EP0090713B1 - Système de conduite de tir à lunette d'observation asservie par un dispositif de poursuite automatique - Google Patents

Système de conduite de tir à lunette d'observation asservie par un dispositif de poursuite automatique Download PDF

Info

Publication number
EP0090713B1
EP0090713B1 EP19830400570 EP83400570A EP0090713B1 EP 0090713 B1 EP0090713 B1 EP 0090713B1 EP 19830400570 EP19830400570 EP 19830400570 EP 83400570 A EP83400570 A EP 83400570A EP 0090713 B1 EP0090713 B1 EP 0090713B1
Authority
EP
European Patent Office
Prior art keywords
telescope
tracking
orientation
tracking device
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19830400570
Other languages
German (de)
English (en)
Other versions
EP0090713A1 (fr
Inventor
Jean Dansac
Robert Pressiat
Bernard Grancoin
Jean-Paul Lepeytre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0090713A1 publication Critical patent/EP0090713A1/fr
Application granted granted Critical
Publication of EP0090713B1 publication Critical patent/EP0090713B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/32Devices for testing or checking
    • F41G3/326Devices for testing or checking for checking the angle between the axis of the gun sighting device and an auxiliary measuring device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/06Aiming or laying means with rangefinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/14Indirect aiming means
    • F41G3/145Indirect aiming means using a target illuminator

