EP0115731A2 - Scanning X-ray tube - Google Patents

Scanning X-ray tube Download PDF

Info

Publication number
EP0115731A2
EP0115731A2 EP83402529A EP83402529A EP0115731A2 EP 0115731 A2 EP0115731 A2 EP 0115731A2 EP 83402529 A EP83402529 A EP 83402529A EP 83402529 A EP83402529 A EP 83402529A EP 0115731 A2 EP0115731 A2 EP 0115731A2
Authority
EP
European Patent Office
Prior art keywords
filament
electron beam
ray tube
deflection
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP83402529A
Other languages
German (de)
French (fr)
Other versions
EP0115731A3 (en
Inventor
André Plessis
Emile Gabbay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric CGR SA
Original Assignee
Thomson CGR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CGR filed Critical Thomson CGR
Publication of EP0115731A2 publication Critical patent/EP0115731A2/en
Publication of EP0115731A3 publication Critical patent/EP0115731A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/14Arrangements for concentrating, focusing, or directing the cathode ray
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/066Details of electron optical components, e.g. cathode cups

Definitions

  • the present invention relates to a scanning X-ray tube, usable in radiology in particular in the field of radiodiagnostics, and particularly well suited to the field of digital radiology.
  • the object area In the latter area it is common to scan an area to be analyzed, called the object area, with an X-ray beam, this scanning being able to be carried out by a movement either of the X-ray source, or of the object area, or of an area where the image of the object is formed.
  • This movement of the X-ray source can be obtained by a displacement of the X-ray tube, by mechanical means for example, or by an action accomplished in the tube itself; the movement of the source being, in the latter case, limited in particular by the dimensional characteristics of organs contained in the X-ray tube.
  • An X-ray tube generally comprises a cathode, emitting an electron beam generated by a heated filament to which is backed an element for concentrating the electron beam and, an anodic target on which this electron beam is projected; an impact zone of these on the anode target represents the origin of the X-rays and constitutes the focal point of the tube and the source of the X-rays. Also, a movement of the X-ray source can be achieved by modifying the position, on the anode target, of the electron impact zone; it is commonly used for this purpose, means for deflecting the electron beam.
  • deflection means are generally constituted by magnetic or electrostatic lenses, arranged on the beam path or close to this path, between the catode and the anode target; they require a significant energy, the deflection energy, for their actuation necessary may be important due to the cynetic energy of the electrons.
  • an X-ray tube arranged to include such deflection means is considerably more expensive than an ordinary X-ray tube.
  • the present invention relates to a scanning X-ray tube, in which deflection of the electron beam by electrostatic effect can be obtained with a low deflection energy, without using a lens placed between the cathode and the anode target; by its arrangement, an X-ray tube according to the invention has a small increase in cost compared to an ordinary X-ray tube.
  • a scanning X-ray tube comprising a cathode, emitting an electron beam, this cathode being provided with an electron generating filament and an electron beam concentrating element, is characterized in that this concentrating element comprises at least two metallic parts electrically insulated from one another and from the filament, to allow relative to the latter their independent polarization and a deflection of the electron beam.
  • Figure 1 shows an X-ray tube 1 according to the prior art, represented by a frame in dotted lines, and containing a filament 2, a concentration element 3 formed of a metal part. lique leaned with the filament 2, and an anode target 4 partially represented; these latter elements being supported and supplied in a known manner and not shown.
  • the filament 2 and the concentrating element 3 form a symmetrical assembly, with respect to a plane perpendicular to the plane of FIG. 1 and containing an emission axis 5 passing through the filament 2; this assembly formed by the filament 2 and the concentrating element 3 constitutes a cathode C.
  • the cathode C delivers along the emission axis 5, a beam of electrons F attracted by the anode target 4, on which it determines a focus 9 from which are emitted X-rays not shown.
  • the concentration of the electron beam F, materialized by a dimension D of the focal point 9, as well as the emission axis 5 of the electron beam F are determined by the geometry of the cathode C. given this symmetry of cathode C, an electric field (not shown) is also established symmetrically around the filament 2; this symmetry of the electric field determining the electron beam F, its emission axis 5 contained in the plane of symmetry.
  • the concentration element 3 can be: either connected to the filament 2; is isolated from the latter, with respect to which in the latter case, it can be brought to a different generally negative potential. This allows, by modifying the electric field which retains its previously mentioned symmetry, to determine a different concentration, not shown, in the electron beam F; the electron beam F having retained its emission axis 5.
  • FIG. 2 shows an X-ray tube 10 in accordance with the invention, represented by a frame in dotted lines, and containing a filament 2, a concentration element 3 backed by the filament 2, and an anode target 4; as in the example of FIG. 1, the filament 2 and the concentrating element 3 constitute a cathode CI
  • the concentrating element 3 consists in particular of a first and a second metal part 12, 13, electrically isolated from one another by a insulating partition 6 secured to an insulating base 7.
  • Each of these parts 12, 13, comprising metal surfaces 14, 15, is arranged symmetrically with respect to the filament 2 and to a plane 5.8 of symmetry perpendicular to the figure; this plane, containing on the one hand the first emission axis 5, and on the other hand an axis of the filament 2 perpendicular to the plane of FIG. 2 and represented by a point 8, constitutes a plane 5.8 of symmetry of the assembly focus element 3 and filament 2.
  • the first and second metal parts 12, 13 also being electrically isolated from the filament 2, this arrangement makes it possible to apply to them, relative to the filament 2, a first and a second negative bias voltage (not shown in FIG. 2) independent of the one of the other.
  • the concentrating element 3 is thus capable of performing two functions: one for concentrating the electron beam F; the other of the deflection of this beam in a plane perpendicular to the plane 5.8 of symmetry.
  • the cathode CI can generate along the emission axis 5, an electron beam F which determines the focus 9 on the anode target 4; an electric field (not shown) being established around the filament 2 in a symmetrical manner, and the concentration of the electron beam F being ensured by the geometry of the cathode CI, as has been previously explained.
  • the cathode C1 By applying for example to the second metal part 13, a second negative bias voltage, the first bias voltage applied to the first part 12 being zero: the cathode C1 generates an electron beam Fa (shown in dotted lines), having for example a first mean direction 5a and whose impact on the anode target 4 causes a second focus 9a; the amplitude of this deflection, represented by an angle between the first emission axis 5 or rest axis 5 and this mean direction 5A, being a function of the level of the difference between these bias voltages.
  • Fa shown in dotted lines
  • n mean directions 5a, 5b, ... 5n, determining n foci 9a, 9b, ... 9n.
  • An advantage of this structure is that the metal surfaces 14, 15 serving for the deflection being very close to the filament 2, the voltages necessary for this deflection are low, (of the order of a few tens of volts to a few hundred volts). In fact, the electrons being deflected at the level of cathode C1, their cynetic energy at this level is low and little deflection energy is required; as a result, the pervéance of the transmitter is little affected.
  • Another advantage lies in that the bias voltages being low, the problems of electrical insulation are reduced and make it possible to produce a cathode CI of small bulk, the dimensions of which can be equal to those of a cathode C produced according to prior art.
  • This description constitutes a nonlimiting example of an X-ray tube 10 according to the invention, the concentrating part 3 being able to have a different shape and to comprise n metallic parts (not shown) electrically independent from each other and from the filament 2.
  • the metal parts 12, 13 can be arranged asymmetrically with respect to the filament 2, for example by giving them a different direction; this version of the invention is illustrated in FIG. 2 by a limit 11, represented in dotted lines, which gives the second metal part 13 a thickness E less than a thickness E of the first metal part 12.
  • This asymmetry determines the beam of electrons F an average direction of rest, confused for example with the second average direction 5b, or with the first average direction 5a if this asymmetry is exerted in a direction opposite to that of the nonlimiting example described.
  • an average direction of rest 5a, 5b is obtained in the absence of difference between the first and second bias voltage; a deflection of the electron beam F operating in a positive 20 or negative 21 direction, with respect to this mean direction of rest.
  • FIG. 3 shows, by way of nonlimiting example, an electrical diagram for supplying the X-ray tube 10 according to the invention.
  • the anode target 4 is connected to a + HT output of a high voltage generator 33, produced in a conventional manner; this high voltage generator 33 has an - HT output connected via a common point PC and the second external connection means 25, at one end 2a of the filament 2. This achieves the high voltage connection between the anode target 4 and the cathode CI.
  • the second and third external connection means 24, 25 are connected to outputs 37, 39 of a heating voltage generator 38 serving to supply the filament 2; this heating voltage generator 38 may include, for example, in a conventional manner, a transformer not shown.
  • the fourth and fifth external connection means 42, 43, corresponding to the first and to the second metal part 12, 13, are respectively connected to a negative output V 1 and a negative output V2 of a first and second low voltage generator 34 , 35; positive outputs 28, 29 of these low voltage generators 34, 35 being in the nonlimiting example described, also connected to the common point PC.
  • These generators 33, 34, 35, 38 which can be supplied in a conventional manner (not shown) starting from an alternating voltage source for example.
  • the low voltage generators 35, 36 can be manually adjustable, so as to supplying a variable voltage V1, V2 which is variable continuously or in leaps; these generators 35, 36 can also be adjustable remotely, by conventional means not shown or possibly programmed.
  • FIG. 4 shows a nonlimiting example, according to which the bias voltages V1, V2 can be applied to cause a deflection of the electron beam F; this deflection producing a continuous scan of the anode target 4.
  • bias voltages VI, V2 can be applied to the metal parts 12, 13 as shown in FIG. 2 from an instant t5.

