EP0098949A1 - Method for mixing fluid samples to be analysed - Google Patents

Method for mixing fluid samples to be analysed Download PDF

Info

Publication number
EP0098949A1
EP0098949A1 EP19830105214 EP83105214A EP0098949A1 EP 0098949 A1 EP0098949 A1 EP 0098949A1 EP 19830105214 EP19830105214 EP 19830105214 EP 83105214 A EP83105214 A EP 83105214A EP 0098949 A1 EP0098949 A1 EP 0098949A1
Authority
EP
European Patent Office
Prior art keywords
liquid
sample
air column
frequency
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19830105214
Other languages
German (de)
French (fr)
Other versions
EP0098949B1 (en
Inventor
Claus Gronholz
Hartmut Schmidt-Rabenau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eppendorf SE
Original Assignee
Eppendorf Geraetebau Netheler and Hinz GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eppendorf Geraetebau Netheler and Hinz GmbH filed Critical Eppendorf Geraetebau Netheler and Hinz GmbH
Priority to AT83105214T priority Critical patent/ATE23280T1/en
Publication of EP0098949A1 publication Critical patent/EP0098949A1/en
Application granted granted Critical
Publication of EP0098949B1 publication Critical patent/EP0098949B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B3/00Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/65Mixers with shaking, oscillating, or vibrating mechanisms the materials to be mixed being directly submitted to a pulsating movement, e.g. by means of an oscillating piston or air column
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2931Diverse fluid containing pressure systems
    • Y10T137/3115Gas pressure storage over or displacement of liquid
    • Y10T137/3127With gas maintenance or application

Definitions

  • the invention relates to a method for mixing liquid samples to be analyzed, in which the liquid sample is introduced into a sample container, in particular into a cuvette, and is moved and mixed by an air column that is mechanically vibrated and is in contact with at least part of the surface of the liquid sample becomes.
  • the mouthpiece of a hose is sealingly placed, which is connected to the cylinder space of a piston pump, so that the liquid from the leg carrying the mouthpiece is first pressed through the capillary into the other leg by compression movement of the piston of the pump and then, with a corresponding reversal of the movement of the piston, that is to say during expansion movement, it is sucked back through the capillary into the leg carrying the mouthpiece.
  • the frequency of the piston movement of the pump is preferably 1 Hz.
  • sample containers with receiving legs are used in a similar manner, which are connected to each other by narrow channels, with strong turbulence occurring in the area of the narrow connecting channels as a result of pumping around between the receiving legs, which causes mixing should bring about.
  • This too known methods however, both the mixing time and the settling time are very long.
  • a method of the type mentioned at the outset is designed according to the invention in such a way that the air column is excited with a frequency in the resonance range of the system consisting of the air column and sample liquid.
  • this settling time is surprisingly only about 1 second.
  • the method according to the invention is therefore also particularly suitable for mixing liquid samples in which kinetic processes are to be analyzed. It also results in an increase in the mixing efficiency compared to known methods.
  • the length and cross section of the column of air to be excited are constant and the frequency is then adjusted according to the amount of sample liquid.
  • the frequency preferably runs through a narrow frequency range containing the resonance frequency with each mixing operation.
  • the air column can be excited by means of an air-impermeable membrane which closes the air column at its end facing away from the surface of the liquid sample, the membrane of a loudspeaker preferably being used as the membrane, which can be easily controlled by regulating the frequency of the voltage exciting it in the resonance range of the respective System can be brought.
  • the mixing time of the liquid sample depends on the viscosity of the liquid, given the amplitude of the membrane that excites the air column, and the oscillation amplitude of the membrane can be adjusted depending on the viscosity of the liquid sample in order to achieve minimal mixing times.
  • a device for carrying out the method according to the invention preferably has the air-impermeable membrane of a loudspeaker as the vibration exciter.
  • a cuvette 1 which has a side wall 2 made of elastic material which runs perpendicular to the side walls to be irradiated in a photometric measurement and which can be deformed under pressure in the manner indicated by the dash-dotted lines.
  • Such cuvettes are used, for example, in the DuPont ACA system.
  • the filling opening of the cuvette 1 is made after the filling of the liquid sample 3 or the various constituents of a sample by means of a mixture which is not shown in detail Head sealed sealed, so that the interior of the cuvette is only connected to one end of a tube or hose 4 with hardly deformable walls.
  • the other end of the tube or hose 4 is connected to a connection plate 5 which is sealingly placed on the opening of a loudspeaker 6 which has an air-impermeable membrane, such as a plastic membrane.
  • the loudspeaker is fed by a signal voltage source 7, which emits a sinusoidal alternating voltage and has a variable frequency, via an amplifier 8 with an adjustable gain factor.
  • the signal voltage from the voltage source 7 generates an oscillation of the membrane of the loudspeaker 6, the frequency of which depends on the set frequency of the signal voltage source 7 and the amplitude of which depends on the set amplification factor of the amplifier 8.
  • the liquid sample or its constituents to be mixed is introduced into the cuvette 1 and this is then closed with the mixing head. Then the loudspeaker 6 is acted upon by the signal voltage, so that the vibrating membrane of the loudspeaker allows the air column in the connected tube or hose to vibrate at a corresponding frequency.
  • the frequency of the signal voltage source 7 is set so that it lies in the resonance range of the system of air column in the tube or hose 4 and liquid sample 3, this resonance range depending on the volume of the air column and on the volume and density of the liquid of the sample, the optimum Mixing is achieved when setting the resonance frequency.
  • the liquid sample 3 is also excited to vibrate at the frequency and deforms the side wall 2 in the same manner as indicated. Whirling through of sample 3 can clearly be seen.
  • the resonance frequencies of the system consisting of the air column and the liquid sample can be in the range from 10 Hz to 20 Hz.
  • the liquid sample 13 is filled into a U-shaped cuvette 11, the legs of which are separated by a central wall 12, so that the two legs are connected to one another only below this partition.
  • the lower part 11 'of the cuvette 11 has opposite, plane, transparent wall areas through which conventional photometric measurements can be carried out.
  • a liquid sample 13 is introduced into the cuvette 11, and a reagent for introducing a reaction sequence can be fed via a hose 20.
  • a mixing head 19 can be sealingly placed on the leg of the cuvette 11 in FIG. 2, to which a hose or pipe 14 is connected, the other end of which is connected to the air-impermeable membrane in the manner described in connection with FIG Speaker 16 is connected.
  • this loudspeaker 16 is excited by means of an AC voltage source 17 which emits a triangular signal voltage and an amplifier 18 in the resonance region of the system consisting of air column and sample liquid.
  • a loudspeaker type AD 0198 Z 25 from Valvo was used, which excited an air column in the hose or tube 14 with a length of 65 mm and a volume of 205 mm 3.
  • the connected, U-shaped cuvette 11 contained a liquid sample 13 of 330 / ul.
  • the resonance frequency was approximately 18 Hz, and very thorough mixing was achieved after an excitation of only 1.5 seconds.
  • the swirling of the liquid sample which was visible from the outside during this mixing, had completely disappeared after about 1 second, so that the sample in area 11 'could be examined photometrically.
  • a circuit arrangement can be used to excite the loudspeaker 6 from FIG. 1 or the loudspeaker 16 from FIG. 2, as shown in FIG. 3 to excite a loudspeaker 108.
  • This circuit arrangement contains an AC voltage source in the form of an amplifier, which can be an integrated circuit of the type LM 741 from National Semiconductor. Supply voltages of +12 volts and -12 volts are applied to this amplifier, and it is connected by means of resistors 111 and 112 in the manner of a Schmitt trigger and therefore generates rectangular output signals during operation
  • the amplifier 110 is connected via resistors 113 and 114 and a potentiometer 115 to a power amplifier, such as an amplifier of the type L 165 from Siemens AG.
  • a power amplifier such as an amplifier of the type L 165 from Siemens AG.
  • This amplifier is, as shown, connected to operating voltages of +12 volts and -12 volts, and to suppress interference are connected to the Connections 3 and 5 for the operating voltage capacitors 117 and l18 connected. Its input 1 is grounded.
  • a capacitor 116 is connected in parallel between the amplifier I19 and the input 2 and the output and forms an integrating element together with the resistors 113 and 114 and the potentiometer 115.
  • the output of amplifier 119 is connected to speaker 108.
  • the integrating element builds up a rising negative voltage at the input 2 of the amplifier 119.
  • a negative edge of the output from the amplifier 110 R e.g., a negative edge of the output from the amplifier 110 R e.g., a negative edge of the output from the amplifier 110 R e.g., a negative edge of the output from the amplifier 110 R e.g., a negative edge of the output from the amplifier 110 R e.g., the integrating element builds up a rising negative voltage at the input 2 of the amplifier 119.
  • a negative edge of the output from the amplifier 110 R e.g., a negative edge of the output from the amplifier 110 R ecksignals reverses the increase in the voltage at the input 2, so that a rising in the positive direction voltage appearing at the output of the amplifier 119th In this way, a triangular output signal is generated at the output of the amplifier 119, which excites the speaker 108 as an AC voltage.
  • the frequency of the triangular output signal of the amplifier 119 can be changed, so that an adaptation to the respective operating conditions and the passage through a resonance range is possible. It should be mentioned that in the circuit shown, a change in the frequency of the triangular output signal also leads to a change in its amplitude.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

