EP0084846B1 - Wärmetauscher für den Betrieb einer Heissdampf-Kesselanlage - Google Patents

Wärmetauscher für den Betrieb einer Heissdampf-Kesselanlage Download PDF

Info

Publication number
EP0084846B1
EP0084846B1 EP83100408A EP83100408A EP0084846B1 EP 0084846 B1 EP0084846 B1 EP 0084846B1 EP 83100408 A EP83100408 A EP 83100408A EP 83100408 A EP83100408 A EP 83100408A EP 0084846 B1 EP0084846 B1 EP 0084846B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
container
exchanger according
condensate
recirculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83100408A
Other languages
English (en)
French (fr)
Other versions
EP0084846A1 (de
Inventor
Karl August Jacob
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jacob Karl August
Original Assignee
Jacob Karl August
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE3202144A external-priority patent/DE3202144C2/de
Priority claimed from DE19823213165 external-priority patent/DE3213165A1/de
Priority claimed from DE19823224153 external-priority patent/DE3224153A1/de
Priority claimed from DE19823248785 external-priority patent/DE3248785A1/de
Application filed by Jacob Karl August filed Critical Jacob Karl August
Publication of EP0084846A1 publication Critical patent/EP0084846A1/de
Application granted granted Critical
Publication of EP0084846B1 publication Critical patent/EP0084846B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/04Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being spirally coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/16Feed-water heaters, i.e. economisers or like preheaters with water tubes arranged otherwise than in the boiler furnace, fire tubes, or flue ways
    • F22D1/18Feed-water heaters, i.e. economisers or like preheaters with water tubes arranged otherwise than in the boiler furnace, fire tubes, or flue ways and heated indirectly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D11/00Feed-water supply not provided for in other main groups

