EP0079648B1 - Steam power plant - Google Patents

Steam power plant Download PDF

Info

Publication number
EP0079648B1
EP0079648B1 EP82201400A EP82201400A EP0079648B1 EP 0079648 B1 EP0079648 B1 EP 0079648B1 EP 82201400 A EP82201400 A EP 82201400A EP 82201400 A EP82201400 A EP 82201400A EP 0079648 B1 EP0079648 B1 EP 0079648B1
Authority
EP
European Patent Office
Prior art keywords
coolant
intercooler
heat exchanger
circuit
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82201400A
Other languages
German (de)
French (fr)
Other versions
EP0079648A1 (en
Inventor
Andreas Brand
Hans Kogler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Priority to AT82201400T priority Critical patent/ATE22153T1/en
Publication of EP0079648A1 publication Critical patent/EP0079648A1/en
Application granted granted Critical
Publication of EP0079648B1 publication Critical patent/EP0079648B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/02Plants modified to use their waste heat, other than that of exhaust, e.g. engine-friction heat

Definitions

  • the present invention relates to a steam power plant according to the preamble of the claim.
  • a steam power plant with a closed intermediate cooling circuit is known (Brown Boveri messages 8-79, page 533).
  • the heat absorbed by the cooled parts of the system and given off to a secondary cooling water is then passed on to the atmosphere, which means thermodynamically a loss and represents an environmental impact.
  • a steam power plant is known from US-A-1 938 077 with a cooling circuit for the system components to be cooled and an intercooler acted upon by a secondary coolant.
  • the cooling water is fed directly into the boiler circuit, in which it is finally cooled; however, part of the cooling water is cooled in parallel in the intercooler, for which purpose an adjustable three-way mixing valve is available.
  • a steam power value of the type mentioned at the outset is known from US-A-1 741 605.
  • the regenerative heat exchanger arranged in the main circuit between the condenser and preheater is acted upon directly by the medium to be cooled, here generator cooling air.
  • the intermediate cooler cooled by an auxiliary coolant, is connected in series to the regenerative heat exchanger on the air side.
  • the latter is permanently fully loaded with the medium to be cooled and can be overloaded as a result. If one were to connect it in parallel, the throughput of the secondary coolant would have to be regulated in order to achieve a desired cooling air temperature.
  • the advantage of the invention is to be seen in that the process efficiency of the main circuit can be improved or the usable power output can be increased, with adequate cooling of the corresponding system components being ensured regardless of the particular turbine operation.
  • the intermediate cooling circuit 1, 1 there is an intermediate cooling circuit with a circulating pump 4, which works independently of the working medium of a main circuit 12 and of the condenser coolant 17.
  • the system components 2, 3 to be cooled for example plain bearings, pumps or the like, and the intercooler 7 in a closed circuit are flowed through by water as the intermediate coolant.
  • the intercooler 7 the waste heat is given off to the secondary coolant, for example river water.
  • a regenerative heat exchanger 8 is arranged in the main circuit 12. Because of the prevailing temperatures, this is switched into the main condensate line 18 between the main condensate pump 14 following the condenser 13 and the preheating line 16, which is only indicated. On the coolant side, this regenerative heat exchanger 8 branches off from the intercooling circuit 1 via the line 1 ', between the circulating pump 4 and the intercooler 7 Components 2, 3 are mixed with the medium that may have cooled in the intercooler 7.
  • the regenerative heat exchanger 8 and intercooler 7 are therefore connected in parallel the temperature is reduced by known means at a measuring point 11, which is arranged downstream of the reunification point in such a way that the two partial flows are mixed well entiles 5 controls.
  • the three-way valve 5 is located at the point in the intermediate cooling circuit 1 at which the line 1 'branches off to the regenerative heat exchanger 8. The coolant heated in the system components can now only give off its heat in the regenerative heat exchanger 8, which means complete recovery.
  • the portion of the capacity which exceeds the capacity is fed to the intercooler 7 and, as is known, is cooled therein to the lowest possible temperature with secondary coolant 19.
  • the decisive factor for the distribution of the volume flows in the three-way valve 5 is in any case the inlet temperature of the coolant upstream of the system components 2, 3, which is to be kept as constant as possible according to their needs for uniform and sufficient cooling. This cooling is thus guaranteed regardless of the respective system status, with depending on the load given, the condenser coolant temperature and the secondary coolant temperature Maximum waste heat is recuperated and a minimum of waste heat is released into the environment.
  • the arrangement according to the invention will be used particularly advantageously where relatively cold coolant 17 is available for the turbine condenser 13.
  • relatively cold coolant 17 is available for the turbine condenser 13.
  • the regenerative heat exchanger 8 the more heat can be transferred from the system components 2, 3, the colder the main condensate.
  • the intermediate coolant For example, in a 220 MW system under full load and a condenser coolant temperature of 8 ° C, around 40% of the heat absorbed by the intermediate coolant can be released to the main condensate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

