EP0082769A1 - Multiplicateur de fréquence - Google Patents

Multiplicateur de fréquence Download PDF

Info

Publication number
EP0082769A1
EP0082769A1 EP82402296A EP82402296A EP0082769A1 EP 0082769 A1 EP0082769 A1 EP 0082769A1 EP 82402296 A EP82402296 A EP 82402296A EP 82402296 A EP82402296 A EP 82402296A EP 0082769 A1 EP0082769 A1 EP 0082769A1
Authority
EP
European Patent Office
Prior art keywords
frequency
cavity
frequency multiplier
axis
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP82402296A
Other languages
German (de)
English (en)
Inventor
Bernard Epsztein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0082769A1 publication Critical patent/EP0082769A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/02Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
    • H01J25/025Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators with an electron stream following a helical path

Definitions

  • the invention relates to a frequency multiplier for the production of millimeter and sub-millimeter radio waves, operating by interaction of an electron beam and an electromagnetic wave.
  • This type of tube is used for the production of high powers in the range of millimeter and sub-millimeter waves mentioned.
  • the subject of the invention is a frequency multiplication arrangement making it possible to avoid these difficulties.
  • the seat circuit of the electromagnetic wave in interaction with the beam is provided in two parts, the first of which resonates on a frequency close to the cyclotronic frequency f, and the second on a frequency multiple whole of this frequency, in the conditions which will be described.
  • This figure shows in schematic section a frequency multiplier of the invention.
  • an electron beam 6 passes through a first cavity 1, resonating with a pulsation ⁇ ) J close to ⁇ c .
  • This cavity extends over such a length and has an impedance whose value is such that an oscillation at this frequency occurs there.
  • This oscillation is in low amplitude operating conditions, so that in this section of the multiplier tube only a small fraction of the beam energy is expended in the interaction of the latter with the electromagnetic field of the cavity. Given the high overvoltages that we know to achieve for such cavities, it is perfectly possible nevertheless to obtain at the output 8 of the cavity 1 a beam having a large modulation depth, in the sense that it is understood in the interaction tubes in general, and speed modulation in particular.
  • a part bearing the mark 5, located in front of the cavity 1 comprises, according to the art known in the art, one or more traps intended to avoid any influence of the high frequency wave on the gun whose optics is particularly delicate in this kind of tube.
  • This part can also include, always according to the art, attenuating zones for the high frequency wave, for the same purpose. It consists of a slip space, equipotential for the accelerated beam; it is practically at the same continuous potential as anode 4.
  • the beam then enters the cavity 2 resonating at a frequency multiple whole of the self-oscillation frequency corresponding to the previous pulsation W.
  • the beam gives up a significant fraction of its energy in the form of electromagetic energy at the harmonic frequency nf (n integer); this energy is evacuated by the output guide 7, while the electrons are captured by a collector not shown in the drawing.
  • the distance between the ends 8 and 9 of the two cavities can be increased compared to that of the example, so as to constitute an equipotential tunnel 10 for sliding, as in a klystron, allowing an improvement in the grouping of the electrons within the beam.
  • the tunnel is advantageously at the potential of the anode, as are the cavities 1 and 2.
  • the cavity l instead of being self-oscillating, can be modified (length and reduced overvoltage) so as to no longer self-oscillate; in this case it is excited by an external microwave source, not shown, operating in the vicinity of the cyclotonic frequency.
  • This requires the addition to the cavity 1 of a source coupling member (loop in the case of a coaxial, iris in that of a guide, etc.).
  • the frequency multiplier of the present intention preferably operates in TE mode, preferably in TE mode o, n, l
  • n 2 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ respectively the pulsation and the wavelength considered corresponding to the frequency f for the first cavity and nf for the second.
  • the opening in the center of the first cavity can, without drawback, as in the drawing, have the same dimension as in the second cavity, or a dimension substantially greater; finally, in the example, the sliding tube, chosen very short, was a small fraction of the previous smallest radius r ..
  • the multiplier tube of the invention allows the generation of high-end microwave energy, with high levels. It has the same applications as the prior art generators in millimeter and sub-millimeter waves, namely, in particular, measurement in plasmas, radar transmission and telecommunications.

