EP0095789B1 - Process and installation for the control of exhaust gas recirculation in a pressure wave supercharger for an internal-combustion engine - Google Patents

Process and installation for the control of exhaust gas recirculation in a pressure wave supercharger for an internal-combustion engine Download PDF

Info

Publication number
EP0095789B1
EP0095789B1 EP83200493A EP83200493A EP0095789B1 EP 0095789 B1 EP0095789 B1 EP 0095789B1 EP 83200493 A EP83200493 A EP 83200493A EP 83200493 A EP83200493 A EP 83200493A EP 0095789 B1 EP0095789 B1 EP 0095789B1
Authority
EP
European Patent Office
Prior art keywords
pressure
duct
pressure wave
air
wave supercharger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83200493A
Other languages
German (de)
French (fr)
Other versions
EP0095789A1 (en
Inventor
Andreas Mayer
Ibrahim El-Nashar
Fritz Spinnler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Priority to AT83200493T priority Critical patent/ATE16626T1/en
Publication of EP0095789A1 publication Critical patent/EP0095789A1/en
Application granted granted Critical
Publication of EP0095789B1 publication Critical patent/EP0095789B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/42Engines with pumps other than of reciprocating-piston type with driven apparatus for immediate conversion of combustion gas pressure into pressure of fresh charge, e.g. with cell-type pressure exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/40Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with timing means in the recirculation passage, e.g. cyclically operating valves or regenerators; with arrangements involving pressure pulsations

Definitions

  • the present invention relates to a method and a device for controlling the recirculation of exhaust gas in a pressure wave charger for an internal combustion engine according to the preamble of claims 1 and 5.
  • a primary i.e. That is, recirculation of exhaust gas into the compressed charge air, which functions without additional devices, by mixing air and exhaust gas at the separating front of the two media in the pressure wave charger can be arranged in a certain speed and load range of the engine, for example in the center of gravity of a driving cycle, by arranging the Reach control edges where the relaxed exhaust gas in the low-pressure section is not completely flushed out. The portion of the exhaust gas that is not flushed out is compressed in the high-pressure section together with the fresh air and enters the engine with it.
  • This primary recirculation control via the control edge geometry worsens the effectiveness of the high-pressure side and also the idling properties. Since this recirculation control takes place via the low-pressure flushing, it is also influenced by the low-pressure resistances, which change over time, particularly due to filter contamination. can change.
  • this solution has the disadvantage that the difference between charge air pressure and high pressure exhaust gas and also the boost pressure are reduced due to the removal of high pressure exhaust gas. In this way, however, the degree of recirculation can be better adapted to the respective operating state of the engine than by primary exhaust gas recirculation alone.
  • FIG. 1 shows a part of the developed central section through the rotor space and the adjacent channels in the air or gas housing of a pressure wave charger for a diesel engine.
  • the rotor space is denoted by 1, one of the two high and low pressure exhaust gas channels, namely 4 and 5, or high and low pressure exhaust gas channels, namely 4 and 5, or high and low pressure air channels 6 and 7, are respectively from the gas housing 2 and the air housing 3 shown.
  • the arrow 8 indicates the direction of rotation of the rotor, the arrows 9, 10, 11 and 12 the flow directions of the high-pressure exhaust gas coming from the engine, the compressed high-pressure air pushed out of the rotor, i. i.e., the charge air, the low-pressure exhaust gas exhausting from the rotor or the low-pressure air flowing into the rotor, i.e. that is, the intake air.
  • This degree of recirculation can be influenced by arranging baffles 13 or 14 either in the low-pressure air duct 7 or in the low-pressure exhaust gas duct 5 or in both ducts.
  • baffles 13 or 14 either in the low-pressure air duct 7 or in the low-pressure exhaust gas duct 5 or in both ducts.
  • both an intake damper 13 in the low-pressure air duct 7 and an exhaust damper 14 in the low-pressure exhaust gas duct 5 are provided.
  • the axes of rotation 15, 16 of these baffles lie in the middle of the baffles or the cross sections of the channels.
  • Other flap arrangements or types of throttles, such as rotary valves or the like, are of course also possible, but they should deteriorate the intake resistance or the exhaust resistance as little as possible compared to the resistance of the free channels when the opening is fully open.
  • baffles which, as said, can be provided in one or in both channels, is explained with reference to FIG. 2, in which two rotor cells 17 are entered in the rotor space, the illustration of which has been omitted in FIG. 1.
  • the baffles 13, 14 are omitted in FIG. 2.
  • the dashed line 18 represents the course of the separating front as it forms from the high-pressure area between the high-pressure exhaust gas duct 4 and the high-pressure air duct 6 when there is no recirculation of exhaust gas.
  • the separating front 18 then remains in the high-pressure region and in its further course until it enters the region of the low-pressure channels 5 and 7 always within the rotor space 1. It is therefore possible, provided that the mixing zone in the region of the separating front remains narrow, that no exhaust gas enter duct 6, i.e. the charge air.
  • the degree of recirculation can be increased and its course can be controlled in the engine map.
  • the intake air flow in channel 7 is throttled by the baffle flap 13 and / or the baffle flap 14 in channel 5, the exhaust gases are prevented from being flushed out, so that the separating front 21 which now occurs takes place in the low pressure region from the fork point 19 to the dotted line. It therefore remains in the rotor space after leaving the low-pressure area, i. i.e., in the rotor cells. This means that exhaust gas, together with the intake air, reaches the high-pressure area, where it is compressed together with the air and fed into the internal combustion engine.
  • the separating front 21 between the sucked-in air and the exhaust gas to be recirculated remains until it enters the next high-pressure region, approximately as in the upper part of FIG. 2, and is then pushed against and into the high-pressure air duct by the front of the high-pressure exhaust gases. Since a pressure wave machine generally has two high and two low pressure parts, the separating front 21 entered in the lower part of FIG. 2 does not originate from the low pressure part 5 + 7 in the upper part of FIG. 2, but from the second, not shown, low pressure part, while the upper part Separating front 21 merges into the second high pressure part, not shown.
  • FIG. 3 A block diagram of a pressure wave charger with controllable recirculation is shown in FIG. 3.
  • 22 designate an intake air filter, 23 an intake silencer, 24 the pressure wave charger, 25 an exhaust silencer, 26 the intake line, 27 the exhaust line, 28 the high-pressure exhaust line, 29 the charge air line, 30 an intake port upstream of the air filter 22, in which the intake air side damper 31 is provided .
  • this could also be arranged immediately before the junction of the low-pressure air duct in the rotor space, but also at any other point between the filter and the inlet of the intake air that is more convenient for installation, maintenance or actuation linkage the rotor space.
  • a compensation element such as a pressure cell, can be provided in the actuating linkage for the storage flap, as will be shown later.
  • the control for the storage flap will preferably be designed so that the flap is fully open when idling and in the upper load range and from a certain speed. Only a primary recirculation is effective in these areas.
  • FIG. 4 shows an ideal recirculation map, wherein in the hatched area, the so-called “recirculation island 32, the swivel angle ⁇ , see FIG. 6, the baffle flap can be constant or can be controlled in order to obtain the desired course of the degree of recirculation.
  • the mussel curve 33 applies to constant recirculation.
  • the flap is opened and closed using a speed sensor that controls the flap so that recirculation in the upper speed range is reduced.
  • FIG. 7 schematically shows a device for controlling the flap position in a diesel engine as a function of the accelerator pedal position to compensate for a change in the intake resistance depending on the degree of contamination of the air filter and the speed.
  • the intake air line 34 is flowed through in the direction indicated by the two flow arrows 35, i. that is, the damper 36 is in front of the air filter 37.
  • the stowage flap 36 is actuated in the desired load or speed-dependent manner by the gas linkage 38, 39 via a resilient element installed between the rods 40, 41 in the form of a pressure can 42 shown in the secondary figure. In the main figure, this pressure can 42 is shown schematically as a spring.
  • the double arrow 44 indicates this relationship.
  • the adjustment of the flap 36 as would occur with a rigid connection of the gas linkage to the flap, is overlaid by the pressure cell 42, a correction movement which compensates for a change in the intake resistance as a result of filter contamination and / or a change in speed.
  • the housing of the pressure cell 42 is connected to the rod 40 and its spring-loaded membrane 43, which is pressurized on both sides, is rigidly connected to the rod 41.
  • the static pressures P vK and PIK in the intake air line upstream or downstream of the flap 36 can be used to apply the membrane 43.
  • a different pressure difference preferably in the suction area of the pressure wave charger, could also prove useful for this.
  • the compensation of a change in the intake resistance can also be achieved by a pressure cell 45, in which the pressure difference between the ambient air and the intake air line 49 after the air filter 46 is used to compensate for the change in the intake resistance, for which purpose a pressure decrease line 50 between the spring-loaded Top of the pressure cell 45 and the intake air line 49 is provided behind the filter.
  • a stop that limits the flap pivoting angle so that the intake air line can never be completely closed.
  • a stop will preferably be provided as close as possible to the valve axis.
  • Another advantageous measure for this purpose is. to connect the flap to the sniffer valve, which allows the engine to draw the combustion air directly from the atmosphere during the start-up period, so that the latter is opened when the damper is closed.
  • Another option is to use a return spring that swings the flap back to the fully open position in the event of an accident.
  • Simpler measures are to provide the flap with holes or to only dimension it so large that it still keeps part of the cross section of the intake air line free at the largest possible swivel angle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

