EP0087541B1 - Power supply circuit and transmission device using such a power supply circuit - Google Patents

Power supply circuit and transmission device using such a power supply circuit Download PDF

Info

Publication number
EP0087541B1
EP0087541B1 EP82430005A EP82430005A EP0087541B1 EP 0087541 B1 EP0087541 B1 EP 0087541B1 EP 82430005 A EP82430005 A EP 82430005A EP 82430005 A EP82430005 A EP 82430005A EP 0087541 B1 EP0087541 B1 EP 0087541B1
Authority
EP
European Patent Office
Prior art keywords
circuit
voltage
capacitor
switching means
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82430005A
Other languages
German (de)
French (fr)
Other versions
EP0087541A1 (en
Inventor
Gérard Orengo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie IBM France SAS
International Business Machines Corp
Original Assignee
Compagnie IBM France SAS
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie IBM France SAS, International Business Machines Corp filed Critical Compagnie IBM France SAS
Priority to DE8282430005T priority Critical patent/DE3279671D1/en
Priority to EP82430005A priority patent/EP0087541B1/en
Priority to JP57214787A priority patent/JPS58154020A/en
Priority to US06/464,542 priority patent/US4482815A/en
Publication of EP0087541A1 publication Critical patent/EP0087541A1/en
Application granted granted Critical
Publication of EP0087541B1 publication Critical patent/EP0087541B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/577Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices for plural loads
    • G05F1/585Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices for plural loads providing voltages of opposite polarities

Definitions

  • the present invention relates to a power supply circuit and more specifically a circuit providing an emergency power supply.
  • European patent application EP-A-0 018 517 describes a diagnostic and alarm device for an on-line data communication network.
  • a predetermined tone alarm signal is generated and transmitted to a central station on a line normally used for data transmission.
  • the energy necessary for the production of the alarm tone and its transmission is supplied by an emergency power source consisting of a battery of capacitors which have been previously charged.
  • This system has a number of constraints. Indeed, the capacitors being generally all the more voluminous as they are of high value, it is preferable to limit the values of capacitors necessary to the strict minimum. However, this results in a limitation of the stored energy, which reduces the duration of the alarm tone that can be generated.
  • the receiver to which the alarm is transmitted can detect the presence of a signal which is not data and identify it in a relatively short time. Discrimination between alarm signal and data is made possible by the choice of a frequency of the alarm signal outside the pure data spectrum.
  • a sinusoidal alarm signal of 350 Hz of frequency has been chosen.
  • the energy storage condensers are progressively discharged and from a moment the signal that the device could generate would present distortions resulting in the presence of harmonics of pure frequency at 350 Hz
  • Some of these harmonics (1050, 1400, 1750, etc.) would be in the frequency band of the data.
  • the subject of the present invention is an alarm signal generator intended to generate a temporary signal of predetermined frequency, as defined in claim 1.
  • FIG. 1 shows an embodiment of the device of the prior art.
  • This device comprises two capacitors C1 and C2 intended to store the energy reserve.
  • the capacitor C1 is connected on the one hand to ground and on the other hand to a positive power source V + through a switch 11 and a diode D1.
  • the capacitor C2 is connected to earth on the one hand and to a negative power source V- through a diode D2 and a switch 12 on the other hand.
  • the capacitors C1 and C2 are also connected to a generator of alarm signals 10 (which they are responsible for supplying when the sources V + and V-are out of order) through switches (switching means) 13 and 14 respectively.
  • the circuit also comprises so-called charge control 12 and discharge control circuits 14.
  • the circuit 12 keeps the switches 11 and 12 closed, while circuit 14 keeps switches 13 and 14 open.
  • the system is in the so-called charging phase during which the capacitors C1 and C2 are charged while the alarm signal generator is at rest.
  • a so-called alarm cycle starts.
  • the circuit 12 controls the opening of the switches 11 and 12 while the switches 13 and 14 are closed under the effect of a command from the circuit 14.
  • the device 10 supplied by the energy stored in the capacitors C1 and C2, generates a signal at 350 Hz, called an alarm. During this operation, the condensa tors C1 and C2 are discharged, the voltages they deliver decrease.
  • the alarm generator 10 From certain levels of the voltages supplied by the capacitors C1 and C2, the alarm generator 10 delivers a distorted signal and therefore comprising harmonics of the frequency at 350 Hz. As indicated above, this is to be avoided . It is therefore necessary to stop the alarm generator 10 before the moment when the generated signal would be distorted. In practice, it sometimes happens that certain circuits of the alarm generator 10 need a negative voltage greater than the positive voltage. For example, for an alarm signal of ⁇ 2V peak-to-peak, the power circuits of the alarm generator 10 would require at least + 2.7V and -4.1V.
  • the charges of C1 and C2 can be done at + 8.65V and -6.95V respectively (what the zone shows left of t o on the diagram in the upper part of figure 2). From t o , it was assumed that one entered the operating zone of the alarm generator.
  • the curves VC1 and VC2 show diagrammatically symmetrical discharges of the capacitors C1 and C2 respectively. It will be noted that these constant current discharges have been assumed to simplify the presentation, but that this is by no means a constraint. For
  • the circuit of the invention makes it possible to minimize the effect of these asymmetries by using means making it possible to center the discharge zone at will. This refocusing will notably allow, in the case of FIG. 2, to extend the duration of the undistorted alarm signal up to t ' 2 . We will even see later that the result may even be even better than it appears in Figure 2.
  • FIG 3 shows a block diagram of the device of the invention.
  • Figures 1 and 2 bear similar references to designate similar elements.
  • the capacitors C1 and C2 have been replaced by a single floating capacitor C, that is to say, not connected to ground.
  • the capacitor C charges to a value where V d represent the voltage drops due to diodes D1 and D2.
  • a reference circuit 16 connected downstream of the switching means 13, 14 and on the other hand a voltage follower circuit 18.
  • the reference circuit builds a first reference voltage V ref based in particular on the voltages across capacitor C.
  • This reference voltage V ref is applied to one of the inputs of the voltage follower circuit 18.
  • the circuit 18 shown here schematically in the form of an operational amplifier operates so as to force V ref to the level a second reference voltage V ′ ref which is a fixed voltage applied to its output and to its other input. For example, if this voltage V ' ref is the ground, the circuit acts so as to cause V ref towards the voltage of the ground. This results in a recentering of the voltage across the capacitor C. This recentering can be controlled as desired.
  • the circuit of FIG. 3 can indeed supply two voltages V c + and V c - such that
  • the invention makes it possible, starting from a floating energy source, to center the voltage available at the terminals of said source at will with respect to a given reference potential.
  • the invention therefore makes it possible in particular to position the voltage of the source with respect to the ground potential.
  • circuit of the invention requires very little additional power compared to the circuit of the prior art.
  • the only effective additional consumption is that of the reference circuit 16. This consumption is minimized in practice by choosing a reference circuit of relatively high impedance, of the order of 50 KQ for example.
  • FIG. 4 shows the schematic diagram of an embodiment of the invention in which the voltage follower circuit is extremely simple.
  • the reference circuit 16 is here, quite simply, a divider bridge with two resistors R1 and R2 in series.
  • the function of the voltage follower circuit 18 it is here obtained by two transistors T1 and T2 in series.
  • the collector of T2 is connected to the electrode of the negatively charged capacitor C.
  • the point common to resistors R1, R2 is connected to the bases of transistors T1 and T2. This common point is that providing the voltage designated by V ref ⁇
  • the transistors T3 and T4 fulfill the functions of the switches 13 and 14 respectively.
  • the switches 11 and 12 (not shown) are open, while T4 is made conductive. This results in the conduction to saturation of the transistors T3 and T4.
  • the potential of capacitor C is found applied at A and B to the use circuit (not shown).
  • FIG. 5 shows a detailed embodiment of the invention using in particular circuit elements similar to those of the circuit of FIG. 4.
  • the assembly T1, T2 voltage follower has been replaced by two circuits of the Darlington type namely (T11, T12, R11) and (T13, T14, R12).
  • the reference circuit 16 comprises, in addition to the resistors R1 and R2, a set of diodes (D11, D12, D13, D14, D15 and D16) in series.
  • the base of transistor T14 is connected to the cathode of diode D13.
  • the base of transistor T12 is connected to the anode of diode D11 through a resistor R13 and to the cathode of this same diode through a resistor R14.
  • the function of the switch 13 is carried out by a circuit of the Darlington type comprising PNP transistors T16, T17 and T18 and a resistor R18.
  • the circuit elements T4, T5 and R ' occupy the same positions as their counterparts in the device shown in FIG. 4.
  • an additional divider bridge comprising diodes D17 to D20 in series with a Zener diode Z1, a resistor R17 and diodes D21 to D23, has been placed upstream of the switches 13 and 14.
  • a diode D24 is placed between the collector of transistor T18 and the cathode of diode D20.
  • the point common to the resistor R17 and to the anode of the diode D21 is connected to the base of the transistor T5 through a resistor R19.
  • This same base of transistor T5 is connected to the emitter of transistor T4 through a resistor R20.
  • an NPN transistor T15 is connected between the point common to R17 and to the diode D21 and the emitter of the transistor T4.
  • the back-up power supply control signal is applied to the base of transistor T15.
  • DRV + and DRV- the terminals providing the backup voltages designated by V c + and V r - in FIG. 4.
  • OSC + and OSC- taken upstream of switches 13 and 14.
  • the process of transmitting the alarm signal begins when the base of T15 is no longer supplied by an external command originating from a circuit (not shown) for detecting normal power failure. In this case, T15 is blocked and the current no longer being derived by T15 supplies the base of T5. There is then saturation of T14 and of the Darlington assembly T16, T17, T18. The DRV + and DRV- outputs are energized, which has several consequences. First, the line driver is supplied with power, ready to issue the alarm signal. In addition, the centering circuit is made active. Finally, the diode D24 becomes conductive and blocks the diodes D17 to D20. The control circuit T5 is therefore supplied by DRV + via D24, Z1, R17, R19 and R20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Amplifiers (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Description