In a process for mixing liquid samples to be analyzed, the liquid sample contained in a sample container is moved and mixed by a mechanically oscillated air column in contact with at least part of the liquid sample surface, the air column being excited with a frequency in the resonant range of the system formed by the air column and the sample liquid.

Description

Die Erfindung bezieht sich auf ein Verfahren zur Mischung von zu analysierenden Flüssigkeitsproben, bei dem die Flüssigkeitsprobe in einen Probenbehälter, insbesondere in eine Küvette eingebracht und durch eine mechanisch in Schwingungen versetzte, mit zumindest einem Teil der Oberfläche der Flüssigkeitsprobe in Berührung stehende Luftsäule bewegt und gemischt wird.The invention relates to a method for mixing liquid samples to be analyzed, in which the liquid sample is introduced into a sample container, in particular into a cuvette, and is moved and mixed by an air column that is mechanically vibrated and is in contact with at least part of the surface of the liquid sample becomes.

Bei einem bekannten Verfahren dieser Art (DE-PS 15 98 514), das zur Durchführung von Blutuntersuchungen dient, wird die zu untersuchende Flüssigkeit in einen Schenkel eines Aufnahmebehälters und die zuzusetzende Reagensflüssigkeit in den anderen Schenkel des Aufnahmebehälters eingebracht, wobei die beiden Schenkel im Bodenbereich des Behälters durch einen Kapillarkanal verbunden sind. Auf die Öffnung des einen Schenkels wird dichtend das Mundstück eines Schlauches gesetzt, der mit dem Zylinderraum einer Kolbenpumpe verbunden ist, so daß durch Kompressionsbewegung.des Kolbens der Pumpe die Flüssigkeit aus dem das Mundstück tragenden Schenkel zunächst durch die Kapillare in den anderen Schenkel gepreßt und dann bei entsprechender Umkehrung der Bewegung des Kolbens, also bei Expansionsbewegung wieder durch die Kapillare in den das Mundstück tragende Schenkel gesaugt wird. Hierbei beträgt die Frequenz der Kolbenbewegung der Pumpe vorzugsweise 1 Hz.In a known method of this type (DE-PS 15 98 514), which is used to carry out blood tests, the liquid to be examined is introduced into one leg of a receptacle and the reagent liquid to be added is introduced into the other leg of the receptacle, the two legs in the bottom area the container through a capillary channel are connected. On the opening of one leg, the mouthpiece of a hose is sealingly placed, which is connected to the cylinder space of a piston pump, so that the liquid from the leg carrying the mouthpiece is first pressed through the capillary into the other leg by compression movement of the piston of the pump and then, with a corresponding reversal of the movement of the piston, that is to say during expansion movement, it is sucked back through the capillary into the leg carrying the mouthpiece. The frequency of the piston movement of the pump is preferably 1 Hz.