Definitions

  • the present invention relates to a fire control system, and more precisely to an automatic target targeting and tracking system, particularly suitable for use on aircraft (combat helicopter in particular).
  • the operator sends to an automatic tracking device, during this search phase or at the end of this phase, an order of forced orientation of the tracking device along the axis of the telescope; then he decides to go into the automatic tracking phase and sends the tracking device an automatic orientation order on a spotted target.
  • the tracking device comprises, in order to ensure the execution of this last point, on the one hand an aiming optic providing an image (video for example) of the target, and on the other hand ecartometry circuits operating for example by contrast or by correlation, which locate the displacements of the image of the target in the field of the optical sight and which ensure the adequate orientation of the tracking device to bring back this image of target in the axis of aimed.
  • Information on the direction taken by the tracking device is continuously transmitted, with appropriate fire corrections, to a destruction weapon which therefore targets the target as long as it remains centered in the line of sight of the tracking device. pursuit, and the operator can send a firing order at any time.
  • the magnifying telescope follow the movements of the tracking device when the latter is performing an automatic tracking phase, so that the operator can use the telescope as a means of visual control of the proper execution of the tracking.
  • the operator in case of loss of the target by the tracking device (passage behind a curtain of trees etc 7), the operator must be able to regain control immediately or verify that the tracking device catches the target by itself lost (at the exit of the curtain of trees for example).
  • the optics of the telescope and the optics of the tracking device must aim at the same point. otherwise the operator must perform an additional phase of checking or resetting the image given by the tracking device before entering the tracking phase.
  • the object of the invention is to remedy these drawbacks.
  • a combined sighting and tracking device for a missile guidance system is known from French patent 2,230,247. It includes a pivotally mounted telescopic sight and a pivotally mounted tracking device rigidly coupled to the telescope for pivoting with the latter, the optical axes of the telescope and of the tracking device being approximately collimated.
  • the tracking device has a photoelectric screen and a projection system capable of projecting onto said screen a real image of a light source to which the tracking device is directed.
  • the screen produces electrical signals of coordinates dependent on the offset coordinates of the projected image relative to the electrical center of the screen.
  • it further comprises a point light source, optical means for injecting a light brush from this point source into the optical systems of the telescope and of the tracking device, so that an image of the point source appears in the center of the field in the lens of the telescope and that a real image of the point source is projected on the tracking screen.
  • electrical cancellation means which generate electrical control voltages which suppress the electrical output signals from the screen produced by the projected image of the point source so as to compensate for any shift of said image with respect to the electrical center of the screen.
  • This registration makes it possible to effectively overcome parallax errors and errors due to deformations of the structure of the aircraft. It has the advantage of being able to be done by using as a means of laser illumination the laser rangefinder which is often provided in a fire control system (to work out ballistic corrections of shooting according to the distance from the target), provided that this laser rangefinder effectively emits parallel to the axis of the sighting device or even precisely along the axis thereof.
  • the fire control system mounted for example on a helicopter, comprises a certain number of elements of which only those which are necessary for the understanding of the invention will be described. For example, we will not describe all the display systems with which the fire control system can be provided to assist the operator or the pilot.
  • FIG. 1 there is a magnifying observation telescope 10, adjustable in elevation and in bearing by motors which are preferably couple-motors with electromagnetic drive to avoid the presence of gears in the transmission of the movement.
  • the telescope 10 can moreover be gyrostabilized, that is to say that orientation control signals are applied to these motors not directly but by means of gyrometers (simple or integrating gyrometers or two-axis gyroscopes with suspension granted) fixed on the telescope, these gyrometers having for axes the axes of rotation in elevation and in bearing.
  • FIG. 1 To simplify the description of the invention, there has been shown in FIG. 1 only a bearing orientation motor 12 for the telescope; the whole description will moreover be made only with reference to the axes of rotation in the deposit, it being understood that two similar independent circuit paths are necessary respectively for the orientation in elevation and the orientation in the deposit.
  • the axis of rotation in bearing of the telescope 10 is designated by the reference 14.
  • the axis of rotation in elevation would be perpendicular to the plane of the figure.
  • An amplifier 16 supplies control signals to the motor 12 (directly or via a gyro-stabilization system). We will see below where these signals come from.
  • An angular sensor 18 makes it possible to locate the orientation in bearing of the telescope; of course, another sensor is provided for the orientation in elevation.
  • an automatic tracking device 20 constitutes another important element of the fire control system. It is also orientable in elevation and in bearing (orientation motor in bearing 22) around an axis of rotation in bearing 24 and it is preferably gyrostabilized, that is to say that it receives control signals from an amplifier 26 not directly but by means of a gyro-stabilization system (not shown here) comprising gyrometers or integrating gyrometers or a gyroscope with tuned suspension whose sensitive axes are the axis of rotation in bearing 24 and a axis of rotation in elevation perpendicular to the plane of Figure 1.
  • the drive motors of the automatic tracking device are preferably electromagnetic drive.
  • Angular orientation sensors in bearing (28) and in elevation are provided on the tracking device 20 to identify its orientation at any time.
  • the tracking device comprises an objective for forming on an image detector 30 the image of a target situated in the field of view of this objective; the optical axis of this objective is called the line of sight of the device 20 and is designated by the reference 32.
  • the image detector 30 which can be a vidicon tube supplying a video signal or a matrix of photosensitive detectors, supplies electrical signals representing the image of the field of view (and in particular of the target being tracked) to a deviation circuit 34 and possibly to display screens (television monitor, etc.).
  • the deviation circuit 34 which provides tracking, generates elevation and bearing deviation signals representing the difference between the position of the target in the image and a reference position (for example the center of the picture); these signals are intended for the amplifier 26 which controls the orientation motors of the aiming device so as to bring the image of the target back to the reference position when it tends to deviate from it.