Domaine technique de l'inventionTechnical field of the invention

La présente invention concerne un circuit d'alimentation et plus précisément un circuit fournissant une alimentation électrique de secours.The present invention relates to a power supply circuit and more specifically a circuit providing an emergency power supply.

Etat de la techniqueState of the art

On a décrit dans la demande de brevet européen EP-A-0 018 517 un dispositif de diagnostic et d'alarme pour un réseau de communication de données sur ligne. Lorsque la source d'alimentation d'une station d'émission-réception du réseau vient à tomber en panne, un signal d'alarme de tonalité prédéterminée est engendré et transmis vers une station centrale sur une ligne servant normalement à la transmission des données. L'énergie nécessaire à la fabrication de la tonalité d'alarme et à sa transmission est fournie par une source d'alimentation de secours constituée par une batterie de condensateurs qui auront au préalable été chargés. Ce système présente un certain nombre de contraintes. En effet, les condensateurs étant généralement d'autant plus volumineux qu'ils sont de valeur élevée, il est préférable de limiter les valeurs de condensateurs nécessaires au strict minimum. Or, ceci entraîne un limitation de l'énergie emmagasinée, ce qui réduit la durée de la tonalité d'alarme qui pourra être engendrée. Il faut donc que le récepteur vers lequel l'alarme est transmise puisse déceler la présence d'un signal qui ne soit pas des données et l'identifier en un temps relativement court. La discrimination entre signal d'alarme et données est rendue possible par le choix d'une fréquence du signal d'alarme en dehors du spectre des données pures. C'est ainsi que dans un système dans lequel les données sont transmises dans une bande de fréquences allant de 800 à 2500 Hz, on a choisi un signal d'alarme sinusoïdal de 350 Hz de fréquence. Naturellement, durant la période d'alarme les condensatuers de stockage d'énergie sont progressivement déchargés et à partir d'un moment le signal que le dispositif pourrait engendrer présenterait des distorsions se traduisant par la présence d'harmoniques de la fréquence pure à 350 Hz. Certains de ces harmoniques (1050, 1400, 1750, etc.) seraient dans la bande de fréquences des données. Or, dans les réseaux de transmissions plusieurs stations sont souvent connectées à la station centrale par une même ligne de transmissions. De plus, ces stations sont géographiquement plus ou moins éloignées de la station centrale dont un veut attirer l'attention à l'aide du signal d'alarme. L'envoi de tonalité d'alarme étant purement aléatoire, les risques d'apparition sur la ligne du signal d'alarme engendré par une station durant l'envoi de données d'une autre station du réseau sont importants. Toute interférence entre données et alarme est donc particulièrement gênante surtout si l'alarme est à 40 db au-dessus des données du fait des éloignements respectifs des stations par rapport à la station centrale. Il est donc indispensable d'arrêter le processus de génération du signal d'alarme avant que celui-ci ne subisse de distorsion, ce qui raccourcit d'autant le temps alloué à la fabrication dudit signal. Pour faciliter la tâche des dispositifs de la station centrale destinés à déceler la présence du signal d'alarme, il est souhaitable que, pour une source d'alimentation de secours ou ensemble de stockage d'énergie donné le signal d'alarme puisse être engendré durant un intervalle de temps aussi long que possible.European patent application EP-A-0 018 517 describes a diagnostic and alarm device for an on-line data communication network. When the power source of a network transceiver station fails, a predetermined tone alarm signal is generated and transmitted to a central station on a line normally used for data transmission. The energy necessary for the production of the alarm tone and its transmission is supplied by an emergency power source consisting of a battery of capacitors which have been previously charged. This system has a number of constraints. Indeed, the capacitors being generally all the more voluminous as they are of high value, it is preferable to limit the values of capacitors necessary to the strict minimum. However, this results in a limitation of the stored energy, which reduces the duration of the alarm tone that can be generated. It is therefore necessary that the receiver to which the alarm is transmitted can detect the presence of a signal which is not data and identify it in a relatively short time. Discrimination between alarm signal and data is made possible by the choice of a frequency of the alarm signal outside the pure data spectrum. Thus in a system in which the data is transmitted in a frequency band going from 800 to 2500 Hz, a sinusoidal alarm signal of 350 Hz of frequency has been chosen. Naturally, during the alarm period the energy storage condensers are progressively discharged and from a moment the signal that the device could generate would present distortions resulting in the presence of harmonics of pure frequency at 350 Hz Some of these harmonics (1050, 1400, 1750, etc.) would be in the frequency band of the data. However, in transmission networks several stations are often connected to the central station by the same transmission line. In addition, these stations are geographically more or less distant from the central station, one of which wishes to draw attention by means of the alarm signal. The sending of alarm tone being purely random, the risks of appearance on the line of the alarm signal generated by a station during the sending of data from another station of the network are important. Any interference between data and alarm is therefore particularly troublesome, especially if the alarm is 40 db above the data due to the respective distances of the stations from the central station. It is therefore essential to stop the generation process of the alarm signal before it undergoes distortion, which shortens the time allocated to the production of said signal accordingly. To facilitate the task of the central station devices intended to detect the presence of the alarm signal, it is desirable that, for a given emergency power source or energy storage assembly, the alarm signal can be generated for as long a time interval as possible.

