EP0120102A1 - Temperaturmesseinrichtung - Google Patents

Temperaturmesseinrichtung Download PDF

Info

Publication number
EP0120102A1
EP0120102A1 EP83102881A EP83102881A EP0120102A1 EP 0120102 A1 EP0120102 A1 EP 0120102A1 EP 83102881 A EP83102881 A EP 83102881A EP 83102881 A EP83102881 A EP 83102881A EP 0120102 A1 EP0120102 A1 EP 0120102A1
Authority
EP
European Patent Office
Prior art keywords
measuring
temperature
resistor
resistors
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP83102881A
Other languages
English (en)
French (fr)
Inventor
Karl-Eugen Dipl.-Ing. Aubele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss SMT GmbH
Original Assignee
Carl Zeiss SMT GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss SMT GmbH filed Critical Carl Zeiss SMT GmbH
Priority to EP83102881A priority Critical patent/EP0120102A1/de
Publication of EP0120102A1 publication Critical patent/EP0120102A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/20Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer in a specially-adapted circuit, e.g. bridge circuit
    • G01K7/21Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer in a specially-adapted circuit, e.g. bridge circuit for modifying the output characteristic, e.g. linearising

Definitions

  • temperatures have to be highly precise, i.e. to be determined with an accuracy of 1/10 ° or better.
  • An example is the interferometric length measurement, in which the dimensions or displacements of a machine part are measured with an accuracy of the order of a fraction of the wavelength of the light used.
  • the temperature dependence of the refractive index of the medium in the measuring beam path of the interferometer and the thermal linear expansion of the body to be measured must be taken into account. Both effects require the temperature to be recorded with the accuracy given above of approx. 1/10 ° C or better.
  • Platinum resistance thermometers are therefore often used as highly accurate temperature measuring devices.
  • platinum has only a rather small temperature coefficient of its electrical resistance, so that it is relatively difficult to design the measuring amplifier required for the small voltage changes that occur and the current source for supplying the measuring resistor with sufficient stability with regard to temperature drifts.
  • thermometer A platinum resistance thermometer according to the preamble of this application is known from "Technisches Messen ATM" 1978, volume 3, page 89.
  • this temperature measuring device contains a control unit which cyclically connects the measuring and reference resistor to a constant current source for each measurement and processes the difference between the voltage drops measured successively at the two resistors as a measure of the temperature of the measuring resistor.
  • the control unit also contains a small computer that takes into account the non-linear relationship between the measured voltage and the temperature to be measured in the result.
  • the construction of the last-mentioned temperature measuring device therefore also requires care when selecting the components if extremely high measuring accuracy is to be achieved.
  • calibration is required when the measuring device is started up, since the constant current I and the amplification factor V are included in the measurement result.
  • this object is achieved according to the measures specified in the characterizing part of the main claim in that at least one further reference resistor is provided, the signal of which can also be fed to the control unit during each measuring cycle, and in that the control unit contains a computer, in which the difference between the signals of the measuring resistor and a reference resistor is divided by the difference of the signals of two reference resistors.
  • Such reference resistors with a temperature coefficient less than 5-10 -6 ° C -1 are readily available and are offered in different values with a tolerance of 0.01 ⁇ .
  • the reference resistors define two reference temperatures, which result from multiplying the resistance values by the characteristic of the measuring resistor and define the measuring range.
  • the measuring resistor is available in a similarly precise specification.
  • the measuring amplifier is permanently recalibrated to the temperature values assigned to the reference resistors with each measuring cycle, so that a separate calibration of the measuring device in the actual sense before commissioning is not necessary.
  • a measuring cycle then comprises the measurement of the voltages at the measuring resistor and at the two next larger and next smaller reference resistor compared to the measuring resistor.
  • the temperature measuring device contains a constant current source 1, to which the measuring resistors R M1 ' R M2 and R M3 and two reference resistors R 1 and R 2 are connected in succession via a multiplexer 2.
  • the multiplexer 2 is shown in simplified form as a mechanical switch, but it is actually an integrated electronic component, for example an analog multiplexer with the designation MN 4708 from Analogic can be used.
  • each of the resistors R 1 and R 2 and R M1 -R M3 is connected to a further multiplexer 3 or 9 via a separate measuring line.
  • the outputs of the multiplexers 3 and 9 are fed to an amplifier 4 for amplifying the voltage drop across the resistors.
  • the amplifier 4 is followed by a digital-to-analog converter 5.
  • the following control computer 6 has the voltages of the resistors acted upon by the constant current source 1 as digitally processable information.
  • the control computer 6 contains a microprocessor, from which the multiplexers 2 and 3 are controlled, and which synchronously stores the digital voltage values associated with the individual resistors.
  • a platinum resistor with the designation PT 100 is selected as the measuring resistor R M , the resistance of which depends on the temperature T due to the function can be described.
  • R o is 100 ⁇ and ⁇ is 3.9.10 -3 ° C -1 . If the measuring range of the temperature measuring device is to extend, for example, between 0 ° C and 100 ° C, the resistors R 1 and R 2 should be selected so that they approximately correspond to the electrical resistance of the measuring resistor R M at the limits of the measuring range, ie R 1 about 100 ⁇ . and R 2 is approximately 140 (1 in the example chosen here.
  • Each of these resistance values R 1 and R 2 corresponds to a reference temperature T 1 and T 2 , which takes into account the temperature coefficient of the measuring resistor and on the basis of the exact values of the reference resistors These reference temperatures are included in the calculation of the temperatures T M at the measuring resistor R M carried out by the microprocessor of the control part 6 during each measuring cycle.
  • the microprocessor of the control part 6 therefore calculates for each of the three measuring points from the measured values U 1 , U 2 and UM, which the digital-to-analog converter 5 supplies, and the constants T 2 and T 1 defined by the reference resistors in accordance with equations (3) and (4) a temperature T M at the measuring resistor in a linear approximation.
  • a correction element derived from equation (2) is then added to determine the exact temperature T Mq , so that:
  • the constant c used to calculate T Mq can be determined in advance using a compensation calculation from the reference points of the RT characteristic curve of the platinum resistance specified in DIN 43760.
  • a printer 7 for outputting the measured values is connected to the control computer 6.
  • Another data line 8 is used to communicate the computer 8 with additional devices, for example with an interferometer, the temperature of which in the measuring beam path is measured by the resistors R M1 -R M3 and is used as digital information for correcting the interferometric length measurement.
  • microprocessor-controlled computer 6 it is of course also possible to use a computer made up of discrete components, the construction of which does not pose any difficulties for the person skilled in the art. Since only a few uncomplicated arithmetic operations have to be carried out, the amount of components required is limited.
  • the measuring temperature T is plotted against the voltage U output by the measuring amplifier.
  • equation (2) the instantaneous values of the current I through the resistance and the gain V being taken into account as additional parameters.
  • the hatched area between curves A and B represents the error that can occur if only the voltage drop across the measuring resistor is amplified and used as a measure of the temperature.
  • the difference U M -U 1 of the voltages of the measuring resistor and a reference resistor is used as a measure of the measuring temperature. This corresponds to a parallel shift of graph B in the direction of graph A until they both intersect at the temperature T 1 defined by the reference resistance.
  • the error range has been reduced to the area between the graphs A and the graph labeled C and it can be seen that the remaining error range becomes larger the further the temperature T M to be measured is from the reference temperature T 1 .
  • the difference between the voltage U 1 of the first reference resistor and the voltage U 2 of an additional second reference resistor is additionally divided, as a result of which IV is omitted as a parameter, so that the aforementioned residual error also disappears.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Abstract