Definitions

  • the invention relates to a heat exchanger for operating a superheated steam boiler system, for example for dry cleaning, laundries or the like, consisting of a container with connections for the supply and discharge of a first medium flowing through the container and with one arranged in the container over its height extending, through which a second medium can flow, with connections opening into a cover of the container for a feed line and a discharge line, the feed line extending to the lowest point of the spiral and the discharge line starting from the highest point of the spiral.
  • Every steam boiler system is provided with a condensate return.
  • the condensate consists of a mixture of vapor at approx. 105 ° C and a condensed hot steam mixture of approx. 90-100 ° C.
  • the hot condensed water is normally collected in a condensate container in the boiler system.
  • a boiler feed water pump then presses this hot water back into the superheated steam boiler, where evaporation takes place again. Since water above 80-85 ° C causes difficulties for the pumps, either the condensate container is made very large or the condensate is additionally cooled. On the other hand, however, this leads to difficulties again if the condensate is too cold (e.g. 60 ° C), since then the boiler heating surfaces or pipes will rot.
  • the invention is therefore based on the object to provide a heat exchanger with which the heat of the condensate of a steam boiler system can be optimally used to increase the temperature of the feed water, the highest possible energy savings can be achieved for the operation of the steam boiler and in a simple manner to different Operating conditions or different sizes of the high-pressure steam boiler, for example higher output, shortening the heating time of the boiler, can be easily adapted and the output of the heat exchanger can also be controlled depending on the amount of condensate.
  • connection for the supply of the first medium is also provided in the lid of the container, that the spiral arranged vertically in the container is formed at its upper end as a flat spiral that in Container is a baffle plate extending from the lid, reaching to the level of the flat spiral, through which the vapor of the first medium can be guided to the locations of the spirals that are located at the heat exchanger inlet and that a recirculation plate is provided below the flat spiral to increase the length of time of the first Enlarge medium in the area of the flat spiral.
  • the recirculation plate provided below the flat spiral according to the invention has the essential advantage that the hot fresh condensate develops intensive turbulence in the area of the flat spiral and releases a greater part of its heat content to the flat spiral.
  • the inflowing fresh condensate evaporates, initially flows around the flat spiral on all sides and hits the recirculation plate, which results in the strong turbulence.
  • the heat exchanger according to the invention is connected in the condensate circuit after the feed water pump and before the boiler inlet.
  • This design has the advantage that the hot fresh condensate is cooled and, on the other hand, the boiler feed water is heated from about 60 ° C in the feed water spiral through the fresh condensate to about 90-95 ° C and also higher, before the boiler enters.
  • the condensate line is connected to consumers and leads to a feed water container, the feed water supply line being connected to a pump and the feed water discharge line being connected to a high-pressure steam boiler.
  • the feed water spiral is flat at its upper end according to a first embodiment or, according to modifications, upwards cav or convex.
  • the heat content of the condensate that is present in the fresh condensate is optimally utilized.
  • the recirculation plate is advantageously arranged on the feed water supply line.
  • the recirculation plate is flat.
  • the recirculation plate is concave towards the cover.
  • the recirculation plate is convex toward the cover.
  • the bottom of the heat exchanger can also act as recirculation plates.
  • this can be profiled according to a further feature of the invention.
  • the profiling can be carried out by means of elevations or depressions, which can be point-shaped or linear.
  • the diameter of the recirculation plate is preferably chosen to be smaller than the inside diameter of the container.
  • the vapor vapor thus flows approximately radially outward from the center of the heat exchanger and downward between the recirculation plate and the wall of the heat exchanger.
  • the recirculation plate is arranged in a height-adjustable manner in yet another embodiment of the invention.
  • the invention provides that at least one pipe section arranged between the container and the lid with a second flat spiral, a second baffle plate and a second recirculation plate and connecting means for the supply lines and discharge lines between the pipe section and the container are provided.
  • This inventive design of additionally attachable pipe sections with flat spiral advantageously enables simple adaptation to different operating sizes of the high-pressure steam boiler to be operated in each case.
  • the z. B. second recirculation plate in the pipe section be formed analogously to the recirculation plate in the heat exchanger tank itself.
  • the z. B. second recirculation plate arranged on the feed water supply line of the pipe section.
  • the recirculation plate is flat.
  • the diameter of the recirculation plate is smaller than the inside diameter of the pipe section.
  • the diameter of the recirculation plate is larger than the free inner diameter of the baffle plate.
  • the or one of the recirculation plates can be arranged to be height-adjustable.
  • Drive means for height adjustment means (des) of the recirculation plates (s) are advantageously provided.
  • the drive means for the height adjustment means can be controlled electrically or electronically.
  • the recondensate is separated from the consumption points in two aggregate states, gas and liquid, namely vapor and hot water.
  • the formation of steam in the specially shaped primary zone gives a high k value.
  • the boiler feed water is preheated in the secondary zone. This zone is located in the lower third of the heat exchanger, namely in the liquid area.
  • a non-return valve is arranged in the condensate line from the heat exchanger to the condensate container.
  • the configuration according to the invention ensures that a dynamic pressure which ensures the function of the heat exchanger is created.
  • the heat exchanger works in the pressure range of ⁇ 0.2 bar, the non-return flap prevents the condensate that is used up from being thermally sucked back.
  • the heat exchanger according to the invention can also be used to produce process water.
  • a process water container jacket is arranged around the heat exchanger with a process water supply connection and a process water discharge connection.
  • the condensate line in the container is thermally insulated.
  • a high-pressure steam boiler system is shown schematically.
  • Such a system comprises a high-pressure steam boiler 1, which emits a high-pressure steam at a temperature of approximately 150-170 ° C. at a pressure of approximately 5-7 bar.
  • the superheated steam is supplied to 2 consumers 3 ', 3 ", 3"' via a high-pressure steam line.
  • Such consumers can be, when using the boiler system in a chemical cleaning or in a laundry, ironing machines, steaming dolls, steam booths or the like.
  • the hot condensate is returned from the consumers 3 ', 3 ", 3"' via a first condensate line 4.
  • This line 4 normally leads to a feed water (condensate) container 5, in which the condensate cools. From the condensate tank 5, the feed water is fed back to the high-pressure steam boiler 1 by means of a feed water pump 7.
  • the condensate is passed through a heat exchanger 8 according to the invention before it enters the condensate container 5.
  • the heat of the condensate flowing back at a temperature of approximately 90-105 ° C. is passed to the feed water dispensed so that the condensate has a temperature of about 50 ° C when leaving the heat exchanger 8 and enters the feed water tank 5 at this temperature. Due to the cooling in the container 5, the temperature of the feed water after the pump 7 drops to about 40 ° C.
  • the temperature of the boiler water is then increased again to about 80-105 ° C. Since the feed water already enters the steam boiler 1 at a relatively high temperature, the amount of heat required to generate the steam at 150-170 ° C. is reduced. Measurements have shown that at least 20% less heating energy is required.
  • This heat exchanger 8 generally consists of a cylindrical vessel with a cover part 17, into which the condensate line 4 and a feed water supply line 6 open.
  • the cooled condensate is led to a feed water tank 5 by means of a second condensate line 10.
  • the feed water supply line 6 extends from the cover 17 to the lowest point of the heat exchanger 8 and is then guided in a spiral as a coil to a feed water discharge line 9 also arranged on the cover 17.
  • the arrangement of the condensate line 4 on the cover 17 ensures that the hottest condensate strikes the end turns of a feedwater spiral 11 shortly before it exits the heat exchanger 8.
  • a further increase in the temperature of the pumped-through boiler feed water can be achieved in that the feed water spiral 11 is provided at its upper end with an additional, flat or upwardly convex or concave feed water spiral 12 or flat spiral.
  • a baffle plate 16 force jet plate
  • This baffle plate 16 can be disc-shaped or annular. The vapor vapor is guided through this baffle plate 16 to the locations of the spirals 11 and 12, which are located at the heat exchanger inlet.
  • the use of a flat flat spiral 12 and a baffle plate 16 results in a further increase in the temperature of the boiler feed water by approximately 5 ° C.
  • a recirculation plate 18 is provided below this flat spiral 12.
  • This, preferably round, recircula tion plate 18 is suitably arranged on the feed water supply line 6.
  • the recirculation plate 18 can be welded to the line 6. It can also be placed or suspended on suitable webs 19.
  • the recirculation plate 18 can also be arranged to be height-adjustable. This results in the possibility of adapting the gap between the baffle plate 16 and the recirculation plate 18 to the respective throughput of fresh condensate.
  • the training is such that the diameter of the recirculation plate 18 is smaller than the inner diameter of the heat exchanger. This results in a gap between the jacket of the heat exchanger and the recirculation plate 18, through which the cooled condensate can sink downward.
  • the recirculation plate 18 can, as shown in FIG. 4 on the left, be flat or also convex or concave in the direction of the cover 17, as shown in FIG. 4 on the right.
  • FIG. 5 the assignment of the individual lines and spirals as well as the baffle plate 16 and the recirculation plate 18 can be seen in a cross section along the line I-I of FIG. 4 in the plane of the flat spiral 12.
  • a second heat exchanger is arranged on the container 8 of the heat exchanger in order to adapt to the respective output of the high-pressure steam boiler 1 (FIG. 6) in such a way that there is a pipe section 20, pipe section 20 and container 8 are connected to one another via ring flanges 22, 23.
  • 7 shows such a heat exchanger 8 according to the invention in connection with the pipe section 20 in longitudinal section.
  • the additional heat exchanger section provided according to the invention is arranged in a pipe section 20.
  • This pipe section 20 is provided with an upper ring flange 21, to which a cover 17 is connected.
  • the condensate line 4 and a feed water supply line 6 ′′ open into the cover part 17.
  • the feed water is returned to the boiler 1 through a feed water discharge line 9 ′′ likewise arranged on the cover 17.
  • the cooled condensate is conducted to a feed water container 5 by means of a condensate line 10 arranged on the container 8.
  • the arrangement of the condensate line 4 on the cover 17 ensures that the hottest condensate strikes the end turns of a feedwater flat spiral 12 "arranged in the pipe section 20, shortly before it emerges from the heat exchanger pipe section 20.
  • the feedwater spiral 11 is also formed in the container 8 at its upper end as a flat or concave or convex feedwater flat spiral 12 ', which is connected to a flat spiral 12 "in the pipe section 20.
  • a recirculation plate 18" is also provided in the pipe section 20, and a baffle plate 16 ".
  • the feed water spiral 11 or the approximately flat feed water flat spirals 12 ′ and 12 ′′ are shown inclined in FIG. 7, deviating from the actually approximately horizontal position in the container 8 or in the pipe section 20.
  • This use of flat flat spirals 12 ', 12 "and baffle plates 16', 16” results in a further increase in the temperature of the boiler feed water by approximately 5 ° C.
  • the recirculation plates 18 ', 18 "provided below the flat spiral 12' or 12" increase the residence time of the vapor in the area of the flat spirals 12 'or 12 ".
  • each recirculation plate 18 ', 18 is expediently each arranged on the feed water supply line 6' or 6".
  • the respective recirculation plate 18 'or 18 can be welded to the line 6' or 6". It can also be placed or suspended on suitable webs 19.
  • each recirculation plate 18 'or 18 can also be arranged in a height-adjustable manner. This results in the possibility of adapting the gap between the associated baffle plate 16' or 16" and the recirculation plate 18 ', 18 "to the respective throughput of vapor adapt.
  • the training can be such that height adjustment means 25 are provided which are actuated by drive means 26.
  • the drive means 26 can be controlled by electronic or electrical elements which control the drive means 26 depending on the amount of vapor generated.
  • a turbine can be provided on the condensate line 4 for measuring the amount of the incoming vapor or condensate.
  • the formation of the recirculation plates 18 'or 18 " can be such that their diameter is smaller than the inside diameter of the container 8 or the pipe section 20. This results in a gap between the casing of the container 8 or pipe section 20 and the recirculation plate 18 'or 18 ", through which the cooled condensate can sink downwards.
  • the respective recirculation plate 18 ′, 18 ′′ can, as shown in FIG. 7, be flat or also convex or concave in the direction of the cover 17.
  • the additional heat exchanger part in the pipe section 20 makes it possible to adapt the heat exchanger to the respective operating conditions of the associated high-pressure steam boiler or the system.
  • the feed water line 6 'or 6 "of the individual pipe sections 20 and the heat exchanger part 8 are connected to one another by any connecting means 24 known per se.
  • Fig. 8 is in a cross section along the lines I-1 and 11-11 of Fig. 7 in the planes of the flat spirals 12 ', 12 "the assignment of the individual lines and spirals and the baffle plates 16', 16" and Recirculation plates 18 ', 18 "can be seen.
  • FIG. 9 shows a heat exchanger 8 which is further developed according to the invention.
  • FIG. 10 shows this heat exchanger 8 according to the invention in longitudinal section.
  • the cooled condensate is fed to the feed water tank 5 by means of a second condensate line 10.
  • the second condensate line 10 leading upwards has a length of approximately 2.5 m and is preferably provided with a non-return valve 27 in the upper region.
  • the arrangement of the check valve 27 in the line 10 ensures that when the heat exchanger 8 is working in the negative pressure region, the thermally used condensate is not sucked back into the heat exchanger 8 and the gas volume of the primary zone is maintained.
  • the dynamic pressure which is advantageous for the function of the heat exchanger is created.
  • the resulting subdivision of the heat exchanger into two zones enables the condensate that occurs to suddenly relax, i.e. H. expands and increases to a gas volume in the sense of the state of aggregation as gas.
  • a large part of the heat content is suddenly withdrawn from the gas volume by contact with a large heat-absorbing surface, namely the feedwater spiral 11.
  • the steam collapses to approx. 1/1000 of its volume, creating a vacuum of up to -0.4 bar in the entire condensate line system. This accelerates the condensate to the heat exchanger.
  • the repulsive mode of operation of the heat exchanger in the plus and minus pressure range enables the pressure zone to be set up and thus the storage of uneven fresh condensate. Since the dynamic pressure principle, raising the condensate line on the outlet side by approx. 2.5 m, creates a pressure with a maximum of approx. 0.4 bar, the primary zone can sometimes be compared to a low-pressure steam boiler.
  • a further utilization of the heat content of the condensate can take place in that the heat exchanger 8 is surrounded by an additional jacket 15 (FIG. 2 or 3) which forms a process water tank.
  • the process water can be supplied through a process water supply connection 13 and can be removed from the process water cylinder through a process water discharge line 14.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Treating Waste Gases (AREA)