Exposé de l'inventionStatement of the invention

La présente invention a pour objet un générateur de signal d'alarme destiné à engendrer un signal temporaire de fréquence prédéterminée, tel que défini dans la revendication 1.The subject of the present invention is an alarm signal generator intended to generate a temporary signal of predetermined frequency, as defined in claim 1.

D'autres objets, caractéristiques et avantages de la présente invention ressortiront mieux de l'exposé qui suit, fait en référence aux dessins annexés à ce texte, qui représentent un mode de réalisation préfère de celle-ci.Other objects, characteristics and advantages of the present invention will emerge more clearly from the description which follows, made with reference to the drawings annexed to this text, which represent a preferred embodiment thereof.

Description des figuresDescription of the figures

  • Figure 1: dispositif de l'art antérieur.Figure 1: device of the prior art.
  • Figure 2: diagramme de fonctionnement mettant en évidence les problèmes à résoudre.Figure 2: operating diagram highlighting the problems to be solved.
  • Figure 3: schéma de principe de l'invention.Figure 3: block diagram of the invention.
  • Figures 4 et 5: des schémas de réalisation de l'invention.Figures 4 and 5: embodiments of the invention.
Description d'un mode de réalisation de l'inventionDescription of an embodiment of the invention

On a représenté sur la figure 1 un mode de réalisation du dispositif de l'art antérieur. Ce dispositif comporte deux condensateurs C1 et C2 destinés à emmagasiner la réserve d'énergie. Le condensateur C1 est relié d'une part à la masse et d'autre part à une source d'alimentation positive V+ à travers un interrupteur 11 et une diode D1. Le condensateur C2 est relié à la masse d'une part et à une source d'alimentation négative V- à travers une diode D2 et un interrupteur 12 d'autre part. Les condensateurs C1 et C2 sont aussi reliés à un générateur de signaux d'alarme 10 (qu'ils sont chargés d'alimenter lorsque les sources V+ et V-sont en panne) à travers des interrupteurs (moyens de commutation) 13 et 14 respectivement. Le circuit comporte en outre des circuits dits de commande de charge 12 et de commande de décharge 14. Tant que les sources d'alimentation V+ et V- sont en état de fonctionner le circuit 12 maintient les interrupteurs 11 et 12 fermés, tandis que le circuit 14 maintient les interrupteurs 13 et 14 ouverts. Le système est en phase dite de charge durant laquelle les condensateurs C1 et C2 se chargent tandis que le générateur de signaux d'alarme est au repos. Dès que l'une quelconque des sources d'énergie V+ et V- s'écarte de limites de fonctionnement prévues, un cycle dit d'alarme démarre. Le circuit 12 commande l'ouverture des interrupteurs 11 et 12 tandis que les interrupteurs 13 et 14 sont fermés sous l'effet d'une commande provenant du circuit 14. Le dispositif 10 alimenté par l'énergie stockée dans les condensateurs C1 et C2, engendre alors un signal à 350 Hz, dit d'alarme. Durant cette opération, les condensateurs C1 et C2 se déchargent, les tensions qu'ils délivrent décroissent. A partir de certains niveaux des tensions fournies par les condensateurs C1 et C2, le générateur d'alarme 10 délivre un signal distordu et donc comportant des harmoniques de la fréquence à 350 Hz. Comme on l'a indiqué plus haut, ceci est à éviter. Il est donc nécessaire d'arrêter le générateur d'alarme 10 avant l'instant où le signal engendré serait distordu. En pratique, il arrive que certains circuits du générateur d'alarme 10 aient besoin d'une tension négative supérieure à la tension positive. Par exemple, pour un signal d'alarme de ±2V crête-à-crête, les circuits de puissance du générateur d'alarme 10 nécessiteraient au moins +2,7V et -4,1V. Dans ce cas, il faudra même arrêter le fonctionnement du générateur d'alarme 10 plus tôt qu'on aurait pu l'imaginer à priori, c'est-à-dire dès que les tensions des condensateurs C1 et C2 atteindront 4,1V en valeur absolue. Enfin, toute variation des sources V+ et V- de même que tout défaut d'appairage des condensateurs C1 et C2 est à prendre en considération pour éviter les distorsions du signal d'alarme. En résumé, il est donc utile qu'une fois définies les caractéristiques du circuit à alimenter, on détermine exactement les tensions d'alimentations nécessaires puis partant d'une source d'alimentation donnée on dispose de moyens permettant d'engendrer simplement lesdites tensions nécessaires.FIG. 1 shows an embodiment of the device of the prior art. This device comprises two capacitors C1 and C2 intended to store the energy reserve. The capacitor C1 is connected on the one hand to ground and on the other hand to a positive power source V + through a switch 11 and a diode D1. The capacitor C2 is connected to earth on the one hand and to a negative power source V- through a diode D2 and a switch 12 on the other hand. The capacitors C1 and C2 are also connected to a generator of alarm signals 10 (which they are responsible for supplying when the sources V + and V-are out of order) through switches (switching means) 13 and 14 respectively. The circuit also comprises so-called charge control 12 and discharge control circuits 14. As long as the power sources V + and V- are in working order, the circuit 12 keeps the switches 11 and 12 closed, while circuit 14 keeps switches 13 and 14 open. The system is in the so-called charging phase during which the capacitors C1 and C2 are charged while the alarm signal generator is at rest. As soon as any of the energy sources V + and V- deviates from the expected operating limits, a so-called alarm cycle starts. The circuit 12 controls the opening of the switches 11 and 12 while the switches 13 and 14 are closed under the effect of a command from the circuit 14. The device 10 supplied by the energy stored in the capacitors C1 and C2, generates a signal at 350 Hz, called an alarm. During this operation, the condensa tors C1 and C2 are discharged, the voltages they deliver decrease. From certain levels of the voltages supplied by the capacitors C1 and C2, the alarm generator 10 delivers a distorted signal and therefore comprising harmonics of the frequency at 350 Hz. As indicated above, this is to be avoided . It is therefore necessary to stop the alarm generator 10 before the moment when the generated signal would be distorted. In practice, it sometimes happens that certain circuits of the alarm generator 10 need a negative voltage greater than the positive voltage. For example, for an alarm signal of ± 2V peak-to-peak, the power circuits of the alarm generator 10 would require at least + 2.7V and -4.1V. In this case, it will even be necessary to stop the operation of the alarm generator 10 sooner than one might have imagined a priori, that is to say as soon as the voltages of the capacitors C1 and C2 reach 4.1V in absolute value. Finally, any variation of the V + and V- sources as well as any pairing fault of the capacitors C1 and C2 must be taken into consideration to avoid distortions of the alarm signal. In summary, it is therefore useful that once the characteristics of the circuit to be supplied are defined, the necessary supply voltages are determined exactly and then, starting from a given supply source, there are means available for simply generating said necessary voltages. .