Provision is made in the induced air duct and/or in the exhaust duct of the pressure wave supercharger for butterfly valves, by the control of which the exhaust gas proportion to be returned to the charge air is matched to the load condition of the engine. The adjustment of the butterfly valve or butterfly valves occurs through a linkage as a function of the load condition of the engine. A correction link acts on the linkage being provided to compensate for pressure alterations in the induced air duct and/or exhaust duct.

Description

Die vorliegende Erfindung betrifft ein Verfahren und eine Einrichtung zur Steuerung der Rezirkulation von Abgas in einem Druckwellenlader für einen Verbrennungsmotor nach dem Oberbegriff der Patentansprüche 1 und 5.The present invention relates to a method and a device for controlling the recirculation of exhaust gas in a pressure wave charger for an internal combustion engine according to the preamble of claims 1 and 5.

Es ist üblich, bei Verbrennungsmotoren zur Verringerung der Schadstoffemission, insbesondere des Anteils der Stickoxide und Kohlenwasserstoffe, bei Verbrennungsmotoren der Verbrennungsluft Abgas beizumischen, und zwar bei Saugmotoren der Ansaugluft und bei Ladermotoren der verdichteten Ladeluft.In internal combustion engines to reduce the pollutant emission, in particular the proportion of nitrogen oxides and hydrocarbons, it is customary to add exhaust gas to the combustion air in internal combustion engines, specifically in naturally aspirated engines of the intake air and in supercharged engines of the compressed charge air.

Bei dieser Rückführung oder Rezirkulation eines Teiles der Abgase in die Verbrennungsluft stellt sich bei allen Laderbauarten das Problem der günstigsten Dosierung des rückzuführenden Abgasanteils in Abhängigkeit von der Belastung des Motors.With this recirculation or recirculation of part of the exhaust gases into the combustion air, the problem of the cheapest metering of the exhaust gas portion to be recycled, depending on the load on the engine, arises in all supercharger types.

Eine primäre, d. h., ohne Zusatzeinrichtungen funktionierende Rezirkulation von Abgas in die verdichtete Ladeluft durch die Vermischung von Luft und Abgas an der Trennfront der beiden Medien im Druckwellenlader lässt sich in einem bestimmten Drehzahl- und Lastbereich des Motors, beispielsweise im Schwerpunktsbereich eines Fahrzyklus, durch eine Anordnung der Steuerkanten erreichen, bei der im Niederdruckteil das entspannte Abgas nicht vollständig ausgespült wird. Der nicht ausgespülte Anteil des Abgases wird im Hochdruckteil zusammen mit der Frischluft verdichtet und gelangt mit dieser in den Motor. Durch diese primäre Rezirkulationssteuerung über die Steuerkantengeometrie werden die Wirksamkeit der Hochdruckseite und auch die Leerlaufeigenschaften verschlechtert. Da diese Rezirkulationssteuerung über die Niederdruckspülung erfolgt, wird sie auch von den Niederdruckwiderstanden beeinflusst, die sich im Laufe der Zeit, namentlich wegen Filterverschmutzung. ändern können.A primary, i.e. That is, recirculation of exhaust gas into the compressed charge air, which functions without additional devices, by mixing air and exhaust gas at the separating front of the two media in the pressure wave charger can be arranged in a certain speed and load range of the engine, for example in the center of gravity of a driving cycle, by arranging the Reach control edges where the relaxed exhaust gas in the low-pressure section is not completely flushed out. The portion of the exhaust gas that is not flushed out is compressed in the high-pressure section together with the fresh air and enters the engine with it. This primary recirculation control via the control edge geometry worsens the effectiveness of the high-pressure side and also the idling properties. Since this recirculation control takes place via the low-pressure flushing, it is also influenced by the low-pressure resistances, which change over time, particularly due to filter contamination. can change.