1. Steam power plant comprising an intermediate cooling circuit (1) which operates independently of the working medium and of the condenser coolant (17) of the main circuit (12) and in which an intermediate coolant flows in a closed circuit through the plant components (2, 3) to be cooled and an intercooler (7) charged with a secondary coolant (19) and an additional regenerative neat exchanger (8) is connected into the intermediate cooling circuit (1), in which heat exchanger the intermediate coolant transfers its heat to the working medium of the main circuit (12), characterized in that the regenerative heat exchanger (8) is connected in parallel with the intercooler (7), a controllable three-way mixing valve (5) being provided for the quantitative distribution of the intermediate coolant heated in the plant components (2, 3) to intercooler (7) and regenerative heat exchanger (8), and, in addition, the temperature (11) of the intermediate coolant being used as control parameter after completed heat transfer, recombination and mixing of the two part flows upstream of the components (2, 3) to be cooled.

Description

Die vorliegende Erfindung betrifft ein Dampfkraftwerk gemäss dem Oberbegriff des Patentanspruches.The present invention relates to a steam power plant according to the preamble of the claim.

Ein Dampfkraftwerk mit einem geschlossenen Zwischenkühlkreis ist bekannt (Brown Boveri-Mitteilungen 8-79, Seite 533). Die von den gekühlten Anlageteilen aufgenommene und an ein Nebenkühlwasser abgegebene Wärme wird hierbei an die Atmosphäre weitergeleitet, was thermodynamisch einen Verlust bedeutet und eine Umweltbelastung darstellt.A steam power plant with a closed intermediate cooling circuit is known (Brown Boveri messages 8-79, page 533). The heat absorbed by the cooled parts of the system and given off to a secondary cooling water is then passed on to the atmosphere, which means thermodynamically a loss and represents an environmental impact.

Ferner ist aus der US-A-1 938 077 ein Dampfkraftwerk bekannt mit einem Kühlkreislauf für die zu kühlenden Anlage-Komponenten und einem von einem Nebenkühlmittel beaufschlagten Zwischenkühler. Das Kühlwasser wird hier direkt in den Kesselkreislauf eingeführt, in welchem es schliesslich gekühlt wird ; ein Teil des Kühlwassers aber wird parallel im Zwischenkühler gekühlt, zu weichem Zweck ein regelbares Dreiwegemischventil vorhanden ist.Furthermore, a steam power plant is known from US-A-1 938 077 with a cooling circuit for the system components to be cooled and an intercooler acted upon by a secondary coolant. The cooling water is fed directly into the boiler circuit, in which it is finally cooled; however, part of the cooling water is cooled in parallel in the intercooler, for which purpose an adjustable three-way mixing valve is available.

Ein Dampfkraftwert der eingangs genannten Art ist bekannt aus der US-A-1 741 605. Hierbei wird der im Hauptkreislauf zwischen Kondensator und Vormärmer angeordnete Regenerativ-Wärmetauscher unmittelbar vom zu kühlenden Medium, hier Generatorkühlluft beaufschlagt. In diesem Zwischenkühlkreis ist der von einem Nebenkühlmittel gekühlte Zwischenkühler luftseitig in Serie zum Regenerativ-Wärmetauscher geschaltet. Letzterer wird permanent voll vom zu kühlenden Medium beaufschlagt und kann dadurch überlastet werden. Würde man ihn parallel schalten, so müsste zur Erzielung einer gewünschten Kühllufttemperatur der Durchsatz des Nebenkühlmittels geregelt werden.A steam power value of the type mentioned at the outset is known from US-A-1 741 605. Here, the regenerative heat exchanger arranged in the main circuit between the condenser and preheater is acted upon directly by the medium to be cooled, here generator cooling air. In this intermediate cooling circuit, the intermediate cooler, cooled by an auxiliary coolant, is connected in series to the regenerative heat exchanger on the air side. The latter is permanently fully loaded with the medium to be cooled and can be overloaded as a result. If one were to connect it in parallel, the throughput of the secondary coolant would have to be regulated in order to achieve a desired cooling air temperature.