Abgesehen davon, daß bei diesem Verfahren ein sehr spreziell ausgebildeter Aufnahmebehälter benötigt wird, erfolgt das Mischen sehr langsam, so daß Mischzeiten in der Größenordnung von 10 Sekunden benötigt werden, an die sich dann noch Beruhigungszeiten in der Größenordnung von 3 bis 4 Sekunden anschließen. Wegen dieses selbstverständlich für die schnelle Durchführung von Mischvorgängen nachteiligen großen Zeitaufwandes ist dieses Verfahren aber insbesondere auch nicht für sogenannte kinetische Messungen geeignet, wie sie in steigendem Maß in klinischen und Arzt-Laboratorien vorkommen, bei denen der zeitliche Reaktionsverlauf innerhalb einer Probe gemessen werden soll und dieser Reaktionsvorgang bereits unmittelbar nach dem Vermischen der Probenbestandteile einsetzt.In addition to the fact that a very recently designed receptacle is required in this method, the mixing takes place very slowly, so that mixing times of the order of 10 seconds are required, which are then followed by calming times of the order of 3 to 4 seconds. Because of the large expenditure of time, which is of course disadvantageous for the rapid implementation of mixing processes, this method is also particularly unsuitable for so-called kinetic measurements, such as are increasingly occurring in clinical and doctor laboratories, in which the time course of the reaction is to be measured within a sample, and this reaction process begins immediately after the sample components have been mixed.

Bei einem anderen bekannten Verfahren (DE-OS 26 51 356), werden in ähnlicher Weise Probenbehälter mit Aufnahmeschenkeln verwendet, die durch enge Kanäle miteinander verbunden sind, wobei infolge des Umpumpens zwischen den Aufnahmeschenkeln im Bereich der engen Verbindungskanäle starke Turbulenzen eintreten, die eine Durchmischung bewirken sollen. Auch bei diesem bekannten Verfahren sind jedoch sowohl die Mischzeit als auch die Beruhigungszeit sehr lang.In another known method (DE-OS 26 51 356), sample containers with receiving legs are used in a similar manner, which are connected to each other by narrow channels, with strong turbulence occurring in the area of the narrow connecting channels as a result of pumping around between the receiving legs, which causes mixing should bring about. This too known methods, however, both the mixing time and the settling time are very long.

Es ist auch bereits bekannt, Flüssigkeitsproben mit Hilfe von Ultraschall zu durchmischen, wozu ein Ultraschall- Erreger üblicherweise in direkte Berührung mit der Flüssigkeitsprobe gebracht wird. Dabei wird sehr schnell eine sehr gute Durchmischung erzielt, doch läßt sich ein derartiges Verfahren häufig bei zu analysierenden Flüssigkeitsproben, etwa aus dem klinischen Bereich, nicht anwenden, weil diese Flüssigkeitsproben hochmolekulare Substanzen enthalten, die durch die Beaufschlagung mit Ultraschall zerstört werden würden.It is also already known to mix liquid samples with the aid of ultrasound, for which purpose an ultrasound exciter is usually brought into direct contact with the liquid sample. Very good mixing is achieved very quickly, but such a method can often not be used for liquid samples to be analyzed, for example from the clinical field, because these liquid samples contain high-molecular substances which would be destroyed by exposure to ultrasound.

Es ist Aufgabe der Erfindung, ein Verfahren zur Mischung von zu analysierenden Flüssigkeitsproben zu schaffen, mit dem bei geringer Belastung der Probenbestandteile kurze Mischzeiten und kurze Beruhigungszeiten erreicht werden.It is an object of the invention to provide a method for mixing liquid samples to be analyzed, with which short mixing times and short settling times are achieved with a low load on the sample components.

Zur Lösung dieser Aufgabe wird ein Verfahren der eingangs erwähnten Art erfindungsgemäß derart ausgestaltet, daß die Luftsäule mit einer im Resonanzbereich des Systems aus Luftsäule und Probenflüssigkeit liegenden Frequenz erregt wird.To achieve this object, a method of the type mentioned at the outset is designed according to the invention in such a way that the air column is excited with a frequency in the resonance range of the system consisting of the air column and sample liquid.

Es hat sich überraschenderweise gezeigt, daß bei einer derartigen Erregung der Lüftsäule im Resonanzbereich, vorzugsweise genau mit der Resonanzfrequenz die Oberfläche der Flüssigkeitsprobe nur eine relativ geringe Bewegung ausführt, verglichen mit den Umpumpbewegungen bei den vorbekannten Verfahren, und daß vielmehr innerhalb der Flüssigkeitsprobe eine deutliche Verwirbelung zu erkennen ist, die die Vermischung hervorruft. Dabei erfolgt beispielsweise die vollständige Vermischung bei einer in einem klinischen Labor photometrisch zu untersuchenden Flüssigkeitsprobe von etwa 300/ul innerhalb einer Mischzeit von etwa 1,5 Sekunden, während bei den vorstehend erläuterten, bekannten Mischverfahren Mischzeiten in der Größenordnung von 10 Sekunden benötigt werden. Bei diesen bekannten Verfahren ist nach der Mischzeit eine Beruhigungszeit von etwa 3 Sekunden bis 4 Sekunden erforderlich, bevor eine photometrische Messung durchgeführt werden kann. Diese Beruhigungszeit beträgt bei einer derartigen, nach dem erfindungsgemäßen Verfahren gemischten Flüssigkeitsprobe erstaunlicherweise nur etwa 1 Sekunde. Das erfindungsgemäße Verfahren eignet sich daher auch besonders gut zur Mischung von Flüssigkeitsproben, in denen kinetische Abläufe analysiert werden sollen. Ferner ergibt sich mit ihm gegenüber bekannten Verfahren eine Erhöhung des Mischwirkungsgrades.It has surprisingly been found that with such an excitation of the air column in the resonance range, preferably precisely at the resonance frequency, the surface of the liquid sample performs only a relatively small movement compared to the pumping movements in the previously known methods, and that, rather, a significant swirling within the liquid sample can be seen that causes the mixing. For example, complete mixing takes place a liquid sample of about 300 / ul to be examined photometrically in a clinical laboratory within a mixing time of about 1.5 seconds, while mixing times in the order of 10 seconds are required in the known mixing methods described above. In these known methods, a settling time of about 3 seconds to 4 seconds is required after the mixing time before a photometric measurement can be carried out. In such a liquid sample mixed according to the method according to the invention, this settling time is surprisingly only about 1 second. The method according to the invention is therefore also particularly suitable for mixing liquid samples in which kinetic processes are to be analyzed. It also results in an increase in the mixing efficiency compared to known methods.