Description

  • Die Erfindung betrifft einen Wärmetauscher für den Betrieb einer Heißdampf-Kesselanlage, beispielsweise für Chemisch-Reinigungen, Wäschereien oder dergl., bestehend aus einem Behälter mit Anschlüssen für die Zu- und Abfuhr eines den Behälter durchströmenden ersten Mediums und mit einer im Behälter angeordneten, sich über dessen Höhe erstreckenden, von einem zweiten Medium durchströmbaren Spirale, mit in einen Deckel des Behälters mündende Anschlüsse für eine Zuführleitung und eine Abführleitung, wobei die Zuführleitung sich bis zum tiefsten Punkt der Spirale erstreckt und die Abführleitung vom höchsten Punkt der Spirale ausgeht.
  • Jede Heißdampfkesselanlage ist mit einem Kondensatrücklauf versehen. Das Kondensat besteht aus einem Gemisch aus Brüdendampf mit ca. 105°C sowie einem kondensierten Heißwasserdampfgemisch von ca. 90-100 °C.
  • Das heiße Kondenswasser wird normalerweise in einem Kondensatbehälter der Kesselanlage wieder aufgefangen. Eine Kesselspeisewasserpumpe drückt dieses heiße Wasser sodann wieder in den Heißdampf-Kessel, wo eine erneute Verdampfung stattfindet. Da Wasser über 80-85 °C Schwierigkeiten bei den Pumpen mit sich bringt, werden entweder die Kondensatbehälter sehr groß angelegt oder das Kondensat wird zusätzlich gekühlt. Dies führt jedoch andererseits wieder zu Schwierigkeiten, wenn das Kondensat zu kalt ist (z. B. 60 °C), da dann die Kesselheizflächen bzw. Leitungen versotten. Es ist auch bekannt, die Kondensatbehälter mit einem Abgasstutzen zu versehen, durch den der Brüdendampf abdampfen kann. Der Sinn aller dieser Maßnahmen ist es, das sehr heiße Kondensat möglichst abzukühlen, so daß eine Kondensatwassertemperatur vor der Pumpe von 60-70 °C gegeben ist.
  • Bei derartigen Heißdampfkesselanlagen entstehen hohe Wärmeverluste. Ferner benötigt eine derartige Kesselanlage bei Betriebsbeginn eine lange Anlaufzeit, ehe der Heißdampf seine notwendige Temperatur erreicht hat. Um die Wärmeverluste zu mindern, ist es möglich, z. B. Wärmetauscher zu verwenden, bei denen ein erstes Medium in einen Behälter geleitet wird, durch den eine Leitung z. B. spiralförmig, für ein zweites Medium führt. Eine Anordnung einer Anlage mit einem solchen Wärmetauscher ist z. B. aus der FR-A-359 272 bekannt. Desweiteren ist nach der US-A-3 799 256 ein Wärmetauscher mit einer Rohrspirale, die seitlich aus dem Wärmetauschermantel herausgeführte Anschlüsse aufweist, bekannt.
  • Der Erfindung liegt daher die Aufgabe zugrunde, einen Wärmetauscher zu schaffen, mit dem die Wärme des Kondensats einer Heißdampfkesselanlage zur Erhöhung der Temperatur des Speisewassers optimal ausgenutzt werden kann, für den Betrieb des Dampfkessels eine möglichst hohe Energieeinsparung erzielt werden kann und in einfacher Weise an verschiedene Betriebsbedingungen bzw. verschiedene Größen des Hochdruck-Dampfkessels, beispielsweise höhere Leistung, Verkürzung der Anheizzeit des Kessels, leicht angepaßt werden kann und ferner die Leistung des Wärmetauschers in Abhängigkeit vom Kondensatanfall steuerbar ist.
  • Diese Aufgabe wird nach der Erfindung bei einem Wärmetauscher im wesentlichen dadurch gelöst, daß der Anschluß für die Zufuhr des ersten Mediums ebenfalls im Deckel des Behälters vorgesehen ist, daß die senkrecht im Behälter angeordnete Spirale an ihrem oberen Ende als eine Flachspirale ausgebildet ist, daß im Behälter ein vom Deckel ausgehendes, bis zur Ebene der Flachspirale reichendes Prallblech angeordnet ist, durch das Brüdendampf des ersten Mediums an die Stellen der Spiralen führbar ist, die sich am Wärmetauschereingang befinden und daß unterhalb der Flachspirale ein Rezirkulationsblech vorgesehen ist, um die Verweildauer des ersten Mediums im Bereich der Flachspirale zu vergrößern.
  • Durch das im Behälter beispielsweise konisch, vom Deckel ausgehende, bis zur Ebene der Flachspirale reichende, angebrachte Prallblech (Zwangsstrahlblech) wird der Brüdendampf an die Stelle der Speisewasser-Spirale geführt, die sich am Wärmetauschereingang befindet. Dadurch wird nochmals eine Erhöhung der Temperatur des Kesselspeisewassers um ca. 5 °C erreicht. Zur weiteren Erhöhung der Ausnützung des Wärmeinhaltes des Kondensats ergibt, daß nach der Erfindung unterhalb der Flachspirale vorgesehene Rezirkulationsblech den wesentlichen Vorteil, daß das heiße Frischkondensat im Bereich der Flachspirale eine intensive Turbulenz entwickelt und einen größeren Teil seines Wärmeinhaltes an die Flachspirale abgibt. Das einströmende Frischkondensat verdampft, umströmt zunächst allseitig die Flachspirale und trifft auf das Rezirkulationsblech auf, was die starke Turbulenz zur Folge hat.
  • Der erfindungsgemäße Wärmetauscher wird im Kondensatkreislauf nach der Speisewasser-Pumpe und vor dem Kesseleingang geschaltet.
  • Durch diese Ausbildung ergibt sich der Vorteil, daß das heiße Frischkondensat abgekühlt wird und andererseits das Kesselspeisewasser von ca. 60 °C in der Speisewasser-Spirale durch das Frischkondensat auf ca. 90-95 °C und auch höher, vor dem Kesseleintritt aufgeheizt wird.
  • Gemäß einem vorteilhaften Ausführungsbeispiel ist die Kondensatleitung mit Verbrauchern verbunden, und führt zu einem Speisewasser-Behälter, wobei die Speisewasser-Zuführleitung an eine Pumpe und die Speisewasser-Abführleitung an einen Hochdruck-Dampfkessel angeschlossen ist.
  • Gemäß einer Weiterbildung der Erfindung ist die Speisewasser-Spirale an ihrem oberen Ende gemäß einem ersten Ausführungsbeispiel eben oder, gemäß Abwandlungen, nach oben zu konkav oder konvex ausgebildet. Dadurch wird der Wärmeinhalt des Kondensats, der im Frischkondensat vorhanden ist, optimal ausgenützt.
  • In vorteilhafter Weise wird, nach einem Ausführungsbeispiel der Erfindung, das Rezirkulationsblech an der Speisewasser-Zuführleitung angeordnet.
  • Gemäß einem einfachen Ausführungsbeispiel der Erfindung ist das Rezirkulationsblech eben ausgebildet.
  • Gemäß einer Abwandlung der Erfindung ist das Rezirkulationsblech zum Deckel hin konkav ausgebildet.
  • In noch weiterer Abwandlung der Erfindung ist das Rezirkulationsblech zum Deckel hin konvex ausgebildet.
  • Schließlich kann, beispielsweise bei liegender Anordnung eines Wärmetauschers, auch der Boden des Wärmetauschers als Rezirkulationsbleche wirken.
  • Unabhängig von der räumlichen Ausbildung des Rezirkulationsbleches kann dieses, nach einem weiteren Merkmal der Erfindung profiliert sein. Die Profilierung kann durch Erhöhungen oder durch Vertiefungen erfolgen, die punkt-oder linienförmig ausgebildet sein können.