Zur Verbesserung des Rezirkulationsverlaufes über den ganzen Betriebsbereich von Druckwellenladern sind verschiedene Lösungen vorgeschlagen worden, z. B. durch die CH-PS 552 135. Diese beschreibt ein Verfahren und eine Einrichtung, bei der neben der primären Abgasrückführung zwecks Steuerung der Rezirkulation über den ganzen Lastbereich eine sekundäre Abgasrückführung vorgesehen ist. Dabei wird nach den Fig. 7 und 8 dieser Patentschrift Abgas aus dem Abgashochdruckkanal 5 abgezweigt und an mindestens einer Stelle, an der die Zellen des Läufers mit Luft gefüllt sind, direkt in den Druckwellenprozess eingeführt. Die dafür benötigten Elemente komplizieren jedoch den Lader bzw. wirken beim Einbau in das Fahrzeug störend. In thermodynamischer Hinsicht hat diese Lösung den Nachteil, dass wegen der Entnahme von Hochdruckabgas die Differenz von Ladeluftdruck und Hochdruckabgas und auch der Ladedruck verringert werden. Es gelingt aber auf diese Weise eine bessere Anpassung des Rezirkulationsgrades an den jeweiligen Betriebszustand des Motors als durch eine primäre Abgasrückführung allein.Various solutions have been proposed to improve the recirculation process over the entire operating range of pressure wave loaders, e.g. B. by CH-PS 552 135. This describes a method and a device in which in addition to the primary exhaust gas recirculation for controlling the recirculation over the entire load range, a secondary exhaust gas recirculation is provided. 7 and 8 of this patent, exhaust gas is branched off from the exhaust gas high-pressure duct 5 and introduced directly into the pressure wave process at at least one point at which the cells of the rotor are filled with air. The elements required for this, however, complicate the loader or interfere with installation in the vehicle. From a thermodynamic point of view, this solution has the disadvantage that the difference between charge air pressure and high pressure exhaust gas and also the boost pressure are reduced due to the removal of high pressure exhaust gas. In this way, however, the degree of recirculation can be better adapted to the respective operating state of the engine than by primary exhaust gas recirculation alone.

Die vorliegende, im kennzeichnenden Teil der Patentansprüche 1 und 5 definierte Erfindung entstand aus der Aufgabe, die Nachteile der vorstehend skizzierten, bekannten Lösungen bei möglichst geringem baulichen Aufwand zu vermindern. Insbesondere sollte sie folgende Forderungen erfüllen :

  • Die Erhöhung der Rezirkulation darf die Effizienz des Druckwellenprozesses hochdruckseitig nur geringfügig verschlechtern,
  • die hochdruckseitige Druckdifferenz und die Höhe des Ladedrucks sollen unabhängig von Rezirkulationskriterien optimiert werden können,
  • der Rezirkulationsgrad soll unabhängig von den Erfordernissen des Leerlaufbetriebs optimierbar sein, und
  • der Rezirkulationsgrad soll unabhängig vom Ansaugwiderstand konstant bleiben, beispielsweise bei Verschmutzung des Filters.
The present invention, defined in the characterizing part of patent claims 1 and 5, arose from the object of reducing the disadvantages of the known solutions outlined above with the least possible construction effort. In particular, it should meet the following requirements:
  • The increase in recirculation may only slightly impair the efficiency of the pressure wave process on the high pressure side,
  • the high-pressure side pressure difference and the level of the boost pressure should be able to be optimized independently of recirculation criteria,
  • the degree of recirculation should be able to be optimized independently of the requirements of idle operation, and
  • the degree of recirculation should remain constant regardless of the suction resistance, for example if the filter is dirty.

Diese Ziele der Erfindung werden erreicht allein durch eine Steuerung der niederdruckseitigen Spülung, wobei aber die für bestmögliche Aufladung günstigste Steuerkantengeometrie beibehalten werden kann.These objectives of the invention are achieved solely by controlling the flushing on the low-pressure side, but the control edge geometry which is most favorable for the best possible charging can be maintained.

Die Erfindung wird im folgenden unter Bezugnahme auf die Zeichnungen näher beschrieben. In diesen stellen dar :

  • Figur 1 schematisch die prinzipiellen Elemente für die Steuerung des Rezirkulationsgrades,
  • Figur 2 den Verlauf der Trennfronten mit und ohne Rezirkulationssteuerung,
  • Figur 3 ein Blockdiagramm einer Druckwellenmaschine mit steuerbarer Rezirkulation,
  • Figur 4 ein Rezirkulationskennfeld,
  • Figur 5 ein Steuerdiagramm für den Rezirkulationsgrad,
  • Figur 6 die Definition für den Klappenwinkel, und die
  • Figur 7 und 8 schematisch Prinzip zweier möglicher Einrichtungen für eine Steuerung des Rezirkulationsgrades.
The invention is described in more detail below with reference to the drawings. In these represent:
  • FIG. 1 shows schematically the basic elements for controlling the degree of recirculation,
  • FIG. 2 shows the course of the separating fronts with and without recirculation control,
  • FIG. 3 shows a block diagram of a pressure wave machine with controllable recirculation,
  • FIG. 4 shows a recirculation map,
  • FIG. 5 shows a control diagram for the degree of recirculation,
  • 6 shows the definition for the flap angle, and the
  • Figures 7 and 8 schematically principle of two possible devices for controlling the degree of recirculation.