Landscapes

  • Particle Accelerators (AREA)
  • Microwave Tubes (AREA)

Abstract

Afin de remonter les fréquences de fonctionnement sans augmenter en proportion le champ magnétique (B) auquel est soumis le faisceau d'électrons (6) dans les tubes électroniques à faisceau progressant en spirale, l'invention prévoit de réaliser l'ensemble du circuit qui est le siège de cette onde en deux parties (1 et 2) résonnant la première, sur la fréquence cyclotronique des électrons dans le champ (B), et la deuxième sur un harmonique de cette fréquence.
Application à la production de grandes puissances en haut de la gamme des hyperfréquences (dizaines et centaines de gigahertz) pour les mesures dans les plasmas et les télécommunications notamment.

Description

  • L'invention concerne un multiplicateur de fréquence pour la production d'ondes radioélectriques millimétriques et sub-millimétriques, fonctionnant par interaction d'un faisceau d'électrons et d'une onde électromagnétique.
  • On connait, parmi ces générateurs, ceux décrits notamment dans la communication de Y.A. FLYAGIN, A.V. GAPONOV, M.I. PETELIN et V.K. JULPATOV, "The Gyrotron" Second International Conférence and Winter School on Submillimetre waves and their Application, Dec. 6-11, 1976-Puerto-Rico, dans lesquels le faisceau d'électrons, soumis à un champ magnétique uniforme, constant dans le temps, décrit une spirale autour de l'axe suivant lequel est dirigé ce champ. Le faisceau d'électrons est produit par un ensemble cathodique propre à imprimer une composante tangentielle de vitesse aux électrons de manière à assurer le mouvement en spirale.
  • On a recours à ce type de tube pour la production de puissances élevées dans la gamme des ondes millimétriques et sub-millimétriques mentionnées. Le fonctionnement a lieu généralement sur la fréquence cyclotronique fc des électrons dans le champ magnétique, B, en question, laquelle correspond, comme on sait, à la formule
    Figure imgb0001
    ou ωc est la pulsation correspondant à la fréquence cyclotronique (ωc = 2 π fc ) et où e et m désignent respectivement la charge et la masse relativiste de l'électron ; cette formule montre une proportionnalité entre la pulsation et le champ magnétique.
  • Pour augmenter cette pulsation et la fréquence de fonctionnement, et rejoindre le domaine sub-millimétrique notamment, il est donc nécessaire d'augmenter, toutes choses étant égales par ailleurs, le champ magnétique appliqué. Or on sait les difficultés rencontrées dans cette voie, qui mène à l'utilisation d'électro-aimants supraconducteurs fonctionnant dans des conditions cryogéniques, lorsque le champ B dépasse une certaine valeur.
  • Lorsque l'on désire obtenir des fréquences de fonctionnement élevées sans faire appel à des champs magnétiques aussi élevés, pour éviter en particulier ces conditions cryogéniques, on peut penser à faire fonctionner tout le système sur une fréquence harmonique de la fréquence f définie plus haut. Un tel fonctionnement n'est possible que grâce aux non-linéarités existant dans le faisceau, lesquelles sont faibles et obligent donc à des courants de faisceau élevés pour atteindre des niveaux appréciables. Le rendement sur ces harmoniques est de plus très faible et décroît très vite avec le rang de l'harmonique.
  • L'invention a pour objet une disposition à multiplication de fréquence permettant d'éviter ces difficultés. A cette fin, le circuit siège de l'onde électromagnétique en interaction avec le faisceau est prévu en deux parties, dont la première résonne sur une fréquence voisine de la fréquence cyclotronique f , et la seconde sur une fréquence multiple entier de cette fréquence, dans les conditions qui vont être décrites.
  • L'invention sera mieux comprise sur l'exemple qui suit, donné à titre non limitatif, à l'aide de la figure unique jointe.
  • Cette figure représente en coupe schématique un multiplicateur de fréquence de l'invention.