On a représenté sur la figure 2 un diagramme de fonctionnement pour un système dans lequel les alimentations V+ et V- ont pour valeurs nominales ±8,5V à 10% près. Dans les cas le plus défavorable, V+=+8,5+0,85=+9,35V tandis que

Figure imgb0001
FIG. 2 shows an operating diagram for a system in which the V + and V- supplies have nominal values ± 8.5V to within 10%. In the worst case, V + = + 8.5 + 0.85 = + 9 , 35 V while
Figure imgb0001

Si l'on tient compte des chutes de tensions d'environ 0,7V dans les diodes D1 et D2, les charges de C1 et C2 peuvent se faire à +8,65V et -6,95V respectivement (ce que montre la zone à gauche de to sur le diagramme de la partie supérieure de la figure 2). A partir de to, on a supposé que l'on entrait en zone de fonctionnement du générateur d'alarme. Les courbes VC1 et VC2 schématisent des décharges symétriques des condensateurs C1 et C2 respectivement. On notera que l'on a supposé ces décharges en courant constant pour simplifier l'exposé mais qu'il ne s'agit nullement là d'une contrainte. Pour |VC2|≤4,1V le signal d'alarme présente une distorsion due à un phénomène de saturation visible dans la partie inférieure de la figure 2 représentant le signal d'alarme engendré. Donc à partir de l'instant ti, le circuit d'alarme est inutilisable à cause de ces distorsions, tandis que pour ce qui concerne le condensateur C1, le circuit aurait pu fonctionner jusqu'à l'instant t2. On constate que cette situation est due à la présence d'une double dissymétrie de tensions. Une dissymétrie des tensions de charges de C1 et C2 par rapport à la masse, et une dissymétrie des tensions limites utilisables pour VC1 et VC2.If one takes into account the voltage drops of about 0.7V in the diodes D1 and D2, the charges of C1 and C2 can be done at + 8.65V and -6.95V respectively (what the zone shows left of t o on the diagram in the upper part of figure 2). From t o , it was assumed that one entered the operating zone of the alarm generator. The curves VC1 and VC2 show diagrammatically symmetrical discharges of the capacitors C1 and C2 respectively. It will be noted that these constant current discharges have been assumed to simplify the presentation, but that this is by no means a constraint. For | VC2 | ≤4.1V the alarm signal presents a distortion due to a saturation phenomenon visible in the lower part of figure 2 representing the generated alarm signal. Therefore from time t i , the alarm circuit cannot be used because of these distortions, while with regard to capacitor C1, the circuit could have operated until time t 2 . We note that this situation is due to the presence of a double asymmetry of tensions. An asymmetry of the charge voltages of C1 and C2 with respect to the mass, and an asymmetry of the limit voltages usable for VC1 and VC2.

Le circuit de l'invention permet de minimiser l'effet de ces dissymétries en mettant en oeuvre des moyens permettant de centrer la zone de décharge à volonté. Ce recentrage permettraite notamment, dans le cas de la figure 2, de prolonger la durée du signal d'alarme non distordu jusqu'à t'2. On verra même plus loin que le résultat peut même être encore meilleur qu'il n'apparaît sur la figure 2.The circuit of the invention makes it possible to minimize the effect of these asymmetries by using means making it possible to center the discharge zone at will. This refocusing will notably allow, in the case of FIG. 2, to extend the duration of the undistorted alarm signal up to t ' 2 . We will even see later that the result may even be even better than it appears in Figure 2.

La figure 3 montre un schéma de principe du dispositif de l'invention. Les figures 1 et 2 portent des références semblables pour désigner les éléments semblables. On notera que les condensateurs C1 et C2 ont été remplacés par un condensateur unique C flottant, c'est-à-dire, non connecté à la masse. On pourrait, ce qui revient au même, utiliser une source de tension flottante quelconque. Lorsque 11 et 12 sont fermés, c'est-à-dire durant la période de charge, le condensateur C se charge à une valeur

Figure imgb0002
où Vd représentent les chutes de tensions dues aux diodes D1 et D2.Figure 3 shows a block diagram of the device of the invention. Figures 1 and 2 bear similar references to designate similar elements. It will be noted that the capacitors C1 and C2 have been replaced by a single floating capacitor C, that is to say, not connected to ground. One could, which amounts to the same thing, use any floating voltage source. When 11 and 12 are closed, i.e. during the charging period, the capacitor C charges to a value
Figure imgb0002
where V d represent the voltage drops due to diodes D1 and D2.