Landscapes

  • X-Ray Techniques (AREA)

Abstract

Tube in which an electron beam (F) is deflected. The X-ray tube (10) comprises, in particular, a filament (2), a focusing element (3) behind the filament (2) and an anodic target (4); the filament (2) and the focusing element (3) form a cathode (C1) emitting the electron beam (F). The focusing element (3) consists of two metal parts (12, 13) electrically insulated from one another and from the filament (2). Independent polarisation of the two metal parts (12, 13) relative to the filament (2) makes it possible to obtain a deflection of the electron beam (F) by an electrostatic effect. The invention is applicable in particular to digital radiology equipment. <IMAGE>

Description

La présente invention concerne un tube à rayons X à balayage, utilisable en radiologie notamment dans le domaine du radiodiagnostic, et particulièrement bien adapté au domaine de la radiologie numérique.The present invention relates to a scanning X-ray tube, usable in radiology in particular in the field of radiodiagnostics, and particularly well suited to the field of digital radiology.

Dans ce dernier domaine il est courant de balayer une zone à analyser, dite zone objet, par un faisceau de rayons X, ce balayage pouvant être réalisé par un mouvement soit de la source de rayons X, soit de la zone objet, soit d'une zone où est formée l'image de l'objet.In the latter area it is common to scan an area to be analyzed, called the object area, with an X-ray beam, this scanning being able to be carried out by a movement either of the X-ray source, or of the object area, or of an area where the image of the object is formed.

Ce mouvement de la source de rayons X peut être obtenu par un déplacement du tube à rayons X, grâce à des moyens mécaniques par exemple, ou par une action accomplie dans le tube lui-même ; le mouvement de la source étant, dans ce dernier cas, limité notamment par des caractéristiques dimensionnelles d'organes contenus dans le tube à rayons X.This movement of the X-ray source can be obtained by a displacement of the X-ray tube, by mechanical means for example, or by an action accomplished in the tube itself; the movement of the source being, in the latter case, limited in particular by the dimensional characteristics of organs contained in the X-ray tube.

Un tube à rayons X comporte généralement une cathode, émettrice d'un faisceau d'électrons générés par un filament chauffé auquel est adossé un élément de concentration du faisceau d'électrons et, une cible anodique sur laquelle est projeté ce faisceau d'électrons ; une zone d'impact de ceux-ci sur la cible anodique représente l'origine des rayons X et, constitue le foyer du tube et la source du rayonnement X. Aussi, un mouvement de la source de rayons X peut être réalisé en modifiant la position, sur la cible anodique, de la zone d'impact des électrons ; il est couramment utilisé à cet effet, des moyens de déflexion du faisceau d'électrons.An X-ray tube generally comprises a cathode, emitting an electron beam generated by a heated filament to which is backed an element for concentrating the electron beam and, an anodic target on which this electron beam is projected; an impact zone of these on the anode target represents the origin of the X-rays and constitutes the focal point of the tube and the source of the X-rays. Also, a movement of the X-ray source can be achieved by modifying the position, on the anode target, of the electron impact zone; it is commonly used for this purpose, means for deflecting the electron beam.