. Die schematische Darstellung von Fig. 1 zeigt einen Teil des abgewickelten Mittelschnittes durch den Rotorraum und die angrenzenden Kanäle im Luft- bzw. Gasgehäuse eines Druckwellenladers für einen Dieselmotor. Der Rotorraum ist mit 1 bezeichnet, vom Gasgehäuse 2 und vom Luftgehäuse 3 ist je einer der beiden Hoch- und Niederdruckabgaskanäle, nämlich 4 und 5, bzw. Hoch- und Niederdruckabgaskanäle, nämlich 4 und 5, bzw. Hoch- und Niederdruckluftkanäle 6 und 7 gezeigt. Der Pfeil 8 deutet die Drehrichtung des Rotors an, die Pfeile 9, 10, 11 und 12 die Strömungsrichtungen des aus dem Motor kommenden Hochdruckabgases, der aus dem Rotor ausgeschobenen, verdichteten Hochdruckluft, d. h., der Ladeluft, des aus dem Rotor auspuffenden Niederdruckabgases bzw. der in den Rotor einströmenden Niederdruckluft, d. h., der Ansaugluft.. The schematic representation of FIG. 1 shows a part of the developed central section through the rotor space and the adjacent channels in the air or gas housing of a pressure wave charger for a diesel engine. The rotor space is denoted by 1, one of the two high and low pressure exhaust gas channels, namely 4 and 5, or high and low pressure exhaust gas channels, namely 4 and 5, or high and low pressure air channels 6 and 7, are respectively from the gas housing 2 and the air housing 3 shown. The arrow 8 indicates the direction of rotation of the rotor, the arrows 9, 10, 11 and 12 the flow directions of the high-pressure exhaust gas coming from the engine, the compressed high-pressure air pushed out of the rotor, i. i.e., the charge air, the low-pressure exhaust gas exhausting from the rotor or the low-pressure air flowing into the rotor, i.e. that is, the intake air.

Der Grundgedanke der Erfindung besteht nun darin, den Verlauf des Rezirkulationsgrades in Abhängigkeit vom Lastzustand durch Aenderung des Ansaugwiderstandes im Niederdruckluftkanal 7 (= Ansaugluftkanal) und/oder des Auspuffwiderstandes im Niederdruckabgaskanal 5 (= Auspuffkanal) über den ganzen Betriebsbereich in der gewünschten Weise zu steuern.The basic idea of the invention is now to control the course of the degree of recirculation depending on the load condition by changing the intake resistance in the low-pressure air duct 7 (= intake air duct) and / or the exhaust resistance in the low-pressure exhaust gas duct 5 (= exhaust duct) over the entire operating range in the desired manner.

Diese Beeinflussung des Rezirkulationsgrades gelingt durch Anordnung von Stauklappen 13 bzw. 14 entweder im Niederdruckluftkanal 7 oder im Niederdruckabgaskanal 5 oder in beiden Kanälen. Im Schema der Fig. 1 ist sowohl eine Ansaugstauklappe 13 im Niederdruckluftkanal 7 als auch eine Auspuffstauklappe 14 im Niederdruckabgaskanal 5 vorgesehen. Die Drehachsen 15, 16 dieser Stauklappen liegen in der Mitte der Stauklappen bzw. der Querschnitte der Kanäle. Andere Klappenanordnungen bzw. Drosselbauarten, wie Drehschieber oder dergl. sind näturlich auch möglich, doch sollen sie bei voller Oeffnung den Ansaugwiderstand bzw. auch den Auspuffwiderstand gegenüber dem Widerstand der freien Kanäle möglichst wenig verschlechtern.This degree of recirculation can be influenced by arranging baffles 13 or 14 either in the low-pressure air duct 7 or in the low-pressure exhaust gas duct 5 or in both ducts. In the diagram of FIG. 1, both an intake damper 13 in the low-pressure air duct 7 and an exhaust damper 14 in the low-pressure exhaust gas duct 5 are provided. The axes of rotation 15, 16 of these baffles lie in the middle of the baffles or the cross sections of the channels. Other flap arrangements or types of throttles, such as rotary valves or the like, are of course also possible, but they should deteriorate the intake resistance or the exhaust resistance as little as possible compared to the resistance of the free channels when the opening is fully open.

Die Wirkung solcher Stauklappen, die, wie gesagt in einem oder in beiden Kanälen vorgesehen werden können, sei anhand der Fig. 2 erläutert, in der im Rotorraum zwei Rotorzellen 17 eingetragen sind, auf deren Darstellung in Fig. 1 verzichtet wurde. Der Uebersichtlichkeit halber sind in Fig. 2 hingegen die Stauklappen 13, 14 weggelassen.The effect of such baffles, which, as said, can be provided in one or in both channels, is explained with reference to FIG. 2, in which two rotor cells 17 are entered in the rotor space, the illustration of which has been omitted in FIG. 1. For the sake of clarity, however, the baffles 13, 14 are omitted in FIG. 2.

In Fig. 2 stellt die eng strichlierte Linie 18 den Verlauf der Trennfront dar, wie sie sich vom Hochdruckbereich zwischen dem Hochdruckabgaskanal 4 und dem Hochdruckluftkanal 6 ausbildet, wenn dort keine Rezirkulation von Abgas auftritt. Die Trennfront 18 verbleibt dann im Hochdruckbereich und in ihrem weiteren Verlauf bis zum Eintritt in den Bereich der Niederdruckkanäle 5 und 7 immer innerhalb des Rotorraums 1. Es kann also, unter der idealisierenden Voraussetzung, dass die Mischzone im Bereich der Trennfront schmal bleibt, kein Abgas in den Kanal 6, also in die Ladeluft, eintreten. Ab dem Gabelungspunkt 19 des Verlaufes der Trennfront 18 biegt diese in den Niederdruckabgaskanal 5, also in den Auspuff, ein, was bedeutet, das die Ansaugluft die Abgase vollständig ausspült und mit einem geringen, durch einen Strömungspfeil 20 angedeuteten Anteil zusammen mit den Abgasen den Druckwellenlader verlässt. Es findet also bei diesen Verhältnissen theoretisch keine Rezirkulation statt. Praktisch wird aber ein Druckwellenlader so ausgelegt, dass ein Teil der erwähnten Mischzone in einem gewissen Lastbereich in den Hochdruckluftkanal 6 hinein gelangt, was die eingangs erwähnte primäre Abgasrezirkulation ergibt.In FIG. 2, the dashed line 18 represents the course of the separating front as it forms from the high-pressure area between the high-pressure exhaust gas duct 4 and the high-pressure air duct 6 when there is no recirculation of exhaust gas. The separating front 18 then remains in the high-pressure region and in its further course until it enters the region of the low-pressure channels 5 and 7 always within the rotor space 1. It is therefore possible, provided that the mixing zone in the region of the separating front remains narrow, that no exhaust gas enter duct 6, i.e. the charge air. From the bifurcation point 19 of the course of the separating front 18, the latter bends into the low-pressure exhaust gas duct 5, that is to say into the exhaust pipe, which means that the intake air completely flushes out the exhaust gases and, together with the exhaust gases, the pressure wave charger together with the exhaust gases with a small portion indicated by a flow arrow 20 leaves. In theory, there is no recirculation under these conditions. In practice, however, a pressure wave charger is designed so that part of the mixing zone mentioned reaches the high-pressure air duct 6 in a certain load range, which results in the primary exhaust gas recirculation mentioned at the beginning.