Die Meßeinrichtung besteht aus dem Meßverstärker (4), an den neben den Meßwiderständen (RM) zwei Referenzwiderstände (R1, R2) über Multiplexer (3) angeschlossen sind, sowie einem dem Meßverstärker (4) nachgeschalteten Steuerrechner (6) der den Multiplexer (3) steuert und somit nacheinander die Meßwiderstände und Referenzwiderstände bei jedem Meßzyklus mit dem Meßverstärker (4) verbindet. Die von einer Konstantstromquelle (1) an den Widerständen erzeugten Spannungsabfälle werden nach Verstärkung im Meßverstärker (4) zur Ermittlung der Meßtemperatur im Rechner (6) weiterverarbeitet, wobei der Rechner (6) die Differenz der Spannungen eines Meßwiderstandes (RM) und eines Referenzwiderstandes (R1) durch die Differenz der Spannungen zweier Referenzwiderstände (R2 und R1) dividiert. Durch diese Maßnahme ist das Meßergebnis unabhängig vom Betriebszustand des Meßverstärkers (4).

Description

  • In vielen Bereichen der Technik ist es nötig, Temperaturen hochpräzise, d.h. mit einer Genauigkeit von einem 1/10° oder besser zu bestimmen. Als Beispiel sei die interferometrische Längenmessung genannt, bei der Abmessungen oder Verschiebungen eines Maschinenteils mit einer Genauigkeit in der Größenordnung eines Bruchteils der Wellenlänge des verwendeten Lichtes gemessen werden. Hier ist u.a. die Temperaturabhängigkeit der Brechzahl des Mediums im Meßstrahlengang des Interferometers und die thermische Längenausdehnung des zu vermessenden Körpers zu berücksichtigen. Beide Effekte verlangen eine Erfassung der Temperatur mit der obenangegebenen Genauigkeit von ca. 1/10° C oder besser.
  • Übliche Temperaturmeßgeräte sind dieser Anforderung nicht gewachsen, insbesondere wenn zusätzlich auch auf eine gute Langzeitstabilität bei der Messung Wert gelegt wird. Als hochgenaue Temperaturmeßgeräte werden daher häufig Platin-Widerstandsthermometer verwendet. Allerdings besitzt Platin nur einen ziemlich kleinen Temperaturkoeffizienten seines elektrischen Widerstandes, .so daß es relativ schwierig ist, den benötigten Meßverstärker für die auftretenden geringen Spannungsänderungen und die Stromquelle zur Versorgung des Meßwiderstandes hinsichtlich von Temperaturdriften genügend stabil auszulegen.
  • Für diese Meßverstärker werden daher in der Regel ausgesuchte Bauelemente verwendet, die in Spezialschaltungen so miteinander kombiniert werden, daß sich die Driften einzelner Bauteile gerade gegenseitig kompensieren. Ein derartiges Widerstandsthermometer ist z.B. in "Technisches Messen ATM," 48. Jahrgang 1981, Heft 4, Seite 127 beschrieben. Bei der Inbetriebnahme dieses bekannten Gerätes sind zeitintensive Abgleicharbeiten im Meßverstärker nötig. Außerdem ist die Schaltung so ausgelegt, daß sie die Unlinearität des verwendeten Meßwiderstandes in einem bestimmten Temperaturbereich kompensiert. Ein Wechsel des Meßfühlers oder eine Änderung des Meßbereichs wäre daher mit einem Eingriff in die Schaltung verbunden.
  • Aus "Technisches Messen ATM" 1978, Heft 3, Seite 89 ist ein Platin-Widerstandsthermometer nach dem Oberbegriff dieser Anmeldung bekannt. Diese Temperaturmeßeinrichtung enthält neben dem eigentlichen temperaturabhängigen Meßwiderstand und einen Referenzwiderstand eine Steuereinheit, die bei jeder Messung zyklisch den Meß- und den Referenzwiderstand mit einer Konstantstromquelle verbindet und die Differenz der nacheinander an den beiden Widerständen gemessenen Spannungsabfälle als Maß für die Temperatur des Meßwiderstandes weiterverarbeitet. Die Steuereinheit enthält darüberhinaus einen Kleinrechner, der den nichtlinearen Zusammenhang zwischen der gemessenen Spannung und der zu messenden Temperatur im Ergebnis berücksichtigt.
