EP0090761A1 - Spout for molten metal - Google Patents

Spout for molten metal Download PDF

Info

Publication number
EP0090761A1
EP0090761A1 EP83630051A EP83630051A EP0090761A1 EP 0090761 A1 EP0090761 A1 EP 0090761A1 EP 83630051 A EP83630051 A EP 83630051A EP 83630051 A EP83630051 A EP 83630051A EP 0090761 A1 EP0090761 A1 EP 0090761A1
Authority
EP
European Patent Office
Prior art keywords
layer
channel according
refractory
thermal conductivity
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83630051A
Other languages
German (de)
French (fr)
Other versions
EP0090761B1 (en
Inventor
Georges Fleming
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arcelor Luxembourg SA
Original Assignee
Arbed SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arbed SA filed Critical Arbed SA
Priority to AT83630051T priority Critical patent/ATE32350T1/en
Publication of EP0090761A1 publication Critical patent/EP0090761A1/en
Application granted granted Critical
Publication of EP0090761B1 publication Critical patent/EP0090761B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/14Discharging devices, e.g. for slag

Definitions

  • the present invention relates to a pouring channel intended to receive liquid metals from a furnace and in particular from the cast iron of a blast furnace.
  • Trenches comprising a wear refractory layer, in contact with the molten metal, enveloped by a permanent movement which is housed directly in the reinforced concrete slab of the pouring floor.
  • the channel fills with cast iron and slag which floats.
  • a baffle system allows density separation of the pig iron and the slag.
  • the channel is emptied and repair work must be carried out.
  • the accessibility of the hot channel as well as the duration of these works prevent a rapid re-use of the channel, which is incompatible with the rate of casting of modern blast furnaces.
  • Rehabilitation involves a large volume of strenuous work. Consequently, the technique of using the channel has been modified in order to permanently store in it a bath of liquid iron covered with a more or less significant layer of slag.
  • the temperature of the cast iron can drop after around 1,500 ° C to around 1,300 ° C.
  • the permanent presence of liquid iron in the channel results in a continuous thermal flow towards the reinforced concrete of the slab of the pouring floor which heats up in its mass, which causes stresses of expansion, bursts and cracks.
  • the support sheet and the refractory lining undergo differential expansion, which does not fail to cause stresses and cracks in the refractory lining, especially when the thermal regime to which the channel is subjected is variable p .ex. in case of occasional emptying of the channel during a shutdown of the blast furnace. These cracks allow the cast iron to infiltrate the refractory lining and this results in breakthroughs in the channel.
  • the object of the present invention is to propose a channel which does not have the defects described above and which is capable of being installed directly in the reinforced concrete structures of the pouring floor.
  • the channel according to the invention the refractory material of which is surrounded by a practically isothermal layer in which prevails a temperature preferably less than 100 ° C.
  • a practically isothermal layer in which prevails a temperature preferably less than 100 ° C.
  • the advantages of the channel are due to the presence of a layer of material maintained at low temperature and practically isothermal, which limits the heating of the support structures of the channel, which by its great capacity of distribution and evacuation of calories freezes all liquid metal infiltration into the permanent refractory lining of the channel.
  • the overall cooling rate is always quite low, so that the cast iron remains liquid even if the interval between two successive flows is 5 to 8 hours.
  • a cast iron bath 1, carrying a layer of slag 2, is in contact with a wear layer 3, the cross section of which is U-shaped.
  • This wear layer 3, formed by an unshaped material, is produced on a permanent covering 4, which in the present case consists of two layers of overlapping bricks.
  • the outer layer of bricks rests against graphite blocks 7 and cooling elements 10.
  • These elements 10 disposed both in the side walls and in the bottom of the channel are formed by sealed longitudinal conduits 5, in which circulates water, sandwiched between flat graphite bricks 6 and 8.
  • the bricks 8 are in contact with the permanent coating 4.
  • the space 9 between the conduits 5, the bricks 6 and 8 as well as the graphite blocks 7, is filled with an unshaped material, good conductor of heat, ensuring good thermal contact with the cooling tubes.
  • the unshaped material also allows expansion of the conduits caused by small temperature variations.
  • the channel is housed in a reinforced concrete slab 12.
  • An equalizing layer 11 eliminates the roughness of the concrete.
  • the graphite blocks 6,7,8 excellent heat conductors create a practically uniform temperature zone around the permanent coating 4. This temperature is controlled essentially by the flow and the temperature of the cooling water. The assembly is adjusted so as to make the temperature at the reinforced concrete - cooling layer interface prevail below 100 ° C and preferably around 60 ° C.
  • the permanent coating 4 made of bricks capable of withstanding the direct action of cast iron constitutes a thermal barrier which prevents the cooling system from drawing too much heat from the liquid cast iron.
  • the material of the bricks resp. the number of brick layers to be superimposed is chosen in accordance with the desired degree of thermal insulation. Prehistoric cooling of certain highly stressed areas can be achieved by a judicious choice of the quality of the bricks of the refractory lining of the permanent layer. To drastically reduce the erosion of the wear layer, at the points where it is particularly stressed, one can replace some of the bricks of the coating 4 by bricks with high thermal conductivity 4a, which are preferably made of semi-graphite .
  • conduits guiding the cooling fluid may be advantageous to fix the conduits guiding the cooling fluid to the outside thereon, eg by welding.
  • the channel Since it is easy to maintain a temperature below 80 ° C in the isothermal zone, the channel is particularly suitable for being housed directly in the concrete structure. from the casting floor.
  • the conduits guiding the coolant outside the construction can be arranged. ex. by welding U irons along the sheet. heat between the low temperature zone and the cooling system in this case passes through the support sheets that there is significant heating (temperature below 100 ° C).
  • the spacing, shape and arrangement of the conduits must be chosen as a function of the thermal conductivity and the thickness of the layer constituting the low temperature zone as well as the desired temperature profile in the refractory lining.
  • the conduits can be supplied in parallel or in series. To optimize the operation of the channel, the temperature of the coolant can be monitored and the flow rate can be varied depending on the temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Blast Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Ceramic Products (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