  • Bevorzugt ist der Durchmesser des Rezirkulationsbleches kleiner gewählt als der Innendurchmesser des Behälters. Bei diesem Ausführungsbeispiel strömt somit der Brüdendampf von der Mitte des Wärmetauschers etwa radial nach außen und zwischen Rezirkulationsblech und Wandung des Wärmetauschers nach unten.
  • Um eine Anpassung an den Durchsatz des Brüdendampfes zu ermöglichen, ist in noch weiterer Ausgestaltung der Erfindung das Rezirkulationsblech höhenverstellbar angeordnet.
  • Um den Wärmetauscher der vorstehend beschriebenen Art derart auszubilden, daß er in einfacher Weise an verschiedene Betriebsbedingungen bzw. verschiedene Größen des Hochdruck-Dampfkessels, beispielsweise höhere Leistung, leicht angepaßt werden kann, ist erfindungsgemäß vorgesehen, daß mindestens ein zwischen dem Behälter und Deckel angeordneter Rohrschuß mit einer zweiten Flachspirale, einem zweiten Prallblech und einem zweiten Rezirkulationsblech sowie Verbindungsmittel für die Zuführleitungen und Abführleitungen zwischen dem Rohrschuß und dem Behälter vorgesehen sind.
  • Durch diese erfindungsgemäße Ausbildung von zusätzlich anbringbaren Rohrschüssen mit Flachspirale wird in vorteilhafter Weise eine einfache Anpassung an verschiedene Betriebsgrößen des jeweils zu betreibenden Hochdruck-Dampfkessels ermöglicht.
  • Gemäß weiterer Ausgestaltung der Erfindung kann das z. B. zweite Rezirkulationsblech im Rohrschuß analog ausgebildet sein zu dem Rezirkulationsblech im Wärmetauscher-Behälter selbst. Insbesondere ist in vorteilhafter Weise das z. B. zweite Rezirkulationsblech an der Speisewasser-Zuführleitung des Rohrschusses angeordnet. Nach einem ersten Ausführungsbeispiel ist das Rezirkulationsblech eben ausgebildet.
  • Im allgemeinen ist es vorteilhaft, wenn der Durchmesser des Rezirkulationsbleches kleiner ist als der Innendurchmesser des Rohrschusses. In Verbindung mit dem Prallblech ist es zweckmäßig, wenn der Durchmesser des Rezirkulationsbleches größer ist als der freie innere Durchmesser des Prallbleches.
  • Auch im Rohrschuß kann, zur Anpassung an den Durchsatz des Brüdendampfes, in noch weiterer Ausgestaltung der Erfindung, das oder eines der Rezirkulationsblech(e) höhenverstellbar angeordnet sein. In vorteilhafter Weise sind Antriebsmittel für Höhenverstellmittel (des) der Rezirkulationsbleche(s) vorgesehen. Die Antriebsmittel für die Höhenverstellmittel können elektrisch oder elektronisch gesteuert werden.
  • Bei dem erfindungsgemäßen Wärmetauscher wird, bedingt durch die spezielle Art der Zuleitung, das Rückkondensat von den Verbrauchsstellen in zwei Aggregatszuständen Gas und Flüssigkeit getrennt, nämlich Brüdendampf und Heißwasser. Dadurch entsteht im Wärmetauscher eine Primär-(Gas)-Zone und eine Sekundär-(Wasser)-Zone. Durch die Dampfbildung in der speziell geformten Primärzone ist ein hoher k-Wert gegeben. In der Sekundärzone wird das Kesselspeisewasser vorgeheizt. Diese Zone befindet sich im unteren Drittel des Wärmetauschers, nämlich im Flüssigkeitsbereich.
  • Um den Wirkungsgrad dieses Wärmetauschers noch weiter zu erhöhen, und eine weitere Energieeinsparung für den Betrieb des Dampfkessels zu erzielen ist, in der Kondensat-Leitung vom Wärmetauscher zum Kondensat-Behälter eine Rückschlagklappe angeordnet.
  • Durch die erfindungsgemäße Ausbildung wird erreicht, daß ein die Funktion des Wärmetauschers gewährleistender Staudruck entsteht. Da der Wärmetauscher im Druckbereich von ± 0,2 bar arbeitet, verhindert die Rückschlagklappe die Rücksaugung des wärmetechnisch verbrauchten Kondensats.
  • Der erfindungsgemäße Wärmetauscher kann zusätzlich zur Erzeugung von Brauchwasser verwendet werden. Dazu ist es vorteilhaft, wenn um den Wärmetauscher ein Brauchwasser-BehälterMantel angeordnet ist mit einem Brauchwasser- Zuführanschluß und einem Brauchwasser-Abführanschluß.
  • Zur noch weiteren Steigerung der Ausnutzung des Wärmeinhalts des Kondensats ist es vorteilhaft, wenn die Kondensat-Leitung im Behälter wärmeisoliert ist.
  • Weitere Einzelheiten, Vorteile und Merkmale der Erfindung werden anhand der Ausführungsbeispiele gemäß der Zeichnung näher erläutert. Dabei zeigt:
    • Fig. 1 schematisch eine Prinzipdarstellung einer Heißdampf-Kesselanlage,
    • Fig. 2 einen Längsschnitt durch einen erfindungsgemäßen Wärmetauscher,
    • Fig. 3 einen Querschnitt in Höhe der ebenen Spirale gemäß dem Schnitt I-I in Fig. 2,
    • Fig. 4 einen Längsschnitt durch ein Ausführungsbeispiel eines erfindungsgemäßen Wärmetauschers,
    • Fig. 5 einen Querschnitt in Höhe der ebenen Spirale gemäß dem Schnitt I-I in Fig. 4,
    • Fig. 6 eine Prinzipdarstellung einer Heißdampf- Kesselanlage, analog zu Fig. 1 mit einem zweiten Ausführungsbeispiel eines Wärmetauschers,
    • Fig. 7 einen Längsschnitt durch ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Wärmetauschers,
    • Fig. 8 einen Querschnitt in Höhe der ebenen Spirale gemäß dem Schnitt I-I bzw. 11-11 in Fig. 7,
    • Fig. 9 eine Prinzipdarstellung einer Heißdampf- Kesselanlage analog Fig. 1 mit einem weiteren Ausführungsbeispiel eines Wärmetauschers, und
    • Fig. 10 einen Längsschnitt durch das Ausführungsbeispiel eines Wärmetauschers gemäß Fig. 9.
  • In Fig. 1 ist schematisch eine Hochdruck-Dampfkessel-Anlage dargestellt. Eine derartige Anlage umfaßt einen Hochdruck-Dampfkessel 1, der einen Hochdruckdampf mit einer Temperatur von etwa 150-170 °C bei einem Druck von etwa 5-7 bar abgibt. Der Heißdampf wird über eine Hochdruck-Dampfleitung 2 Verbrauchern 3', 3", 3"' zugeführt. Derartige Verbraucher können, bei Verwendung der Kesselanlage in einer ChemischReinigung oder in einer Wäscherei, Bügelmaschinen, Dämpfpuppen, Dampfkabinen oder dergleichen sein. Von den Verbrauchern 3', 3", 3"' wird das Heißkondensat über eine erste Kondensat- Leitung 4 zurückgeführt. Diese Leitung 4 führt normalerweise zu einem Speisewasser-(Kondensat)-Behälter 5, in dem das Kondensat abkühlt. Vom Kondensatbehälter 5 wird das Speisewasser mittels einer Speisewasser-Pumpe 7 wieder dem Hochdruck-Dampfkessel 1 zugeführt.