  • In dieser Schaltung fällt der Einfluß einiger Größen wie z.B. der Offsetspannung des Verstärkers auf die Meßgenauigkeit heraus. Als Fehlereinflüsse bleiben jedoch Änderungen der Gesamtverstarkung V des Meßverstärkers aufgrund z.B. thermischer Drift der verwendeten Operationsverstärker sowie Änderungen des Stroms I durch den Meß- und Referenzwiderstand aufgrund eines Drifts in der Konstantstromquelle gewichtet mit der Ablage des Meßwiderstands Rm vom Referenzwiderstand Rl erhalten. Daneben bildet natürlich auch die mangelnde Temperaturstabilität des Referenzwiderstandes selbst eine Fehlerquelle. Darstellen läßt sich die Abhängigkeit des Meßfehlers von den genannten Größen durch die Gleichung
    Figure imgb0001
    wobei ΔU der Fehler der als Maß für die Temperatur geltenden Differenz der Spannungen UM am Meßwiderstand und U1 am Referenzwiderstand ist.
  • Der Aufbau der letztgenannten Temperaturmeßeinrichtung erfordert also ebenfalls Sorgfalt bei der Auswahl der Bauelemente, wenn eine extrem hohe Meßgenauigkeit erzielt werden soll. Außerdem ist bei der Inbetriebnahme der Meßeinrichtung eine Kalibrierung erforderlich, da der Konstantstrom I und der Verstärkungsfaktor V in das Meßergebnis eingehen.
  • Es ist die Aufgabe der vorliegenden Erfindung eine hochgenaue Temperaturmeßeinrichtung zu schaffen, die keine Abgleicharbeiten erfordert und dennoch die Verwendung weitgehend unspezifizierter Bauteile zuläßt. Ausgehend von einer Temperaturmeßeinrichtung noch dem Oberbegriff des Hauptanspruches wird diese Aufgabe gemäß den im Kennzeichen des Hauptanspruches angegebenen Maßnahmen dadurch gelöst, daß mindestens ein weiterer Referenzwiderstand vorgesehen ist, dessen Signal ebenfalls bei jedem Meßzyklus der Steuereinheit zuführbar ist, und daß die Steuereinheit einen Rechner enthält, in dem die Differenz der Signale des Meßwiderstandes und eines Referenzwiderstandes durch die Differenz der Signale zweier Referenzwiderstände dividiert wird.
  • Mißt man bei jedem Meßzyklus die Differenz der Spannungen U1 und U2 an zwei Referenzwiderständen R1 und R2, dann gehen in diesen Wert die Gesamtverstärkung V und der Strom I durch die Widerstände als Faktor ebenso ein wie in die Differenz der Spannung UM und U1 am Meßwiderstand RM und einem Referenzwiderstand z.B. R1. Bei der Bildung des Quotienten
    Figure imgb0002
    fällt daher der Faktor I . V heraus. Dieser Quotient ist daher ein von Strom und Verstärkungsfaktor unabhängiges Maß für die Temperatur des Meßwiderstandes RM.
  • Bei einem Aufbau gemäß der vorliegenden Erfindung können also für den Meßverstärker und die Konstantstromquelle preiswerte, unspezifierte Bauteile verwendet werden. Lediglich die Referenzwiderstände sind als temperaturstabile, nicht alternde Typen auszubilden.
  • Solche Referenzwiderstände mit einem Temperaturkoeffizienten kleiner 5-10-6°C-1 sind ohne weiteres erhältlich und werden in verschiedenen Werten mit einer Toleranz von 0,01Ω angeboten. Durch die Referenzwiderstände werden zwei Referenztemperaturen festgelegt, die sich durch Multiplikation der Widerstandswerte mit der Kennlinie des Meßwiderstandes ergeben und den Meßbereich definieren. Der Meßwiderstand ist in ähnlich genauer Spezifikation erhältlich. Somit findet bei jedem Meßzyklus eine permanente Rekalibrierung des Meßverstärkers auf die den Referenzwiderständen zugeordneten Temperaturwerte statt, so daß eine separate Kalibrierung der Meßeinrichtung im eigentlichen Sinne vor der Inbetriebnahme nicht erforderlich ist.