Es ist deshalb die Aufgabe der vorliegenden Erfindung, in einem Dampfkraftwerk die Kühlung der Anlagenkomponenten so auszulegen, dass deren Abwärme zumindest teilweise rekuperiert werden kann, ohne dass zusätzliche Regeleingriffe, z. B. über das Nebenkühlmittel, notwendig sind.It is therefore the object of the present invention to design the cooling of the system components in a steam power plant in such a way that their waste heat can be at least partially recuperated without additional control interventions, e.g. B. over the secondary coolant are necessary.

Die vorgenannte Aufgabe wird erfindungsgemäss durch die kennzeichnenden Merkmale des Anspruches gelöst.The above object is achieved according to the invention by the characterizing features of the claim.

Der Vorteil der Erfindung ist darin zu sehen, dass der Prozesswirkungsgrad des Hauptkreislaufes verbessert oder die abgegebene Nutzleistung erhöht werden kann, wobei unabhängig vom jeweiligen Turbinenbetrieb die ausreichende Kühlung der entsprechenden Anlagenkomponenten gewährleistet ist.The advantage of the invention is to be seen in that the process efficiency of the main circuit can be improved or the usable power output can be increased, with adequate cooling of the corresponding system components being ensured regardless of the particular turbine operation.

In der Zeichnung ist anhand eines Schaltschemas ein Ausführungsbeispiel der erfindungsgemässen Anordnung in einem Dampfkraftwerk gezeigt, wobei alle zum Verständnis der Erfindung nicht erforderlichen Teile weggelassen wurden. So wird vom Turbinenkreis nur das sogenannte « kalte Ende vereinfacht dargestellt.An exemplary embodiment of the arrangement according to the invention in a steam power plant is shown in the drawing with the aid of a circuit diagram, all parts which are not necessary for understanding the invention being omitted. Only the so-called "cold end" is shown in simplified form by the turbine circuit.

Es ist mit 1 ein Zwischenkühlkreislauf mit einer Umwälzpumpe 4 bezeichnet, welcher unabhängig vom Arbeitsmittel eines Hauptkreislaufes 12 und vom Kondensator-Kühlmittel 17 arbeitet. In den Zwischenkühlkreislauf 1, 1' sind die zu kühlenden Anlagenkomponenten 2, 3, beispielsweise Gleitlager, Pumpen o. ä. und der Zwischenkühler 7 in geschlossenem Kreislauf von Wasser als Zwischenkühlmittel durchströmt. Im Zwischenkühler 7 wird die Abwärme an das Nebenkühlmittel, beispielsweise Flusswasser abgegeben.1 there is an intermediate cooling circuit with a circulating pump 4, which works independently of the working medium of a main circuit 12 and of the condenser coolant 17. In the intermediate cooling circuit 1, 1 ', the system components 2, 3 to be cooled, for example plain bearings, pumps or the like, and the intercooler 7 in a closed circuit are flowed through by water as the intermediate coolant. In the intercooler 7, the waste heat is given off to the secondary coolant, for example river water.