  • Issu d'un ensemble cathodique, ou canon à électrons, comprenant une cathode 3 et une électrode accélératrice, ou anode 4, à laquelle est appliquée une tension continue, par une source non représentée, un faisceau électronique 6 traverse une première cavité 1, résonnant avec une pulsation \)J voisine de ωc. Cette cavité s'étend sur une longueur-telle et présente une impédance dont la valeur est telle qu'une oscillation à cette fréquence s'y produise. Cette oscillation est dans les conditions de fonctionnement de faible amplitude, de façon que dans cette section du tube multiplicateur seule une petite fraction de l'énergie du faisceau soit dépensée dans l'interaction de celui-ci avec le champ électromagnétique de la cavité. Vu les surtensions élevées que l'on sait réaliser pour de telles cavités, il est parfaitement possible néanmoins d'obtenir à la sortie 8 de la cavité 1 un faisceau présentant une grande profondeur de modulation, au sens où on l'entend dans les tubes à interaction en général, et à modulation de vitesse en particulier.
  • Le faisceau produit par une cathode en pointe, émettant sur ses flancs, a été représenté sur le dessin par les deux parties rectilignes couvertes de points parallèles à l'axe XX, qui figurent globalement son enveloppe dans cette vue en coupe. Une partie portant le repère 5, située en avant de la cavité 1, comprend, selon l'art connu en la matière, un ou plusieurs pièges destinés à éviter toute influcence de l'onde haute fréquence sur le canon dont l'optique est particulièrement délicate dans ce genre de tube. Cette partie peut aussi comprendre, toujours selon l'art, des zones atté- nuatrices pour l'onde haute fréquence, dans le même but. Elle consiste en un espace de glissement, équipotentiel pour le faisceau accéléré ; elle est pratiquement au même potentiel continu que l'anode 4.
  • Le faisceau entre ensuite dans la cavité 2 résonant à une fréquence multiple entière de la fréquence d'auto-oscillation correspondant à la pulsation W précédente. Au cours de la traversée de cette cavité, le faisceau cède une fraction importante de son énergie sous forme d'énergie électromagétique à la fréquence harmonique nf (n entier) ; cette énergie est évacuée par le guide de sortie 7, tandis que les électrons sont captés par un collecteur non représenté sur le dessin.
  • Dans une variante, la distance entre les extrémités 8 et 9 des deux cavités peut être augmentée par rapport à celle de l'exemple, de manière à constituer un tunnel équipotentiel 10 de glissement, comme dans un klystron, permettant une amélioration du groupement des électrons au sein du faisceau. Le tunnel est avantageusement au potentiel de l'anode, ainsi que les cavités 1 et 2.
  • D'autre part, la cavité l, au lieu d'être auto-oscillatrice, peut être modifiée (longueur et surtension réduites) de manière à ne plus auto-osciller ; dans ce cas elle est excitée par une source hyperfréquence externe, non représentée, fonctionnant au voisinage de la fréquence cyclotonique. Ceci nécessite l'adjonction à la cavité 1 d'un organe de couplage à la source (boucle dans le cas d'un coaxial, iris dans celui d'un guide, etc.).
  • Le multiplicateur de fréquence de la présente intention fonctionne de préférence en mode TE , de manière préférentielle en onm mode TEo,n,l
  • Pour fixer les idées, on donne ci-dessous un exemple (correspondant à n = 2) de dimensions du tube de l'invention. Les longueurs sont données sous forme angulaire, à savoir
    Figure imgb0002
    ou
    Figure imgb0003
    ,
    pour l, vo désignant la vitesse communiquée aux électrons
    par le potentiel continu d'accélération, c'est-à-dire le potentiel d'anode, très voisine de la vitesse de la lumière pour les électrons relativistes, et ω et λ respectivement la pulsation et la longueur d'onde considérées correspondant à la fréquence f pour la première cavité et nf pour la deuxième. Ces cavités, en forme de cylindre d'axe XX, ont sensiblement un rayon r tel que
    Figure imgb0004
    = 3,9 et une longueur 1 , parallèlement à l'axe telle que 2
    Figure imgb0005
    = 2π
  • Le faisceau utilisé, de 5 ampères, accéléré à 80 kilovolts, décrivait une spiralé dont le rayon était inférieur à e défini par
    Figure imgb0006
    = 1, 84 pour la longueur d'onde de l'armonique à engendrer.
  • L'ouverture au centre de la première cavité peut avoir sans inconvénient, comme sur le dessin, la même dimension que dans la seconde cavité, ou une dimension sensiblement supérieure ; enfin, dans l'exemple, le tube de glissement, choisi très court, était une faible fraction du plus petit rayon r précédent..
  • Le tube multiplicateur de l'invention permet la génération d'énergie hyperfréquence en haut de gamme, avec des niveaux élévés. Il a les mêmes applications que les générateurs de l'art antérieur en ondes millimétriques et sub-millimétriques à savoir, en particulier, la mesure dans les plasmas, l'émission radar et les télécommunications.