Durant la période dite d'alarme, c'est-à-dire durant la période d'utilisation de la source d'énergie flottante, 11 et 12 sont ouverts tandis que 13 et 14 sont fermés comme cela était les cas pour le circuit de la figure 1. Or deux éléments essentiels ont été rajoutés au circuit. A savoir, d'une part un circuit de référence 16 connecté en aval des moyens de commutation 13, 14 et d'autre part un circuit suiveur de tension 18. Le circuit de référence construit une première tension de référence Vref basée notamment sur les tensions aux bornes du condensateur C. Cette tension de référence Vref est appliquée sur l'une des entrées du circuit suiveur de tension 18. Le circuit 18 représenté ici schématiquement sous forme d'un amplificateur opérationnel opère de manière à forcer Vref au niveau d'une seconde tension de référence V'ref qui est une tension fixe appliquée sur sa sortie et sur son autre entrée. Par exemple, si cette tension V'ref est la masse, le circuit agit de manière à faire tendre Vref vers la tension de la masse. Ceci entraîne un recentrage de la tension aux bornes du condensateur C. Ce recentrage peut être contrôle à volonté.During the so-called alarm period, that is to say during the period of use of the floating energy source, 11 and 12 are open while 13 and 14 are closed as was the case for the circuit of Figure 1. However, two essential elements have been added to the circuit. Namely, on the one hand a reference circuit 16 connected downstream of the switching means 13, 14 and on the other hand a voltage follower circuit 18. The reference circuit builds a first reference voltage V ref based in particular on the voltages across capacitor C. This reference voltage V ref is applied to one of the inputs of the voltage follower circuit 18. The circuit 18 shown here schematically in the form of an operational amplifier operates so as to force V ref to the level a second reference voltage V ′ ref which is a fixed voltage applied to its output and to its other input. For example, if this voltage V ' ref is the ground, the circuit acts so as to cause V ref towards the voltage of the ground. This results in a recentering of the voltage across the capacitor C. This recentering can be controlled as desired.

On a vu à propos de la description de la figure 2 qu'une des causes de la distorsion provenait du fait que le seuil inférieur de tension admissible (+2,7V) pour VC1 avant que ne se produise une distorsion du signal d'alarme engrendré, était différent en valeur absolue du seuil admissible (-4,1V) sur VC2. On a donc tout intérêt à concevoir un circuit réalisant, durant la période de décharge, un recentrage de la fonction de décharge du condensateur C (ou de la source d'alimentation de secours flottante) vers la zone des tensions négatives. C'est ce que montre la courbe Vc- de la figure 2. En effet, on a représenté sur cette figure un décalage de 1,4V des tensions Yc + et Vg* apparaissant sur les électrodes du condensateur C durant la période d'utilisation, c'est-à-dire de décharge.We have seen in connection with the description of FIG. 2 that one of the causes of the distortion arises from the fact that the lower admissible voltage threshold (+ 2.7 V) for VC1 before a distortion of the alarm signal occurs. generated, was different in absolute value from the admissible threshold (-4.1V) on VC2. It is therefore very advantageous to design a circuit carrying out, during the discharge period, a refocusing of the discharge function of the capacitor C (or of the floating backup power source) towards the negative voltage zone. This is shown by the curve V c - in FIG. 2. In fact, this figure shows a 1.4V offset of the voltages Y c + and Vg * appearing on the electrodes of the capacitor C during the period d 'use, that is to say, discharge.

Avec une source de tension flottante, le circuit de la figure 3 peut fournir en effet deux tensions Vc + et Vc- telles que

Figure imgb0003
With a floating voltage source, the circuit of FIG. 3 can indeed supply two voltages V c + and V c - such that
Figure imgb0003

A titre, d'exemple, si l'on veut que partant d'une source flottante Ve=9V, on obtienne des tensions d'alimentations Vc+=3V et Vc-=-6V au démarrage de la période d'utilisation ou de décharge, on choisira V'ref=0 et le circuit de référence 16 sera constitué d'un pont diviseur comportant une résistance R en série avec une résistance 2R. Ceci entraîne a=R/2R=Z, b=0. D'où |Vc +|=½|Vc-|· Dans ce cas, le rapport entre |Vc +| et |Vc -| reste constant durant la décharge et les deux courbes convergent ver V',ef au même instant.As an example, if we want that starting from a floating source V e = 9V, we obtain supply voltages V c + = 3V and V c - = - 6V at the start of the period of use or discharge, we will choose V ' ref = 0 and the reference circuit 16 will consist of a divider bridge comprising a resistor R in series with a resistor 2R. This results in a = R / 2 R = Z, b = 0 . Hence | V c + | = ½ | V c - | · In this case, the relationship between | V c + | and | V c - | remains constant during the discharge and the two curves converge towards V ', ef at the same time.

On peut aussi utiliser bOO, par exemple on aura b=-1,2V en plaçant deux diodes en série avec la résistance 2R. Dans ce cas on obtiendra

Figure imgb0004
Dans le cas où b#0 non seulement on commande le centrage de la tension aux bornes du condensateur à l'instant initial de décharge, mais encore on choisit de faire tendre Vc- et Vc + vers le potentiel V'ref à des instants différents ou en d'autres termes de faire converger Vc + et Vc- vers b/a au même instant. Ceci accroît les limites des améliorations apprortées par l'invention.We can also use bOO, for example we will have b = - 1 , 2V by placing two diodes in series with the resistor 2R. In this case we will get
Figure imgb0004
In the case where b # 0 not only the centering of the voltage across the capacitor is controlled at the initial time of discharge, but also we choose to cause V c - and V c + to tend towards the potential V ' ref at different instants or in other words to make V c + and V c - converge towards b / a at the same instant. This increases the limits of the improvements brought about by the invention.

En d'autres termes, l'invention permet, partant d'une source d'énergie flottante, ce centrer à volonté la tension disponible aux bornes de ladite source par rapport à un potentiel de référence donné. L'invention permet donc notamment de positionner la tension de la source par rapport au potentiel de masse.In other words, the invention makes it possible, starting from a floating energy source, to center the voltage available at the terminals of said source at will with respect to a given reference potential. The invention therefore makes it possible in particular to position the voltage of the source with respect to the ground potential.

L'un des avantages majeurs du circuit de l'invention est qu'il ne nécessite que très peu de puissance supplémentaire par rapport au circuit de l'art antérieur. La seule consommation supplémentaire effective, est celle du circuit de référence 16. Cette consommation est minimisée en pratique en choisissant un circuit de référence d'impédance relativement élvée, de l'ordre de 50 KQ par exemple.One of the major advantages of the circuit of the invention is that it requires very little additional power compared to the circuit of the prior art. The only effective additional consumption is that of the reference circuit 16. This consumption is minimized in practice by choosing a reference circuit of relatively high impedance, of the order of 50 KQ for example.

Bien que l'on ait schématisé l'étage suiveur par un amplificateur différentiel, des circuits plus simples et intégrables remplissant une fonction équivalente pourront être utilisés.Although the follower stage has been shown diagrammatically by a differential amplifier, simpler and integrable circuits fulfilling an equivalent function may be used.