  • Insbesondere, wenn ein relativ großer Temperaturmeßbereich erfaßt werden soll kann es sich als vorteilhaft erweisen die Zahl der Referenzwiderstände über 2 hinaus zu erhöhen und so zu dimensionieren, daß der gesamte Meßbereich in z.B. gleich große Teilbereiche aufgeteilt ist. Ein Meßzyklus umfaßt dann die Messung der Spannungen am Meßwiderstand und an den beiden verglichen mit dem Meßwiderstand nächst größeren und nächst kleineren Referenzwiderstand. Mit einer solchen Teilung des Meßbereiches läßt sich der Einfluß von Störspannung, Rauschen und Unlinearitäten der Kennlinie des Meßverstärkers auf das Meßergebnis reduzieren.
  • Es ist außerdem zweckmäßig vor dem Rechenvorgang zur Temperaturmessung über die Spannungsmeßwerte mehrerer Meßwerte zu mitteln, um zu einer höheren Meßgenauigkeit zu gelangen.
  • Weitere vorteilhafte Ausgestaltungen der Erfindung finden sich in den Unteransprüchen und werden in der nachfolgenden Beschreibung der Fig. 1 und 2 der beigefügten Zeichnungen erläutert. Dabei zeigt
    • IFig. 1 ein Blockschaltbild eines Ausführungsbeispiels der Erfindung;
    • Fig. 2 ein Diagramm, das die funktionale Abhängigkeit der zu bestimmenden Temperaturen von den gemessenen Spannungen zeigt.
  • iDie Temperaturmeßeinrichtung, deren Blockschaltbild in Fig. 1 dargestellt ist, enthält eine Konstantstromquelle 1, mit der über einen Multiplexer 2 nacheinander die Meßwiderstände RM1' RM2 und RM3 und zwei Referenzwiderstände R1 und R2 verbunden werden. Der Multiplexer 2 ist vereinfacht als mechanischer Schalter dargestellt, tatsächlich handelt )es sich jedoch um ein integriertes elektronisches Bauteil, beispielsweise kann ein Analogmultiplexer mit der Bezeichnung MN 4708 der Fa. Analogic verwendet werden.
  • Je ein Ende der Widerstände R1 und R2 und RM1-RM3 ist über eine sepa-5 rate Meßleitung mit je einem weiteren Multiplexer 3 bzw. 9 verbunden. Die Ausgänge der Multiplexer 3 und 9 sind einem Verstärker 4 zur Verstärkung der an den Widerständen jeweils abfallenden Spannung zugeführt. Auf den Verstärker 4 folgt ein Digital-Analogwandler 5. Dem darauf folgenden Steuerrechner 6 liegen die Spannungen der jeweils von der Konstantstromquelle 1 beaufschlagten Widerstände als digital verarbeitbare Information vor.
  • Der Steuerrechner 6 enthält einen Mikroprozessor, von dem die Multiplexer 2 und 3 angesteuert werden, und der synchron dazu die den einzelnen Widerständen zugehörigen digitalen Spannungswerte abspeichert. Als Meßwiderstand RM ist ein Platinwiderstand mit der Bezeichnung PT 100 gewählt, dessen Widerstand in Abhängigkeit von der Temperatur T durch die Funktion
    Figure imgb0003
    beschrieben werden kann. Ro beträgt 100Ω und α beträgt 3,9.10-3°C-1. Soll der Meßbereich der Temperaturmeßeinrichtung sich beispielsweise zwischen 0°C und 100°C erstrecken, so sind die Widerstände R1 und R2 so auszuwählen, daß sie dem elektrischen Widerstand des Meßwiderstandes RM an den Grenzen des Meßbereiches etwa entsprechen, d.h. R1 beträgt etwa 100Ω. und R2 beträgt etwa 140(1 in dem hier gewählten Beispiel. Jedem dieser Widerstandswerte R1 und R2 entspricht eine Referenztemperatur T1 und T2, die sich unter Berücksichtigung des Temperaturkoeffizienten des Meßwiderstandes und unter Zugrundelegung der exakten V.'erte der Referenzwiderstände hochgenau ermitteln läßt. Diese Referenztemperaturen gehen in die vom Mikroprozessor des Steuerteils 6 bei jedem Meßzyklus durchgeführte Berechnung der Temperaturen TM am Meßwiderstand RM ein.
  • Nachfolgend wird der dort ablaufende Rechenvorgang näher erläutert: Ohne Berücksichtigung des nichtlinearen Anteils in Gleichung (2) ist die Differenz zwischen der am Meßwiderstand abfallenden Spannung UM und der am Referenzwiderstand R1 abfallenden Spannung U1 proportional der vorliegenden Differenz zwischen der Meßtemperatur TM und der oben definierten Referenztemperatur T1:
    Figure imgb0004
    Der Proportionalitätsfaktor m ist bestimmt durch die gemessenen Spannungen an den Referenzwiderständen Rl und R2 und ergibt sich zu
    Figure imgb0005
  • Der Mikroprozessor des Steuerteils 6 berechnet also für jede der drei Meßstellen aus den Meßwerten U1, U2 und UM, die ihm der Digital-Analogwandler 5 liefert, und den durch die Referenzwiderstände festgelegten Konstanten T2 und T1 gemäß den Gleichungen (3) und (4) eine Temperatur TM am Meßwiderstand in linearer Näherung. Anschließend wird zur Ermittlung der exakten Temperatur TMq ein aus Gleichung (2) abgeleitetes Korrekturglied hinzugefügt, so daß sich ergibt:
    Figure imgb0006
  • Die zur Berechnung von TMq verwendete Konstante c läßt sich mit einer Ausgleichsrechnung aus den in DIN 43760 angegebenen Stützpunkten der R-T Kennlinie des Platinwiderstandes vorab bestimmen.
  • An den Steuerrechner 6 ist ein Drucker 7 zur Ausgabe der Meßwerte angeschlossen. Eine weitere Datenleitung 8 dient zur Kommunikation des Rechners 8 mit Zusatzgeräten, beispielsweise mit einem Interferometer, dessen Temperatur im Meßstrahlengang von den Widerständen RM1-RM3 gemessen wird und als digitale Information zur Korrektur der interferometrischen Längenmessung herangezogen wird.
  • Natürlich kann anstelle des mikroprozessorgesteuerten Rechners 6 auch ein aus diskreten Bauelementen aufgebauter Rechner verwendet werden, dessen Aufbau den Fachmann vor keinerlei Schwierigkeiten stellt. Da nur wenige unkomplizierte Rechenoperationen durchzuführen sind, hält sich der dazu nötige Bauteileaufwand in Grenzen.
  • Abschließend wird die Verbesserung der mit der Erfindung erzielbaren Genauigkeit der Temperaturmessung verglichen mit dem Stand der Technik nochmals anhand der Graphik in Fig. 2 erläutert.
  • Dort ist die Meßtemperatur T gegen die vom Meßverstarker abgegebene Spannung U aufgetragen. Der nichtlineare funktionale Zusammenhang zwischen diesen beiden Größen wird durch Gleichung (2) beschrieben, wobei die Momentanwerte des Stroms I durch den Widerstand und der Verstärkung V als zusätzliche Parameter zu berücksichtigen sind. Die Graphen A und B geben die Funktion T = f(U) für zwei Werte I . V = a und I . V = b σn, die beispielsweise infolge thermischer Drift voneinander verschieden sind. Der schraffierte Bereich zwischen den Kurven A und B repräsentiert den Fehler, der entstehen kann, wenn allein die am Meßwiderstand abfallende Spannung verstärkt und als Maß für die Temperatur verwendet wird.
  • Bei der aus ATM 1978, Heft 3, Seite 89 bekannten Meßeinrichtung wird die Differenz UM-U1 der Spannungen des Meßwiderstandes und eines Referenzwiderstandes als Maß für die Meßtemperotur benutzt. Dem entspricht eine Parallelverschiebung des Graphen B in Richtung auf den Graphen A, bis sie sich beide bei der durch den Referenzwiderstand definierten Temperatur Tl schneiden. Der Fehlerbereich ist mit der bekannten Maßnahme auf den Bereich zwischen den Graphen A und dem mit C bezeichneten Graphen verkleinert worden und es ist ersichtlich, daß der verbleibende Fehlerbereich umso größer wird, je weiter die zu messende Temperatur TM von der Referenztemperatur T1 abliegt.
  • Gemäß der Erfindung wird zusätzlich durch die Differenz zwischen der Spannung U1 des ersten Referenzwiderstandes und der Spannung U2 eines zusätzlichen zweiten Referenzwiderstandes dividiert, wodurch I.V als Parameter im Ergebnis herausfällt, so daß auch der vorgenannte Restfehler noch verschwindet.