  • Bei dem Ausführungsbeispiel nach Fig. 1 wird das Kondensat, ehe es in den Kondensat-Behälter 5 eintritt, durch einen erfindungsgemäßen Wärmetauscher 8 geführt, Im Wärmetauscher 8 wird die Wärme des mit einer Temperatur von etwa 90-105 °C zurückfließenden Kondensats an das Speisewasser abgegeben, sodaß das Kondensat beim Verlassen des Wärmetauschers 8 eine Temperatur von etwa 50 °C aufweist und mit dieser Temperatur in den Speisewasser-Behälter 5 eintritt. Durch die Abkühlung im Behälter 5 sinkt die Temperatur des Speisewassers nach der Pumpe 7 auf etwa 40 °C. Durch den Wärmeaustausch im Wärmetauscher 8 wird sodann die Temperatur des Kesselwassers wiederum auf etwa 80-105 °C erhöht. Da das Speisewasser bereits mit relativ hoher Temperatur in den Dampfkessel 1 eintritt, wird die zur Erzeugung des Dampfes mit 150-170 °C benötigte Wärmemenge verringert. Messungen haben ergeben, daß ein mindestens 20 % geringerer Bedarf an Heizenergie entsteht.
  • Ein zusätzlicher Vorteil ergibt sich dadurch, daß bei Betriebsbeginn der Heizkessel 1 wesentlich früher seine Betriebstemperatur erreicht und den Heißdampf abgeben kann. Das heiße Frischkondensat kühlt sich durch die Abgabe der Wärme an das durchgepumpte Kondensat ab. Der durch die Pumpe 7 bewirkte Zwangsdurchlauf durch den Wärmetauscher 8 ermöglicht die vorteilhafte Ausnützung der Wärme des Wärmeinhaltes des Heißkondensats aus der Rücklaufleitung 4 zur Aufheizung des Speisewassers für den Dampfkessel 1.
  • In Fig. 2 ist ein erfindungsgemäßer Wärmetauscher 8 im Längsschnitt dargestellt. Dieser Wärmetauscher 8 besteht im allgemeinen aus einem zylindrischen Kessel mit einem Deckelteil 17, in den die Kondensatleitung 4 und eine Speisewasser-Zuführleitung 6 münden. Das abgekühlte Kondensat wird mittels einer zweiten Kondensatleitung 10 zu einem Speisewasser-Behälter 5 geleitet. Die Speisewasser-Zuführleitung 6 erstreckt sich vom Deckel 17 bis zum tiefsten Punkt des Wärmetauschers 8 und wird dann spiralförmig als Schlange bis zu einer, ebenfalls am Deckel 17 angeordneten Speisewasser-Abführleitung 9 geführt. Durch die Anordnung der Kondensat-Leitung 4 am Deckel 17 wird erreicht, daß das heißeste Kondensat auf die Endwindungen einer Speisewasser-Spirale 11 kurz vor deren Austritt aus dem Wärmetauscher 8 auftrifft.
  • Dadurch, daß der Wärmetauscher 8 im Kreislauf nach der Pumpe 7 und vor dem Kessel 1 geschaltet ist, ergibt sich eine besonders günstige Ausnützung der Wärme des Kondensats, durch den dadurch bedingten Zwangsdurchlauf des Kessel- speisewassers durch den Wärmetauscher 8.
  • Eine noch weitere Erhöhung der Temperatur des durchgepumpten Kessel-Speisewassers kann dadurch erreicht werden, daß die Speisewasser-Spirale 11 an ihrem oberen Ende mit einer zusätzlichen, ebenen bzw. nach oben konvexen oder konkaven Speisewasser-Spirale 12 bzw. Flachspirale versehen ist. Bei Anwendung einer derartigen zusätzlichen Flachspirale wird zweckmäßig, ausgehend vom Deckel 1, ein Prallblech 16 (Zwangsstrahlblech) vorgesehen. Dieses Prallblech 16 kann scheibenförmig oder ringförmig ausgebildet sein. Durch dieses Prallblech 16 wird der Brüdendampf an die Stellen der Spiralen 11 bzw. 12 geführt, die sich am Wärmetauscher-Eingang befinden. Die Anwendung einer ebenen Flachspirale 12 und eines Prallbleches 16 ergibt eine weitere Erhöhung der Temperatur des Kessel-Speisewassers um ca. 5 °C.
  • In Fig. 3 ist in einem Querschnitt gemäß der Linie I-I der Fig. 2 in der Ebene der Flachspirale 12 die Zuordnung der einzelnen Leitungen und Spiralen ersichtlich.
  • Durch die Erhöhung der Temperatur des Kessel-Speisewassers auf ca.. 80-105 °C wird einerseits erreicht, daß der Kessel 1 in ca. 15-30 Minuten seinen vollen Betrieb aufnehmen kann und daß der Schwefelanteil im Heizöl für den Heizkessel stets gasförmig bleibt, sodaß kein S02 ausfällt und damit auch eine Versottung der Heizflächen des Kessels 1 vermieden wird.
  • Bei dem Ausführungsbeispiel eines erfindungsgemäßen Wärmetauschers gemäß Fig. 4 und 5 ist, um die Verweildauer des Frischkondensates im Bereich der ebenen Spirale 12 zu vergrößern bzw. Frischkondensat zu speichern, unterhalb dieser Flachspirale 12 ein Rezirkulationsblech 18 vorgesehen. Dieses, vorzugsweise runde, Rezirkulationsblech 18 ist zweckmäßig an der Speisewasser-Zuführleitung 6 angeordnet. Das Rezirkulationsblech 18 kann dabei mit der Leitung 6 verschweißt sein. Es kann auch an geeigneten Stegen 19 aufgelegt oder eingehängt sein. Gemäß einer vorteilhaften Weiterbildung kann das Rezirkulationsblech 18 auch höhenverstellbar angeordnet sein. Dadurch ergibt sich die Möglichkeit, eine Anpassung des Spaltes zwischen Prallblech 16 und Rezirkulationsblech 18 an den jeweiligen Durchsatz an Frischkondensat anzupassen. Die Ausbildung ist dabei derart getroffen, daß der Durchmesser des Rezirkulationsbleches 18 kleiner ist als der Innendurchmesser des Wärmetauschers. Dadurch ergibt sich ein Spalt zwischen dem Mantel des Wärmetauschers und dem Rezirkulationsblech 18, durch den das abgekühlte Kondensat nach unten absinken kann.
  • Das Rezirkulationsblech 18 kann, wie in Fig. 4 links dargestellt, eben ausgebildet sein oder aber auch konvex bzw. konkav in Richtung zum Deckel 17, wie in Fig. 4 rechts gezeigt. In Fig. 5 ist in einem Querschnitt gemäß der Linie I-I der Fig. 4 in der Ebene der Flachspirale 12 die Zuordnung der einzelnen Leitungen und Spiralen sowie des Prallbleches 16 und des Rezirkulationsbleches 18 ersichtlich.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung nach Fig. 6 bis 8 ist auf dem Behälter 8 des Wärmetauschers, zwecks Anpassung an die jeweilige Leistung des Hochdruck-Dampfkessels 1 (Fig. 6) ein zweiter Wärmetauscher derart angeordnet, daß ein Rohrschuß 20 besteht, wobei Rohrschuß 20 und Behälter 8 über Ringflansche 22, 23 miteinander verbunden sind. In Fig. 7 ist ein derartiger erfindungsgemäßer Wärmetauscher 8 in Verbindung mit dem Rohrschuß 20 im Längsschnitt dargestellt.
  • Der erfindungsgemäß vorgesehene, zusätzliche Wärmetauscherabschnitt ist in einem Rohrschuß 20 angeordnet. Dieser Rohrschuß 20 ist mit einem oberen Ringflansch 21 versehen, mit dem ein Deckel 17 verbunden ist. In den Deckelteil 17 mündet die Kondensatleitung 4 und eine Speisewasser-Zuführleitung 6". Durch eine ebenfalls am Deckel 17 angeordnete Speisewasser-Abführleitung 9" wird das Speisewasser an den Kessel 1 zurückgeleitet. Das abgekühlte Kondensat wird mittels einer am Behälter 8 angeordneten Kondensat-Leitung 10 zu einem Speisewasser-Behälter 5 geleitet. Die Speisewasser-Zuführleitung 6" bzw. 6' erstreckt sich vom Deckel 17 bis zum tiefsten Punkt des Behälters 8 und wird dann spiralförmig als Schlange bis zu der Speisewasser-Abführleitung 9' bzw. 9" geführt. Durch die Anordnung der Kondensat-Leitung 4 am Deckel 17 wird erreicht, daß das heißeste Kondensat auf die Endwindungen einer im Rohrschuß 20 angeordneten Speisewasser-Flachspirale 12", kurz vor deren Austritt aus dem Wärmetauscher-Rohrschuß 20, auftrifft.