  • the deviation circuit can operate by contrast (the edge of the target image defines a line of contrast whose position can easily be detected and compared to a reference position to generate deviation signals), or even by image correlation: when the operator decides to enter the automatic tracking phase after having manually centered the target in the field of view, the image of this field obtained on the detector 30 is saved in memory as a reference image and the subsequent images are correlated with the image in memory, with a correlation function involving lateral and vertical shifts of the image, in order to define correlation peaks which make it possible to know the offset in elevation and bearing of the subsequent images compared to the original recorded image.
  • a bearing deviation signal is transmitted by the circuit 34 to the amplifier 26 and an elevation deviation signal is provided in the analog path not shown in elevation orientation.
  • the angular sensors (28 for orientation in range) send signals to a computer 36 which also receives other information, and the latter processes orientation control signals of a firing weapon, to give to this weapon the same orientation as the aiming device (in the pursuit phase) possibly corrected according to ballistic data such as wind speed, distance from target, type of shell, etc.
  • the angular bearing sensor 18 of the telescope 10 and the angular bearing sensor 28 of the tracking device 20 are connected to the two inputs of a subtractor 38 which generates an error signal used to align the orientations of the telescope and the device of pursuit.
  • This error signal is applied to an input of another subtractor 40 which receives on another input a signal called "harmonization error" coming from a memory 42.
  • the output signal from subtractor 40 which corresponds to the difference between the orientations of the sighting axes of the telescope and of the tracking device, affected by a harmonization correction, is directed either to the input of the amplifier. 26, in target acquisition phase, ie towards the input of amplifier 16, in automatic tracking phase.
  • a switch 44 having a position "A" (for acquisition phase) and "P" (for tracking phase) is provided for this purpose to connect to the input of amplifier 26, ie the output of subtractor 40 ( acquisition position A), or the output of the deviation circuit 34 (tracking position P).
  • a switch 46 makes it possible to direct to the input of the amplifier 16, either the signals from a remote control stick 48 in the acquisition phase (position “A"), or the signals from the subtractor 40 in tracking phase (position “P").
  • the tracking device automatically follows the orientation of the telescope which is manually controlled, while in the tracking phase the telescope automatically follows the orientation of the tracking device which is controlled by its distance measurement circuit.
  • a third switch 50 is inserted between the input of the amplifier 16 and the switch 46, this switch having a normal position "N” and a so-called setting position "C"; in the normal position N, the signals from the remote control stick 48 or the subtractor 40 are transmitted to the input of the amplifier 16; but, in setting position C, these signals are interrupted and other signals are applied to the input of the amplifier 16 which are output signals from a deviation circuit 52 whose input comes from a detector of the laser beam 54 carried by the telescope 10.
  • the detector 54 is advantageously of the four quadrant type. It is placed on the telescope behind a focusing and possibly selective filtering optics of a particular laser wavelength, so that if a laser beam arrives in the axis or parallel to the line of sight of the telescope, this beam falls in the center of the detector 54, while if the laser beam does not arrive completely parallel to the axis, it falls on a non-central portion of the detector, which then provides signals corresponding to the deviation in elevation and in bearing from the center of the detector; these signals are processed by the deviation circuit 52 and applied to the input of the amplifier 16 but only in the so-called stall position (switch 50 in position C).
  • the laser beam received comes from the reflection on an obstacle of a beam emitted by a laser illuminator 56 arranged to emit parallel to the line of sight 32 (or along this line) of the tracking device; thus, the differential measurement signals of the circuit 52 are an indication of the offset of the points targeted by the telescope and the tracking device.
  • the deviation signals of the circuit 52 are also applied to an input of a subtractor 58 which also receives the output of the subtractor 38; the output of the subtractor 58 is applied, optionally through a switch 60 having a setting position C in which it is closed (and a normal open position), to the input of the memory 42 for recording there, in the setting phase, the signal supplied by the subtractor 58 and which represents the harmonization difference between the telescope and the tracking device.
  • a switch 62 can be provided for connect the output of memory 42 to the input of subtractor 40 (normal position N: switch closed, setting position C: switch open).
  • the circuit which has just been described with reference to FIG. 1 makes it possible to execute a target acquisition phase and an automatic tracking phase.
  • the operator can carry out an action of resetting the orientation of the telescope as follows: he chooses an obstacle situated at a distance corresponding to a normal target distance and he points the tracking device 20 at this obstacle, preferably using the remote control handle 49 (switch 44 in position M).
  • the telescope is then oriented so as to center, if possible, on the detector 54 the laser beam received after reflection on the target obstacle, and a so-called harmonization error value corresponding to the angular difference is recorded in the memory. which must exist between the angular sensors 18 and 28 so that the tracking device and the telescope aim at the same point (which in this case is the obstacle targeted during the setting phase).
  • This harmonization error takes into account the parallax and other positioning or adjustment errors of the sensors, as well as the deformation of the structure of the carrier helicopter.
  • this harmonization error is restored by the memory 42 and transmitted as a correction signal to the amplifier 26 in the acquisition phase or to the amplifier 16 in the phase of pursuit.
  • FIG. 2 shows by way of indication how the optical path of a laser beam can be arranged so that it leaves the tracking device 20 parallel to the line of sight 32 thereof: the tracking device carries, as a means of 'laser illumination, several deflection mirrors, the actual laser illuminator, 66, being fixed and able to be deported.
  • a first mirror M1 secured to a mobile support rotating around the axis of rotation in elevation (68), returns the laser beam to a second mirror M2, then a third mirror M3, secured to the same support.
  • the beam received by M3 is directed towards a fourth mirror M4 mounted on the optical sighting assembly (movable in elevation and in bearing) of the tracking device 20.
  • the optical elements of the tracking device 20 have not been shown to simplify the figure.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Telescopes (AREA)