Im allgemeinen sind bei einer gegebenen Vorrichtung die Länge und der Querschnitt der zu erregenden Luftsäule konstant, und die Frequenz wird dann entsprechend der Menge der Probenflüssigkeit eingestellt.In general, for a given device, the length and cross section of the column of air to be excited are constant and the frequency is then adjusted according to the amount of sample liquid.

Vorzugsweise durchläuft die Frequenz bei jedem Mischvorgang einen schmalen, die Resonanzfrequenz enthaltenden Frequenzbereich.The frequency preferably runs through a narrow frequency range containing the resonance frequency with each mixing operation.

Die Luftsäule kann mittels einer an ihrem der Oberfläche der Flüssigkeitsprobe abgewandten Ende die Luftsäule abschließenden, luftundurchlässigen Membran erregt werden, wobei vorzugsweise als Membran die Membran eines Lautsprechers verwendet wird, der auf einfache Weise durch Regelung der Frequenz der ihn erregenden Spannung in den Resonanzbereich des jeweiligen Systems gebracht werden kann.The air column can be excited by means of an air-impermeable membrane which closes the air column at its end facing away from the surface of the liquid sample, the membrane of a loudspeaker preferably being used as the membrane, which can be easily controlled by regulating the frequency of the voltage exciting it in the resonance range of the respective System can be brought.

Die Mischzeit der Flüssigkeitsprobe hängt, bei gegebener Amplitude der die Luftsäule erregenden Membran, von der Viskosität der Flüssigkeit ab, und zur Erzielung minimaler Mischzeiten kann die Schwingungsamplitude der Membran in Abhängigkeit von der Viskosität der Flüssigkeitsprobe eingestellt werden.The mixing time of the liquid sample depends on the viscosity of the liquid, given the amplitude of the membrane that excites the air column, and the oscillation amplitude of the membrane can be adjusted depending on the viscosity of the liquid sample in order to achieve minimal mixing times.

Eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens weist als Schwingungserreger vorzugsweise die luftundurchlässige Membran eines Lautsprechers auf. Die Erfindung wird im folgenden anhand der schematisch und vereinfacht Ausführungsbeispiele zeigenden Figuren näher erläutert.A device for carrying out the method according to the invention preferably has the air-impermeable membrane of a loudspeaker as the vibration exciter. The invention is explained in more detail below with reference to the figures, which show schematic and simplified exemplary embodiments.

  • Figur 1 zeigt ein vereinfachtes Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung.Figure 1 shows a simplified embodiment of a device according to the invention.
  • Figur 2 zeigt eine gegenüber Figur 1 abgewandelte Vorrichtung.Figure 2 shows a device modified from Figure 1.
  • Figur 3 zeigt eine Schaltungsanordnung zur Erregung des Lautsprechers aus den Vorrichtungen gemäß Figuren 1 oder 2.FIG. 3 shows a circuit arrangement for exciting the loudspeaker from the devices according to FIGS. 1 or 2.

In dem in Figur 1 dargestellten Ausführungsbeispiel wird eine Küvette 1 verwendet, die eine senkrecht zu den bei einer photometrischen Messung zu durchstrahlenden Seitenwänden verlaufende Seitenwand 2 aus elastischem Material aufweist, die unter Druckbelastung in der strichpunktiert angedeuteten Weise verformt werden kann. Derartige Küvetten werden beispielsweise im ACA-System der Firma DuPont eingesetzt. Die Füllöffnung der Küvette 1 wird nach dem Einfüllen der Flüssigkeitsprobe 3 bzw. der verschiedenen Bestandteile einer Probe mittels eines nicht im einzelnen dargestellten Mischkopfes dichtend verschlossen, so daß der Innenraum der Küvette nur mit dem einen Ende eines Rohres bzw. Schlauches 4 mit kaum verformbaren Wänden verbunden ist. Das andere Ende des Rohres oder Schlauches 4 ist an eine Anschlußplatte 5 angeschlossen, die dichtend auf die Öffnung eines Lautsprechers 6 gesetzt wird, der eine luftundurchlässige Membran, etwa eine Kunststoffmembran aufweist. Der Lautsprecher wird von einer eine sinusförmige Wechselspannung abgebenden Signalspannungsquelle 7 mit veränderbarer Frequenz über einen Verstärker 8 mit einstellbarem Verstärkungsfaktor gespeist. Die Signalspannung aus der Spannungsquelle 7 erzeugt eine Schwingung der Membran des Lautsprechers 6, deren Frequenz von der eingestellten Frequenz der Signalspannungsquelle 7 und deren Amplitude vom eingestellten Verstärkungsfaktor des Verstärkers 8 abhängt.In the exemplary embodiment shown in FIG. 1, a cuvette 1 is used which has a side wall 2 made of elastic material which runs perpendicular to the side walls to be irradiated in a photometric measurement and which can be deformed under pressure in the manner indicated by the dash-dotted lines. Such cuvettes are used, for example, in the DuPont ACA system. The filling opening of the cuvette 1 is made after the filling of the liquid sample 3 or the various constituents of a sample by means of a mixture which is not shown in detail Head sealed sealed, so that the interior of the cuvette is only connected to one end of a tube or hose 4 with hardly deformable walls. The other end of the tube or hose 4 is connected to a connection plate 5 which is sealingly placed on the opening of a loudspeaker 6 which has an air-impermeable membrane, such as a plastic membrane. The loudspeaker is fed by a signal voltage source 7, which emits a sinusoidal alternating voltage and has a variable frequency, via an amplifier 8 with an adjustable gain factor. The signal voltage from the voltage source 7 generates an oscillation of the membrane of the loudspeaker 6, the frequency of which depends on the set frequency of the signal voltage source 7 and the amplitude of which depends on the set amplification factor of the amplifier 8.