Mit den beiden Stauklappen 13.14. siehe Fig. 1, oder einer derselben kann der Rezirkulationsgräd verstärkt und dessen Verlauf im Motorkennfeld gesteuert werden. Bei einer Drosselung des Ansaugluftstromes im Kanal 7 durch die Stauklappe 13 und/oder die Stauklappe 14 im Kanal 5 wird die Ausspülung der Abgase behindert, so dass die sich jetzt einstellende Trennfront 21 im Niederdruckbereich vom Gabelungspunkt 19 an den punktiert gezeichneten Verlauf nimmt. Sie verbleibt also nach Verlassen des Niederdruckbereiches im Rotorraum, d. h., in den Rotorzellen. Damit gelangt Abgas zusammen mit der Ansaugluft in den Hochdruckbereich, wo sie zusammen mit der Luft verdichtet und in den Verbrennungsmotor gefördert wird.With the two baffles 13.14. see Fig. 1, or one of them, the degree of recirculation can be increased and its course can be controlled in the engine map. When the intake air flow in channel 7 is throttled by the baffle flap 13 and / or the baffle flap 14 in channel 5, the exhaust gases are prevented from being flushed out, so that the separating front 21 which now occurs takes place in the low pressure region from the fork point 19 to the dotted line. It therefore remains in the rotor space after leaving the low-pressure area, i. i.e., in the rotor cells. This means that exhaust gas, together with the intake air, reaches the high-pressure area, where it is compressed together with the air and fed into the internal combustion engine.

Die Trennfront 21 zwischen der angesaugten Luft und dem rückzuführenden Abgas bleibt bis zum Eintritt in den nächsten Hochdruckbereich etwa wie im oberen Teil der Fig. 2 erhalten und wird dann von der Front der Hochdruckabgase gegen und in den Hochdruckluftkanal abgedrängt. Da eine Druckwellenmaschine im allgemeinen zwei Hoch- und zwei Niederdruckteile hat, stammt die im unteren Teil der Fig. 2 eingetragene Trennfront 21 nicht vom Niederdruckteil 5 + 7 im oberen Teil der Fig. 2, sondern vom zweiten, nicht dargestellten Niederdruckteil, während die obere Trennfront 21 in den zweiten, nicht dargestellten Hochdruckteil übergeht.The separating front 21 between the sucked-in air and the exhaust gas to be recirculated remains until it enters the next high-pressure region, approximately as in the upper part of FIG. 2, and is then pushed against and into the high-pressure air duct by the front of the high-pressure exhaust gases. Since a pressure wave machine generally has two high and two low pressure parts, the separating front 21 entered in the lower part of FIG. 2 does not originate from the low pressure part 5 + 7 in the upper part of FIG. 2, but from the second, not shown, low pressure part, while the upper part Separating front 21 merges into the second high pressure part, not shown.

Ein Blockdiagramm eines Druckwellenladers mit steuerbarer Rezirkulation ist in Fig. 3 dargestellt. Darin bezeichnen 22 einen Ansaugluftfilter, 23 einen Ansaugschalldämpfer, 24 den Druckwellenlader, 25 einen Auspuffschalldämpfer, 26 die Ansaugleitung, 27 die Auspuffleitung, 28 die Hochdruckabgasleitung, 29 die Ladeluftleitung, 30 einen dem Luftfilter 22 vorgeschalteten Ansaugstutzen, in dem die ansaugluftseitige Stauklappe 31 vorgesehen ist. Diese könnte, wie beispielsweise in Fig. 1 gezeigt, auch unmittelbar vor der Einmündung des Niederdruckluftkanals in den Rotorraum angeordnet sein, aber ebenso an beliebiger anderer, für den Einbau, die Wartung oder das Betätigungsgestänge günstiger Stelle zwischen dem Filter und dem Eintritt der Ansaugluft in den Rotorraum.A block diagram of a pressure wave charger with controllable recirculation is shown in FIG. 3. 22 designate an intake air filter, 23 an intake silencer, 24 the pressure wave charger, 25 an exhaust silencer, 26 the intake line, 27 the exhaust line, 28 the high-pressure exhaust line, 29 the charge air line, 30 an intake port upstream of the air filter 22, in which the intake air side damper 31 is provided . As shown in FIG. 1, for example, this could also be arranged immediately before the junction of the low-pressure air duct in the rotor space, but also at any other point between the filter and the inlet of the intake air that is more convenient for installation, maintenance or actuation linkage the rotor space.

Die Anordnung einer Stauklappe 31 gemäss Fig. 3 vor dem Filter 22 ergibt eine ausreichend lange Beruhigungsstrecke für die nach Passieren der Stauklappe verwirbelte Ansaugluft.The arrangement of a damper 31 according to FIG. 3 in front of the filter 22 results in a sufficiently long calming section for the intake air swirled after passing through the damper.

Um den bei einer Verschmutzung des Luftfilters 22 zunehmenden Ansaugwiderstand zu kompensieren, kann, wie später gezeigt wird, im Betätigungsgestänge für die Stauklappe ein Kompensationsglied, etwa eine Druckdose, vorgesehen werden.In order to compensate for the increasing intake resistance when the air filter 22 is contaminated, a compensation element, such as a pressure cell, can be provided in the actuating linkage for the storage flap, as will be shown later.

Die Steuerung für die -Stauklappe wird man vorzugsweise so auslegen, dass die Klappe im Leerlauf und im oberen Lastbereich sowie ab einer bestimmten Drehzahl ganz geöffnet ist. In diesen Bereichen ist dann also nur eine primäre Rezirkulation wirksam. Die Fig. 4 zeigt ein ideales Rezirkulationskennfeld, wobei im schraffierten Bereich, der sogenannten « Rezirkulationsinsel 32, der Schwenkwinkel a, siehe Fig. 6, der Stauklappe konstant sein oder gesteuert werden kann, um den gewünschten Verlauf des Rezirkulationsgrades zu erhalten. Die Muschelkurve 33 gilt für eine konstante Rezirkulation.The control for the storage flap will preferably be designed so that the flap is fully open when idling and in the upper load range and from a certain speed. Only a primary recirculation is effective in these areas. FIG. 4 shows an ideal recirculation map, wherein in the hatched area, the so-called “recirculation island 32, the swivel angle α, see FIG. 6, the baffle flap can be constant or can be controlled in order to obtain the desired course of the degree of recirculation. The mussel curve 33 applies to constant recirculation.