Une rigole de coulée pour métaux liquides comporte notamment une couche réfractaire d'usure (3) qui est en contact avec le métal liquide et qui est entourée par un revêtement réfractaire permanent (4). Le matériau réfractaire est entouré au moins en partie, ou constitué en partie par une couche pratiquement isotherme dans laquelle règne une température inférieure à 100°C. Cette une couche présente un coefficient de conductibilité thermique élevé et est en contact thermique avec des éléments dans lesquels circule un fluide de refroidissement. La couche présente un coefficient de conductibilité thermique supérieur à kcal/m.°C.heure. Elle est exécutée en un produit 3 à base de carbure de silicium, de carbone amorphe, de semi-graphite ou de graphite. La forme de la couche et des éléments dans lesquels circule le fluide de refroidissement est conforme au profil de température désiré dans le matériau réfractaire.A pouring channel for liquid metals in particular comprises a refractory wear layer (3) which is in contact with the liquid metal and which is surrounded by a permanent refractory lining (4). The refractory material is surrounded at least in part, or constituted in part by a practically isothermal layer in which prevails a temperature below 100 ° C. This layer has a high coefficient of thermal conductivity and is in thermal contact with elements in which a cooling fluid circulates. The layer has a coefficient of thermal conductivity greater than kcal / m. ° C. hour. It is carried out in a product 3 based on silicon carbide, amorphous carbon, semi-graphite or graphite. The shape of the layer and of the elements in which the cooling fluid circulates conforms to the desired temperature profile in the refractory material.

Description

La présente invention concerne une rigole de coulée destinée à recevoir des métaux liquides d'un fourneau et en particulier de la fonte d'un haut fourneau.The present invention relates to a pouring channel intended to receive liquid metals from a furnace and in particular from the cast iron of a blast furnace.

On connaît des rigoles comportant une couche de réfractaire d'usure, en contact avec le métal liquide, enveloppée par un mouvement pec- manent qui est logé directement dans la dalle en béton armé du plancher de coulée.Trenches are known comprising a wear refractory layer, in contact with the molten metal, enveloped by a permanent movement which is housed directly in the reinforced concrete slab of the pouring floor.

Dès l'ouverture du trou de coulée la rigole se remplit de fonte et de laitier qui surnage. Un système de chicanes permet une séparation par densité de la fonte et du laitier. A la fin de la coulée, la rigole est vidée et il faut procéder à des travaux de remise en état. L'accessibilité de la rigole chaude ainsi que la durée de ces travaux empêchent une réutilisation rapide de la rigole, ce qui est incompatible avec la cadence de coulée des hauts fourneaux modernes. La remise en état implique un important volume de travaux pénibles. On a, par conséquent, modifié la technique d'utilisation de la rigole pour conserver en permanence dans celle-ci un bain de fonte liquide recouvert d'une couche de laitier plus ou moins importante. Entre deux coulées, la température de la fonte peut chuter aprés quelque 1.500°C à environ 1300°C. De la présence permanente de fonte liquide dans la rigole résulte un flux thermique continu vers le béton armé de la dalle du plancher de coulée qui s'échauffe dans sa masse, ce qui provoque des contraintes de dilatation, des éclatements et des fissures.As soon as the tap hole opens, the channel fills with cast iron and slag which floats. A baffle system allows density separation of the pig iron and the slag. At the end of the casting, the channel is emptied and repair work must be carried out. The accessibility of the hot channel as well as the duration of these works prevent a rapid re-use of the channel, which is incompatible with the rate of casting of modern blast furnaces. Rehabilitation involves a large volume of strenuous work. Consequently, the technique of using the channel has been modified in order to permanently store in it a bath of liquid iron covered with a more or less significant layer of slag. Between two castings, the temperature of the cast iron can drop after around 1,500 ° C to around 1,300 ° C. The permanent presence of liquid iron in the channel results in a continuous thermal flow towards the reinforced concrete of the slab of the pouring floor which heats up in its mass, which causes stresses of expansion, bursts and cracks.

