch gekennzeichnet, daß die thermische Nachbehandlung mit Wasserdampf in Form von Sattdampf bzw. mit einem Wasserdampf mit einer Dichte von 0,5 bis 10 kg/m3.
12. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man den Autoklaven von unten oder von der Seite mit dem Behandlungsgas beaufschlagt.
13. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man den Autoklaven nach Erreichung der Enddrücke über Kopf bzw. nach unten entspannt.
14. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man das Behandlungsgas in einen innerhalb des Autoklaven vorgesehenen Ringraum einleitet, der außen von der Autoklaven-Innenwand und innen von einer Zylinderwand mit Durchtrittsöffnungen in das Innere des Autoklaven begrenzt wird.
EP84102907A 1983-04-21 1984-03-16 Verfahren zur Verbesserung der Füllfähigkeit von Tabak Expired EP0123116B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84102907T ATE34284T1 (de) 1983-04-21 1984-03-16 Verfahren zur verbesserung der fuellfaehigkeit von tabak.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3314474 1983-04-21
DE3314474 1983-04-21

Publications (3)

Publication Number Publication Date
EP0123116A2 EP0123116A2 (de) 1984-10-31
EP0123116A3 EP0123116A3 (en) 1986-03-19
EP0123116B1 true EP0123116B1 (de) 1988-05-18

Family

ID=6196982

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84102907A Expired EP0123116B1 (de) 1983-04-21 1984-03-16 Verfahren zur Verbesserung der Füllfähigkeit von Tabak

Country Status (7)

Country Link
US (1) US4577646A (de)
EP (1) EP0123116B1 (de)
JP (1) JPS59205971A (de)
AT (1) ATE34284T1 (de)
AU (1) AU558305B2 (de)
CA (1) CA1219508A (de)
ZA (1) ZA842969B (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4898188A (en) * 1986-12-22 1990-02-06 R. J. Reynolds Tobacco Company Tobacco Processing
US4727889A (en) * 1986-12-22 1988-03-01 R. J. Reynolds Tobacco Company Tobacco processing
US4962773A (en) * 1987-08-13 1990-10-16 R. J. Reynolds Tobacco Company Process for the manufacture tobacco rods containing expanded tobacco material
US5251649A (en) * 1991-06-18 1993-10-12 Philip Morris Incorporated Process for impregnation and expansion of tobacco
SK139993A3 (en) * 1992-12-17 1994-09-07 Philip Morris Prod Method of impregnation and expanding of tobacco and device for its performing
US5763544A (en) * 1997-01-16 1998-06-09 Praxair Technology, Inc. Cryogenic cooling of exothermic reactor
DE10046124C1 (de) * 2000-09-15 2002-07-04 Reemtsma H F & Ph Verfahren zur Verbesserung der Füllfähigkeit von Tabak
DE10229451A1 (de) * 2002-07-01 2004-01-15 Reemtsma Cigarettenfabriken Gmbh Verfahren zur Verbesserung der Füllfähigkeit von Tabak
US8327765B2 (en) * 2003-03-03 2012-12-11 Schott Ag Metal fixing material bushing and method for producing a base plate of a metal fixing material bushing
US8733250B2 (en) 2006-01-27 2014-05-27 Schott Ag Metal-sealing material-feedthrough and utilization of the metal-sealing material feedthrough with an airbag, a belt tensioning device, and an ignition device
US7726320B2 (en) 2006-10-18 2010-06-01 R. J. Reynolds Tobacco Company Tobacco-containing smoking article
US10684102B2 (en) 2010-09-17 2020-06-16 Schott Ag Method for producing a ring-shaped or plate-like element
DE102010045641A1 (de) 2010-09-17 2012-03-22 Schott Ag Verfahren zur Herstellung eines ring- oder plattenförmigen Elementes
US20130255702A1 (en) 2012-03-28 2013-10-03 R.J. Reynolds Tobacco Company Smoking article incorporating a conductive substrate
US12022859B2 (en) 2019-07-18 2024-07-02 R.J. Reynolds Tobacco Company Thermal energy absorbers for tobacco heating products