Praktisch wichtige Möglichkeiten der Klappensteuerung sind beispielsweise :

  • Die Stauklappe wird über das Gaspedal mechanisch in zwei Stellungen gebracht, und zwar in die voll geöffnete in einem gewissen unteren Lastbereich einschliesslich Leerlauf und in einem oberen Lastbereich bis Vollast sowie in eine zweite, teilgeöffnete Stellung, beispielsweise mit einem Klappenwinkel von 60°. wie es im Oeffnungsdiagramm der Fig. 5 dargestellt ist, wo die Ordinate den in der Fig. 6 definierten Stauklappenwinkel und die Abszisse die Last bzw. die davon abhängige Gaspedalstellung darstellen.
Practically important possibilities of the flaps controls are for example:
  • The stowage flap is brought mechanically into two positions via the accelerator pedal, namely in the fully open position in a certain lower load range including idling and in an upper load range up to full load as well as in a second, partially open position, for example with a flap angle of 60 °. as shown in the opening diagram of FIG. 5, where the ordinate represents the baffle flap angle defined in FIG. 6 and the abscissa the load or the accelerator pedal position dependent thereon.

Das Oeffnen und Schliessen der Klappe erfolgt über einen Drehzahlgeber, der die Klappe so steuert, dass die Rezirkulation im oberen Drehzahlbereich reduziert wird.The flap is opened and closed using a speed sensor that controls the flap so that recirculation in the upper speed range is reduced.

Steuerung der Klappe in Abhängigkeit vom Grad der primären Rezirkulation.Control of the valve depending on the degree of primary recirculation.

Die Fig. 7 zeigt schematisch eine Einrichtung zur Steuerung der Klappenstellung bei einem Dieselmotor in Abhängigkeit von der Gaspedalstellung zur Kompensation einer vom Verschmutzungsgrad des Luftfilters und der Drehzahl abhängigen Aenderung des Ansaugwiderstandes.7 schematically shows a device for controlling the flap position in a diesel engine as a function of the accelerator pedal position to compensate for a change in the intake resistance depending on the degree of contamination of the air filter and the speed.

Die Ansaugluftleitung 34 wird dabei in der durch die beiden Strömungspfeile 35 angedeuteten Richtung durchströmt, d. h., dass die Stauklappe 36 vor dem Luftfilter 37 liegt. Die Stauklappe 36 wird in der gewünschten last- oder drehzahlabhängigen Weise vom Gasgestänge 38, 39 über ein zwischen den Stangen 40, 41 eingebautes federndes Element in Form einer in der Nebenfigur dargestellten Druckdose 42 betätigt. In der Hauptfigur ist diese Druckdose 42 schematisch als Feder dargestellt. Der Doppelpfeil 44 weist auf diesen Zusammenhang hin. Der Verstellung der Klappe 36, wie sie sich bei einer starren Verbindung des Gasgestänges mit der Klappe einstellen würde, wird durch die Druckdose 42 eine Korrekturbewegung überlagert, die eine Aenderung des Ansaugwiderstandes infolge einer Filterverschmutzung und/oder Drehzahländerung kompensiert. Das Gehäuse der Druckdose 42 ist mit der Stange 40 und ihre federbelastete, beiderseitig druckbeaufschlagte Membran 43 ist mit der Stange 41 starr verbunden.The intake air line 34 is flowed through in the direction indicated by the two flow arrows 35, i. that is, the damper 36 is in front of the air filter 37. The stowage flap 36 is actuated in the desired load or speed-dependent manner by the gas linkage 38, 39 via a resilient element installed between the rods 40, 41 in the form of a pressure can 42 shown in the secondary figure. In the main figure, this pressure can 42 is shown schematically as a spring. The double arrow 44 indicates this relationship. The adjustment of the flap 36, as would occur with a rigid connection of the gas linkage to the flap, is overlaid by the pressure cell 42, a correction movement which compensates for a change in the intake resistance as a result of filter contamination and / or a change in speed. The housing of the pressure cell 42 is connected to the rod 40 and its spring-loaded membrane 43, which is pressurized on both sides, is rigidly connected to the rod 41.

Für die Beaufschlagung der Membran 43 kommen beispielsweise die statischen Drücke PvK und PIK in der Ansaugluftleitung vor bzw. hinter der Klappe 36 in Frage. Es könnte sich aber auch eine andere Druckdifferenz, vorzugsweise im Ansaugbereich des Druckwellenladers, hiefür als brauchbar erweisen.For example, the static pressures P vK and PIK in the intake air line upstream or downstream of the flap 36 can be used to apply the membrane 43. However, a different pressure difference, preferably in the suction area of the pressure wave charger, could also prove useful for this.

Nach Fig. 8 kann die Kompensation einer Aenderung des Ansaugwiderstandes auch durch eine Druckdose 45 erreicht werden, bei der die Druckdifferenz zwischen der Umgebungsluft und der Ansaugluftleitung 49 nach dem Luftfilter 46 zur Kompensation der Aenderung der Ansaugwiderstandes benutzt wird, wozu eine Druckabnahmeleitung 50 zwischen der federbelasteten Oberseite der Druckdose 45 und der Ansaugluftleitung 49 hinter dem Filter vorgesehen ist.8, the compensation of a change in the intake resistance can also be achieved by a pressure cell 45, in which the pressure difference between the ambient air and the intake air line 49 after the air filter 46 is used to compensate for the change in the intake resistance, for which purpose a pressure decrease line 50 between the spring-loaded Top of the pressure cell 45 and the intake air line 49 is provided behind the filter.

Zu den Fig. 1 und 2 wäre noch zu erwähnen, dass die schrägverlaufenden Vollinien im Rotorraum Verdichtungswellen und die schrägverlaufenden strichlierten Linien die Expansionswellen des Druckwellenprozesses darstellen.1 and 2, it should also be mentioned that the oblique solid lines in the rotor space represent compression waves and the oblique dashed lines represent the expansion waves of the pressure wave process.