On a représenté sur la figure 4 le schéma de pricipe d'un mode de réalisation de l'invention dans lequel le circuit suiveur de tension est extrêmement simple. Le circuit de référence 16 est ici, tout simplement, un pont diviseur à deux résistances R1 et R2 en série. Quant à la fonction du circuit 18 suiveur de tension, elle est ici obtenue par deux transistors T1 et T2 en série. Le transistor T1, de type NPN a son collecteur relié à l'électrode du condensateur C chargée positivement et son émetteur relié à la masse (V'ref=0) et à l'émetteur du transistor T2 de type PNP. Le collecteur de T2 est relié à l'électrode du condensateur C chargée négativement. Le point commun aux résistances R1, R2 est relié aux bases des transistors T1 et T2. Ce point commun est celui fournissant la tension désignée par Vref· Les transistors T3 et T4 remplissent les fonctions des interrupteurs 13 et 14 respectivement. Un transis- tol T5 débitant dans une résistance R' réalise la fonction du circuit 14 de commandes des interrupteurs 13 et 14.FIG. 4 shows the schematic diagram of an embodiment of the invention in which the voltage follower circuit is extremely simple. The reference circuit 16 is here, quite simply, a divider bridge with two resistors R1 and R2 in series. As for the function of the voltage follower circuit 18, it is here obtained by two transistors T1 and T2 in series. The transistor T1, of NPN type has its collector connected to the electrode of the capacitor C positively charged and its emitter connected to the ground (V ' ref = 0) and to the emitter of the transistor T2 of PNP type. The collector of T2 is connected to the electrode of the negatively charged capacitor C. The point common to resistors R1, R2 is connected to the bases of transistors T1 and T2. This common point is that providing the voltage designated by V ref · The transistors T3 and T4 fulfill the functions of the switches 13 and 14 respectively. A transistor T5 debiting through a resistor R 'performs the function of the circuit 14 for controlling the switches 13 and 14.

Durant la période de charge du condensateur C, les transistors T3, T4, T5 sont bloqués. Il en résulte que T1 et T2 sont aussi bloqués.During the charging period of the capacitor C, the transistors T3, T4, T5 are blocked. As a result, T1 and T2 are also blocked.

Durant la période de déchage ou période d'utilisation de la charge du condensateur C, les interrupteurs 11 et 12 (non représentés) sont ouverts, tandis que T4 est rendu conducteur. Ceci entraîne la conduction à saturation des transistors T3 et T4. Le potientiel du condensateur C se retrouve appliqué en A et B au circuit d'utilisation (non représenté). La tension de référence Vref apparaît au point commun à R1 et R2. Si Vref est positif, T1 devient conducteur et la tension aux bornes du condensateur C est recentrée négativement, si Vre, est négatif, T2 est conducteur et la tension aux bornes de C est recentrée positivement, et ceci jusqu'à ce que Vref=V'ref, c'est-à-dire zéro volt dans le cas présent. Donc l'ensemble T1, T2 connecté d'un côté à la msse et de l'autre au point commun à R1, R2 fournissant Vref se comporte en suiveur de tension tendant à forcer Vref au niveau de la masse.During the stall period or period of use of the charge of the capacitor C, the switches 11 and 12 (not shown) are open, while T4 is made conductive. This results in the conduction to saturation of the transistors T3 and T4. The potential of capacitor C is found applied at A and B to the use circuit (not shown). The reference voltage V ref appears at the point common to R1 and R2. If V ref is positive, T1 becomes conductive and the voltage across capacitor C is negatively centered, if V re , is negative, T2 is conductive and the voltage across C is positively centered, until V ref = V ' ref, that is to say zero volts in the present case. Therefore the set T1, T2 connected on one side to the msse and on the other to the point common to R1, R2 supplying V ref behaves as a voltage follower tending to force V ref at ground level.

En pratique, on tiendra compte de la présence des chutes de tensions base-émetteurs dans les transistors, T1 et T2. L'effet de ces chutes de tensions sera compensé en plaçant les diodes D'1 et D'2 représentées en pointillés sur la figure 4.In practice, account will be taken of the presence of base-emitter voltage drops in the transistors, T1 and T2. The effect of these voltage drops will be compensated for by placing the diodes D'1 and D'2 shown in dotted lines in FIG. 4.

On a représenté sur la figure 5 un mode détaillé de réalisation de l'invention utilisant notamment des éléments de circuits semblables à ceux du circuit de la figure 4. L'ensemble T1, T2 suiveur de tension a été remplacé par deux circuits de type Darlington à savoir (T11, T12, R11) et (T13, T14, R12). Le circuit de référence 16 comporte, outre les résistances R1 et R2, un ensemble de diodes (D11, D12, D13, D14, D15 et D16) en série. La base du transistor T14 est reliée à la cathode de la diode D13. La base du transistor T12 est reliée à l'anode de la diode D11 à travers une résistance R13 et à la cathode de cette même diode à travers une résistance R14.FIG. 5 shows a detailed embodiment of the invention using in particular circuit elements similar to those of the circuit of FIG. 4. The assembly T1, T2 voltage follower has been replaced by two circuits of the Darlington type namely (T11, T12, R11) and (T13, T14, R12). The reference circuit 16 comprises, in addition to the resistors R1 and R2, a set of diodes (D11, D12, D13, D14, D15 and D16) in series. The base of transistor T14 is connected to the cathode of diode D13. The base of transistor T12 is connected to the anode of diode D11 through a resistor R13 and to the cathode of this same diode through a resistor R14.

La fonction de l'interrupteur 13 est réalisée par un circuit du genre Darlington comportant des transistors PNP T16, T17 et T18 et une résistance R18. Les éléments de circuits T4, T5 et R' occupent les mêmes positions que leurs homologues du dispositif représente sur la figure 4.The function of the switch 13 is carried out by a circuit of the Darlington type comprising PNP transistors T16, T17 and T18 and a resistor R18. The circuit elements T4, T5 and R 'occupy the same positions as their counterparts in the device shown in FIG. 4.

On notera en outre qu'un pont diviseur supplémentaire comportant des diodes D17 à D20 en série avec une diode Zener Z1, une résistance R17 et des diodes D21 à D23, a été placé en amont des interrupteurs 13 et 14. Une diode D24 est placée entre le collecteur du transistor T18 et la cathode de la diode D20. Le point commun à la résistance R17 et à l'anode de la diode D21 est relié à la base du transistor T5 à travers une résistance R19. Cette même base du transistor T5 est reliée à l'émetteur du transistor T4 à travers une résistance R20. Enfin, un transistor NPN T15 est connecté entre le point commun à R17 et à la diode D21 et l'émetteur du transistor T4. Le signal de commande de mise en fonction de l'alimentation de secours est appliqué à la base du transistor T15. On notera que l'on a désigné par DRV+ et DRV-, les bornes fournissant les tensions de secours désignées par Vc + et Vr- sur la figure 4. En outre, on a prévu deux autres sorties, respectivement désignées par OSC+ et OSC- et prélevées en amont des interrupteurs 13 et 14.It will also be noted that an additional divider bridge comprising diodes D17 to D20 in series with a Zener diode Z1, a resistor R17 and diodes D21 to D23, has been placed upstream of the switches 13 and 14. A diode D24 is placed between the collector of transistor T18 and the cathode of diode D20. The point common to the resistor R17 and to the anode of the diode D21 is connected to the base of the transistor T5 through a resistor R19. This same base of transistor T5 is connected to the emitter of transistor T4 through a resistor R20. Finally, an NPN transistor T15 is connected between the point common to R17 and to the diode D21 and the emitter of the transistor T4. The back-up power supply control signal is applied to the base of transistor T15. Note that we have designated by DRV + and DRV-, the terminals providing the backup voltages designated by V c + and V r - in FIG. 4. In addition, two other outputs have been provided, respectively designated by OSC + and OSC- and taken upstream of switches 13 and 14.