Claims (4)

1. Multiplicateur de fréquence fonctionnant par interaction entre un faisceau d'électrons (6), se propageant le long d'un axe XX, sous l'action d'une tension continue appliquée, entre un ensemble cathodique (3) par lequel il est émis et un collecteur par lequel il est capté, et le champ électromagnétique de volumes résonants placés sur son trajet, le dit faisceau décrivant une trajectoire en spirale autours de cet axe, le long duquel est dirigé un champ magnétique (B), caractérisé en ce que les volumes résonants consistent en deux cavités disposées autour de cet axe, dont la première (1) résonne sur une fréquence voisine de la fréquence cyclotronique f des électrons du faisceau dans le champ magnétique et dont la seconde (2) résonne sur un harmonique de cette fréquence.
2. Multiplicateur de fréquence selon la revendication 1, caractérisé en ce que les deux cavités sont séparées par un espace de glissement (10) équipotentiel.
3. Multiplicateur de fréquence selon la revendication 1, caractérisé en ce que la première cavité (1), à grande surtension, est auto-oscillatrice sur la fréquence f .
4. Multiplicateur de fréquence selon la revendication 1, caractérisé en ce que la première cavité (1), à faible surtension, est alimentée par un générateur à une fréquence voisine de la fréquence fc.
EP82402296A 1981-12-23 1982-12-14 Multiplicateur de fréquence Withdrawn EP0082769A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8124167A FR2518803A1 (fr) 1981-12-23 1981-12-23 Multiplicateur de frequence
FR8124167 1981-12-23

Publications (1)

Publication Number Publication Date
EP0082769A1 true EP0082769A1 (fr) 1983-06-29

Family

ID=9265365

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82402296A Withdrawn EP0082769A1 (fr) 1981-12-23 1982-12-14 Multiplicateur de fréquence

Country Status (3)

Country Link
EP (1) EP0082769A1 (fr)
JP (1) JPS58116807A (fr)
FR (1) FR2518803A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0141525A2 (fr) * 1983-09-30 1985-05-15 Kabushiki Kaisha Toshiba Gyrotron
US4554484A (en) * 1983-08-29 1985-11-19 The United States Of America As Represented By The Secretary Of The Navy Complex cavity gyrotron
US5038077A (en) * 1989-01-31 1991-08-06 The United States Of American As Represented By The Secretary Of The Navy Gyroklystron device having multi-slot bunching cavities
US5281894A (en) * 1990-09-28 1994-01-25 The United States Of America As Represented By The Secretary Of The Navy Dual cavity for a dual frequency gyrotron
WO1999028943A1 (fr) * 1997-11-27 1999-06-10 Eev Limited Tubes electroniques
KR101122098B1 (ko) * 2003-06-24 2012-03-15 알베마를 코포레이션 가금 가공처리시의 살균 제어