  • Die Speisewasser-Spirale 11 ist auch im Behälter 8 an ihrem oberen Ende als ebene oder konkave oder konvexe Speisewasser-Flachspirale 12' ausgebildet, die mit einer Flachspirale 12" im Rohrschuß 20 verbunden ist. Auch im Rohrschuß 20 ist ein Rezirkulationsblech 18" vorgesehen, sowie ein Prallblech 16".
  • Zur besseren Übersicht bzw. Verdeutlichung sind in Fig. 7 die Speisewasser-Spirale 11 bzw. die etwa ebenen Speisewasser-Flachspiralen 12' und 12", abweichend von der in Wirklichkeit etwa waagerechten Lage im Behälter 8 bzw. im Rohrschuß 20, geneigt dargestellt.
  • Durch die Prallbleche 16', 16" wird der Brüdendampf an die Stellen der Spiralen 11 bzw. 12', 12" geführt, die sich am Kesseleingang befinden. Diese Anwendung ebener Flachspiralen 12', 12" und Prallbleche 16', 16" ergibt eine weitere Erhöhung der Temperatur des Kessel-Speisewassers um ca. 5 °C.
  • Die unterhalb der Flachspirale 12' bzw. 12" vorgesehenen Rezirkulationsbleche 18', 18" vergrößern die Verweildauer des Brüdendampfes im Bereich der ebenen Spiralen 12' bzw. 12".
  • Diese, vorzugsweise runden, Rezirkulationsbleche 18', 18" sind zweckmäßig jeweils an der Speisewasser-Zuführleitung 6' bzw. 6" angeordnet. Das jeweilige Rezirkulationsblech 18' bzw. 18" kann dabei mit der Leitung 6' bzw. 6" verschweißt sein. Es kann auch an geeigneten Stegen 19 aufgelegt oder eingehängt sein. Gemäß einer vorteilhaften Weiterbidung kann jedes Rezirkulationsblech 18' bzw. 18" auch höhenverstellbar angeordnet sein. Dadurch ergibt sich die Möglichkeit, eine Anpassung des Spaltes zwischen zugehörigem Prallblech 16' bzw. 16" und Rezirkulationsblech 18', 18" an den jeweiligen Durchsatz an Brüdendampf anzupassen.
  • Die Ausbildung kann dabei derart getroffen sein, daß Höhenverstellmittel 25 vorgesehen sind, die durch Antriebsmittel 26 betätigt werden. Die Steuerung der Antriebsmittel 26 kann dabei durch elektronische oder elektrische Elemente erfolgen, die in Abhängigkeit vom Anfall an Brüdendampf die Antriebsmittel 26 steuern. Dabei kann beispielsweise eine Turbine an der Kondensat-Leitung 4 zur Mengenmessung des einströmenden Brüdendampfes bzw. Kondensats vorgesehen werden.
  • Die Ausbildung der Rezirkulationsbleche 18' bzw. 18" kann dabei derart getroffen sein, daß ihr Durchmesser kleiner ist als der Innendurchmesser des Behälters 8 bzw. des Rohrschusses 20. Dadurch ergibt sich jeweils ein Spalt zwischen dem Mantel des Behälters 8 bzw. Rohrschusses 20 und dem Rezirkulationsblech 18' bzw. 18", durch den dasabgekühlte Kondensat nach unten absinken kann.
  • Das jeweilige Rezirkulationsblech 18', 18" kann, wie in Fig. 7 dargestellt, eben ausgebildet sein oder aber auch konvex bzw. konkav in Richtung zum Deckel 17.
  • Durch den erfindungsgemäßen, zusätzlichen Wärmetauscherteil im Rohrschuß 20 ist es möglich, den Wärmetauscher an die jeweiligen Betriebsbedingungen des zugehörigen Hochdruck-Dampfkessels bzw. der Anlage anzupassen. Es besteht auch die Möglichkeit, mehrere Rohrschüsse 20 mit einer jeweiligen ebenen Flachspirale axial hintereinander anzubringen. Es brauchen dazu lediglich die jeweiligen Flansche verbunden und auf den obersten Rohrschuß 20 der Deckel 17 aufgeschraubt zu werden. Die Speisewasser-Leitung 6' bzw. 6" der einzelnen Rohrschüsse 20 und des Wärmetauscherteils 8 werden durch an sich bekannte, beliebige Verbindungsmittel 24 miteinander verbunden.
  • In Fig. 8 ist in einem Querschnitt gemäß den Linien I-1 bzw. 11-11 der Fig. 7 in den Ebenen der Flachspiralen 12', 12" die Zuordnung der einzelnen Leitungen und Spiralen sowie der Prallbleche 16', 16" und der Rezirkulationsbleche 18', 18" ersichtlich.
  • Die Fig. 9 und 10 zeigen ein weiteres Ausführungsbeispiel, bei dem durch eine entsprechende Ausbildung der Leitungen der Wirkungsgrad des Wärmetauschers 8 weiter erhöht und für den Betrieb des Dampfkessels 1 eine weitere Energieeinsparung erzielt werden kann.
  • In Fig. 9 ist eine erfindungsgemäß ausgebildete Anlage schematisch dargestellt. In Fig. 10 ein erfindungsgemäß weitergebildeter Wärmetauscher 8. In Fig. 10 ist dieser erfindungsgemäße Wärmetauscher 8 im Längsschnitt dargestellt. Das abgekühlte Kondensat, wird, wie bei den anderen Ausführungsbeispielen, mittels einer zweiten Kondensat-Leitung 10 dem Speisewasser-Behälter 5 zugeleitet. Die zweite, nach oben führende Kondensat-Leitung 10 weist eine Länge von etwa 2,5 m auf und ist vorzugsweise im oberen Bereich mit einer Rückschlagklappe 27 versehen.
  • Durch die Anordnung der Rückschlagklappe 27 in der Leitung 10 wird erreicht, daß beim Arbeiten des Wärmetauschers 8 im Unterdruckbereich das wärmetechnisch verbrauchte Kondensat nicht in den Wärmetauscher 8 zurückgesaugt wird und das Gasvolumen der Primärzone aufrechterhalten bleibt. Durch das Hochführen der Kondensatleitung 10 und die Rückschlagklappe 27 entsteht der für die Funktion des Wärmetauschers vorteilhafte Staudruck. Die dadurch sich ergebende Unterteilung des Wärmetauschers in zwei Zonen ermöglicht, daß das auftretende Kondensat sich schlagartig entspannt, d. h. expandiert und sich zu einem Gasvolumen im Sinne des Aggregatszustandes als Gas vergrößert. Zur selben Zeit wird dem Gasvolumen durch Kontakt mit einer großen wärmeabziehenden Oberfläche, nämlich der Speisewasser-Spirale 11, schlagartig ein großer Teil des Wärmeinhaltes entzogen. Der Dampf fällt auf ca. 1/1000 seines Volumens zusammen, wodurch ein Vakuum von bis zu -0,4 bar im gesamten Kondensat-Leitungssystem entsteht. Dadurch wird Kondensat beschleunigt dem Wärmetauscher zugeführt.
  • Die repulsierende Arbeitsweise des Wärmetauschers im plus- und minus-Druckbereich ermöglicht den Aufbau der Druckzone und damit die Speicherung von ungleichmäßig anfallendem Frischkondensat. Da durch das Staudruckprinzip, Hochführung der Kondensat-Leitung auf der Ausgangsseite um ca. 2,5 m, ein Druckaufbau entsteht, mit maximal ca. 0,4 bar, ist die Primärzone zeitweise mit einem Niederdruckdampfkessel zu vergleichen.
  • Eine noch weitere Ausnutzung des Wärmeinhaltes des Kondensats kann dadurch stattfinden, daß der Wärmetauscher 8 mit einem zusätzlichen Mantel 15 (Fig. 2 oder 3) umgeben ist, der einen Brauchwasserbehälter bildet. Das Brauchwasser kann durch einen Brauchwasser-Zuführanschluß 13 zugeleitet und vom Brauchwasser-Zylinder durch eine Brauchwasser-Abführleitung 14 entnommen werden.
  • Eine noch weitere Erhöhung der Wärmeausnützung ergibt sich dann, wenn die Kondensat-Leitung 4, sowie der Wärmetauscher wärmeisoliert ist.
    Figure imgb0001