Pour pallier cet inconvénient, on a utilisé des rigoles dont le revêtement réfractaire est logé dans une construction en tôle qui elle-même est supportée par des éléments de structure du plancher de coulée. Selon le support, la tôle peut être refroidie, soit par convection naturelle de l'air ambiant, soit par ventilation forcée. Ce mode de refroidissement peu efficace ne permet aucun refroidissement préférentiel d'une zone déterminée de la rigole. Normalement la tôle atteint une température qui est de 150 à 300°C selon l'usure du réfractaire. La vitesse de refroidissement de la fonte dans cette rigole, bien que plus élevée que pour une rigole massive, est toujours assez faible pour que la fonte demeure dans son état liquide, même si l'invervalle entre 2 coulées successives est de l'ordre de 5 à 8 heures. Sous l'effet des températures, la tôle de support et le revêtement réfractaire subissent des dilatations différentielles, ce qui ne manque pas de provoquer des contraintes et des fissures dans le revêtement réfractaire, surtout lorsque le régime thermique auquel est soumis la rigole est variable p.ex. en cas de vidange occasionnel de la rigole lors d'un arrêt du haut fourneau. Ces fissures permettent à la fonte de s'infiltrer dans le revêtement réfractaire et il en résulte des percées de la rigole.To overcome this drawback, we used channels whose refractory lining is housed in a sheet metal construction which itself is supported by structural elements of the pouring floor. Depending on the support, the sheet can be cooled, either by natural convection of the ambient air, or by forced ventilation. This inefficient cooling mode does not allow any preferential cooling of a determined zone of the channel. Normally the sheet reaches a temperature which is 150 to 300 ° C depending on the wear of the refractory. The rate of cooling of the cast iron in this channel, although higher than for a massive channel, is still low enough for the cast iron to remain in its liquid state, even if the interval between 2 successive flows is of the order of 5 to 8 hours. Under the effect of temperatures, the support sheet and the refractory lining undergo differential expansion, which does not fail to cause stresses and cracks in the refractory lining, especially when the thermal regime to which the channel is subjected is variable p .ex. in case of occasional emptying of the channel during a shutdown of the blast furnace. These cracks allow the cast iron to infiltrate the refractory lining and this results in breakthroughs in the channel.

La présente invention a comme but de proposer une rigole qui ne présente pas les défauts précédemment décrits et qui est susceptible d'être implantée directement dans les structures en béton armé du plancher de coulée.The object of the present invention is to propose a channel which does not have the defects described above and which is capable of being installed directly in the reinforced concrete structures of the pouring floor.

Ce but est atteint par la rigole selon l'invention dont le matériau réfractaire est entouré par une couche pratiquement isotherme dans laquelle règne une température de préférence inférieure à 100°C. Des réalisations préférentielles de la rigole sont décrites dans les sous-revendications.This object is achieved by the channel according to the invention, the refractory material of which is surrounded by a practically isothermal layer in which prevails a temperature preferably less than 100 ° C. Preferential embodiments of the channel are described in the subclaims.

Les avantages de la rigole sont dûs à la présence d'une couche de matière maintenue à basse température et pratiquement isotherme, qui limite l'échauffement des structures de support de la rigole nt qui par sa grande capacité de distribution et d'évacuation des calories permet de figer toutes les infiltrations de métal liquide dans le revêtement réfractaire permanent de la rigole. La distribution des températures dans le revêtement réfractaire pouvant être calculée, on peut prévoir sans danger des joints de dilatation bien déterminés, ce qui diminue les contraintes mécaniques, dues aux dilatations thermiques, subies par l'ensemble et transmises aux structures de support de la rigole. En outre en utilisant dans la couche permanente des réfractaires ayant des conductibilités thermiques différentes, on peut soit isoler thermiquement différentes zones de la rigole pour limiter les déperditions calorifiques de la fonte, soit au contraire refroidir plus intensément des zones fortement sollicitées. La vitesse de refroidissement globale est toujours assez faible, pour que la fonte demeure liquide même si l'intervalle entre deux coulées successives est de 5 à 8 heures.The advantages of the channel are due to the presence of a layer of material maintained at low temperature and practically isothermal, which limits the heating of the support structures of the channel, which by its great capacity of distribution and evacuation of calories freezes all liquid metal infiltration into the permanent refractory lining of the channel. As the distribution of temperatures in the refractory lining can be calculated, well-defined expansion joints can be provided without danger, which reduces the mechanical stresses, due to thermal expansion, undergone by the assembly and transmitted to the support structures of the channel . In addition, by using refractories in the permanent layer having different thermal conductivities, it is possible either to thermally isolate different zones of the channel to limit the heat losses of the cast iron, or on the contrary to cool more intensively zones which are highly stressed. The overall cooling rate is always quite low, so that the cast iron remains liquid even if the interval between two successive flows is 5 to 8 hours.

L'invention sera mieux comprise à l'aide du dessin, où une forme d'exécution possible est représentée de manière non-limitative en fig.l. Le dessin montre une coupe partielle à travers une rigole conforme à l'invention.The invention will be better understood with the aid of the drawing, where a possible embodiment is shown in a nonlimiting manner in fig.l. The drawing shows a partial section through a channel according to the invention.