Zur Durchführung einer Mischung wird die Flüssigkeitsprobe bzw. deren zu mischende Bestandteile in die Küvette 1 eingebracht und diese dann mit dem Mischkopf verschlossen. Danach erfolgt die Beaufschlagung des Lautsprechers 6 mit der Signalspannung, so daß die schwingende Membran des Lautsprechers die Luftsäule in dem angeschlossenen Rohr oder Schlauch mit entsprechender Frequenz schwingen läßt. Die Frequenz der Signalspannungsquelle 7 wird dabei so eingestellt, daß sie im Resonanzbereich des Systems aus Luftsäule im Rohr oder Schlauch 4 und Flüssigkeitsprobe 3 liegt, wobei dieser Resonanzbereich vom Volumen der Luftsäule sowie vom Volumen und der Dichte der Flüssigkeit der Probe abhängt, wobei die optimale Mischung bei Einstellung der Resonanzfrequenz erreicht wird. Infolge der Schwingung der Luftsäule wird die Flüssigkeitsprobe 3 ebenfalls zu Schwingungen mit der Frequenz angeregt und verformt dabei die Seitenwand 2 in der gleichen angedeuteten Weise. Dabei ist deutlich eine Durchwirbelung der Probe 3 zu erkennen.To carry out a mixture, the liquid sample or its constituents to be mixed is introduced into the cuvette 1 and this is then closed with the mixing head. Then the loudspeaker 6 is acted upon by the signal voltage, so that the vibrating membrane of the loudspeaker allows the air column in the connected tube or hose to vibrate at a corresponding frequency. The frequency of the signal voltage source 7 is set so that it lies in the resonance range of the system of air column in the tube or hose 4 and liquid sample 3, this resonance range depending on the volume of the air column and on the volume and density of the liquid of the sample, the optimum Mixing is achieved when setting the resonance frequency. As a result of the vibration of the air column, the liquid sample 3 is also excited to vibrate at the frequency and deforms the side wall 2 in the same manner as indicated. Whirling through of sample 3 can clearly be seen.

Es hat sich gezeigt, daß in der Praxis bei Durchführung von Mischvorgängen in Küvetten die Resonanzfrequenzen des Systems aus Luftsäule und Flüssigkeitsprobe im Bereich von 10 Hz bis 20 Hz liegen können.It has been shown that in practice, when mixing operations are carried out in cuvettes, the resonance frequencies of the system consisting of the air column and the liquid sample can be in the range from 10 Hz to 20 Hz.

In der Figur 2 ist die Flüssigkeitsprobe 13 in eine U-förmige Küvette 11 eingefüllt, deren Schenkel durch eine Mittelwand 12 getrennt sind, so daß die beiden Schenkel, lediglich unterhalb dieser Trennwand miteinander in Verbindung stehen. Der untere Teil 11' der Küvette 11 hat einander gegenüberliegende, plane, durchsichtige Wandbereiche, durch die hindurch in üblicherweise photometrische Messungen erfolgen können.In FIG. 2, the liquid sample 13 is filled into a U-shaped cuvette 11, the legs of which are separated by a central wall 12, so that the two legs are connected to one another only below this partition. The lower part 11 'of the cuvette 11 has opposite, plane, transparent wall areas through which conventional photometric measurements can be carried out.

In die Küvette 11 ist eine Flüssigkeitsprobe 13 eingebracht, der über einen Schlauch 20 ein Reagens zur Einleitung eines Reaktionsablaufes zugeführt werden kann. Auf den in Figur 2 rechten Schenkel der Küvette 11 kann zum Durchmischen der Flüssigkeitsprobe 13 dichtend ein Mischkopf 19 aufgesetzt werden, an den ein Schlauch oder Rohr 14 angeschlossen ist, dessen anderes Ende in der in Zusammenhang mit Figur 1 beschriebenen Weise mit der luftundurchlässigen Membran eines Lautsprechers 16 verbunden ist. Dieser Lautsprecher 16 wird, wie ebenfalls in Zusammenhang mit Figur 1 beschrieben, mittels einer eine dreieckförmige Signalspannung abgebenden Wechselspannungsquelle 17 und eines Verstärkers 18 im Resonanzbereich des Systems aus Luftsäule und Probenflüssigkeit erregt. Infolge dieser Erregung wird die zwischen der Oberfläche der Probe 13 und der Membran des Lautsprechers 16 vorhandene, teilweise vom Schlauch oder Rohr 14 umschlossene Luftsäule entsprechend der Frequenz und der Amplitude der Membran des Lautsprechers in Schwingungen versetzt, wobei der Mischvorgang im wesentlichen in der gleichen Weise abläuft, wie dies in Zusammenhang mit dem Ausführungsbeispiel gemäß Figur 1 beschrieben wurde.A liquid sample 13 is introduced into the cuvette 11, and a reagent for introducing a reaction sequence can be fed via a hose 20. To mix the liquid sample 13, a mixing head 19 can be sealingly placed on the leg of the cuvette 11 in FIG. 2, to which a hose or pipe 14 is connected, the other end of which is connected to the air-impermeable membrane in the manner described in connection with FIG Speaker 16 is connected. As also described in connection with FIG. 1, this loudspeaker 16 is excited by means of an AC voltage source 17 which emits a triangular signal voltage and an amplifier 18 in the resonance region of the system consisting of air column and sample liquid. As a result of this excitation, the air column existing between the surface of the sample 13 and the membrane of the loudspeaker 16, partially enclosed by the hose or tube 14, is vibrated in accordance with the frequency and the amplitude of the membrane of the loudspeaker, the mixing process being carried out in essentially the same way from runs as described in connection with the embodiment of Figure 1.