Description

  • La présente invention concerne un système de conduite de tir, et plus précisément un système de visée et de poursuite automatique de cible, particulièrement adapté à une utilisation sur aéronef (hélicoptère de combat notamment).
  • Dans un système de conduite de tir connu, un opérateur doit d'abord rechercher une cible à détruire, en utilisant notamment une lunette d'observation grossissante dont il assure l'orientation en site et en gisement au moyen d'un manche de télécommande agissant sur des moteurs d'orientation de la lunette.
  • L'opérateur envoie à un dispositif de poursuite automatique, pendant cette phase de recherche ou à la fin de cette phase, un ordre d'orientation forcée du dispositif de poursuite selon l'axe de la lunette; puis il décide de passer en phase de poursuite automatique et envoie au dispositif de poursuite un ordre d'orientation automatique sur une cible repérée. Le dispositif de poursuite comporte, en vue d'assurer l'exécution de ce dernier point, d'une part une optique de visée fournissant une image (vidéo par exemple) de la cible, et d'autre part des circuits d'écartométrie fonctionnant par exemple par contraste ou par corrélation, qui repèrent les déplacements de l'image de la cible dans le champ de l'optique de visée et qui assurent l'orientation adéquate du dispositif de poursuite pour ramener cette image de cible dans l'axe de visée.
  • Des informations sur la direction prise par le dispositif de poursuite sont transmises en permanence, avec éventuellement des corrections de tir appropriées, à une arme de destruction qui vise donc la cible tant que celle-ci reste centrée dans l'axe de visée du dispositif de poursuite, et l'opérateur peut à tout moment envoyer un ordre de tir.
  • Il est souhaitable que le lunette grossissante suive les déplacements du dispositif de poursuite lorsque celui-ci exécute une phase de poursuite automatique, pour que l'opérateur puisse utiliser la lunette comme moyen de contrôle visuel de la bonne exécution de la poursuite. Par exemple, en cas de perte de la cible par le dispositif de poursuite (passage derrière un rideau d'arbres etc...), l'opérateur doit pouvoir reprendre le contrôle immédiatement ou vérifier que le dispositif de poursuite rattrape tout seul le cible perdue (à la sortie du rideau d'arbres par exemple).
  • D'autre part, lorsque l'opérateur vise une cible avec la lunette, et demande au dispositif de poursuite de viser la même cible, il faut que l'optique de la lunette et l'optique du dispositif de poursuite visent bien le même point, sans quoi l'opérateur doit exécuter une phase suppélemen- taire de contrôle ou de recalage de l'image donnée par le dispositif de poursuite avant de passer en phase de poursuite.
  • Comme la lunette est grossissante, une erreur d'angle même faible entre les deux optiques peut avoir des conséquences pratiques très gênantes.
  • Or, lusieurs raisons concourrent à créer de telles erreurs et notamment l'erreur de parallaxe entre la lunette et l'optique du dispositif de poursuite qui, à partir de deux positions proches mais différentes, visent le même point, ou encore des erreurs angulaires dues à la déformation mécanique de la structure de l'hélicoptère qui porte le système de conduite de tir.
  • Le but de l'invention est de remédier à ces inconvénients.
  • D'autre part, on connaît par le brevet français 2 230 247 un appareil combiné de visée et de poursuite pour un système de guidage de missiles. Il comprend une lunette de visée montée pivotante et un dispositif de poursuite monté pivotant et rigidement couplé à la lunette pour pivoter avec celle-ci, les axes optiques de la lunette et du dispositif de poursuite étant approximativement collimatés. Le dispositif de poursuite a un écran photo-électrique et un système de projection capable de projeter sur ledit écran une image réelle d'une source lumineuse vers laquelle le dispositif de poursuite est dirigé. L'écran produit.des signaux électriques de coordonnées dépendant des coordonnées de décalage de l'image projetée par rapport au centre électrique de l'écran. Dans le but d'améliorer l'harmonisation du dispositif de poursuite et du dispositif de visée, il comprend en outre une source lumineuse ponctuelle, des moyens optiques pour injecter un pinceau de lumière de cette source ponctuelle dans les systèmes optiques de la lunette et du dispositif de poursuite, de sorte qu'une image de la source ponctuelle apparaît au centre du champ dans l'objectif de la lunette et qu'une image réelle de la source ponctuelle est projetée sur l'écran de poursuite. il comprend des moyens électriques d'annulation qui engendrent des tensions électriques de commande qui suppriment les signaux électriques de sortie de l'écran produits par l'image projetée de la source ponctuelle de manière à compenser tout décalage de ladite image par rapport au centre électrique de l'écran.
  • Cette solution ne s'avère pas assez efficace et ne peut que très difficilement s'adapter sur un système où le dispositif de poursuite et la lunette sont séparés.
  • Le présente invention propose un système de conduite de tir comprenant:
    • - un dipositif optique de poursuite automatique de cible pourvu de moteurs d'orientatioi en site et en gisement et de capteur angulaires repérant l'orientation de son axe de visée en site et en gisement;
    • - une lunette grossissante d'observation pourvue également de moteurs d'orientation en site et en gisement et de capteurs angulaires repérant l'orientation de son axe de visée en site et en gisement, caractérisé par le fait que:
      • a) le dispositif de poursuite porte un moyen d'illumination laser émettant un rayonnement laser parallèlement à l'axe de visée de ce dispositif;
      • b) la lunette porte un détecteur de rayonnement laser couplé à un circuit d'écartométrie associé susceptible de fournir un couple de signaux d'erreur représentant l'écart en site et en gisement entre le centre du détecteur correspondant à l'axe de visée de la lunette et le point de focalisation du rayonnement laser reçu après réflexion sur un obstacle;
      • c) une mémoire est prévue pour recevoir et enregistrer ces signaux d'erreur dans une phase de recalage préliminaire pendant laquelle le moyen d'illumination laser émet un rayonnement laser.
      • d) un circuit électrique est prévu pour recevoir des informations issues des capteurs angulaires du dispositif de poursuite et de la lunette, et pour fournir aux moteurs d'orientation de la lunette, dans une phase de poursuite automatique, des signaux de commande pour asservir la lunette aux mouvements en site et en gisement du dispositif de poursuite, le circuit électrique étant connecté pendant la phase de poursuite à la mémoire pour recevoir les signaux d'erreur enregistrés pendant la phase de recalage, ledit circuit électrique comportant des moyens pour apporter- aux signaux de commande une correction correspondant aux signaux d'erreur.