Ces moyens de déflexion sont généralement constitués par des lentilles magnétiques ou électrostatiques, disposées sur le trajet du faisceau ou à proximité de ce trajet, entre la catode et la cible anodique ;ils exigent pour leur actionnement une énergie non négligeable, l'énergie de déviation nécessaire pouvant être importante du fait de l'énergie cynétique des électrons.These deflection means are generally constituted by magnetic or electrostatic lenses, arranged on the beam path or close to this path, between the catode and the anode target; they require a significant energy, the deflection energy, for their actuation necessary may be important due to the cynetic energy of the electrons.

Il est à remarquer également qu'un tube à rayons X agencé pour comporter de tels moyens de déflexion, est d'un coût considérablement plus élevé qu'un tube à rayons X ordinaire.It should also be noted that an X-ray tube arranged to include such deflection means is considerably more expensive than an ordinary X-ray tube.

La présente invention concerne un tube à rayons X à balayage, dans lequel une déflexion du faisceau d'électrons par effet électrostatique peut être obtenu avec une faible énergie de déviation, sans user de lentille placée entre la cathode et la cible anodique ; par son agencement, un tube à rayons X conforme à l'invention présente une faible augmentation du coût par rapport à un tube à rayons X ordinaire.The present invention relates to a scanning X-ray tube, in which deflection of the electron beam by electrostatic effect can be obtained with a low deflection energy, without using a lens placed between the cathode and the anode target; by its arrangement, an X-ray tube according to the invention has a small increase in cost compared to an ordinary X-ray tube.

Selon l'invention, un tube à rayons X à balayage comportant une cathode, émettrice d'un faisceau d'électrons, cette cathode étant munie d'un filament générateur d'électrons et d'un élément de concentration du faisceau d'électrons, est caractérisé en ce que cet élément de concentration comporte au moins deux pièces métalliques électriquement isolées l'une de l'autre et du filament, pour permettre par rapport à ce dernier leur polarisation indépendante et une déflexion du faisceau d'électrons.According to the invention, a scanning X-ray tube comprising a cathode, emitting an electron beam, this cathode being provided with an electron generating filament and an electron beam concentrating element, is characterized in that this concentrating element comprises at least two metallic parts electrically insulated from one another and from the filament, to allow relative to the latter their independent polarization and a deflection of the electron beam.

L'invention sera mieux comprise grâce à la description qui suit, et aux quatre figures annexées parmi lesquelles :

  • - la figure 1 est relative à l'art antérieur et montre schématiquement un tube à rayons X ordinaire ;
  • - la figure 2 montre schématiquement, un tube à rayons X conforme à l'invention ;
  • - la figure 3 montre un schéma de principe d'alimentation électrique d'un tube à rayons X conforme à l'invention.
  • - la figure 4 montre un diagramme concernant la polarisation de l'élément de concentration.
The invention will be better understood thanks to the description which follows, and to the four appended figures among which:
  • - Figure 1 relates to the prior art and schematically shows an ordinary X-ray tube;
  • - Figure 2 shows schematically, an X-ray tube according to the invention;
  • - Figure 3 shows a block diagram of the electrical supply of an X-ray tube according to the invention.
  • - Figure 4 shows a diagram concerning the polarization of the concentrating element.

La figure 1 montre un tube à rayons X 1 selon l'art antérieur, représenté par un cadre en traits pointillés, et contenant un filament 2, un élément de concentration 3 formé d'une pièce métal- . lique adossée au filament 2, et une cible anodique 4 partiellement représentée ; ces derniers éléments étant supportés et alimentés d'une manière connue et non représentée.Figure 1 shows an X-ray tube 1 according to the prior art, represented by a frame in dotted lines, and containing a filament 2, a concentration element 3 formed of a metal part. lique leaned with the filament 2, and an anode target 4 partially represented; these latter elements being supported and supplied in a known manner and not shown.

Le filament 2 et l'élément de concentration 3 forment un ensemble symétrique, par rapport à un plan perpendiculaire au plan de la figure 1 et contenant un axe 5 d'émission passant par le filament 2 ; cet ensemble formé par le filament 2 et l'élément de concentration 3, constitue une cathode C.The filament 2 and the concentrating element 3 form a symmetrical assembly, with respect to a plane perpendicular to the plane of FIG. 1 and containing an emission axis 5 passing through the filament 2; this assembly formed by the filament 2 and the concentrating element 3 constitutes a cathode C.

La cathode C délivre selon l'axe d'émission 5, un faisceau d'électrons F attirés par la cible anodique 4, sur laquelle il détermine un foyer 9 d'où sont émis des rayons X non représentés.The cathode C delivers along the emission axis 5, a beam of electrons F attracted by the anode target 4, on which it determines a focus 9 from which are emitted X-rays not shown.

Dans cette disposition qui est classique la concentration du faisceau d'électrons F, matérialisée par une dimension D du foyer 9, ainsi que l'axe d'émission 5 du faisceau d'électrons F sont déterminés par la géométrie de la cathode C. Compte tenu de cette symétrie de la cathode C, un champ électrique (non représenté) est établi de manière également symétrique autour du filament 2 ; cette symétrie du champ électrique déterminant au faisceau d'électrons F, son axe d'émission 5 contenu dans le plan de symétrie.L'élément de concentration 3 peut être : soit relié au filament 2 ; soit isolé de ce dernier, par rapport auquel dans ce dernier cas, il peut être porté à un potentiel différent généralement négatif. Ceci permet, en modifiant le champ électrique qui conserve sa symétrie précédemment mentionnée, de déterminer au faisceau d'électrons F une concentration différente, non représentée ; le faisceau d'électron F ayant conservé son axe d'émission 5.In this arrangement, which is conventional, the concentration of the electron beam F, materialized by a dimension D of the focal point 9, as well as the emission axis 5 of the electron beam F are determined by the geometry of the cathode C. given this symmetry of cathode C, an electric field (not shown) is also established symmetrically around the filament 2; this symmetry of the electric field determining the electron beam F, its emission axis 5 contained in the plane of symmetry. The concentration element 3 can be: either connected to the filament 2; is isolated from the latter, with respect to which in the latter case, it can be brought to a different generally negative potential. This allows, by modifying the electric field which retains its previously mentioned symmetry, to determine a different concentration, not shown, in the electron beam F; the electron beam F having retained its emission axis 5.