Bei einem Versuch wurde ein Lautsprechertyp AD 0198 Z 25 der Firma Valvo eingesetzt, der eine im Schlauch oder Rohr 14 befindliche Luftsäule von 65 mm Länge und 205 mm 3 Volumen erregte. Die angeschlossene, U-förmige Küvette 11 enthielt eine Flüssigkeitsprobe 13 von 330/ul. Die Resonanzfrequenz lag bei etwa 18 Hz, und eine sehr starke Durchmischung wurde bereits nach einer Erregung von 1,5 Sekunden erreicht. Die bei dieser Durchmischung von außen erkennbare Verwirbelung der Flüssigkeitsprobe war nach etwa 1 Sekunde vollständig verschwunden, so daß die Probe im Bereich 11` photometrisch untersucht werden konnte.In an experiment, a loudspeaker type AD 0198 Z 25 from Valvo was used, which excited an air column in the hose or tube 14 with a length of 65 mm and a volume of 205 mm 3. The connected, U-shaped cuvette 11 contained a liquid sample 13 of 330 / ul. The resonance frequency was approximately 18 Hz, and very thorough mixing was achieved after an excitation of only 1.5 seconds. The swirling of the liquid sample, which was visible from the outside during this mixing, had completely disappeared after about 1 second, so that the sample in area 11 'could be examined photometrically.

Zur Erregung des Lautsprechers 6 aus Figur 1 bzw. des Lautsprechers 16 aus Figur 2 kann eine Schaltungsanordnung verwendet werden, wie sie in Figur 3 zur Erregung eines Lautsprechers 108 dargestellt ist. Diese Schaltungsanordnung enthält eine Wechselspannungsquelle in Form eines Verstärkers, der eine integrierte Schaltung des Typs LM 741 der Firma National Semiconductor sein kann. An diesen Verstärker sind Speisespannungen von +12 Volt und -12 Volt gelegt, und er ist mittels der Widerstände 111 und 112 nach Art eines Schmitt-Triggers geschaltet und erzeugt daher im Betrieb rechteckförmige AusgangssignaleA circuit arrangement can be used to excite the loudspeaker 6 from FIG. 1 or the loudspeaker 16 from FIG. 2, as shown in FIG. 3 to excite a loudspeaker 108. This circuit arrangement contains an AC voltage source in the form of an amplifier, which can be an integrated circuit of the type LM 741 from National Semiconductor. Supply voltages of +12 volts and -12 volts are applied to this amplifier, and it is connected by means of resistors 111 and 112 in the manner of a Schmitt trigger and therefore generates rectangular output signals during operation

Dem Verstärker 110 ist über Widerstände 113 und 114 sowie ein Potentiometer 115 ein Leistungsverstärker nachgeschaltet, etwa ein Verstärker des Typs L 165 der Firma Siemens AG. Dieser Verstärker ist, wie dargestellt, an Betriebsspannungen von +12 Volt und -12 Volt gelegt, und zur Unterdrückung von Störungen sind an die Anschlüsse 3 und 5 für die Betriebsspannung Kondensatoren 117 und l18 angeschlossen. Sein Eingang 1 liegt an Masse. Dem Verstärker l19 ist zwischen Eingang 2 und Ausgang ein Kondensator 116 parallel geschaltet, der zusammen mit den Widerständen 113 und 114 und dem Potentiometer 115 ein Integrierglied bildet. Der Ausgang des Verstärkers 119 ist mit dem Lautsprecher 108 verbunden.The amplifier 110 is connected via resistors 113 and 114 and a potentiometer 115 to a power amplifier, such as an amplifier of the type L 165 from Siemens AG. This amplifier is, as shown, connected to operating voltages of +12 volts and -12 volts, and to suppress interference are connected to the Connections 3 and 5 for the operating voltage capacitors 117 and l18 connected. Its input 1 is grounded. A capacitor 116 is connected in parallel between the amplifier I19 and the input 2 and the output and forms an integrating element together with the resistors 113 and 114 and the potentiometer 115. The output of amplifier 119 is connected to speaker 108.

Gibt der als Schmitt-Trigger arbeitende Verstärker 110 die postive Flanke eines Rechteckimpulses ab, so wird durch das Integrierglied eine ansteigende negative Spannung am Eingang 2 des Verstärkers 119 aufgebaut. Eine negative Flanke des vom Verstärker 110 abgegebenen Rechtecksignals kehrt den Anstieg der Spannung am Eingang 2 um, so daß am Ausgang des Verstärkers 119 eine in positiver Richtung ansteigende Spannung auftritt. Auf diese Weise wird am Ausgang des Verstärkers 119 ein dreieckförmiges Ausgangssignal erzeugt, das als Wechselspannung den Lautsprecher 108 erregt.If the amplifier 110 working as a Schmitt trigger emits the positive edge of a square-wave pulse, the integrating element builds up a rising negative voltage at the input 2 of the amplifier 119. A negative edge of the output from the amplifier 110 R echtecksignals reverses the increase in the voltage at the input 2, so that a rising in the positive direction voltage appearing at the output of the amplifier 119th In this way, a triangular output signal is generated at the output of the amplifier 119, which excites the speaker 108 as an AC voltage.

Mit Hilfe des Potentiometers 115 kann die Frequenz des dreieckförmigen Ausgangssignals des Verstärkers 119 verändert werden, so daß eine Anpassung an die jeweiligen Betriebsverhältnisse sowie das Durchlaufen eines Resonanzbereichs möglich ist. Es sei erwähnt, daß bei der dargestellten Schaltung eine Änderung der Frequenz des dreieckförmigen Ausgangssignals auch zu einer Änderung von dessen Amplitude führt.With the help of the potentiometer 115, the frequency of the triangular output signal of the amplifier 119 can be changed, so that an adaptation to the respective operating conditions and the passage through a resonance range is possible. It should be mentioned that in the circuit shown, a change in the frequency of the triangular output signal also leads to a change in its amplitude.