  • Ce recalage permet de s'affranchir efficacement des erreurs de parallaxe et des erreurs dues aux déformations de la structure de l'aéronef. Il a l'avantage de pouvoir se faire en utilisant comme moyen d'illumination laser le télémètre à laser qui est souvent prévu dans un système de conduite de tir (pour élaborer des corrections balistiques de tir en fonction de la distance de la cible), à condition que ce télémètre à laser émette effectivement parallèlement à l'axe du dispositif de visée ou même précisément selon l'axe de celui-ci.
  • D'autres caractéristiques et avantages de l'invention apparaîtront à le lecture de la description détaillée qui suit et qui est faite en référence aux dessins annexés dans lesquels:
    • - la figure 1 représente un schéma de principe de l'invention,
    • - la figure 2 représente schématiquement une possibilité d'agencement d'un moyen d'émission laser émettant parallèlement à l'axe optique d'un dispositif de poursuite automatique.
  • Le système de conduite de tir, monté par exemple sur un hélicoptère, comprend un certain nombre d'éléments dont on décrira seulement ceux qui sont nécessaires à la compréhension de l'invention. Par exemple on ne décrira pas tous les systèmes de visualisation dont le système de conduite de tir peut être pourvu pour aider l'opérateur ou le pilote.
  • Parmi les éléments représentés à la figure 1, on trouve une lunette d'observation grossissante 10, orientable en site et en gisement par des moteurs qui sont de préférence des moteurs-couples à entraînement électromagnétique pour éviter la présence d'engrenages dans la transmission du mouvement. La lunette 10 peut d'ailleurs être gyrostabilisée, c'est à dire qu'on applique des signaux de commande d'orientation à ces moteurs non pas directement mais par l'intermédiaire de gyromètres (gyromètres simples ou intégrateurs ou encore gyroscopes à deux axes à suspension accordée) fixés sur le lunette, ces gyromètres ayant pour axes sensibles les axes de rotation en site et en gisement.
  • Pour simplifier la description de l'invention, on n'a représenté sur la figure 1 qu'un moteur d'orientation en gisement 12 pour le lunette; toute la description sera d'ailleurs faite uniquement en référence aux axes de rotation en gisement, étant entendu que deux voies de circuits indépendantes analogues sont nécessaires respectivement pour l'orientation en site et l'orientation en gisement.
  • L'axe de rotation en gisement de la lunette 10 est désigné par la référence 14. L'axe de rotation en site serait perpendiculaire au plan de la figure.
  • Un amplificateur 16 fournit des signaux de commande au moteur 12 (directement ou par l'intermédiaire d'un système de gyrostabilisation). On verra ci-après d'où viennent ces signaux.
  • Un capteur angulaire 18 permet de repérer l'orientation en gisement de la lunette; bien entendu un autre capteur est prévu pour l'orientation en site.
  • Par ailleurs, un dispositif de poursuite automatique 20 constitue un autre élément important du système de conduite de tir. Il est également orientable en site et en gisement (moteur d'orientation en gisement 22) autour d'une axe de rotation en gisement 24 et il est de préférence gyrostabilisé, c'est à dire qu'il reçoit des signaux de commande d'un amplificateur 26 non pas directement mais par l'intermédiaire d'un système de gyrostabilisation (non représenté ici) comprenant des gyromètres ou des gyromètres intégrateurs ou un gyroscope à suspension accordée dont les axes sensibles sont l'axe de rotation en gisement 24 et un axe de rotation en site perpendiculaire au plan de la figure 1. Les Moteurs d'entraînement du dispositif de poursuite automatique sont de préférence à entraînement électromagnétique. Des capteurs angulaires d'orientation en gisement (28) et en site (non représenté) sont prévus sur le dispositif de poursuite 20 pour repérer son orientation à tout moment.
  • Le dispositif de poursuite comporte un objectif pour former sur un détecteur d'image 30 l'image d'une cible située dans le champ de visée de cet objectif; l'axe optique de cet objectif est appelé axe de visée du dispositif 20 et est désigné par la référence 32.
  • Le détecteur d'image 30, qui peut être un tube vidicon fournissant un signal vidéo ou une matrice de détecteurs photosensibles, fournit des signaux électriques représentant l'image du champ de visée (et notamment de la cible poursuivie) à un circuit d'écartométrie 34 et éventuellement à des écrans de visualisation (moniteur de télévision etc.).
  • Le circuit d'écartométrie 34, qui assure la poursuite, élabore des signaux d'écart en site et en gisement représentant l'écart entre la position de la cible dans l'image et une position de référence (par exemple le centre de l'image); ces signaux sont destinés à l'amplificateur 26 qui commande les moteurs d'orientation du dispositif de visée de manière à ramener l'image de la cible sur la position de référence losque'elle tend à s'en écarter.
  • Le circuit d'écartométrie peut fonctionner par contraste (le bord de l'image de la cible définit une ligne de contraste dont la position peut facilement être détectée et comparée à une position de référence pour engendrer des signaux d'écart), ou encore par corrélation d'image : au moment où l'opérateur décide de passer en phase de poursuite automatique après avoir manuellement centré la cible dans le champ de visée, l'image de ce champ obtenue sur le détecteur 30 est enregistrée en mémoire comme image de référence et les images ultérieures sont corrélées avec l'image en mémoire, avec une fonction de corrélation faisant intervenir des décalages latéraux et verticaux de l'image, afin de définir des pics de corrélation qui permettent de connaître le décalage en site et gisement des images ultérieures par rapport à l'image initiale enregistrée.
  • Un signal d'écartométrie en gisement est transmis par le circuit 34 à l'amplificateur 26 et un signal e'écartométrie en site est prévu dans la voie analogue non représentée d'orientation en site.
  • Les capteurs angulaires (28 pour l'orientation en gisement) envoient des signaux à un calculateur 36 qui reçoit par ailleurs d'autres informations, et celui-ci élabore des signaux de commande d'orientation d'une arme de tir, pour donner à cette arme la même orientation que le dispositif de visée (en phase de poursuite) corrigée éventuellement en fonction de données balistiques telles que le vitesse du vent, la distance de la cible, le type d'obus, etc.
  • Le capteur angulaire de gisement 18 de la lunette 10 et le capteur angulaire de gisement 28 du dispositif de poursuite 20 sont reliés aux deux entrées d'un soustracteur 38 qui élabore un signal d'erreur servant à aligner les orientations de la lunette et du dispositif de poursuite. Ce signal d'erreur est appliqué à une entrée d'un autre soustracteur 40 qui reçoit sur une autre entrée un signal dit "d'errreur d'harmonisation" provenant d'une mémoire 42.