Cette description d'un tube à rayons X 1 selon l'art antérieur, dans lequel aucune déflexion du faisceau d'électrons n'est obtenue, permet de mieux comprendre l'invention montrée par la figure 2, dans laquelle une structure nouvelle permet d'agir sur la symétrie du champ électrique entourant le filament 2.This description of an X-ray tube 1 according to the prior art, in which no deflection of the electron beam is obtained, makes it possible to better understand the invention shown in FIG. 2, in which a new structure allows '' act on the symmetry of the electric field surrounding the filament 2.

La figure 2 montre un tube à rayons X 10 conforme à l'invention, représenté par un cadre en traits pointillés, et contenant un filament 2, un élément de concentration 3 adossé au filament 2, et une cible anodique 4 ; ainsi que dans l'exemple de la figure 1, le filament 2 et l'élément de concentration 3 constituent une cathode CIFIG. 2 shows an X-ray tube 10 in accordance with the invention, represented by a frame in dotted lines, and containing a filament 2, a concentration element 3 backed by the filament 2, and an anode target 4; as in the example of FIG. 1, the filament 2 and the concentrating element 3 constitute a cathode CI

Dans l'exemple non limitatif décrit et contrairement à l'art antérieur, l'élément de concentration 3 est constitué notamment d'une première et d'une seconde pièce métallique 12, 13, électriquement isolées l'une de l'autre par une cloison isolante 6 solidaire d'une embase isolante 7 . Chacune de ces pièces 12, 13,comportant des surfaces métalliques 14, 15, est disposée symétriquement par rapport au filament 2 et à un plan 5.8 de symétrie perpendiculaire à la figure ; ce plan, contenant d'une part le premier axe d'émission 5, et d'autre part un axe du filament 2 perpendiculaire au plan de la figure 2 et représenté par un point 8,constitue un plan 5.8 de symétrie de l'ensemble élément de concentration 3 et filament 2.In the nonlimiting example described and unlike the prior art, the concentrating element 3 consists in particular of a first and a second metal part 12, 13, electrically isolated from one another by a insulating partition 6 secured to an insulating base 7. Each of these parts 12, 13, comprising metal surfaces 14, 15, is arranged symmetrically with respect to the filament 2 and to a plane 5.8 of symmetry perpendicular to the figure; this plane, containing on the one hand the first emission axis 5, and on the other hand an axis of the filament 2 perpendicular to the plane of FIG. 2 and represented by a point 8, constitutes a plane 5.8 of symmetry of the assembly focus element 3 and filament 2.

Les première et seconde pièces métalliques 12, 13 étant également isolées électriquement du filament 2, cette disposition permet de leur appliquer, par rapport au filament 2, une première et une seconde tension de polarisation négatives (non représentées sur la figure 2) indépendantes l'une de l'autre.The first and second metal parts 12, 13 also being electrically isolated from the filament 2, this arrangement makes it possible to apply to them, relative to the filament 2, a first and a second negative bias voltage (not shown in FIG. 2) independent of the one of the other.

L'élément de concentration 3 est ainsi capable d'assurer deux fonctions : l'une de concentration du faisceau d'électrons F ; l'autre de déflexion de ce faisceau dans un plan perpendiculaire au plan 5.8 de symétrie.The concentrating element 3 is thus capable of performing two functions: one for concentrating the electron beam F; the other of the deflection of this beam in a plane perpendicular to the plane 5.8 of symmetry.

En supposant que ces tensions de polarisation aient une même valeur, nulle par exemple, la cathode CI peut générer selon l'axe d'émission 5, un faisceau d'électrons F qui détermine sur la cible anodique 4 le foyer 9 ; un champ électrique (non représenté) étant établi autour du filament 2 d'une manière symétrique, et la concentration du faisceau d'électrons F étant assurée par la géométrie de la cathode CI, ainsi qu'il a été précédemment expliqué.Assuming that these bias voltages have the same value, zero for example, the cathode CI can generate along the emission axis 5, an electron beam F which determines the focus 9 on the anode target 4; an electric field (not shown) being established around the filament 2 in a symmetrical manner, and the concentration of the electron beam F being ensured by the geometry of the cathode CI, as has been previously explained.

Ceci correspond à une utilisation du tube à rayons X 10 selon l'invention, sans déflexion du faisceau d'électrons F ; l'axe d'émission 5 constituant alors également un axe de repos 5 correspondant à une position de repos de ce faisceau d'électrons.This corresponds to a use of the X-ray tube 10 according to the invention, without deflection of the electron beam F; the emission axis 5 then also constituting a rest axis 5 corresponding to a rest position of this electron beam.

Pour obtenir une déflexion de ce dernier, c'est-à-dire, lui conférer une direction moyenne différente de l'axe d'émission 5 ou axe de repos 5, il suffit d'apporter une dissymétrie au champ électrique formé autour du filament 2, en donnant aux tensions de polarisation des première et seconde pièces métalliques 12, 13, des valeurs différentes ; l'une de ces valeurs pouvant même être nulle, mais aucune ne devant être positive. Un sens de cette déflexion par rapport à l'axe de repos 5, par exemple positif montré par la flèche 20, ou négatif montré par la flèche 21, étant déterminé en fonction d'une différence positive ou négative entre ces tensions de polarisation.To obtain a deflection of the latter, that is to say, give it an average direction different from the emission axis 5 or rest axis 5, it suffices to bring an asymmetry to the field. electric formed around the filament 2, giving the polarization voltages of the first and second metal parts 12, 13, different values; one of these values may even be zero, but none should be positive. A direction of this deflection relative to the axis of rest 5, for example positive shown by arrow 20, or negative shown by arrow 21, being determined as a function of a positive or negative difference between these bias voltages.