Claims (7)

1. Verfahren zur Mischung von zu analysierenden Flüssigkeitsproben, bei dem die Flüssigkeitsproben (3) in einen Probenbehälter (1), insbesondere in eine Küvette eingebracht und durch eine mechanisch in Schwingungen versetzte, mit zumindest einem Teil der Oberfläche der Flüssigkeitsprobe (3) in Berührung stehende Luftsäule bewegt und gemischt wird, dadurch gekennzeichnet, daß die Luftsäule mit einer im Resonanzbereich des Systems aus Luftsäule und Probenflüssigkeit liegenden Frequenz erregt wird.1. A method for mixing liquid samples to be analyzed, in which the liquid samples (3) are brought into contact with at least a part of the surface of the liquid sample (3) in a sample container (1), in particular in a cuvette and caused to vibrate mechanically standing air column is moved and mixed, characterized in that the air column is excited with a frequency lying in the resonance range of the system of air column and sample liquid. 2. Verfahren nach Anspruch l, bei dem die Länge und der Querschnitt der Luftsäule konstant gehalten wird, dadurch gekennzeichnet, daß die Frequenz entsprechend der Menge der Probenflüssigkeit eingestellt wird.2. The method according to claim l, wherein the length and the cross section of the air column is kept constant, characterized in that the frequency is set according to the amount of the sample liquid. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Frequenz bei jedem Mischvorgang einen schmalen, die Resonanzfrequenz enthaltenden Frequenzbereich durchläuft.3. The method according to claim 1 or 2, characterized in that the frequency passes through a narrow frequency range containing the resonance frequency with each mixing operation. 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Luftsäule mittels einer an ihrem der Oberfläche der Flüssigkeitsprobe (3) abgewandten Ende die Luftsäule abschließenden, luftundurchlässigen Membran erregt wird.4. The method according to any one of claims 1 to 3, characterized in that the air column is excited by means of an end at its surface facing away from the liquid sample (3) the air column closing, air-impermeable membrane. 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß als Membran die Membran eines Lautsprechers (6) verwendet wird.5. The method according to claim 4, characterized in that the membrane of a loudspeaker (6) is used as the membrane. 6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die Schwingungsamplitude der Membran in Abhängigkeit von der Viskosität der Flüssigkeitsprobe (3) gewählt wird.6. The method according to claim 4 or 5, characterized in that the vibration amplitude of the membrane depending on the viscosity of the liquid sample (3) is selected. 7. Vorrichtung zur Durchführung des Verfahrens gemäß einem der Ansprüche 4 bis 6, bei der auf eine Küvette ein Mischkopf aufsetzbar ist, an den ein Rohr oder Schlauch (4) angeschlossen ist, dessen anderes Ende mit einem Schwingungserreger verbunden ist, dadurch gekennzeichnet, daß der Schwingungserreger die luftundurchlässige Membran eines Lautsprechers (6) ist.7. Device for performing the method according to one of claims 4 to 6, in which a mixing head can be placed on a cuvette, to which a tube or hose (4) is connected, the other end of which is connected to a vibration exciter, characterized in that the vibration exciter is the air-impermeable membrane of a loudspeaker (6).
EP19830105214 1982-07-01 1983-05-26 Method for mixing fluid samples to be analysed Expired EP0098949B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83105214T ATE23280T1 (en) 1982-07-01 1983-05-26 PROCEDURE FOR MIXING LIQUID SAMPLES TO BE ANALYZED.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3224583 1982-07-01
DE3224583 1982-07-01

Publications (2)

Publication Number Publication Date
EP0098949A1 true EP0098949A1 (en) 1984-01-25
EP0098949B1 EP0098949B1 (en) 1986-11-05

Family

ID=6167338

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19830105214 Expired EP0098949B1 (en) 1982-07-01 1983-05-26 Method for mixing fluid samples to be analysed

Country Status (4)

Country Link
US (1) US4533255A (en)
EP (1) EP0098949B1 (en)
AT (1) ATE23280T1 (en)
DE (1) DE3367336D1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0176014A2 (en) * 1984-09-22 1986-04-02 Eppendorf-Netheler-Hinz Gmbh Method and device for mixing a liquid sample to be analysed
WO1990000093A1 (en) * 1988-06-29 1990-01-11 Infrasonik Ab Low frequency sound generator, especially for grills

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8500276D0 (en) * 1985-01-22 1985-01-22 Asea Stal Ab METHOD OF MIXING FLUIDS AND APPARATUS FOR WORKING THE METHOD
GB9306472D0 (en) * 1993-03-29 1993-05-19 Mackley Malcolm R Improvements in or relating to the processing of mixtures
US6123145A (en) * 1995-06-12 2000-09-26 Georgia Tech Research Corporation Synthetic jet actuators for cooling heated bodies and environments
US5758823A (en) * 1995-06-12 1998-06-02 Georgia Tech Research Corporation Synthetic jet actuator and applications thereof
US6457654B1 (en) 1995-06-12 2002-10-01 Georgia Tech Research Corporation Micromachined synthetic jet actuators and applications thereof
US5795784A (en) 1996-09-19 1998-08-18 Abbott Laboratories Method of performing a process for determining an item of interest in a sample
US5856194A (en) 1996-09-19 1999-01-05 Abbott Laboratories Method for determination of item of interest in a sample
US6368658B1 (en) * 1999-04-19 2002-04-09 Scimed Life Systems, Inc. Coating medical devices using air suspension
US6730349B2 (en) * 1999-04-19 2004-05-04 Scimed Life Systems, Inc. Mechanical and acoustical suspension coating of medical implants
FR2794040A1 (en) * 1999-05-26 2000-12-01 Inst Nat Sciences Appliq Equipment for conveying acoustic vibration comprises acoustic source within confining tank, output nozzle and one or more pipes applied to structure with or without contact
US6554607B1 (en) 1999-09-01 2003-04-29 Georgia Tech Research Corporation Combustion-driven jet actuator
US6565533B1 (en) * 2000-01-21 2003-05-20 Novus International, Inc. Inoculation apparatus and method
WO2002072421A2 (en) 2001-03-10 2002-09-19 Georgia Tech Research Corporation Modification of fluid flow about bodies and surfaces through virtual aero-shaping of airfoils with synthetic jet actuators
US8323984B2 (en) * 2002-12-19 2012-12-04 Beckman Coulter, Inc. Method and apparatus for mixing blood samples for cell analysis
US11298701B2 (en) 2018-11-26 2022-04-12 King Instrumentation Technologies Microtiter plate mixing control system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2138051A (en) * 1933-06-02 1938-11-29 Submarine Signal Co Means for treating liquids
GB718951A (en) * 1952-01-18 1954-11-24 Philips Electrical Ind Ltd Improvements in or relating to devices for vibrating small-sized articles or powders
US3087840A (en) * 1958-06-16 1963-04-30 Macrosonic Process Corp Methods and means for producing physical, chemical and physicochemical effects by large-amplitude sound waves
NL6412051A (en) * 1964-10-16 1966-04-18
DE1598514A1 (en) * 1966-10-11 1971-04-15 Greiner Electronic Ag Procedure for performing blood tests