  • Le signal de sortie du soustracteur 40, qui correspond à l'écart entre les orientations des axes de visée de la lunette et du dispositif de poursuite, affecté d'une correction d'harmonisation, est dirigé soit vers l'entrée de l'amplificateur 26, en phase d'acquisition de cible, soit vers l'entrée de l'amplificateur 16, en phase de poursuite automatique.
  • Un commutateur 44 ayant une position "A" (pour phase d'acquisition) et "P" (pour phase de poursuite) est prévu à cet effet pour relier à l'entrée e l'amplificateur 26, soit la sortie du soustracteur 40 (position acquisition A), soit la sortie du circuit d'écartométrie 34 (position poursuite P).
  • De même, un commutateur 46 permet de diriger vers l'entrée de l'amplificateur 16, soit les signaux issus d'un manche de télécommande 48 en phase d'acquisition (position "A"), soit les signaux issus du soustracteur 40 en phase de poursuite (position "P").
  • Ainsi, en phase d'acquisition de cible, le dispositif de poursuite suit automatiquement l'orientation de la lunette qui est pilotée manuellement, tandis qu'en phase de poursuite la lunette suit automatiquement l'orientation du dispositif de poursuite qui est piloté par son circuit d'écarto- métrie.
  • On peut prévoir aussi que le commutateur 44 ait une troisième position, M, pour diriger vers l'entrée de l'amplificateur 26 des signaux issus d'un autre manche de télécommande manuelle 49.
  • Un troisième commutateur 50 est inséré entre l'entrée de l'amplificateur 16 et le commutateur 46, ce commutateur ayant une position normale "N" et une position dite de calage "C"; en position normale N, les signaux issus du manche de télécommande 48 ou du soustracteur 40 sont transmis à l'entrée de l'amplificateur 16; mais, en position calage C, ces signaux sont interrompus et on applique à l'entrée de l'amplificateur 16 d'autres signaux qui sont des signaux de sortie d'un circuit d'écartométrie 52 dont l'entrée provient d'un détecteur de faisceau laser 54 porté par la lunette 10.
  • Le détecteur 54 est avantageusement du type à quatre quadrants. Il se trouve placé sur la lunette derrière une optique de focalisation et éventuellement de filtrage sélectif d'une longueur d'onde particulière de laser, de telle sorte que si un faisceau laser parvient dans l'axe ou parallèlement à l'axe de visée de la lunette, ce faisceau tombe au centre du détecteur 54, tandis que si le rayon laser n'arrive pas tout à fait parallèlement à l'axe, il tombe sur une portion non centrale du détecteur, lequel fournit alors des signaux correspondant à l'écart en site et en gisement par rapport au centre du détecteur; ces signaux sont traités par le circuit d'écartométrie 52 et appliqués à l'entrée de l'amplificateur 16 mais seulement en position dite de calage (commutateur 50 en position C).
  • Le faisceau laser reçu provient de la réflexion sur un obstacle d'un faisceau émis par un illumi- nateur laser 56 agencé pour émettre parallèlement à l'axe de visée 32 (ou selon cet axe) du dispositif de poursuite; ainsi, les signaux d'écar- tométrie du circuit 52 sont une indication du décalage des points visés par la lunette et le dispositif de poursuite.
  • Les signaux d'écartométrie du circuit 52 sont par ailleurs appliqués à une entrée d'un soustracteur 58 qui reçoit d'autre part la sortie du soustracteur 38; la sortie du soustracteur 58 est appliquée, éventuellement à travers un interrupteur 60 ayant une position de calage C dans laquelle il est fermé (et une position normale ouverte), à l'entrée de la mémoire 42 pour y enregistrer, en phase de calage, le signal fourni par le soustracteur 58 et qui représente l'écart d'harmonisation entre la lunette et le dispositif de poursuite.
  • Enfin, on peut prévoir un interrupteur 62 pour relier la sortie de la mémoire 42 à l'entrée du soustracteur 40 (position normale N : interrupteur fermé, position de calage C : interrupteur ouvert).
  • Quant à la mémoire 42, si elle doit être commandée en écriture, il faut prévoir un signal de commande correspondant pendant la phase de calage au cours de laquelle les commutateurs 50, 60 et 62 sont basculés en position C.
  • Le circuit qui vient d'être décrit en référence à la figure 1 permet d'exécuter une phase d'acquisition de cible et une phase de poursuite automatique. De plus, l'opérateur peut procéder à une action de recalage de l'orientation de la lunette de la manière suivant : il choisit un obstacle se situant à une distance correspondant à une distance de cible normale et il pointe le dispositif de poursuite 20 sur cet obstacle, de préférence à l'aide du manche de télécommande 49 (commutateur 44 en position M).
  • Il donne alors un ordre de passage en phase de calage, qui a pour effet de basculer les commutateurs 50, 60 et 62 de la position normale N à la position calage C, et de faire émettre un rayonnement laser par l'illuminateur 56, puis d'autoriser l'écriture dans la mémoire 42.
  • La lunette s'oriente alors de manière à centrer si possible sur le détecteur 54 le faisceau laser reçu après réflexion sur l'obstacle visé, et on enregistre dans la mémoire une valeur dite d'erreur d'harmonisation correspondant essentiellement à l'écart angulaire qui doit exister entre les capteurs angulaires 18 et 28 pour que le dispositif de poursuite et la lunette visent le même point (qui en l'occurrence est l'obstacle visé pendant la phase de calage).
  • Cette erreur d'harmonisation tient compte de la parallaxe et d'autres erreurs de positionnement ou de réglage des capteurs, ainsi que de la déformation de la structure de l'hélicoptère porteur.
  • Quand on repasse en position normale N des interrupteurs 50, 60 et 62, cette erreur d'harmonisation est restituée par la mémoire 42 et transmise comme signal de correction à l'amplificateur 26 en phase d'acquisition ou à l'amplificateur 16 en phase de poursuite.
  • La figure 2 montre à titre indicatif comment on peut agencer le trajet optique d'un faisceau laser pour qu'il sorte du dispositif de poursuite 20 parallèlement à l'axe de visée 32 de ce dernier : le dispositif de poursuite porte, comme moyen d'illumination laser, plusieurs miroirs de renvoi, l'illuminateur laser proprement dit, 66, étant fixe et pouvant se trouver déporté. Un premier miroir M1, solidaire d'un support mobile en rotation autour de l'axe de rotation en site (68), renvoie le faisceau laser vers un deuxième miroir M2, puis un troisième miroir M3, solidaires du même support. Le faisceau reçu par M3 est dirigé vers un quatrième miroir M4 monté sur l'ensemble optique de visée (mobile en site et en gisement) du dispositif de poursuite 20. Le faisceau laser sort parallèlement à l'axe de visée 32 quelle que soit l'orientation en site et en gisement, du fait notamment que les miroirs M1, M3 et M4 sont placés de manière à renvoyer le faisceau soit sur l'axe de rotation en site soit sur l'axe de rotation en gisement. Les éléments optiques du dispositif de poursuite 20 n'ont pas été représentés pour simplifier la figure.