En appliquant par exemple à la seconde pièce métallique 13, une seconde tension de polarisation négative, la première tension de polarisation appliquée à la première pièce 12 étant nulle : la cathode Cl génère un faisceau d'électrons Fa (représenté en traits pointillés), ayant par exemple une première direction moyenne 5a et dont l'impact sur la cible anodique 4 provoque un second foyer 9a ; l'amplitude de cette déflexion, représentée par un angle centre le premier axe d'émission 5 ou axe de repos 5 et cette direction moyenne 5A, étant fonction du niveau de la différence entre ces tensions de polarisation. Il est possible d'obtenir une déflexion dans un sens négatif montré par la flèche 21, en appliquant à la première pièce métallique 12 une tension de polarisation négative, la seconde tension de polarisation étant nulle à son tour ; ceci détermine au faisceau d'électrons une seconde direction moyenne 5b et provoque un troisième foyer 9bBy applying for example to the second metal part 13, a second negative bias voltage, the first bias voltage applied to the first part 12 being zero: the cathode C1 generates an electron beam Fa (shown in dotted lines), having for example a first mean direction 5a and whose impact on the anode target 4 causes a second focus 9a; the amplitude of this deflection, represented by an angle between the first emission axis 5 or rest axis 5 and this mean direction 5A, being a function of the level of the difference between these bias voltages. It is possible to obtain a deflection in a negative direction shown by arrow 21, by applying to the first metal part 12 a negative bias voltage, the second bias voltage being zero in turn; this determines the electron beam a second mean direction 5b and causes a third focus 9b

Il est ainsi possible de déterminer au faisceau d'électrons F, n directions moyennes 5a, 5b,... 5n, déterminant n foyers 9a, 9b,... 9n.It is thus possible to determine the electron beam F, n mean directions 5a, 5b, ... 5n, determining n foci 9a, 9b, ... 9n.

Un avantage de cette structure est que les surfaces métalliques 14, 15 servant à la déflexion étant très proches du filament 2, les tensions nécessaires à cette déflexion sont faibles, (de l'ordre de quelques dizaines de volts à quelques centaines de volts). En effet les électrons étant déviés au niveau de la cathode Cl, leur énergie cynétique à ce niveau est faible et il faut peu d'énergie de déviation ; en conséquence, la pervéance de l'émetteur est peu affectée.An advantage of this structure is that the metal surfaces 14, 15 serving for the deflection being very close to the filament 2, the voltages necessary for this deflection are low, (of the order of a few tens of volts to a few hundred volts). In fact, the electrons being deflected at the level of cathode C1, their cynetic energy at this level is low and little deflection energy is required; as a result, the pervéance of the transmitter is little affected.

Un autre avantage réside en ce que les tensions de polarisation étant faibles, les problèmes d'isolation électrique sont réduits et permettent de réaliser une cathode CI de faible encombrement, dont les dimensions peuvent être égales à celles d'une cathode C réalisée selon l'art antérieur.Another advantage lies in that the bias voltages being low, the problems of electrical insulation are reduced and make it possible to produce a cathode CI of small bulk, the dimensions of which can be equal to those of a cathode C produced according to prior art.

Cette description constitue un exemple non limitatif d'un tube à rayons X 10 selon l'invention, la pièce de concentration 3 pouvant avoir une forme différente et comporter n pièces métalliques (non représentées) électriquement indépendantes les unes des autres et du filament 2 . Les pièces métalliques 12, 13 peuvent être disposées de manière asymétrique par rapport au filament 2, en leur donnant par exemple une direction différente ; cette version de l'invention est illustrée sur la figure 2 par une limite 11, représentée en traits pointillés, qui confère à la seconde pièce métallique 13 une épaisseur E inférieure à une épaisseur E de la première pièce métallique 12. Cette asymétrie détermine au faisceau d'électrons F une direction moyenne de repos, confondue par exemple avec la seconde direction moyenne 5b, ou avec la première direction moyenne 5a si cette asymétrie s'exerce dans un sens contraire à celui de l'exemple non limitatif décrit. Dans le cas de cette asymétrie une telle direction moyenne de repos 5a, 5b est obtenue en l'absence de différence entre les première et seconde tension de polarisation ; une déflexion du faisceau d'électrons F s'opérant dans un sens positif 20 ou négatif 21, par rapport à cette direction moyenne de repos.This description constitutes a nonlimiting example of an X-ray tube 10 according to the invention, the concentrating part 3 being able to have a different shape and to comprise n metallic parts (not shown) electrically independent from each other and from the filament 2. The metal parts 12, 13 can be arranged asymmetrically with respect to the filament 2, for example by giving them a different direction; this version of the invention is illustrated in FIG. 2 by a limit 11, represented in dotted lines, which gives the second metal part 13 a thickness E less than a thickness E of the first metal part 12. This asymmetry determines the beam of electrons F an average direction of rest, confused for example with the second average direction 5b, or with the first average direction 5a if this asymmetry is exerted in a direction opposite to that of the nonlimiting example described. In the case of this asymmetry, such an average direction of rest 5a, 5b is obtained in the absence of difference between the first and second bias voltage; a deflection of the electron beam F operating in a positive 20 or negative 21 direction, with respect to this mean direction of rest.

La figure 3 montre, à titre d'exemple non limitatif, un schéma électrique d'alimentation du tube à rayons X 10 conforme à l'invention.FIG. 3 shows, by way of nonlimiting example, an electrical diagram for supplying the X-ray tube 10 according to the invention.

Dans le tube à rayons X 10 :

  • - la cible anodique 4 est reliée à une première connexion extérieure 31 ;
  • - le filament 2 est relié par ses extrémités 2A, dont une est masquée sur la figure à un premier et second moyen de connexion intérieurs 22, 23, situés sur l'embase isolante 7 de l'élément de concentration 3 ; ce premier et second moyen de connexion intérieurs étant respectivement reliés à un second et troisième connecteur extérieurs 24, 25 ;
  • - l'élément de concentration 3 comporte également sur l'embase 7, un troisième et quatrième moyen de connexion intérieurs 40, 41 respectivement en contact avec la première et la seconde pièce métallique 12, 13, et reliés à un quatrième et cinquième point de connexion extérieurs 42, 43.
In the X-ray tube 10:
  • - the anode target 4 is connected to a first external connection 31;
  • - The filament 2 is connected by its ends 2A, one of which is hidden in the figure to a first and second internal connection means 22, 23, located on the insulating base 7 of the concentrating element 3; this first and second interior connection means being respectively connected to a second and third external connector 24, 25;
  • - the concentrating element 3 also comprises on the base 7, a third and fourth interior connection means 40, 41 respectively in contact with the first and second metal part 12, 13, and connected to a fourth and fifth point of external connection 42, 43.