Claims (17)

1. Wärmetauscher für den Betrieb einer Heißdampf-Kesselanlage, beispielsweise für Chemisch-Reinigungen, Wäschereien oder dergleichen, bestehend aus einem Behälter (8) mit Anschlüssen für die Zu- und Abfuhr eines den Behälter durchströmenden ersten Mediums und mit einer im Behälter angeordneten, sich über dessen Höhe erstreckenden, von einem zweiten Medium durchströmbaren Spirale (11), mit in einen Deckel (17) des Behälters mündende Anschlüsse für eine Zuführleitung (6) und eine Abführleitung (9), wobei die Zuführleitung sich bis zum tiefsten Punkt der Spirale erstreckt und die Abführleitung vom höchsten Punkt der Spirale ausgeht, dadurch gekennzeichnet, daß der Anschluß für die Zufuhr des ersten Mediums ebenfalls im Deckel (17) des Behälters (8) vorgesehen ist, daß die senkrecht im Behälter angeordnete Spirale (11) an ihrem oberen Ende als eine Flachspirale (12) ausgebildet ist, daß im Behälter (8) ein vom Deckel (17) ausgehendes, bis zur Ebene der Flachspirale (12) reichendes Prallblech (16) angeordnet ist, durch das Brüdendampf des ersten Mediums an die Stellen der Spiralen (11 bzw. 12) führbar ist, die sich am Wärmetauschereingang befinden und daß unterhalb der Flachspirale (12) ein Rezirkulationsblech (18) vorgesehen ist, um die Verweildauer des ersten Mediums im Bereich der Flachspirale (12) zu vergrößern.
2. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, daß die Flachspirale (12) eben ausgebildet ist.
3. Wärmetauscher nach Anspruch 2, dadurch gekennzeichnet, daß die Flachspirale (12) nach oben konkav oder konvex ausgebildet ist.
4. Wärmetauscher nach Anspruch 3, dadurch gekennzeichnet, daß das Rezirkulationsblech (18) an der Zuführleitung (6) angeordnet ist.
5. Wärmetauscher nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß das Rezirkulationsblech (18) eben ausgebildet ist.
6. Wärmetauscher nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß das Rezirkulationsblech (18) zum Deckel (17) hin konkav ausgebildet ist.
7. Wärmetauscher nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß das Rezirkulationsblech (18) zum Deckel (17) hin konvex ausgebildet ist.
8. Wärmetauscher nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, daß das Rezirkulationsblech (18) profiliert ist.
9. Wärmetauscher nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, daß der Durchmesser des Rezirkulationsbleches (18) kleiner ist als der Innendurchmesser des Behälters (8).
10. Wärmetauscher nach einem der Ansprüche 3 bis 9, dadurch gekennzeichnet, daß das Rezirkulationsblech (18) höhenverstellbar angeordnet ist.
11. Wärmetauscher nach einem der Ansprüche 3 bis 10, gekennzeichnet durch mindestens einen zwischen dem Behälter (8) und Deckel (17) angeordneten Rohrschuß (20) mit einer zweiten Flachspirale (12'), einem zweiten Prallblech (16') und einem zweiten Rezirkulationsblech (18'), sowie durch Verbindungsmittel (24) für die Zuführleitungen (6', 6") und Abführleitungen (9', 9") zwischen dem Rohrschuß (20) und dem Behälter (8).
12. Wärmetauscher nach Anspruch 11, dadurch gekennzeichnet, daß das zweite Rezirkulationsblech (18'), an der Zuführleitung (6') des Rohrschusses (20) angeordnet ist.
13. Wärmetauscher nach Anspruch 11 oder 12, dadurch. gekennzeichnet, daß der Durchmesser des zweiten Rezirkulationsbleches (18') kleiner ist als der Innendurchmesser des Rohrschusses (20).
14. Wärmetauscher nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, daß der Durchmesser des Rezirkulationsbleches (18) bzw. (18') größer ist als der freie innere Durchmesser des Prallbleches (16 bzw. 16').
15. Wärmetauscher nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, daß mindestens eines der Rezirkulationsbleche (18 bzw. 18') höhenverstellbar angeordnet ist.
16. Wärmetauscher nach Anspruch 15, gekennzeichnet durch Antriebsmittel (16) für Höhenverstellmittel (25) des Rezirkulationsbleches (18 bzw. 18').
17. Wärmetauscher nach einem der Ansprüche 1 bis 16, gekennzeichnet, durch einen den Behälter (8) umschliessenden Brauchwasserbehältermantel (15) mit Brauchwasserzuführanschluß (13) und Brauchwasserabführanschluß (14).
EP83100408A 1982-01-23 1983-01-19 Wärmetauscher für den Betrieb einer Heissdampf-Kesselanlage Expired EP0084846B1 (de)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
DE3202144 1982-01-23
DE3202144A DE3202144C2 (de) 1982-01-23 1982-01-23 Wärmetauscher zum Betrieb eines Hochdruck-Dampfkessels
DE19823213165 DE3213165A1 (de) 1982-04-08 1982-04-08 Waermetauscher zum betrieb eines hochdruck-dampfkessels
DE3213165 1982-04-08
DE3224153 1982-06-29
DE19823224153 DE3224153A1 (de) 1982-06-29 1982-06-29 Waermetauscher zum betrieb eines hochdruck-dampfkessels
DE3248785 1982-12-31
DE19823248785 DE3248785A1 (de) 1982-12-31 1982-12-31 Waermetauscher zum betrieb eines hochdruck-dampfkessels