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4340073A (en) * 1974-02-12 1982-07-20 Philip Morris, Incorporated Expanding tobacco
US4235250A (en) * 1978-03-29 1980-11-25 Philip Morris Incorporated Process for the expansion of tobacco
US4248252A (en) * 1978-06-02 1981-02-03 Philip Morris Incorporated Continuous process for expanding tobacco
DE2903300C2 (de) * 1979-01-29 1982-06-09 H.F. & Ph.F. Reemtsma Gmbh & Co, 2000 Hamburg Verfahren zur Verbesserung der Füllfähigkeit von Tabaken
DE3119330C2 (de) * 1981-05-15 1983-06-01 H.F. & Ph.F. Reemtsma Gmbh & Co, 2000 Hamburg Verfahren zur Verbesserung der Füllfähigkeit von Tabaken
GB2115677A (en) * 1982-01-08 1983-09-14 Ronald D Rothchild A method for expanding tobacco
US4460000A (en) * 1982-06-14 1984-07-17 The Boc Group, Inc. Vacuum and gas expansion of tobacco

Also Published As

Publication number Publication date
ATE34284T1 (de) 1988-06-15
US4577646A (en) 1986-03-25
CA1219508A (en) 1987-03-24
AU2717984A (en) 1984-10-25
EP0123116A2 (de) 1984-10-31
JPS59205971A (ja) 1984-11-21
ZA842969B (en) 1984-12-24
JPH0458309B2 (de) 1992-09-17
EP0123116A3 (en) 1986-03-19
AU558305B2 (en) 1987-01-22

Similar Documents

Publication Publication Date Title
EP0123116B1 (de) Verfahren zur Verbesserung der Füllfähigkeit von Tabak
DE69709060T2 (de) Verfahren zum expandieren von tabak
DE3414625C2 (de)
DE3725309C2 (de) Verfahren und Vorrichtung zum Expandieren von Tabak
CH642519A5 (de) Verfahren zur verbesserung der fuellfaehigkeit von tabaken.
DE2826108C3 (de) Verfahren zur Zerstörung von Gutbrücken, die sich innerhalb eines Behälters gebildet haben
EP0344655B1 (de) Verfahren zur Explosionszerkleinerung von Zellmaterial
DE2912322C2 (de) Verfahren zur Ausdehnung von Tabak
DE3602098A1 (de) Verbessertes tabak-expansionsverfahren
EP1317191B1 (de) Verfahren zur verbesserung der füllfähigkeit von tabak
DE19909318C2 (de) Verfahren und Vorrichtung zur Expansion von Tabakmaterial
EP0455976B1 (de) Verfahren zum Trocknen von stückigen, biologischen Produkten
DE3509759A1 (de) Verfahren zum aufschliessen von bluetenpollen
DE4010892C2 (de)
EP0195919A2 (de) Verfahren und Vorrichtung zur Verarbeitung und Konservierung von Gewebeteilen
DE2731932C2 (de)
DE2731931C2 (de)
EP0729705A2 (de) Verfahren zum Rösten und Vorrichtung zum Durchführen dieses Verfahrens
DE2834501A1 (de) Verfahren zum expandieren von tabak
WO1990006695A1 (de) Verfahren und vorrichtung zum expandieren von tabak
DE3445752C2 (de)
DE1729268A1 (de) Verfahren und Anlage zum Trocknen von Gruenfutter
DE2919389A1 (de) Verfahren und vorrichtung zum dampfschaelen von produkten
EP1255457B1 (de) Verfahren zur verbesserung der füllfähigkeit von tabak
DE3523825A1 (de) Verbessertes tabak-expansionsverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19860412

17Q First examination report despatched

Effective date: 19870821

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 34284

Country of ref document: AT

Date of ref document: 19880615

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 84102907.7

REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020225

Year of fee payment: 19

Ref country code: AT

Payment date: 20020225

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020311

Year of fee payment: 19

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: H. F. & PH. F. REEMTSMA GMBH & CO TRANSFER- REEMTSMA CIGARETTENFABRIKEN GMBH

NLS Nl: assignments of ep-patents

Owner name: REEMTSMA CIGARETTENFABRIKEN GMBH;H.F. & PH.F. REEM

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030214

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030304

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030312

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030316

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030317

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030328

Year of fee payment: 20

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20040315

Ref country code: CH

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20040315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20040316

BE20 Be: patent expired

Owner name: *REEMTSMA CIGARETTENFABRIKEN G.M.B.H.

Effective date: 20040316

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20040316