Un bain de fonte 1, portant une coucha de laitier 2, se trouve en contact avec une couche d'usure 3, dont la section est en forme de U. Cette couche d'usure 3, constituée par un matériau non façonné, est réalisée sur un revêtement permanent 4, qui dans le cas présent consiste en deux couches de briques superposées. La couche externe de briques s'appuie contre des blocs en graphite 7 et des éléments de refroidissements 10. Ces éléments 10 disposés aussi bien dans les parois latérales que dans le fond de la rigole sont constitués par des conduits longitudinaux étanches 5, dans lesquels circule de l'eau, pris en sandwich entre des briques plates en graphite 6 et 8. Les briques 8 sont en contact avec le revêtement permanent 4. L'espace 9 entre les conduits 5, les briques 6 et 8 ainsi que les blocs en graphite 7, est rempli par un matériau non-façonné, bon conducteur de la chaleur, assurant un bon contact thermique avec les tubes de refroidissement. Le matériau non façonné permet également une dilatation des conduits provoquée par des petits variations de température. La rigole est logée dans une dalle en béton armé 12. Une couche égalisa-trice 11 élimine les rugosités du béton.A cast iron bath 1, carrying a layer of slag 2, is in contact with a wear layer 3, the cross section of which is U-shaped. This wear layer 3, formed by an unshaped material, is produced on a permanent covering 4, which in the present case consists of two layers of overlapping bricks. The outer layer of bricks rests against graphite blocks 7 and cooling elements 10. These elements 10 disposed both in the side walls and in the bottom of the channel are formed by sealed longitudinal conduits 5, in which circulates water, sandwiched between flat graphite bricks 6 and 8. The bricks 8 are in contact with the permanent coating 4. The space 9 between the conduits 5, the bricks 6 and 8 as well as the graphite blocks 7, is filled with an unshaped material, good conductor of heat, ensuring good thermal contact with the cooling tubes. The unshaped material also allows expansion of the conduits caused by small temperature variations. The channel is housed in a reinforced concrete slab 12. An equalizing layer 11 eliminates the roughness of the concrete.

Les blocs en graphite supérieurs et les briques avoisinantes du revêtement permanent sont protégés par des segment de tôle 14. Sur cette tôle ainsi que sur la couche d'usure 3 se trouve une couche en béton 17, qui protège la tôle lors de débordements accidentels de la rigole. Des barres 16 fixent la tôle 15, solidaire de la tôle 14, aux armatures du béton. Entre la tôle horizontale 14 et les blocs en graphite, ainsi que les briques du revêtement permanent, se trouve un joint de dilatation 13.The upper graphite blocks and the neighboring bricks of the permanent coating are protected by sheet metal segments 14. On this sheet as well as on the wear layer 3 there is a concrete layer 17, which protects the sheet during accidental overflows of laugh. Bars 16 fix the sheet 15, integral with the sheet 14, to the reinforcements of the concrete. Between the horizontal sheet 14 and the graphite blocks, as well as the bricks of the permanent covering, is an expansion joint 13.

Les blocs en graphite 6,7,8 excellents conducteurs de la chaleur créent une zone de température pratiquement uniforme autour du revêtement permanent 4. Cette température est contrôlée essentiellement par l'intermédiaire du débit et de la température de l'eau de refroidissement. L'ensemble est réglé de sorte à faire régner à l'interface béton armé - couche de refroidissement une température inférieure à 100° C et de préférence autour de 60°C.The graphite blocks 6,7,8 excellent heat conductors create a practically uniform temperature zone around the permanent coating 4. This temperature is controlled essentially by the flow and the temperature of the cooling water. The assembly is adjusted so as to make the temperature at the reinforced concrete - cooling layer interface prevail below 100 ° C and preferably around 60 ° C.

Le revêtement permanent 4 réalisé en briques capables de résister à l'action directe de la fonte constitue un barrage thermique qui évite que le système de refroidissement ne soutire trop de chaleur à la fonte liquide. Le matériau constituant les briques resp. le nombre de couches de briques qu'il faut superposer, est choisi conformément au degré d'isolation thermique désiré. Un refroidissement préféreh- tiel de certaines zones fortement sollicitées peut être réalisé par un choix judicieux de la qualité des briques du revêtement réfractaire de la couche permanente. Pour diminuer radicalement l'érosion de la couche d'usure, aux points où celle-ci est particulièrement sollicitée, on peut remplacer une partie des briques du revêtement 4 par des briques à conductibilité thermique élevée 4a, qui sont de préférence en semi-graphite.The permanent coating 4 made of bricks capable of withstanding the direct action of cast iron constitutes a thermal barrier which prevents the cooling system from drawing too much heat from the liquid cast iron. The material of the bricks resp. the number of brick layers to be superimposed is chosen in accordance with the desired degree of thermal insulation. Prehistoric cooling of certain highly stressed areas can be achieved by a judicious choice of the quality of the bricks of the refractory lining of the permanent layer. To drastically reduce the erosion of the wear layer, at the points where it is particularly stressed, one can replace some of the bricks of the coating 4 by bricks with high thermal conductivity 4a, which are preferably made of semi-graphite .