Publications (2)

Publication Number Publication Date
EP0084846A1 EP0084846A1 (de) 1983-08-03
EP0084846B1 true EP0084846B1 (de) 1987-12-02

Family

ID=27432771

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83100408A Expired EP0084846B1 (de) 1982-01-23 1983-01-19 Wärmetauscher für den Betrieb einer Heissdampf-Kesselanlage

Country Status (10)

Country Link
US (1) US4550687A (de)
EP (1) EP0084846B1 (de)
JP (1) JPS59500064A (de)
KR (1) KR840003346A (de)
AT (1) ATE31218T1 (de)
AU (1) AU1151183A (de)
DE (1) DE3374807D1 (de)
ES (1) ES519175A0 (de)
PT (1) PT76131B (de)
WO (1) WO1983002658A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU195687B (en) * 1985-06-07 1988-06-28 Energiagazdalkodasi Intezet Apparatus for superpressure steam systems for supplying the condensed water of forward steam conduit into return water conduit
NL192963C (nl) * 1991-02-15 1998-06-03 Geert Pieter Froma Warmtewisselaar.
KR101265597B1 (ko) * 2006-06-23 2013-05-22 엘지전자 주식회사 복합 의류 처리 시스템
ITBO20080716A1 (it) * 2008-11-28 2010-05-29 Rivacold S R L Dispositivo per la condensazione di vapore e per il recupero energetico
US9557081B2 (en) * 2011-02-25 2017-01-31 Petroliam Nasional Berhad (Petronas) Apparatus for cooling hot condensate in a piping
CN110197321B (zh) * 2019-04-17 2021-06-22 无锡利信能源科技有限公司 一种基于多机组供热单元协同供热安全经济调度的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE157408C (de) *
FR359272A (fr) * 1905-11-09 1906-03-20 Marie Edmond Philbert Chaboche Perfectionnements aux chaudières à vaporisation instantanée en vue de l'utilisation des chaleurs perdues
GB190913325A (en) * 1908-08-03 1909-12-23 Eduard Nager An Improvement in Steam Heating Installations.
US1939415A (en) * 1931-05-04 1933-12-12 Fred H Schaub Heat exchange system
US1938072A (en) * 1932-05-10 1933-12-05 Dunlop Tire & Rubber Corp Method and apparatus to control the concentration of boiler waters
US2115548A (en) * 1935-04-27 1938-04-26 Foster Wheeler Corp Heating
FR809263A (fr) * 1935-08-08 1937-02-27 Klein Dispositif de retour de l'eau de condensation chaude dans la pompe d'alimentation principale des chaudières à vapeur
US2581146A (en) * 1948-09-09 1952-01-01 Fred H Schaub Engineering Co I Boiler feedwater system
US3367309A (en) * 1966-05-10 1968-02-06 Erwin L. Plagman Jr. High-pressure dry steam system and method of controlling the same
US3799256A (en) * 1971-11-18 1974-03-26 P Gaines Apparatus for transferring heat
US4202406A (en) * 1978-06-29 1980-05-13 Avery Alfred J Heat exchange system

Also Published As

Publication number Publication date
US4550687A (en) 1985-11-05
ES8400185A1 (es) 1983-10-16
EP0084846A1 (de) 1983-08-03
PT76131B (de) 1985-12-05
PT76131A (de) 1983-02-01
ES519175A0 (es) 1983-10-16
KR840003346A (ko) 1984-08-20
WO1983002658A1 (en) 1983-08-04
DE3374807D1 (en) 1988-01-14
JPS59500064A (ja) 1984-01-12
AU1151183A (en) 1983-08-12
ATE31218T1 (de) 1987-12-15

Similar Documents

Publication Publication Date Title
EP0425717B1 (de) Durchlaufdampferzeuger
DE3213837C2 (de) Abgasdampferzeuger mit Entgaser, insbesondere für kombinierte Gasturbinen-Dampfkraftanlagen
EP0944801B1 (de) Dampferzeuger
EP1794495B1 (de) Fossil beheizter durchlaufdampferzeuger
DE2109825B2 (de) Dampferzeuger mit in einem vertikalen Druckbehälter angeordneten Rohrbündel
EP0084846B1 (de) Wärmetauscher für den Betrieb einer Heissdampf-Kesselanlage
DE69100187T2 (de) Heizgerät mit grossem Wirkungsgrad.
DE4408284A1 (de) Verbesserte Temperatursteuerung von Dampf für Kessel
DE102005054155A1 (de) Vorrichtung zur Überführung eines Arbeitsmediums aus einem flüssigen in einen dampfförmigen Zustand
DE6601963U (de) Kondensatoranordnung bei dampfturbinen
DD296733A5 (de) Abhitzedampferzeuger fuer ein gas- und dampfturbinenkraftwerk
DE112018007168T5 (de) Heißwassererhitzer vom Speichertyp mit Wirbelführungsteil
DE2243380C3 (de) Dampfkraftanlage mit rauchgasbeheiztem Speisewasservorwärmer und wasserbeheiztem Luftvorwärmer
DE2115257A1 (de) Wassererhitzer
DE2256633C3 (de) Dampferzeuger
DE2454757A1 (de) Kaeltemittelseitig umschaltbarer waermetauscher
DE613659C (de) Durch Strahlung beheizter ofenfoermiger Kessel
DD206815A5 (de) Verfahren und vorrichtung zum betrieb eines hochdruck-dampfkessels
DE889597C (de) Dampferzeuger mit mittelbarer Beheizung des Arbeitsmittels
DE435821C (de) Einrichtung zur Gewinnung der Kuehlmittelwaerme von Brennkraftmaschinen
DE19503506C2 (de) Vorrichtung zur Nutzung von Wärme- und/oder Flüssigkeitsmengen aus Gas- und Flüssigkeitsströmen an Dampferzeugern
DE2515623A1 (de) Dampferzeuger mit u-foermig gekruemmten rohren
AT163810B (de) Generatormantel für Gas- und Dampferzeuger
DE1124527B (de) Waermetauschanordnung, insbesondere fuer Reaktoranlagen, mit in sich geschlossenem Kuehlmittelkreislauf
AT117162B (de) Hochdruckdampferzeuger.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19830810

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: JACOB, KARL AUGUST

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 31218

Country of ref document: AT

Date of ref document: 19871215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3374807

Country of ref document: DE

Date of ref document: 19880114

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890726

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19900131

Ref country code: CH

Effective date: 19900131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19911230

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19911231

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920108

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920115

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19920130

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920131

Year of fee payment: 10

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930119

Ref country code: AT

Effective date: 19930119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19930131

BERE Be: lapsed

Owner name: JACOB KARL AUGUST

Effective date: 19930131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 83100408.0

Effective date: 19930810

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010124

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020801