Claims (6)

1. Temperaturmeßeinrichtung mit einem temperaturabhängigem Meßwiderstand (RM), einem Referenzwiderstand (Rl), einem Meßverstärker (4) und einer Steuereinheit (6), die bei jedem Meßzyklus das Signal (UM) des Meßwiderstandes mit dem Signal (U1) des Referenzwiderstandes vergleicht, wobei die Differenz der beiden Signale ein Maß für die Temperatur darstellt, dadurch gekennzeichnet, daß mindestens ein weiterer Referenzwiderstand (R2) vorgesehen ist, dessen Signal (U2) ebenfalls bei jedem Meßzyklus der Steuereinheit (6) zuführbar ist, und daß die Steuereinheit (6) einen Rechner enthält, in dem die Differenz der Signale des Meßwiderstandes und eines Referenzwiderstandes durch die Differenz der Signale zweier Referenzwiderstände dividiert wird.
2. Temperaturmeßeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Meß- und Referenzwiderstände über einen von der Recheneinheit (6) steuerbaren Multiplexer (2) mit einer Konstantstromquelle (1) und mittels separater Meßleitungen über mindestens einen zweiten Multiplexer (3) mit dem Eingang eines Verstärkers (4) verbunden sind, dessen Ausgang mit dem Eingang der Recheneinheit (6) gekoppelt ist.
3. Temperaturmeßeinrichtung nach Anspruch 1-2, dadurch gekennzeichnet, daß es sich bei dem Meßwiderstand (RM) um einen Platindrahtwiderstand handelt.
4. Temperaturmeßeinrichtung noch Anspruch 1-3, dadurch gekennzeichnet, daß an die Meßeinrichtung mehrere Meßwiderstände (RM1,RM2,RM3) ange-schlossen sind.
5. Temperaturmeßeinrichtung nach Anspruch 1-4, dadurch gekennzeichnet, daß weitere Referenzwiderstände vorgesehen sind, deren Widerstandswert so gewählt ist, daß sie dem Widerstandswert des Meßwiderstandes innerhalb des vorgesehenen Temperaturbereichs entsprechen.
6. Temperaturmeßeinrichtung nach Anspruch 1-5, gekennzeichnet durch ihre Verwendung zur Temperaturmessung in einem Laserinterferometer.
EP83102881A 1983-03-23 1983-03-23 Temperaturmesseinrichtung Withdrawn EP0120102A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP83102881A EP0120102A1 (de) 1983-03-23 1983-03-23 Temperaturmesseinrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP83102881A EP0120102A1 (de) 1983-03-23 1983-03-23 Temperaturmesseinrichtung