Durant la période d'attente, c'est-à-dire lorsque le signal d'alarme n'a pas besoin d'être transmis, un courant est envoyé à la base du transistor T15, dit transistor d'inhibition. Ce transistor est saturé et dérive le courant de base du transistor T5. Il en résulte que tous les circuits sont non conducteurs, à l'exception de la branche D17, D18, D19, D20, Z1, R17 et T15 cette branche servant à démarrer le processus ultérieurement. Le circuit de centrage étant bloqué, le condensateur C est flottant. Néanmoins, le circuit (non représenté) de charge du condensateur C est actif, et les bornes portant les références OSC+ et OSC- sont respectivement aux niveaux de tension Vc + et Vc- du condensateur C. Ces tensions permettant d'alimenter un oscillateur du générateur d'alarme, oscillateur fabriquant un signal à 350 Hz. Ce signal n'est cependant pas transmis sur la ligne car le circuit d'attaque de ligne (non représenté) chargé de porter le signal d'alarme à un niveau suffisant pour être transmis sur la ligne, n'est lui pas alimenté. L'alimentation dudit circuit d'attaque est fournie par DRV+ et DRV-.During the waiting period, that is to say when the alarm signal does not need to be transmitted, a current is sent to the base of the transistor T15, called the inhibition transistor. This transistor is saturated and derives the base current from transistor T5. As a result, all the circuits are non-conductive, with the exception of the branch D17, D18, D19, D20, Z1, R17 and T15 this branch being used to start the process later. The centering circuit being blocked, the capacitor C is floating. Nevertheless, the circuit (not shown) for charging the capacitor C is active, and the terminals bearing the references OSC + and OSC- are respectively at the voltage levels V c + and V c - of the capacitor C. These voltages making it possible to supply an alarm generator oscillator, an oscillator producing a signal at 350 Hz. This signal is however not transmitted on the line because the line driver circuit (not shown) responsible for bringing the alarm signal to a level sufficient to be transmitted on the line, it is not supplied. The power supply of said drive circuit is supplied by DRV + and DRV-.

Le processus d'émission du signal d'alarme commence lorsque la base de T15 n'est plus alimentée par une commande externe provenant d'un circuit (non représenté) de détection de panne d'alimentation normale. Dans ce cas, T15 se bloque et le courant n'étant plus dérivé par T15 alimente la base de T5. Il y a alors saturation de T14 et du montage Darlington T16, T17, T18. Les sorties DRV+ et DRV- sont mises sous tension, ce qui a plusieurs conséquences. Tout d'abord, le circuit d'attaque de ligne est alimenté dont prêt à émettre le signal d'alarme. En outre, le circuit de centrage est rendu actif. Enfin, la diode D24 devient conductrice et bloque les diodes D17 à D20. Le circuit de commande T5 se trouve donc alimenté par DRV+ via D24, Z1, R17, R19 et R20. C'est donc un circuit auto-entretenu. Lorsque le potientiel entre DRV+ et OSC- (qui est peu différent de DRV-) n'est plus suffisant, T5 se bloque, bloquant tout le circuit. Cela permet l'arrêt de l'émission du signal d'alarme avant la saturation du circuit d'attaque de ligne, donc avant distorsion du signal d'alarme.The process of transmitting the alarm signal begins when the base of T15 is no longer supplied by an external command originating from a circuit (not shown) for detecting normal power failure. In this case, T15 is blocked and the current no longer being derived by T15 supplies the base of T5. There is then saturation of T14 and of the Darlington assembly T16, T17, T18. The DRV + and DRV- outputs are energized, which has several consequences. First, the line driver is supplied with power, ready to issue the alarm signal. In addition, the centering circuit is made active. Finally, the diode D24 becomes conductive and blocks the diodes D17 to D20. The control circuit T5 is therefore supplied by DRV + via D24, Z1, R17, R19 and R20. It is therefore a self-sustaining circuit. When the potential between DRV + and OSC- (which is little different from DRV-) is no longer sufficient, T5 is blocked, blocking the entire circuit. This allows the emission of the alarm signal to stop before the line driver circuit is saturated, therefore before distortion of the alarm signal.

Bien que l'on ait décrit dans ce qui précède et représenté sur les dessins les caractéristiques essentielles de l'invention, il est évident que l'homme de l'art peut y apporter toutes modifications de forme ou de détail qu'il juge utiles, sans pour autant sortir du cadre de ladite invention.Although the essential characteristics of the invention have been described in the foregoing and represented in the drawings, it is obvious that a person skilled in the art can make any modification of form or detail which he considers useful. , without departing from the scope of said invention.

Claims (5)

1. An alarm signal generator for generating a tempory, undistorted signal of predetermined frequency, said generator comprising:
(a) a back-up power supply circuit from a source of floating voltage V that discharges while in use, said power supply circuit including:
a capacitor (C) previously charged to provide said floating voltage Vc;
power supply means providing previously defined voltages Vc + and Vc- from said floating voltage Vc and controlling the discharge of capacitor (C) to prolong the use of said floating voltage source while said capacitor is dischar- ing and to establish between Vc + and Vc- the relationship:
Figure imgb0007
where a and b are predetermined parameters that are different from zero; said supply means including;
a voltage follower circuit; and
a reference circuit disposed between the terminals of the source of floating voltage V. and connected to the input of the voltage follower circuit;
switching means located between the terminals of capacitor (C) and the terminals of the reference circuit; and
an automatic control circuit for automatically switching off the switching means according to the voltage level downstream of said switching means: and
(b) an oscillator that is supplied with voltages Vc + and Vc- provided by said power supply circuit and generates said temporary, undistorted signal of predetermined frequency.
2. An alarm signal generator according to claim 1, characterized in that it includes:
means for connecting said oscillator upstream of said switching means; and
an amplifier for amplifying the signal provided by the oscillator, said amplifier being supplied with the voltages available downstream of said switching means.
3. An alarm signal generator according to claim 2, characterized in that said reference circuit is comprised of a first voltage divider whose resistors are separated by at least one diode.
4. An alarm signal generator according to claim 3, characterized in that said voltage divider is connected downstream of said switching means.
5. An alarm signal generator according to claim 4, characterized in that said automatic control circuit includes:
a second voltage divider connected to the terminals of capacitor (C) upstream of the switching means;
a transistor circuit controlling said switching means, the control electrode of said transistor being connected to said second voltage divider; and
controlled-inhibition means connected to the second voltage divider for diverting the current from the control transistor.
EP82430005A 1982-02-25 1982-02-25 Power supply circuit and transmission device using such a power supply circuit Expired EP0087541B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE8282430005T DE3279671D1 (en) 1982-02-25 1982-02-25 Power supply circuit and transmission device using such a power supply circuit
EP82430005A EP0087541B1 (en) 1982-02-25 1982-02-25 Power supply circuit and transmission device using such a power supply circuit
JP57214787A JPS58154020A (en) 1982-02-25 1982-12-09 Power source circuit
US06/464,542 US4482815A (en) 1982-02-25 1983-02-07 Floating back-up power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP82430005A EP0087541B1 (en) 1982-02-25 1982-02-25 Power supply circuit and transmission device using such a power supply circuit