A l'interface de la couche d'usure et du revêtement permanent règnent, suivant la conductibilité thermique locale du revêtement permanent et suivant le degré d'érosion de la couche d'usure 3, des températures comprises entre 100 et 1100° C.Temperatures between 100 and 1100 ° C prevail at the interface of the wear layer and the permanent coating, depending on the local thermal conductivity of the permanent coating and the degree of erosion of the wear layer 3.

En cas d'une infiltration de fonte liquide dans d'éventuelbles fissures dans la couche d'usure 3 et dans le revêtement permanent 4, le métal se solidifiera immédiatement au contact des blocs en graphite 7 et 8, maintenus à basse température et n'aura aucun effet néfaste.In the event of liquid iron infiltration into possible fis Safe in the wear layer 3 and in the permanent coating 4, the metal will solidify immediately on contact with the graphite blocks 7 and 8, kept at low temperature and will have no harmful effect.

On peut remplacer le graphite (coefficient de conductibilité thermique λ ≃ 80 Kcal/m°C heure) en tout ou en partie par un autre matériau comme p.ex. un produit à base de carbure de silicium (λ ≃ 15), de semi-graphite (λ ≃ 30) etc., dont les propriétés de conductibilité thermique sont élevées. On ne sort pas du cadre de l'invention en utilisant des matériaux métalliques, p.ex. des plaques de fonte (λ ≃80), d'acier (λ ≃ 30) ou de cuivre (λ ≃ 30) pour réaliser la zone de basse température. Il faut évidemment choisir les plaques métalliques assez épaisses (p. ex. 5 à 20 centimètres) pourqu'elles aient des capacités suffisantes d'absorption, de distribution et d'évacuation des calories. Ces plaques, dont l'épaisseur est choisie en fonction de leur conductibilité thermique, éviteront tout perçage lors d'infiltrations de métal liquide dans le revêtement réfractaire permanent.We can replace graphite (coefficient of thermal conductivity λ ≃ 80 Kcal / m ° C hour) in whole or in part by another material such as a product based on silicon carbide (λ ≃ 15), semi -graphite (λ ≃ 30) etc., whose thermal conductivity properties are high. It is not outside the scope of the invention to use metallic materials, eg cast iron (λ ≃80), steel (λ ≃ 30) or copper (λ ≃ 30) plates to make the area low temperature. Obviously, the metal plates that are thick enough (eg 5 to 20 cm) must be chosen so that they have sufficient capacity for absorbing, distributing and dissipating calories. These plates, the thickness of which is chosen according to their thermal conductivity, will prevent any drilling during infiltration of liquid metal into the permanent refractory lining.

L'utilisation d'un matériau non-façonné adéquat ser l'ensemble ou une partie de la zone de basse température permet de noyer les conduits de refroidissement dans celui-ci. On peut envisager également de disposer les conduits dans une couche de matériau de faible conductibilité thermique (p.ex.λ ≃ 2) entourant la zone de basse température et en contact direct avec celle-ci. Il faudra cependant veiller dans ce cas à avoir une évacuation suffisante des calories pour que la zone isotherme ne dépasse pas quelque 100 °C. Ceci peut par exemple être assuré en choisissant un nombre élevé de conduits disposés tout près de la zone à basse température.The use of an unshaped material suitable for all or part of the low temperature zone makes it possible to drown the cooling conduits therein. It is also conceivable to arrange the conduits in a layer of material of low thermal conductivity (e.g. λ 2) surrounding the low temperature zone and in direct contact with it. In this case, however, care must be taken to have sufficient heat dissipation so that the isothermal zone does not exceed around 100 ° C. This can for example be ensured by choosing a high number of conduits arranged very close to the low temperature zone.

Lors d'utilisation de plaques métalliques il peut être avantageux de fixer les conduits guidant le fluide de refroidissement à l'extérieur sur celles-ci p.ex. par soudage.When using metal plates it may be advantageous to fix the conduits guiding the cooling fluid to the outside thereon, eg by welding.

Etant donnée qu'il est aisé de maintenir dans la zone isotherme une température inférieure à quelque 80 °C, la rigole est particulièrement adaptée à être logée directement dans la structure en béton ar- mé du plancher de coulée. Lorsque par contre on préfère l'utilisation construction en tôle pour la supporter, on pourra dispo- set Les conduits guidant le fluide de refroidissement à l'extérieur de la construction p. ex. en soudant des fers U le long de la tôle. calorifique entre la zone à basse température et le système de refroidissement passe dans ce cas à travers les tôles de support qu'il y ait une échauffement important (température inférieure à 100 °C).Since it is easy to maintain a temperature below 80 ° C in the isothermal zone, the channel is particularly suitable for being housed directly in the concrete structure. from the casting floor. When, on the other hand, the use of sheet metal construction is preferred for supporting it, the conduits guiding the coolant outside the construction can be arranged. ex. by welding U irons along the sheet. heat between the low temperature zone and the cooling system in this case passes through the support sheets that there is significant heating (temperature below 100 ° C).

L'espacement, la forme et la disposition des conduits doit être choisie en fonction de la conductibilité thermique et de l'épaisseur de la couche constituant la zone de basse température ainsi que du profil de température désiré dans le revêtement réfractaire.The spacing, shape and arrangement of the conduits must be chosen as a function of the thermal conductivity and the thickness of the layer constituting the low temperature zone as well as the desired temperature profile in the refractory lining.