Publications (1)

Publication Number Publication Date
EP0120102A1 true EP0120102A1 (de) 1984-10-03

Family

ID=8190367

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83102881A Withdrawn EP0120102A1 (de) 1983-03-23 1983-03-23 Temperaturmesseinrichtung

Country Status (1)

Country Link
EP (1) EP0120102A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0187317A1 (de) * 1985-01-03 1986-07-16 Siemens Aktiengesellschaft Messanordnung mit Widerstandsmesswertgebern
DE3729644A1 (de) * 1987-09-04 1989-03-23 Zeiss Carl Fa Verfahren zur bestimmung der temperatur von werkstuecken in flexiblen fertigungssystemen
EP0434824A1 (de) * 1989-07-18 1991-07-03 Horst Seperant Digitale thermometereinheit mit standardgenauigkeit.
US5171091A (en) * 1989-10-05 1992-12-15 Endress U. Hauser Gmbh U. Co. Temperature measuring circuit
EP0528784A1 (de) * 1991-08-16 1993-02-24 Hans O. Univ.-Prof. Dr. Leopold Verfahren zur Bestimmung einer Messgrösse
EP0670481A1 (de) * 1994-01-05 1995-09-06 Becton, Dickinson and Company Kontinuierlich selbstkalibrierender Temperaturregler
DE4442457A1 (de) * 1994-11-29 1996-05-30 Bayerische Motoren Werke Ag Temperaturmeßvorrichtung
CN102539001A (zh) * 2010-12-30 2012-07-04 上海微电子装备有限公司 温度测量装置及其温度测量方法
GB2541482A (en) * 2016-03-18 2017-02-22 Johnson Matthey Plc Temperature measurement
RU2677786C1 (ru) * 2017-12-26 2019-01-21 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Измеритель температуры и способ ее измерения
CN112461391A (zh) * 2020-11-11 2021-03-09 杭州仰仪科技有限公司 一种锂电池等温量热仪中多通道热敏电阻迭代式测温***
WO2023012330A1 (de) 2021-08-06 2023-02-09 Carl Zeiss Smt Gmbh Temperaturmessvorrichtung, lithographieanlage und verfahren zum messen einer temperatur

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2369568A1 (fr) * 1976-10-27 1978-05-26 Hewlett Packard Gmbh Procede et dispositif de linearisation de la caracteristique d'un composant electronique
WO1982003121A1 (en) * 1981-03-05 1982-09-16 Bristol Ltd Babcock Bridge circuit compensation for environmental effects

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2369568A1 (fr) * 1976-10-27 1978-05-26 Hewlett Packard Gmbh Procede et dispositif de linearisation de la caracteristique d'un composant electronique
WO1982003121A1 (en) * 1981-03-05 1982-09-16 Bristol Ltd Babcock Bridge circuit compensation for environmental effects