Publications (2)

Publication Number Publication Date
EP0087541A1 EP0087541A1 (en) 1983-09-07
EP0087541B1 true EP0087541B1 (en) 1989-05-03

Family

ID=8189976

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82430005A Expired EP0087541B1 (en) 1982-02-25 1982-02-25 Power supply circuit and transmission device using such a power supply circuit

Country Status (4)

Country Link
US (1) US4482815A (en)
EP (1) EP0087541B1 (en)
JP (1) JPS58154020A (en)
DE (1) DE3279671D1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4675539A (en) * 1985-09-17 1987-06-23 Codex Corporation Backup power system
US5506775A (en) * 1993-05-20 1996-04-09 Kansei Corporation Power source circuit for an occupant protecting device of motor vehicles
KR0149584B1 (en) * 1995-10-18 1999-04-15 김광호 Power supply circuit
DE19643014C1 (en) * 1996-10-18 1998-08-13 Telefunken Microelectron Bus system for electronic energy supply
US5912513A (en) * 1997-11-14 1999-06-15 Lucent Technologies, Inc. Method and apparatus for reducing power dissipation in DC termination circuit
DE19930094A1 (en) * 1999-06-30 2001-01-04 Philips Corp Intellectual Pty Data bus transmitter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1102552A (en) * 1964-09-16 1968-02-07 English Electric Co Ltd Power supply circuit for electrical protective relays
DE1563848A1 (en) * 1966-07-20 1970-08-06 Telefunken Patent Ungrounded voltage source
US3646428A (en) * 1970-11-27 1972-02-29 Bell Telephone Labor Inc Symmetrical voltage regulator
DE2116612A1 (en) * 1971-03-31 1972-10-12 Licentia Gmbh Circuit arrangement for adjusting the temperature coefficient
JPS5028619B1 (en) * 1971-06-30 1975-09-17
JPS5512247U (en) * 1978-07-07 1980-01-25
FR2455827A1 (en) * 1979-05-03 1980-11-28 Ibm France DIAGNOSTIC AND ALARM DEVICE FOR A DATA COMMUNICATION NETWORK

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ELECTRONIC ENGINEERING, vol.50, no.603, mars 1978, Londres (GB). D.J. BATTISON: "A differential power supply converter", page 19 *
IBM TECHNICAL DISCLOSURE BULLETIN, vol.14, no.1, juin 1971, New York (US). R.A. TENLEY: "Power line disturbance support circuit", pages 68, 69 *

Also Published As

Publication number Publication date
US4482815A (en) 1984-11-13
DE3279671D1 (en) 1989-06-08
JPS58154020A (en) 1983-09-13
EP0087541A1 (en) 1983-09-07

Similar Documents

Publication Publication Date Title
EP0110775B1 (en) Low drop-out voltage regulator
EP1079525B1 (en) System for controlling a two-transistor bidirectional switch
EP0002983B2 (en) Power control circuit and an intermittent voltage supply using such a circuit
EP0087541B1 (en) Power supply circuit and transmission device using such a power supply circuit
EP0135412B1 (en) Regulated powering circuit for a telephone set
EP0194177B1 (en) Subscriber line interface circuit with a reduced power monitoring mode
FR2536878A1 (en) AUTOMATIC TRANSFER CIRCUIT IN THE ACTIVITY OF A PROCESSOR
FR2724072A1 (en) POWER AMPLIFIER STAGE, OF FOLLOWER TYPE.
FR2581811A1 (en) NUMERIC MULTIPLEXER MODULE WITH N INPUTS AND MULTIPLEXER WITH N2 INPUTS INCORPORATING SUCH MODULES
EP0018517A1 (en) Diagnostic and alarm apparatus for a data communication network
EP0688151B1 (en) Device for operating a low pressure discharge lamp
FR2611283A1 (en) DEVICE COMPRISING AN ELECTRONIC CIRCUIT FOR PROCESSING AN ANALOG SIGNAL
FR2490895A1 (en) MAINTENANCE CIRCUIT FOR OSCILLATOR WITH LOW POWER CONSUMPTION
FR2534751A1 (en) RESTORATION CIRCUIT AT POWER ON FOR AN ELECTRICAL CONTROL SYSTEM
FR3080195A1 (en) METHOD AND CONTROLLER FOR MANAGING THE OUTPUT POWER SUPPLY VOLTAGE OF A USB SOURCE DEVICE SUPPORTING THE USB POWER DELIVERY MODE
EP0080396B1 (en) Integrated circuit microprocessor-controlled telephone two wire/four wire transmission circuit, and line current safeguard powering
EP0176377B1 (en) Autonomous supply device for an observation device, in particular one with a stereoscopic effect
FR2866492A1 (en) INVERTER POWER SOURCE FOR WELDING STATION
FR2489628A1 (en) POWER CONTROL DEVICE IN SOLID STATE TECHNIQUE
EP0200600B1 (en) Transistor base control circuit operating at a high frequency
EP0167431B1 (en) Drive circuit for switching with electrical isolation and infinitely variable conduction time
FR2859856A1 (en) Remote supply system for e.g. information processing equipment such as telephone, has converter to deliver electrical power signal presenting voltage and intensity in determined operating ranges to equipment
FR2733101A1 (en) LOGIC CIRCUIT TYPE A COUPLED TRANSMITTERS OPERATING UNDER LOW POWER SUPPLY VOLTAGE
FR2767933A1 (en) SUPPLY VOLTAGE ADAPTER CIRCUIT
FR2577706A1 (en) CIRCUIT ARRANGEMENT FOR A CENTRALIZED REMOTE RECEIVER

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19831215

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3279671

Country of ref document: DE

Date of ref document: 19890608

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920124

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920304

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930118

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19931029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19931103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940225

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940225