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2808318A (en) * 1950-09-30 1957-10-01 Little Inc A Liquid-liquid contact apparatus
DE1758551B1 (en) * 1967-06-30 1970-12-17 Adamskij Noy M Pneumatic pulsator
SE321894B (en) * 1969-02-03 1970-03-16 Kockums Mekaniska Verkstads Ab
DE2651356A1 (en) * 1976-11-10 1978-05-11 Eppendorf Geraetebau Netheler MEASURING DEVICE FOR PHOTOMETRY OF LIQUID MEASUREMENT SAMPLES

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2138051A (en) * 1933-06-02 1938-11-29 Submarine Signal Co Means for treating liquids
GB718951A (en) * 1952-01-18 1954-11-24 Philips Electrical Ind Ltd Improvements in or relating to devices for vibrating small-sized articles or powders
US3087840A (en) * 1958-06-16 1963-04-30 Macrosonic Process Corp Methods and means for producing physical, chemical and physicochemical effects by large-amplitude sound waves
NL6412051A (en) * 1964-10-16 1966-04-18
DE1598514A1 (en) * 1966-10-11 1971-04-15 Greiner Electronic Ag Procedure for performing blood tests

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0176014A2 (en) * 1984-09-22 1986-04-02 Eppendorf-Netheler-Hinz Gmbh Method and device for mixing a liquid sample to be analysed
EP0176014A3 (en) * 1984-09-22 1987-04-29 Eppendorf Geratebau Netheler + Hinz Gmbh Method and device for mining a liquid sample to be analysed
WO1990000093A1 (en) * 1988-06-29 1990-01-11 Infrasonik Ab Low frequency sound generator, especially for grills

Also Published As

Publication number Publication date
US4533255A (en) 1985-08-06
EP0098949B1 (en) 1986-11-05
DE3367336D1 (en) 1986-12-11
ATE23280T1 (en) 1986-11-15

Similar Documents

Publication Publication Date Title
EP0098949B1 (en) Method for mixing fluid samples to be analysed
DE1598514C3 (en) Procedure for performing blood tests
DE2641097C2 (en) Cell for performing optical analyzes and their use for hemoglobin determination
DE69938170T2 (en) MIXING PROCESS
DE2444148C3 (en) Capillary viscometer
DE3829999A1 (en) ULTRASONIC METHOD AND CIRCUITS THEREOF
DE2224987A1 (en) Method and device for introducing a liquid or a gas into a
DE2610808A1 (en) AUTOMATIC ANALYZER
DE2245797A1 (en) DEVICE FOR PERFORMING SATISFACTION ANALYSIS
DE69832564T2 (en) Method and device for feeding a liquid sample into an optical cuvette, and polarimeter with such a device
DE2304625A1 (en) METHOD AND DEVICE FOR TAKING A LIQUID SAMPLE.OE
DE2653384C3 (en) Arrangement of phantom substances to simulate human or animal tissue
DE3115568A1 (en) Method and apparatus for mixing liquids using an automated pipette
WO2000010011A1 (en) Method and device for mixing samples near the interface in biosensor systems
DE3839290A1 (en) Method and apparatus of measuring the specific surface area on porous or pulverulent materials by measuring the spin-lattice relaxation time of protons of an impregnant
DE1473699A1 (en) Measuring device working on the basis of the propagation of sound waves in the media to be examined
DE3909763A1 (en) ULTRASONIC IMAGING DEVICE
DE3429367A1 (en) Method and apparatus for the continuous measurement of physical variables of state by means of ultrasound
EP0502197A1 (en) Method and device for determining physical state parameters of a medium
DE2126301A1 (en) Method and device for examining liquids
DE952707C (en) Device for dispersing
EP0087552B1 (en) Device for the measurement of flow and application thereof
DE3737204A1 (en) Device for the dosed transfer of liquids
DE2645373A1 (en) METHOD FOR DETERMINING MINERAL CONCENTRATIONS IN SUSPENSIONS OR SLUDGE OF MINERALS AND DEVICE FOR CARRYING OUT THE METHOD
DE3219626A1 (en) Device for ascertaining when a predetermined level is reached in a container

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19840211

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 23280

Country of ref document: AT

Date of ref document: 19861115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3367336

Country of ref document: DE

Date of ref document: 19861211

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910503

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920408

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920409

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920410

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920413

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920415

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920416

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19920429

Year of fee payment: 10

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920531

Year of fee payment: 10

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930526

Ref country code: GB

Effective date: 19930526

Ref country code: AT

Effective date: 19930526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930531

Ref country code: CH

Effective date: 19930531

Ref country code: BE

Effective date: 19930531

BERE Be: lapsed

Owner name: EPPENDORF GERATEBAU NETHELER + HINZ G.M.B.H.

Effective date: 19930531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19931201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 83105214.7

Effective date: 19931210