Um zu verhindern, dass bei einem unprogrammgemässen Schliessen einer Stauklappe als Folge einer Havarie im Betätigungsgestänge die Durchströmung und damit Kühlung des Rotors ausfällt, was zur Zestörung des Laders führen könnte, sind Massnahmen vorzusehen, die eine solche Gefährdung verhindern, z. B. ein Anschlag, der den Klappenschwenkwinkel so begrenzt, dass die Ansaugluftleitung nie ganz geschlossen werden kann. Einen solchen Anschlag wird man vorzugsweise möglichst nahe der Klappenachse vorsehen. Eine weitere vorteilhafte Massnahme für diesen Zweck besteht darin. die Klappe mit dem Schnüffelventil, durch das der Motor in der Anfahrperiode die Verbrennungsluft direkt aus der Atmosphäre ansaugen kann, so zu verbinden, dass letzteres bei geschlossener Stauklappe geöffnet wird. Eine weitere Möglichkeit besteht in der Verwendung einer Rückholfeder, die die Klappe im Havariefall in die voll geöffnete Stellung zurückschwenkt.In order to prevent the flow and thus cooling of the rotor from failing due to an accident in the actuating linkage when a damper is closed as a result of an accident, which could lead to the destruction of the charger, measures must be taken to prevent such a hazard, e.g. B. a stop that limits the flap pivoting angle so that the intake air line can never be completely closed. Such a stop will preferably be provided as close as possible to the valve axis. Another advantageous measure for this purpose is. to connect the flap to the sniffer valve, which allows the engine to draw the combustion air directly from the atmosphere during the start-up period, so that the latter is opened when the damper is closed. Another option is to use a return spring that swings the flap back to the fully open position in the event of an accident.

Einfachere Massnahmen bestehen darin, die Klappe mit Löchern zu versehen oder sie nur so gross zu bemessen, dass sie beim grösstmöglichen Schwenkwinkel noch immer einen Teil des Querschnittes der Ansaugluftleitung frei hält.Simpler measures are to provide the flap with holes or to only dimension it so large that it still keeps part of the cross section of the intake air line free at the largest possible swivel angle.

Das für die Stauklappe in einem Niederdruckluftkanal oder in einer Ansaugluftleitung bezüglich der Steuerung oder Regelung und der Kompensation infolge von Druckänderungen im angesaugten Luftstrom gesagte gilt sinngemäss auch für eine allein oder in Verbindung mit einer Luftstauklappe vorgesehene Auspuffstauklappe im Niederdruckabgaskanal bzw. in der Auspuffleitung.What has been said for the damper in a low-pressure air duct or in an intake air line with regard to the control or regulation and the compensation as a result of pressure changes in the intake air flow also applies analogously to an exhaust damper provided in the low-pressure exhaust gas duct or in the exhaust line alone or in conjunction with an air damper.

Claims (12)

1. Method for controlling the recirculation of exhaust gas in a pressure wave supercharger for an internal combustion engine, characterised in that the variation of the degree of recirculation as a function of the load condition of the internal combustion engine is controlled by altering the resistance in the low pressure pipework system of the pressure wave supercharger.
2. Method according to Claim 1. characterised in that the resistance is varied in the induction air duct.
3. Method according to Claim 1, characterised in that the resistance is varied in the exhaust pipe duct.
4. Method according to Claim 1, characterised in that both the resistance in the induction air duct and the resistance in the exhaust pipe duct are altered.
5. Pressure wave supercharger for carrying out the method according to Claim 1 with a device for recirculation control of the exhaust gases, having a rotor casing which accepts a rotor (1) with axial flow cells, an air casing (3) with an inlet flow duct (7) for the induction air and an outlet flow duct (6) for the compressed supercharger air, also with a gas casing (2) with an inlet flow duct (4) for the high pressure exhaust gases and an outlet flow duct (5) for the exhaust pipe gases, the inlet flow duct (4) for the high pressure exhaust gases and the outlet flow duct (6) for the supercharger air forming the high pressure side and the outlet flow duct (5) for the exhaust pipe gas and the inlet flow duct for the induction air forming the low pressure side of the pressure wave supercharger, characterised in that a throttle flap (14 and/or 13 ; 36 ; 48) is provided in at least one of the ducts (5, 7 ; 34 ; 49) of the low pressure side and that the throttle flap is in effective connection with an actuating device (38 to 43 ; 45, 50) for the open- loop or closed-loop control of the degree of recirculation.
6. Pressure wave supercharger according to Claim 5, characterised in that a throttle flap (14 and 13) is provided in both the outlet duct (5) for the exhaust pipe gases and in the inlet duct (7) for the induction air, respectively.
7. Pressure wave supercharger according to Claim 5, characterised in that a throttle flap (14) is provided only in the outlet flow duct (5) for the exhaust pipe gases.
8. Pressure wave supercharger according to Claim 5, characterised in that a throttle flap (36 ; 48) is provided only in the induction air duct (34 ; 49) and this throttle flap is located, in the flow direction, before the air filter (37 ; 46).
9. Pressure wave supercharger according to Claim 5, characterised in that the actuating device for the throttle flap (36) or throttle flaps consists of a linkage connected to the control linkage of the engine.
10. Pressure wave supercharger according to Claim 5, characterised by a compensating device (42 ; 45) acting on the actuating device in order to compensate for the effect of pressure changes in the induction air pipe (34 ; 49).
11. Pressure wave supercharger according to Claim 10, characterised in that the compensation device has a pressure cell (42), which is subject to the pressures before and after the throttle flap (36) in the induction air pipe (34), and a linkage (40, 41) which kinematically connects the pressure cell (42) with the linkage (38. 39) of the actuating device.
12. Pressure wave supercharger according to Claim 10, characterised in that the compensation device consists of a pressure cell (45) connected into the actuating linkage, the diaphragm of which pressure cell can be subjected to atmospheric air pressure and to the pressure behind an air filter (46) in the induction air pipe (49).
EP83200493A 1982-06-02 1983-04-07 Process and installation for the control of exhaust gas recirculation in a pressure wave supercharger for an internal-combustion engine Expired EP0095789B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83200493T ATE16626T1 (en) 1982-06-02 1983-04-07 METHOD AND DEVICE FOR CONTROLLING THE RECIRCULATION OF EXHAUST GAS IN A PRESSURE WAVE CHARGER FOR AN INTERNAL COMBUSTION ENGINE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3371/82 1982-06-02
CH337182 1982-06-02