Pour augmenter la sécurité de fonctionnement de la rigole, on peut prévoir à la place de l'eau, un autre fluide de refroidissement, comme prex de l'huile.To increase the operational safety of the channel, it is possible to provide, instead of water, another cooling fluid, such as oil.

Les conduits peuvent être alimentés en parallèle ou en série. Pour optimiser l'exploitation de la rigole on peut suivre la température du fluide de refroidissement et varier le débit en fonction de la température.The conduits can be supplied in parallel or in series. To optimize the operation of the channel, the temperature of the coolant can be monitored and the flow rate can be varied depending on the temperature.

Claims (10)

1. Rigole de coulée pour métaux liquides, destinée à recevoir des métaux liquides d'un fourneau, comportant notamment une couche réfractaire d'usure (3) qui est en contact avec le métal liquide et qui est entourée par un revêtement réfractaire permanent (4), caractérisée en ce que le matériau réfractaire est entouré par une couche pratiquement isocherme dans laquelle règne une température de préférence inférieure à 100°C.1. pouring channel for liquid metals, intended to receive liquid metals from a furnace, comprising in particular a refractory wear layer (3) which is in contact with the liquid metal and which is surrounded by a permanent refractory lining (4 ), characterized in that the refractory material is surrounded by a practically isochemical layer in which prevails a temperature preferably less than 100 ° C. 2. Rigole selon la revendication 1, caractérisée en ce que le matériau réfractaire est entouré au moins en partie ou constitué en partie par une couche qui présente un coefficient de conductibilité thermique élevé et qui est en contact thermique avec des conduits dans lesquels circule un fluide de refroidissement.2. A channel according to claim 1, characterized in that the refractory material is surrounded at least in part or constituted in part by a layer which has a high coefficient of thermal conductivity and which is in thermal contact with conduits in which a fluid circulates cooling. 3. Rigole selon la revendication 2, caractérisée en ce que ladite couche présente un coefficient de conductibilité thermique supérieur à 10 kcal/m.°C.heure, de préférence supérieure 25 Kcal/m °C heure.3. A channel according to claim 2, characterized in that said layer has a coefficient of thermal conductivity greater than 10 kcal / m. ° C. hour, preferably greater than 25 Kcal / m ° C hour. 4. Rigole selon les revendications 2 ou 3, caractérisée en ce que ladite couche est exécutée essentiellement en un produit à base de ou en carbure de silicium, semi-graphite, graphite.4. Channel according to claims 2 or 3, characterized in that said layer is carried out essentially in a product based on or in silicon carbide, semi-graphite, graphite. 5. Rigole selon les revendications 2 ou 3, caractérisée en ce que ladite couche est exécutée essentiellement avec des éléments eu métal, de préférence en cuivre, en fonte ou en acier.5. Channel according to claims 2 or 3, characterized in that said layer is carried out essentially with elements of metal, preferably copper, cast iron or steel. 6. Rigole selon une des revendications 2 à 5, caractérisée en ce que les conduits dans lesquels circule un flutes de refroidissement cont intégrés dans ladite couche qui présente un coefficient de conductibilité thermique élevé.6. Channel according to one of claims 2 to 5, characterized in that the conduits in which circulates a cooling flutes cont integrated into said layer which has a high coefficient of thermal conductivity. 7. Rigole selon une des revedications 2 à 5, caractérisée en ce que Les conduits dans lesquels circule un fluide de refroidissement sont dans ou fixés sur une couche de matière qui est en avec coefficient de conductibilité éleve.7. Channel according to one of claims 2 to 5, characterized in that the conduits in which a cooling fluid circulates are in or fixed on a layer of material which is in with high coefficient of conductivity. 8. Rigole selon la revendication 2, caractérisée en ce que ladite couche qui présente un coefficient de conductibilité thermique élevé est constituée par les matériaux différents et a une épaisseur varialble, conformément au profil de température désiré dans le réfractaire d'usure.8. A channel according to claim 2, characterized in that said layer which has a high coefficient of thermal conductivity consists of different materials and has a variable thickness, in accordance with the desired temperature profile in the wear refractory. 9. Rigole selon les revendications 1 ou 2 caractérisée en ce que le revêtement permanent est constitué par des matériaux différents d'épaisseur et de conductibilité thermique variable, conformément au profil de température désiré dans le réfractaire d'usure.9. Channel according to claims 1 or 2 characterized in that the permanent coating consists of different materials of varying thickness and thermal conductivity, in accordance with the desired temperature profile in the wear refractory. 10. Rigole selon la revendications 2, caractérisée en ce que ladite disposition, le nombre et la forme des conduits dans lesquels circule le fluide de refroidissement est conforme au profil de température désiré dans le matériau réfractaire.10. A channel according to claim 2, characterized in that said arrangement, the number and the shape of the conduits in which the cooling fluid circulates conforms to the desired temperature profile in the refractory material.
EP83630051A 1982-03-26 1983-03-15 Spout for molten metal Expired EP0090761B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83630051T ATE32350T1 (en) 1982-03-26 1983-03-15 CHANNEL FOR METAL METAL.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LU84042 1982-03-26
LU84042A LU84042A1 (en) 1982-03-26 1982-03-26 CASTING RIGOLE FOR LIQUID METALS