Par le premier moyen de connexion intérieur 31, la cible anodique 4 est reliée à une sortie + HT d'un générateur de haute tension 33, réalisé de manière classique ; ce générateur de haute tension 33 comporte une sortie - HT reliée par l'intermédiaire d'un point commun PC et du second moyen de connexion extérieur 25, à une extrémité 2a du filament 2. Ceci réalise la connexion de haute tension entre la cible anodique 4 et la cathode CI.By the first internal connection means 31, the anode target 4 is connected to a + HT output of a high voltage generator 33, produced in a conventional manner; this high voltage generator 33 has an - HT output connected via a common point PC and the second external connection means 25, at one end 2a of the filament 2. This achieves the high voltage connection between the anode target 4 and the cathode CI.

Les second et troisième moyens de connexion extérieurs 24, 25, sont reliés à des sorties 37, 39 d'un générateur de tension de chauffage 38 servant à alimenter le filament 2 ; ce générateur de tension de chauffage 38 pouvant comporter par exemple, d'une manière classique, un transformateur non représenté. Les quatrième et cinquième moyens de connexion extérieurs 42, 43, correspondant à la première et à la seconde pièce métallique 12, 13, sont respectivement reliés à une sortie négative V 1 et une sortie négative V2 d'un premier et second générateur basse tension 34, 35 ; des sorties positives 28, 29 de ces générateurs basse tension 34, 35 étant dans l'exemple non limitatif décrit, reliés également au point commun PC. Ces générateurs 33, 34, 35,38 pouvant être alimentés d'une manière classique, (non représentée) en partant d'une source de tension alternative par exemple.The second and third external connection means 24, 25 are connected to outputs 37, 39 of a heating voltage generator 38 serving to supply the filament 2; this heating voltage generator 38 may include, for example, in a conventional manner, a transformer not shown. The fourth and fifth external connection means 42, 43, corresponding to the first and to the second metal part 12, 13, are respectively connected to a negative output V 1 and a negative output V2 of a first and second low voltage generator 34 , 35; positive outputs 28, 29 of these low voltage generators 34, 35 being in the nonlimiting example described, also connected to the common point PC. These generators 33, 34, 35, 38 which can be supplied in a conventional manner (not shown) starting from an alternating voltage source for example.

Ceci réalise les connexions d'alimentation du filament 2 et permet l'application aux première et seconde pièces métalliques 12, 13 des première et seconde tensions de polarisation VI, V2 d'une manière indépendante, ces tensions étant référencées par rapport à une extrémité 2A du filament 2. Les générateurs basse tension 35, 36 peuvent être réglables manuellement, de manière à fournir une tension de polarisation VI, V2 variable de manière continue ou par bonds ; ces générateurs 35, 36 pouvant être également ajustables à distance, par des moyens classiques non représentés ou éventuellement programmés.This makes the filament 2 supply connections and allows the first and second metal parts 12, 13 to be applied independently of the first and second bias voltages VI, V2, these voltages being referenced with respect to an end 2A of the filament 2. The low voltage generators 35, 36 can be manually adjustable, so as to supplying a variable voltage V1, V2 which is variable continuously or in leaps; these generators 35, 36 can also be adjustable remotely, by conventional means not shown or possibly programmed.

La figure 4 montre un exemple non limitatif, selon lequel les tensions de polarisations V1,V2 peuvent être appliquées pour provoquer une déflexion du faisceau d'électrons F ; cette déflexion produisant un balayage continu de la cible anodique 4.FIG. 4 shows a nonlimiting example, according to which the bias voltages V1, V2 can be applied to cause a deflection of the electron beam F; this deflection producing a continuous scan of the anode target 4.

On trouve :

  • - à un instant t0 :
    • en A, la première tension de polarisation VI a une valeur égale à zéro ; en B, la seconde tension de polarisation V2 a également une valeur égale à zéro. Cette situation correspond à celle (montrée figure 2) dans laquelle l'axe du faisceau d'électrons F est constitué par l'axe de repos 5.
  • - à l'instant tl :
    • en A, la première tension VI a une valeur Vla ; en B, la seconde tension V2 a une valeur égale à zéro. Cette situation correspond à celle où la trajectoire du faisceau d'électrons F s'effectue selon la seconde direction moyenne 5b ; la différence déterminée par V1-V2 étant négative ;
  • - à un instant t2 :
    • en A la première tension V1 a une valeur zéro ; en b la seconde tension V2 est égale à zéro. L'axe du faisceau est revenu à la position de l'axe de repos 5 ;
  • - à un instant t3 :
    • en A, la premère tension V1 est égale à zéro ; en B, la seconde tension V2 est égale à une valeur V2a. Cette situation correspond à celle où la trajectoire du faisceau d'électrons F s'effectue selon la première direction moyenne 5a la différence déterminée par VI-V2 étant positive.
We find :
  • - at an instant t0:
    • at A, the first bias voltage VI has a value equal to zero; at B, the second bias voltage V2 also has a value equal to zero. This situation corresponds to that (shown in FIG. 2) in which the axis of the electron beam F is constituted by the axis of rest 5.
  • - at time tl:
    • at A, the first voltage VI has a value Vla; at B, the second voltage V2 has a value equal to zero. This situation corresponds to that where the trajectory of the electron beam F takes place in the second mean direction 5b; the difference determined by V1-V2 being negative;
  • - at an instant t2:
    • in At the first voltage V1 has a value of zero; at b the second voltage V2 is equal to zero. The beam axis has returned to the position of the rest axis 5;
  • - at an instant t3:
    • in A, the first voltage V1 is equal to zero; in B, the second voltage V2 is equal to a value V2a. This situation corresponds to that where the trajectory of the electron beam F takes place in the first average direction 5a, the difference determined by VI-V2 being positive.

Il est également possible de réaliser des déflexions du faisceau d'électrons F selon des modes différents, en fonction notamment de la forme, de l'amplitude et de la phase relative entre les deux tensions de polarisation VI,V2.It is also possible to produce deflections of the electron beam F according to different modes, depending in particular on the shape, the amplitude and the relative phase between the two bias voltages VI, V2.

Il peut être nécessaire de conserver au faisceau d'électrons F, au cours d'un balayage, une concentration sensiblement équivalente à celle qu'il comporte en position de repos. Dans ce cas les tensions de polarisations VI, V2 peuvent être appliquées aux pièces métalliques 12,13 comme il est montré par la figure 2 à partir d'un instant t5.It may be necessary to keep the electron beam F, during scanning, a concentration substantially equivalent to that which it comprises in the rest position. In this case the bias voltages VI, V2 can be applied to the metal parts 12, 13 as shown in FIG. 2 from an instant t5.