Publications (2)

Publication Number Publication Date
EP0095789A1 EP0095789A1 (en) 1983-12-07
EP0095789B1 true EP0095789B1 (en) 1985-11-21

Family

ID=4254514

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83200493A Expired EP0095789B1 (en) 1982-06-02 1983-04-07 Process and installation for the control of exhaust gas recirculation in a pressure wave supercharger for an internal-combustion engine

Country Status (5)

Country Link
US (1) US4517950A (en)
EP (1) EP0095789B1 (en)
JP (1) JPS58222964A (en)
AT (1) ATE16626T1 (en)
DE (1) DE3361269D1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0152870A3 (en) * 1984-02-21 1985-10-09 Comprex Ag Regeneration method for the exhaust filter of a combustion engine
CH668292A5 (en) * 1985-12-02 1988-12-15 Bbc Brown Boveri & Cie Throttle flap for pressure pulse charge engine - has controlled leak-rate at zero setting to prevent engine overheating
CH681738A5 (en) * 1989-11-16 1993-05-14 Comprex Ag
US5839416A (en) * 1996-11-12 1998-11-24 Caterpillar Inc. Control system for pressure wave supercharger to optimize emissions and performance of an internal combustion engine
ES2210485T3 (en) * 1997-08-29 2004-07-01 Swissauto Engineering S.A. GAS DYNAMIC COMPRESSION WAVE MACHINE.
FR2886673A1 (en) 2005-06-01 2006-12-08 Renault Sas SYSTEM AND METHOD FOR POWERING AN ENGINE
DE102006020522A1 (en) 2006-05-03 2007-11-08 Robert Bosch Gmbh Method for operating an IC engine with pressure pulse supercharger to drive air into engine in relation to actual engine parameters
FR2907505B1 (en) * 2006-10-23 2008-12-26 Renault Sas METHOD FOR EVALUATING THE GAS FLOW GIVEN TO A MOTOR BY A COMPRESSOR, AND MOTOR POWERTRAIN OPERATING SAID METHOD
JP4301295B2 (en) * 2007-01-18 2009-07-22 トヨタ自動車株式会社 EGR system for internal combustion engine
DE102009029880A1 (en) * 2009-06-22 2010-12-23 Continental Automotive Gmbh Turbocharger and method for assembling a control device of a turbocharger
DE102010054505B4 (en) * 2010-12-14 2014-06-12 Benteler Automobiltechnik Gmbh A pressure wave charger assembly and method of operating a pressure wave charger assembly
DE112013001942T5 (en) * 2012-05-03 2014-12-24 Borgwarner Inc. turbocharger

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2853987A (en) * 1957-09-19 1958-09-30 Ite Circuit Breaker Ltd Diesel engine supercharged by the aerodynamic wave machine
CH552135A (en) * 1972-11-29 1974-07-31 Bbc Brown Boveri & Cie PROCESS FOR REDUCING POLLUTANT EMISSIONS FROM COMBUSTION ENGINES AND DEVICE FOR CARRYING OUT THE PROCEDURE.
ATE19676T1 (en) * 1981-08-11 1986-05-15 Bbc Brown Boveri & Cie CHARGED ENGINE WITH EXHAUST PARTICULATE FILTER.

Also Published As

Publication number Publication date
ATE16626T1 (en) 1985-12-15
US4517950A (en) 1985-05-21
JPS58222964A (en) 1983-12-24
DE3361269D1 (en) 1986-01-02
EP0095789A1 (en) 1983-12-07

Similar Documents

Publication Publication Date Title
DE60024776T2 (en) TURBOLADER AND EXHAUST GAS RECYCLING SYSTEM
DE69815882T2 (en) PLANT OF AN INTERNAL COMBUSTION ENGINE
DE102006054117B4 (en) Crankcase ventilation of an internal combustion engine controlled in partial and full load operation
EP0095789B1 (en) Process and installation for the control of exhaust gas recirculation in a pressure wave supercharger for an internal-combustion engine
DE10048237A1 (en) Exhaust gas turbocharger, supercharged internal combustion engine and method therefor
DE2534295A1 (en) MACHINE SYSTEM
DE3212910C2 (en)
EP2195514A1 (en) Intake pipe for a combustion engine
DE3815991C1 (en)
DE2911727A1 (en) PISTON COMBUSTION ENGINE WITH AT LEAST TWO EXHAUST GAS TURBOCHARGERS
DE3302224C2 (en)
DE2926373A1 (en) EXHAUST Bypass Valve Assembly
WO2006119866A1 (en) Internal combustion engine with exhaust gas turbocharger and exhaust gas recirculation
DE19622891A1 (en) Exhaust gas recirculation system
EP0210328A1 (en) Turbo charger for an internal-combustion engine comprising a controlling device for the high-pressure exhaust gas flow
DE10357925A1 (en) Internal combustion engine with exhaust gas turbocharger and exhaust gas recirculation
DE10258022A1 (en) Internal combustion engine with supercharger, e.g. for vehicle, has valve device in form of rotary slide valve
WO2006111280A1 (en) Internal combustion engine with exhaust gas recirculation
DE60131161T2 (en) METHOD AND DEVICE FOR EXHAUST RECOVERY AND A CHARGED DIESEL ENGINE
DE4235794C1 (en) Exhaust gas feedback for IC engine - has feedback conduit connecting exhaust gas conduit before turbine with charging air conduit after compressor
DE3439999C1 (en) Four-stroke internal combustion engine with two exhaust turbochargers
DE2454512A1 (en) EXHAUST GAS RECIRCULATION DEVICE FOR COMBUSTION ENGINES
DE19826355A1 (en) Arrangement for controlling an exhaust gas turbocharger turbine of an internal combustion engine
DE2451148C3 (en) Exhaust gas recirculation device in internal combustion engines
EP0130433B1 (en) Turbo charger with an exhaust gas outlet valve

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19840218

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI SE

REF Corresponds to:

Ref document number: 16626

Country of ref document: AT

Date of ref document: 19851215

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19851130

REF Corresponds to:

Ref document number: 3361269

Country of ref document: DE

Date of ref document: 19860102

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19890430

Ref country code: CH

Effective date: 19890430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900315

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19900323

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900331

Year of fee payment: 8

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910407

Ref country code: AT

Effective date: 19910407

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19911230

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000502

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020201