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TECHNISCHES MESSEN ATM, Band 45, Nr. 3, M{rz 1978, Seiten 89-93, M}nchen, DE. *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0187317A1 (de) * 1985-01-03 1986-07-16 Siemens Aktiengesellschaft Messanordnung mit Widerstandsmesswertgebern
DE3729644A1 (de) * 1987-09-04 1989-03-23 Zeiss Carl Fa Verfahren zur bestimmung der temperatur von werkstuecken in flexiblen fertigungssystemen
US4895454A (en) * 1987-09-04 1990-01-23 Carl-Zeiss-Stiftung Method of determining the temperature of a workpiece in a flexible manufacturing system
EP0434824A1 (de) * 1989-07-18 1991-07-03 Horst Seperant Digitale thermometereinheit mit standardgenauigkeit.
EP0434824A4 (en) * 1989-07-18 1993-06-09 Horst Seperant Integrated digital standardized precision thermometer
US5171091A (en) * 1989-10-05 1992-12-15 Endress U. Hauser Gmbh U. Co. Temperature measuring circuit
EP0528784A1 (de) * 1991-08-16 1993-02-24 Hans O. Univ.-Prof. Dr. Leopold Verfahren zur Bestimmung einer Messgrösse
AT397311B (de) * 1991-08-16 1994-03-25 Hans Dr Leopold Verfahren zur bestimmung einer messgrösse sowie schaltungsanordnung zur durchführung des verfahrens
US5351010A (en) * 1991-08-16 1994-09-27 Hans Leopold Resistance ratio measurement utilizing measuring currents of opposite plural direction
EP0670481A1 (de) * 1994-01-05 1995-09-06 Becton, Dickinson and Company Kontinuierlich selbstkalibrierender Temperaturregler
US5519644A (en) * 1994-01-05 1996-05-21 Becton Dickinson And Company Continuously calibrating temperature controller
DE4442457A1 (de) * 1994-11-29 1996-05-30 Bayerische Motoren Werke Ag Temperaturmeßvorrichtung
CN102539001A (zh) * 2010-12-30 2012-07-04 上海微电子装备有限公司 温度测量装置及其温度测量方法
GB2541482A (en) * 2016-03-18 2017-02-22 Johnson Matthey Plc Temperature measurement
GB2547978A (en) * 2016-03-18 2017-09-06 Johnson Matthey Plc Temperature measurement
GB2548452A (en) * 2016-03-18 2017-09-20 Johnson Matthey Plc Temperature Measurement
WO2017158373A1 (en) * 2016-03-18 2017-09-21 Johnson Matthey Public Limited Company Temperature measurement
GB2541482B (en) * 2016-03-18 2018-01-31 Johnson Matthey Plc Temperature measurement
GB2547978B (en) * 2016-03-18 2018-02-07 Johnson Matthey Plc Temperature measurement
GB2548452B (en) * 2016-03-18 2018-03-07 Johnson Matthey Plc Temperature Measurement
RU2677786C1 (ru) * 2017-12-26 2019-01-21 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Измеритель температуры и способ ее измерения
CN112461391A (zh) * 2020-11-11 2021-03-09 杭州仰仪科技有限公司 一种锂电池等温量热仪中多通道热敏电阻迭代式测温***
WO2023012330A1 (de) 2021-08-06 2023-02-09 Carl Zeiss Smt Gmbh Temperaturmessvorrichtung, lithographieanlage und verfahren zum messen einer temperatur
DE102021208562A1 (de) 2021-08-06 2023-02-09 Carl Zeiss Smt Gmbh Temperaturmessvorrichtung, lithographieanlage und verfahren zum messen einer temperatur

Similar Documents

Publication Publication Date Title
DE2917237C2 (de)
EP0221251B1 (de) Verfahren zur Fehlerkompensation für Messwertaufnehmer mit nicht linearen Kennlinien, sowie Anordnung zur Durchführung des Verfahrens
EP0120102A1 (de) Temperaturmesseinrichtung
DE3230405C2 (de)
DE69504537T2 (de) Temperaturmessverfahren mit einem ntc-fühler und entsprechende anordnung
EP0360348A2 (de) Verfahren und Vorrichtung zur Messung kleiner elektrischer Signale
US4196382A (en) Physical quantities electric transducers temperature compensation circuit
DE4211997A1 (de) Verfahren und Schaltungsanordnung zur elektrischen Kompensation des Temperatureinflusses auf das Meßsignal von mechanoelektrischen Meßwandlern
DE69016779T2 (de) Sondenkalibrierung mit hilfe mehrerer variablen.
DE2307296B2 (de) Anordnung zur Messung von Temperaturen
DE3123265A1 (de) Anordnung und verfahren zum messen von widerstaenden
DE1498234B2 (de) Digital anzeigegeraet zur messung eines parameters insbe sondere der temperatur
DE19743216A1 (de) Halbleiterdrucksensor
DE2710782C2 (de) Vorrichtung zur Messung von Temperaturdifferenzen
DE2910608C2 (de) Messgerät für die praktisch simultane Δ T, T-Messung
DE2652314C3 (de) Temperaturkompensationsschaltung für einen elektrischen Meßwertgeber
EP0017901B1 (de) Schaltung zum elektrischen Messen mechanischer Grössen
DE4430722C2 (de) Schaltung zur Übergangsstellenkompensation
DE3330915C2 (de) Vorrichtung zur Ermittlung eines Temperaturwertes mittels mindestens eines temperaturabhängigen Fühlerwiderstandes
DE3634053C2 (de)
EP0667509A2 (de) Temperaturkompensation bei Massenstromsensoren nach dem Prinzip des Hitzdraht-Anemometers
DE2109735C3 (de) Schaltung zur Erzeugung eines Signals, das sich linear mit dem Loga¬
DE2100775C3 (de) Einrichtung zur Linearisierung von Widerstandsmessungen
DE2158269C3 (de) Schaltung zum Umformen von Widerstandswerten in Stromwerte
DE2129566A1 (de) Linearisierungsschaltung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19850604

RIN1 Information on inventor provided before grant (corrected)

Inventor name: AUBELE, KARL-EUGEN, DIPL.-ING.