On trouve :

  • - à l'instant t5 :
    • en A, la première tension V1 de polarisation est égale à zéro, et commence à croître à partir de cet instant; en B, la seconde tension V2 de polarisation est également à zéro et commence également à croître à partir de cet instant.
  • - à l'instant t6 :
    • en A, la première tension V1 a une valeur Vla ; en B, la seconde tension V2 a une valeur V2b inférieure à V1a. La déflexion du faisceau d'électrons F s'opère selon un sens négatif 21, avec une amplitude (non représentée) inférieure à l'exemple précédent ; mais dans ce dernier cas la concentration initiale du faisceau F est sensiblement conservée si le rapport Via est choisi en conséquence ;
  • - à l'instant t7 : V2b
    • en A, la première tension V est égale à zéro ; en B la seconde tension V2 est égale à zéro. Le faisceau F est revenu à la position de repos où il comporte l'axe de repos 5 ;
  • - à l'instant t8 :
    • en A, la première tension V1 a une valeur Vlb, égale à la valeur V2b ; en B, la seconde tension V2 a une valeur V2a. La déflexion du faisceau F s'opère selon un sens positif 20, avec une amplitude (non représentée) égale à celle obtenue à l'instant t6 ;
  • - à l'instant t9 :
    • en A, la première tension V est égale à zéro ; en B la seconde tension V2 est égale à zéro. Le faisceau d'électrons F a retrouvé son axe de repos 5.
We find :
  • - at time t5:
    • in A, the first bias voltage V1 is equal to zero, and begins to increase from this moment; at B, the second bias voltage V2 is also at zero and also begins to increase from this moment.
  • - at time t6:
    • at A, the first voltage V1 has a value Vla; at B, the second voltage V2 has a value V2b lower than V1a. The deflection of the electron beam F takes place in a negative direction 21, with an amplitude (not shown) less than the previous example; but in the latter case the initial concentration of the beam F is substantially preserved if the Via ratio is chosen accordingly;
  • - at time t7 : V2b
    • in A, the first voltage V is equal to zero; at B the second voltage V2 is equal to zero. The beam F has returned to the rest position where it comprises the rest axis 5;
  • - at time t8:
    • in A, the first voltage V1 has a value Vlb, equal to the value V2b; at B, the second voltage V2 has a value V2a. The deflection of the beam F takes place in a positive direction 20, with an amplitude (not shown) equal to that obtained at time t6;
  • - at time t9:
    • in A, the first voltage V is equal to zero; at B the second voltage V2 is equal to zero. The electron beam F has returned to its axis of rest 5.

Il est également possible avec le tube à rayons X 1 selon l'invention, d'obtenir une modification de la concentration du faisceau d'électrons F, tout en conservant à ce dernier son axe de repos 5 ; il suffit à cet effet de faire varier d'une même manière,non représentée, les tensions VI,V2 appliquées à la première et la seconde pièces métalliques 12,13.It is also possible with the X-ray tube 1 according to the invention, to obtain a modification of the concentration of the electron beam F, while retaining to the latter its axis of rest 5; it suffices for this purpose to vary in the same way, not shown, the voltages VI, V2 applied to the first and second metal parts 12,13.

Cette description montre la simplicité avec laquelle, grâce à sa structure, un tube à rayons X 10 conforme à l'invention, permet une déflexion du faisceau d'électrons F de manière à déterminer à un faisceau de rayonnement X (non représenté), une source dont la position varie le long d'une cible anodique.This description shows the simplicity with which, thanks to its structure, an X-ray tube 10 according to the invention, allows a deflection of the electron beam F so as to determine an X-ray beam (not shown), a source whose position varies along an anode target.

Claims (3)

1. Tube à rayons X à balayage comportant une cathode (Cl), émettrice d'un faisceau d'électrons (F), cette cathode (CI) étant munie d'un filament (2) générateur d'électrons et d'un élément de concentration (3) du faisceau d'électrons (F), caractérisé en ce que cet élément de concentration (3) comporte au moins deux pièces métalliques (12,13) électriquement isolées l'une de l'autre et du filament (2), pour permettre par rapport à ce dernier leur polarisation indépendante et une déflexion du faisceau d'électrons (F).1. Scanning X-ray tube comprising a cathode (Cl), emitting an electron beam (F), this cathode (CI) being provided with an electron generating filament (2) and an element for concentrating (3) the electron beam (F), characterized in that this concentrating element (3) comprises at least two metallic parts (12, 13) electrically isolated from one another and from the filament (2 ), to allow with respect to the latter their independent polarization and a deflection of the electron beam (F). 2. Tube à rayons X selon la revendication 1, caractérisé en ce que les pièces métalliques (12,13) sont disposées symétriquement par rapport au filament (2) et à un plan (5-8), de manière à déterminer au faisceau d'électrons (F) un axe de repos (5), contenu dans ce plan (5-8), par rapport auquel s'opère la déflexion.2. X-ray tube according to claim 1, characterized in that the metal parts (12, 13) are arranged symmetrically with respect to the filament (2) and to a plane (5-8), so as to determine the beam d electrons (F) an axis of rest (5), contained in this plane (5-8), with respect to which the deflection takes place. 3. Tube à rayons X selon la revendication 1, caractérisé en ce que les pièces métalliques (12,13) sont disposées de manière asymétrique par rapport au filament (2), de manière à déterminer au faisceau d'électrons (F) une direction moyenne de repos (5a, 5b) par rapport à laquelle s'opère la déflexion.3. X-ray tube according to claim 1, characterized in that the metal parts (12, 13) are arranged asymmetrically with respect to the filament (2), so as to determine a direction of the electron beam (F) mean rest (5a, 5b) with respect to which the deflection takes place.
EP83402529A 1982-12-30 1983-12-23 Scanning x-ray tube Withdrawn EP0115731A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8222072 1982-12-30
FR8222072A FR2538948B3 (en) 1982-12-30 1982-12-30 SCANNING X-RAY TUBE

Publications (2)

Publication Number Publication Date
EP0115731A2 true EP0115731A2 (en) 1984-08-15
EP0115731A3 EP0115731A3 (en) 1985-11-21

Family

ID=9280681

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83402529A Withdrawn EP0115731A3 (en) 1982-12-30 1983-12-23 Scanning x-ray tube

Country Status (2)