Publications (2)

Publication Number Publication Date
EP0090761A1 true EP0090761A1 (en) 1983-10-05
EP0090761B1 EP0090761B1 (en) 1988-02-03

Family

ID=19729848

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83630051A Expired EP0090761B1 (en) 1982-03-26 1983-03-15 Spout for molten metal

Country Status (15)

Country Link
US (1) US4508323A (en)
EP (1) EP0090761B1 (en)
JP (1) JPS58181812A (en)
KR (1) KR910001483B1 (en)
AR (1) AR230579A1 (en)
AT (1) ATE32350T1 (en)
AU (1) AU554627B2 (en)
BR (1) BR8301539A (en)
CA (1) CA1210583A (en)
DE (1) DE3375582D1 (en)
ES (1) ES520463A0 (en)
LU (1) LU84042A1 (en)
MX (1) MX158032A (en)
PT (1) PT76439B (en)
ZA (1) ZA832009B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0143971A1 (en) * 1983-10-28 1985-06-12 Betriebsforschungsinstitut VDEh Institut für angewandte Forschung GmbH Runner for a shaft furnace
EP0404212A1 (en) * 1989-06-21 1990-12-27 Hoogovens Groep B.V. Channel structure for flow of molten pig iron
US5088695A (en) * 1991-03-05 1992-02-18 Hoogovens Groep Bv Iron runner
EP0501045A1 (en) * 1991-02-27 1992-09-02 Hoogovens Groep B.V. Iron runner
NL1003885C2 (en) * 1996-08-27 1998-03-03 Hoogovens Tech Services Gutter for a hot melt and gutter system.
LU90195B1 (en) * 1998-01-15 1999-07-16 Wurth Paul Sa Tapping gutter for an iron smelter
CN101934434A (en) * 2010-09-26 2011-01-05 大庆市锐虹机械制造有限公司 Cast iron hot repair welding process and device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8803103A (en) * 1988-12-19 1990-07-16 Hoogovens Groep Bv IRON GUT.
NL1007881C2 (en) * 1997-12-23 1999-06-24 Hoogovens Tech Services Gutter for conducting a flow of liquid metal.
JP5546874B2 (en) * 2010-01-13 2014-07-09 東京窯業株式会社 Hot metal
US9073119B2 (en) * 2012-06-14 2015-07-07 Pyrotek Inc. Receptacle for handling molten metal, casting assembly and manufacturing method
CN106270475B (en) * 2016-11-10 2018-11-06 芜湖新兴铸管有限责任公司 Pouring ladle sizing packet mouth
CN110331247A (en) * 2019-08-21 2019-10-15 北京瑞尔非金属材料有限公司 A kind of cooling type molten iron tap drain and cooling means

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB257261A (en) * 1925-08-20 1927-07-21 Carborundum Co Improvements in or relating to furnaces
FR2066312A5 (en) * 1969-11-12 1971-08-06 Demag Ag
FR2243404A1 (en) * 1973-09-12 1975-04-04 Hoogovens Ijmuiden Bv
EP0023716A1 (en) * 1979-08-03 1981-02-11 Nippon Steel Corporation Blast furnace and method of operation
EP0040440A2 (en) * 1980-03-21 1981-11-25 Hoogovens Groep B.V. A shaft furnace, particularly the refractory construction of the bottom thereof
EP0060239A1 (en) * 1981-03-04 1982-09-15 VOEST-ALPINE Aktiengesellschaft Outlet trough for molten metal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS422321Y1 (en) * 1964-09-03 1967-02-13
SU392093A1 (en) * 1971-05-14 1973-07-27 Всесоюзный научно исследовательский , проектный институт очистке технологических газов, сточных вод , использованию вторичных энергоресурсов предпри тий черной металлургии GALVES FOR ISSUES OF CAST IRON

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB257261A (en) * 1925-08-20 1927-07-21 Carborundum Co Improvements in or relating to furnaces
FR2066312A5 (en) * 1969-11-12 1971-08-06 Demag Ag
FR2243404A1 (en) * 1973-09-12 1975-04-04 Hoogovens Ijmuiden Bv
EP0023716A1 (en) * 1979-08-03 1981-02-11 Nippon Steel Corporation Blast furnace and method of operation
EP0040440A2 (en) * 1980-03-21 1981-11-25 Hoogovens Groep B.V. A shaft furnace, particularly the refractory construction of the bottom thereof
EP0060239A1 (en) * 1981-03-04 1982-09-15 VOEST-ALPINE Aktiengesellschaft Outlet trough for molten metal