Claims (5)

1. Système de conduite de tir comprenant:
- un dispositif optique (20) de poursuite automatique de cible pourvu de moteurs d'orientation (22) en site et en gisement et de capteurs angulaires (28) repérant l'orientation de son axe de visée (32) en site et en gisement; -
- une lunette grossissante d'observation (10) pourvue également de moteurs d'orientation (12) en site et en gisement et de capteurs angulaires (18) repérant l'oientation de son axe de visée en site et en gisement, caractérisé par le fait que:
a) le dispositif de poursuite (20) porte un moyen d'illumination laser (56) émettant un rayonnement laser parallèlement à l'axe de visée (32) de ce dispositif;
b) la lunette porte un détecteur (54) de rayonnement laser couplé à un circuit d'écartométrie (52) associé susceptible de fournir un couple de signaux d'erreur représentant l'écart en site et en gisement entre le centre du détecteur (54) correspondant à l'axe de visée de la lunette et le point de focalisation du rayonnement laser reçu après réflexion sur un obstacle;
c) une mémoire (42) est prévue pour recevoir et enregister ces signaux d'erreur dans une phase de recalage préliminaire pendant laquelle le moyen d'illumination laser (56) émet un rayonnement laser;
d) un circuit électrique (38, 40, 16) est prévu pour recevoir des informations issues des capteurs angulaires (28,18) du dispositif de poursuite (20) et de la lunette (10) et pour fournir aux moteurs d'orientation (12) de la lunette, dans une phase de poursuite automatique, des signaux de commande pour asservir la lunette aux mouvements en site et en gisement du dispositif de poursuite, le circuit électrique (38, 40, 16) étant connecté pendant la phase de poursuite à la mémoire (42) pour recevoir les signaux d'erreur enregistrés pendant la phase de recalage, ledit circuit électrique comportant des moyens (40) pour apporter aux signaux de commande une correction correspondant aux signaux d'erreur.
2. Système selon la revendication 1, caractérisé par le fait que le détecteur (54) est un détecteur à quatre quadrants placé en arrière d'un objectif de focalisation et d'un filtre sélectif laissant passer la longueur d'onde du rayonnement laser.
3. Système selon l'une quelconque des revendications 1 et 2, caractérisé par le fait que les signaux d'erreur issus du circuit d'écartométrie (52) sont amenés aux moteurs (12) d'orientation de la lunette en phase de re-calage de manière à tendre à orienter la lunette dans une direction telle que le faisceau laser réfléchi arrive au centre du détecteur (54).
4. Système selon l'une quelconque des revendications 1 à 3, caractérisé par le fait que le circuit électrique comporte un premier soustracteur (38) dont les entrées sont reliées aux capteurs angulaires (18, 28) de la lunette (10) et du dispositif de poursuite (20), et que lesdits moyens comportent un second soustracteur (40) dont les entrées sont reliées respectivement à la sortie du premier soustracteur (38) et à la sortie de la mémoire (42).
5. Système selon la revendication 4, caractérisé en ce que le circuit électrique comporte un troisième soustracteurs (58) utilisé durant la phase de recalage, connecté par une première entrée à la sortie du premier soustracteur (38), par une deuxième entrée à la sortie du circuit d'écartomé- trie (52) et par une sortie à l'entrée de la mémoire (42).
EP19830400570 1982-03-26 1983-03-18 Système de conduite de tir à lunette d'observation asservie par un dispositif de poursuite automatique Expired EP0090713B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8205247 1982-03-26
FR8205247A FR2524137B1 (fr) 1982-03-26 1982-03-26 Systeme de conduite de tir a lunette d'observation asservie par un dispositif de poursuite automatique