Country Link
EP (1) EP0115731A3 (en)
FR (1) FR2538948B3 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0440532A1 (en) * 1990-02-02 1991-08-07 General Electric Cgr S.A. Dihedral cathode with beam deflection for X-ray tube
FR2667723A1 (en) * 1990-10-09 1992-04-10 Gen Electric Cgr DEVICE FOR OBTAINING AND SWITCHING HIGH POLARIZATION VOLTAGES OF X-RAY TUBE ELECTRODES
FR2675629A1 (en) * 1991-04-17 1992-10-23 Gen Electric Cgr Cathode for X-ray tube and tube thus obtained
DE19510048A1 (en) * 1995-03-20 1996-09-26 Siemens Ag X-ray tube for human body investigation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4689809A (en) * 1982-11-23 1987-08-25 Elscint, Inc. X-ray tube having an adjustable focal spot

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3646379A (en) * 1970-05-18 1972-02-29 Machlett Lab Inc X-ray tube having controllable focal spot size
DE2249365A1 (en) * 1972-10-09 1974-04-25 Siemens Ag ROENTINE PIPE
US3875028A (en) * 1972-08-30 1975-04-01 Picker Corp Method of manufacture of x-ray tube having focusing cup with non emitting coating
US3962583A (en) * 1974-12-30 1976-06-08 The Machlett Laboratories, Incorporated X-ray tube focusing means
EP0032385A1 (en) * 1980-01-14 1981-07-22 Siemens Aktiengesellschaft Cathodes arrangement for an X-ray tube
FR2536583A1 (en) * 1982-11-23 1984-05-25 Elscint Inc X=ray tube with adjustable focal range

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3646379A (en) * 1970-05-18 1972-02-29 Machlett Lab Inc X-ray tube having controllable focal spot size
US3875028A (en) * 1972-08-30 1975-04-01 Picker Corp Method of manufacture of x-ray tube having focusing cup with non emitting coating
DE2249365A1 (en) * 1972-10-09 1974-04-25 Siemens Ag ROENTINE PIPE
US3962583A (en) * 1974-12-30 1976-06-08 The Machlett Laboratories, Incorporated X-ray tube focusing means
EP0032385A1 (en) * 1980-01-14 1981-07-22 Siemens Aktiengesellschaft Cathodes arrangement for an X-ray tube
FR2536583A1 (en) * 1982-11-23 1984-05-25 Elscint Inc X=ray tube with adjustable focal range

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0440532A1 (en) * 1990-02-02 1991-08-07 General Electric Cgr S.A. Dihedral cathode with beam deflection for X-ray tube
FR2658002A1 (en) * 1990-02-02 1991-08-09 Gen Electric Cgr DIEDRE DEFLECTIVE CATHODE FOR X-RAY TUBE.
US5224143A (en) * 1990-02-02 1993-06-29 General Electric Cgr S.A. Dihedral deflection cathode for an x-ray tube
FR2667723A1 (en) * 1990-10-09 1992-04-10 Gen Electric Cgr DEVICE FOR OBTAINING AND SWITCHING HIGH POLARIZATION VOLTAGES OF X-RAY TUBE ELECTRODES
EP0480796A1 (en) * 1990-10-09 1992-04-15 General Electric Cgr S.A. Device for obtaining and changeover switching of high voltages on x-ray tube electrodes
US5200645A (en) * 1990-10-09 1993-04-06 General Electric Cgr S.A. Device for obtaining and switching high voltages applied to x-ray tube electrodes
FR2675629A1 (en) * 1991-04-17 1992-10-23 Gen Electric Cgr Cathode for X-ray tube and tube thus obtained
DE19510048A1 (en) * 1995-03-20 1996-09-26 Siemens Ag X-ray tube for human body investigation
DE19510048C2 (en) * 1995-03-20 1998-05-14 Siemens Ag X-ray tube

Also Published As

Publication number Publication date
EP0115731A3 (en) 1985-11-21
FR2538948B3 (en) 1985-10-18
FR2538948A1 (en) 1984-07-06

Similar Documents

Publication Publication Date Title
EP0473233A1 (en) High-flux neutron tube
FR2591034A1 (en) X-RAY TUBE CATHODE ASSEMBLY
EP0095969B1 (en) Electron gun with a field emission cathode and magnetic lens
EP0000309B1 (en) Hollow-beam generator producing monokinetic electrons along helicoidal paths
EP0440532A1 (en) Dihedral cathode with beam deflection for X-ray tube
BE507367A (en)
EP0115731A2 (en) Scanning X-ray tube
FR2584234A1 (en) INTEGRATED CIRCUIT TESTER WITH ELECTRON BEAM
FR2675629A1 (en) Cathode for X-ray tube and tube thus obtained
EP0049198A1 (en) Electrons accelerator, and millimeter and infra-millimeter waves generator including the same
FR2551264A1 (en) CATHODE RAY TUBE
EP0124395B1 (en) Electron gun for microwave generators
FR2504312A1 (en) CATHODE RAY TUBE WITH BEAM ABERRATION CORRECTION
EP0407558B1 (en) Amplifier or oscillator device operating at ultrahigh frequency
WO2014095888A1 (en) Electronic optical device
FR2538613A1 (en) ELECTROSTATIC LENS ASSEMBLY FOR ACCELERATION AND SCANNING EXPANSION
EP0530099B1 (en) Electrostatic accelerator and free electron laser including such accelerator
FR2665979A1 (en) OSCILLATING MOBILE CATHODE FOR X-RAY TUBE.
FR2551263A1 (en) IMPROVED CATHODE RAY TUBE
FR2461352A1 (en) DEVICE PROVIDED WITH A TELEVISION CAMERA TUBE AND TELEVISION CAMERA TUBE FOR SUCH A DEVICE
FR2522196A1 (en) CATHODE RAY TUBE WITH REDUCED SPHERICAL ABERRATION
FR2647593A1 (en) LOW ENERGY ION TRAP
FR2749703A1 (en) DEVICE FOR GENERATING A MAGNETIC FIELD AND ECR SOURCE COMPRISING SAID DEVICE
FR2495878A1 (en) Electron irradiation appts. - using electron beam with rectangular cross=section, esp. for the chemical treatment of objects such as polymer foil or textiles
FR2588714A1 (en) High frequency ion accelerator with drift tubes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): CH DE FR GB LI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19860722

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GABBAY, EMILE

Inventor name: PLESSIS, ANDRE