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENTS ABSTRACTS OF JAPAN, vol. 4, no. 166(C-31)(648), 18 novembre 1980, page 51C31 & JP-A-55 107 707 (SUMITOMO KINZOKU KOGYO K.K.) 19-08-1980 *
PATENTS ABSTRACTS OF JAPAN, vol. 5, no. 156(C-74)(828), 6 octobre 1981 & JP-A-56 087612 (SHIN NIPPON SEITETSU K.K.) 16-07-1981 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0143971A1 (en) * 1983-10-28 1985-06-12 Betriebsforschungsinstitut VDEh Institut für angewandte Forschung GmbH Runner for a shaft furnace
EP0404212A1 (en) * 1989-06-21 1990-12-27 Hoogovens Groep B.V. Channel structure for flow of molten pig iron
US5031882A (en) * 1989-06-21 1991-07-16 Hoogovens Groep B.V. Channel structure for flow of molten pig iron
EP0501045A1 (en) * 1991-02-27 1992-09-02 Hoogovens Groep B.V. Iron runner
US5088695A (en) * 1991-03-05 1992-02-18 Hoogovens Groep Bv Iron runner
NL1003885C2 (en) * 1996-08-27 1998-03-03 Hoogovens Tech Services Gutter for a hot melt and gutter system.
WO1998008982A1 (en) * 1996-08-27 1998-03-05 Hoogovens Technical Services Europe B.V. Runner for a hot melt, runner system and method for conveying a hot melt
US6090340A (en) * 1996-08-27 2000-07-18 Hoogovens Technical Services Europe Bv Runner for a hot melt, runner system and method for conveying a hot melt
LU90195B1 (en) * 1998-01-15 1999-07-16 Wurth Paul Sa Tapping gutter for an iron smelter
WO1999036580A1 (en) * 1998-01-15 1999-07-22 Paul Wurth S.A. Tapping launder for an iron smelt
CN101934434A (en) * 2010-09-26 2011-01-05 大庆市锐虹机械制造有限公司 Cast iron hot repair welding process and device
CN101934434B (en) * 2010-09-26 2012-10-03 大庆市锐虹机械制造有限公司 Cast iron hot repair welding process and device

Also Published As

Publication number Publication date
PT76439B (en) 1985-12-20
EP0090761B1 (en) 1988-02-03
ES8407101A1 (en) 1984-08-16
AU554627B2 (en) 1986-08-28
CA1210583A (en) 1986-09-02
ES520463A0 (en) 1984-08-16
LU84042A1 (en) 1983-11-17
JPH0225962B2 (en) 1990-06-06
PT76439A (en) 1983-04-01
ZA832009B (en) 1983-11-30
KR840003970A (en) 1984-10-06
MX158032A (en) 1988-12-18
KR910001483B1 (en) 1991-03-09
ATE32350T1 (en) 1988-02-15
AU1269083A (en) 1983-09-29
JPS58181812A (en) 1983-10-24
AR230579A1 (en) 1984-05-31
DE3375582D1 (en) 1988-03-10
US4508323A (en) 1985-04-02
BR8301539A (en) 1983-12-06

Similar Documents

Publication Publication Date Title
EP0090761B1 (en) Spout for molten metal
CA2119596C (en) Process and apparatus for melting glass
JP4653758B2 (en) Heating rod for molten metal
FR2493871A1 (en) COOLING PLATES FOR BLAST FURNACES
FR2554024A1 (en) IMMERSION CASTING BUSH
CA1086806A (en) Metallurgical pocket for inductive treatment of metals
Smith et al. Toward understanding pore formation and mobility during controlled directional solidification in a microgravity environment investigation (PFMI)
JP3785449B2 (en) Refractory structure of blast furnace cast iron
EP0430740A1 (en) Cooling plates for blast furnaces and cooling system utilizing such cooling plates
EP0012132A1 (en) Metallic cooling devices for industrial furnaces
FR2537261A1 (en) Method and device for the use of a direct current arc furnace
FR2354525A1 (en) FUSION AND CASTING EQUIPMENT
BE897590A (en) MOLDED INSULATION ELEMENTS FOR COATING COOLING DUCTWORK
FR2707272A1 (en) Improvements brought to the cooled rollers for the handling of products in particular metallurgical and iron and steel.
JP4655301B2 (en) Metal melting and tapping equipment
JP2010280552A (en) Conveying member for silicon melt and method for conveying silicon melt
EP0043329B1 (en) Electric arc furnace with controlled operation
FR2520101A1 (en) Refractory linings for molten metal ladles - using heat pipes for improved durability
FR2489948A1 (en) DEVICE FOR PRODUCING AND COATING A MELT BATH OF MINERAL OR METALLIC MATERIALS
FR2530325A1 (en) Device for cooling the wall of a metallurgical furnace.
FR2606128A1 (en) FUSION ELECTRIC OVEN
BE560197A (en)
EP0410829A1 (en) Process for heating a metallic bath
EP0531393A1 (en) Graphitization process and furnace
BE413573A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19840321

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 32350

Country of ref document: AT

Date of ref document: 19880215

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 3375582

Country of ref document: DE

Date of ref document: 19880310

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910206

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910209

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910219

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910304

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910313

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910320

Year of fee payment: 9

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910331

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920315

Ref country code: AT

Effective date: 19920315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19920331

BERE Be: lapsed

Owner name: S.A. ARBED

Effective date: 19920331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19921001

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19921130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 83630051.7

Effective date: 19921005