Publications (2)

Publication Number Publication Date
EP0090713A1 EP0090713A1 (fr) 1983-10-05
EP0090713B1 true EP0090713B1 (fr) 1987-01-07

Family

ID=9272455

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19830400570 Expired EP0090713B1 (fr) 1982-03-26 1983-03-18 Système de conduite de tir à lunette d'observation asservie par un dispositif de poursuite automatique

Country Status (3)

Country Link
EP (1) EP0090713B1 (fr)
DE (1) DE3368979D1 (fr)
FR (1) FR2524137B1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3514743C2 (de) * 1985-04-24 1987-02-19 Eltro GmbH, Gesellschaft für Strahlungstechnik, 6900 Heidelberg Verfahren und Schaltungsanordnung zum Harmonisieren opto-elektronischer Achsen eines Wärmebildgerätes
FR2700840B1 (fr) * 1992-12-21 1996-04-26 Thomson Csf Arme à visée stabilisée.
WO1995017640A1 (fr) * 1993-12-21 1995-06-29 Thomson-Csf Arme a visee stabilisee
CN103616673B (zh) * 2013-12-03 2016-01-20 中国船舶重工集团公司第七一七研究所 一种用于激光定向干扰的跟瞄装置
CN113701561B (zh) * 2021-08-25 2023-01-13 西安应用光学研究所 用于机载多光谱多光轴光电***空中动态校轴装置及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1372348A (en) * 1969-11-04 1974-10-30 British Aircraft Corp Ltd Automatic sight and tracker harmonisation
US3845276A (en) * 1971-12-17 1974-10-29 Hughes Aircraft Co Laser-sight and computer for anti-aircraft gun fire control system
FR2334934A1 (fr) * 1975-12-09 1977-07-08 Telecommunications Sa Dispositif de guidage nocturne d'engins autopropulses
DE2722796C3 (de) * 1977-05-20 1981-12-03 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Vorrichtung zum Ausrichten der optischen Achsen mehrerer optischer Geräte parallel zueinander
DE2941627C2 (de) * 1979-10-13 1987-01-22 Eltro GmbH, Gesellschaft für Strahlungstechnik, 6900 Heidelberg Aus zwei optischen Geräten bestehende Visiereinrichtung

Also Published As

Publication number Publication date
EP0090713A1 (fr) 1983-10-05
DE3368979D1 (en) 1987-02-12
FR2524137B1 (fr) 1986-10-10
FR2524137A1 (fr) 1983-09-30

Similar Documents

Publication Publication Date Title
EP0033679B1 (fr) Système de désignation d'objectif par laser
EP0628780B1 (fr) Système de visée pour aéronef
EP0432014B1 (fr) Système optoélectronique d'aide aux missions aériennes d'attaque et de navigation
EP0441079B1 (fr) Lunette épiscopique modulable et reconfigurable
KR100310842B1 (ko) 배경공제를갖는공용개구2색능동추적기
EP3488540B1 (fr) Systeme combine d'imagerie et de communication par signaux laser
EP0165170B1 (fr) Ensemble de visée optique, de désignation et de poursuite d'objectif
FR2549610A1 (fr) Appareil pour determiner la direction d'une ligne de visee
FR2639127A1 (fr) Appareil de traitement electronique d'images pour determiner la distance ou la taille d'un objet
FR2696838A1 (fr) Dispositif de pointage d'une cible mobile.
EP1379892B1 (fr) Systeme de poursuite transistorise par balise modulee
EP0090713B1 (fr) Système de conduite de tir à lunette d'observation asservie par un dispositif de poursuite automatique
EP0778958B1 (fr) Systeme de reperage d'orientation d'un instrument d'observation
FR2467378A1 (fr) Procede et dispositif d'harmonisation des axes optiques de deux appareils opto-electroniques
FR2712993A1 (fr) Système de vision.
FR2505477A1 (fr) Procede et dispositif d'harmonisation des axes d'une arme et d'un viseur
EP0089273B1 (fr) Système de conduite de tir à double écartométrie
FR2670019A1 (fr) Systeme optronique d'observation infrarouge auto-controle, et nacelle de designation laser comportant un tel systeme.
EP3555551A1 (fr) Appareil de visée pour véhicule et véhicule associé
FR2665251A1 (fr) Systeme de guidage pour missiles.
CA3073617C (fr) Instrument d'imagerie pour controler une designation de cible
FR2525339A1 (fr) Dispositif laser pour guider un missile sur une cible
EP0013195A1 (fr) Dispositif de télémétrie radar air sol pour système de conduite de tir aéroporté et utilisation d'un tel dispositif dans un système de conduite de tir
FR2729748A2 (fr) Dispositif laser pour guider un missile sur une cible
FR2726356A1 (fr) Dispositif de visee pour engin volant guide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT NL

Designated state(s): DE GB IT NL

17P Request for examination filed

Effective date: 19831216

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3368979

Country of ref document: DE

Date of ref document: 19870212

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881122

GBPC Gb: european patent ceased through non-payment of renewal fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930225

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19941201