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2492996A (en) * 1945-08-25 1950-01-03 Sperry Corp Tunable high-frequency cavity resonator
US3155868A (en) * 1959-10-14 1964-11-03 Nippon Electric Co Plural resonator cavities tuned to integrally related frequencies
US3363138A (en) * 1964-11-04 1968-01-09 Sperry Rand Corp Electron beam-plasma device operating at multiple harmonics of beam cyclotron frequency
US3373309A (en) * 1962-10-03 1968-03-12 Siemens Ag Electron beam tube for frequency multiplication
US3389347A (en) * 1966-09-08 1968-06-18 Army Usa Microwave noise generator
US3457450A (en) * 1966-08-31 1969-07-22 Varian Associates High frequency electron discharge device
US3474283A (en) * 1967-03-22 1969-10-21 Us Navy Cyclotron wave upconverter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2492996A (en) * 1945-08-25 1950-01-03 Sperry Corp Tunable high-frequency cavity resonator
US3155868A (en) * 1959-10-14 1964-11-03 Nippon Electric Co Plural resonator cavities tuned to integrally related frequencies
US3373309A (en) * 1962-10-03 1968-03-12 Siemens Ag Electron beam tube for frequency multiplication
US3363138A (en) * 1964-11-04 1968-01-09 Sperry Rand Corp Electron beam-plasma device operating at multiple harmonics of beam cyclotron frequency
US3457450A (en) * 1966-08-31 1969-07-22 Varian Associates High frequency electron discharge device
US3389347A (en) * 1966-09-08 1968-06-18 Army Usa Microwave noise generator
US3474283A (en) * 1967-03-22 1969-10-21 Us Navy Cyclotron wave upconverter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. MTT-25, no. 6, juin 1977, pages 514-521, New York (USA); *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4554484A (en) * 1983-08-29 1985-11-19 The United States Of America As Represented By The Secretary Of The Navy Complex cavity gyrotron
EP0141525A2 (fr) * 1983-09-30 1985-05-15 Kabushiki Kaisha Toshiba Gyrotron
EP0141525A3 (en) * 1983-09-30 1987-10-28 Kabushiki Kaisha Toshiba Gyrotron device
US5038077A (en) * 1989-01-31 1991-08-06 The United States Of American As Represented By The Secretary Of The Navy Gyroklystron device having multi-slot bunching cavities
US5281894A (en) * 1990-09-28 1994-01-25 The United States Of America As Represented By The Secretary Of The Navy Dual cavity for a dual frequency gyrotron
WO1999028943A1 (fr) * 1997-11-27 1999-06-10 Eev Limited Tubes electroniques
US6465958B1 (en) 1997-11-27 2002-10-15 Eev Limited Electron beam tubes
KR101122098B1 (ko) * 2003-06-24 2012-03-15 알베마를 코포레이션 가금 가공처리시의 살균 제어

Also Published As

Publication number Publication date
FR2518803A1 (fr) 1983-06-24
FR2518803B1 (fr) 1984-10-26
JPS58116807A (ja) 1983-07-12

Similar Documents

Publication Publication Date Title
EP0013242B1 (fr) Générateur d'ondes radioélectriques pour hyperfréquence
FR2547456A1 (fr) Tube a faisceau d'electrons module en densite avec un gain accru
FR2499312A1 (fr) Dispositif d'attenuation de modes pour des cavites de gyrotrons
EP0248689A1 (fr) Klystron à faisceaux multiples
FR2760127A1 (fr) Canon a electrons et klystron le comportant
EP0239466A1 (fr) Circuit de sortie pour klystron, et klystron comportant un tel circuit de sortie
EP0082769A1 (fr) Multiplicateur de fréquence
EP2472554A1 (fr) Dispositif de génération d'ondes hyperfréquence ayant une cathode dont chaque extrémité est raccordée à une source de tension
EP2472555B1 (fr) Dispositif de génération d'ondes hyperfréquence comprenant une pluralité de magnétrons
EP0407558B1 (fr) Dispositif amplificateur ou oscillateur fonctionnant en hyperfrequence
EP0124396B1 (fr) Dispositif d'injection d'un faisceau d'électrons pour générateur d'ondes radioélectriques pour hyperfréquences
FR3042063A1 (fr) Dispositif pour generer des micro-ondes
EP0413018B1 (fr) Dispositif generateur d'ondes hyperfrequences a cathode virtuelle
EP2747118B1 (fr) Cathode pour dispositif de génération d'ondes électromagnétiques, comprenant des régions d'émission mobiles les unes par rapport aux autres
EP0401066B1 (fr) Dispositif d'onduleur hélicoîdal à aimants permanents pour application aux lasers à électrons libres
FR2694447A1 (fr) Canon à électrons pour fournir des électrons groupés en impulsions courtes.
EP0124395A1 (fr) Canon à électrons pour générateurs d'ondes radioélectriques pour hyperfréquences
EP0122186B1 (fr) Générateur d'ondes radioélectriques pour hyperfréquences
FR2526582A1 (fr) Procede et appareil pour produire des micro-ondes
EP2747117B1 (fr) Dispositif de génération d'ondes hyperfréquences à double cathodes
EP1466343B1 (fr) Tube electronique a collecteur simplifie
FR2486305A1 (fr) Tube amplificateur a champs croises a grand gain et ensemble d'emission radioelectrique muni d'un tel tube
FR2691287A1 (fr) Nouveau circuit de sortie à interaction étendue pour un klystron relativiste large bande.
BE474640A (fr)
FR2588714A1 (fr) Accelerateur d'ions a haute frequence

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE GB IT LI NL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19840302

RIN1 Information on inventor provided before grant (corrected)

Inventor name: EPSZTEIN, BERNARD