Um einen Teil dieser Abwärme rückgewinnen zu können, wird im Hauptkreislauf 12 ein Regenerativ-Wärmetauscher 8 angeordnet. Dieser wird aufgrund der vorherrschenden Temperaturen in die Hauptkondensatleitung 18 zwischen der auf den Kondensator 13 folgenden Hauptkondensatpumpe 14 und der nur angedeuteten Vorwärmstrasse 16 geschaltet. Kühlmittelseitig zweigt dieser Regenerativ-Wärmetauscher 8 über die Leitung 1' vom Zwischenkühlkreislauf 1 ab, zwischen der Umwälzpumpe 4 und dem Zwischenkühler 7. Abströmseitig wird das seine Wärme abgebende Kühlmittel über die Leitung 1" in den Zwischenkühlkreis 1 zurückgeführt, wo es vor den zu kühlenden Komponenten 2, 3 dem gegebenenfalls im Zwischenkühler 7 abgekühlten Medium beigemischt wird. Regenerativ-Wärmetauscher 8 und Zwischenkühler 7 sind somit parallel geschaltet. Die Aufteilung der die beiden Apparate 7, 8 durchströmenden Kühlmittelströme erfolgt in Funktion der Kühlmitteltemperatur vor den zu kühlenden Anlagekomponenten. Hierzu wird die Temperatur mit bekannten Mitteln an einer Mess-Stelle 11 abgenommen, welche stromabwärts der Wiedervereinigungsstelle so angeordnet ist, dass die beiden Teilströme gut durchmischt sind. Das Messignal wird nach entsprechender Verstärkung über die Steuerleitung 10 einem Regler 6 zugeführt, welcher die Durchflussquerschnitte eines Dreiwegeventiles 5 steuert. Das Dreiwegeventil 5 befindet sich an der Stelle im Zwischenkühlkreis 1, an der die Leitung 1' zum Regenerativ-Wärmetauscher 8 abzweigt. Das in den Anlagekomponenten erwärmte Kühlmittel kann nun ausschliesslich im Regenerativ-Wärmetauscher 8 seine Wärme abgeben, was eine vollständige Rückgewinnung bedeutet.In order to be able to recover part of this waste heat, a regenerative heat exchanger 8 is arranged in the main circuit 12. Because of the prevailing temperatures, this is switched into the main condensate line 18 between the main condensate pump 14 following the condenser 13 and the preheating line 16, which is only indicated. On the coolant side, this regenerative heat exchanger 8 branches off from the intercooling circuit 1 via the line 1 ', between the circulating pump 4 and the intercooler 7 Components 2, 3 are mixed with the medium that may have cooled in the intercooler 7. The regenerative heat exchanger 8 and intercooler 7 are therefore connected in parallel the temperature is reduced by known means at a measuring point 11, which is arranged downstream of the reunification point in such a way that the two partial flows are mixed well entiles 5 controls. The three-way valve 5 is located at the point in the intermediate cooling circuit 1 at which the line 1 'branches off to the regenerative heat exchanger 8. The coolant heated in the system components can now only give off its heat in the regenerative heat exchanger 8, which means complete recovery.

Wenn jedoch dessen Kapazität nicht ausreicht, wird der die Kapazität überschreitende Mengenanteil dem Zwischenkühler 7 zugeleitet und darin wie bekannt mit Nebenkühlmittel 19 auf tiefstmögliche Temperatur abgekühlt. Massgebend für die Aufteilung der Mengenströme im Dreiwege-Ventil 5 ist jedenfalls die Zulauftemperatur des Kühlmittels vor den Anlagekomponenten 2, 3, die entsprechend deren Bedürfnissen nach gleichmässiger und ausreichender Kühlung möglichst konstant zu halten ist. Diese Kühlung ist somit unabhängig vom jeweiligen Anlagenzustand gewährleistet, wobei je nach abgegebener Last, nach Kondensator-Kühlmit-teltemperatur und nach Nebenkühlmitteltemperatur ein Maximum an Abwärme rekuperiert und ein Minimum an Abwärme an die Umwelt abgegeben wird.If, however, its capacity is insufficient, the portion of the capacity which exceeds the capacity is fed to the intercooler 7 and, as is known, is cooled therein to the lowest possible temperature with secondary coolant 19. The decisive factor for the distribution of the volume flows in the three-way valve 5 is in any case the inlet temperature of the coolant upstream of the system components 2, 3, which is to be kept as constant as possible according to their needs for uniform and sufficient cooling. This cooling is thus guaranteed regardless of the respective system status, with depending on the load given, the condenser coolant temperature and the secondary coolant temperature Maximum waste heat is recuperated and a minimum of waste heat is released into the environment.

Die erfindungsgemässe Anordnung wird besonders vorteilhaft dort zur Anwendung kommen, wo für den Turbinenkondensator 13 relativ kaltes Kühlmittel 17 zur Verfügung steht. Durch den Regenerativ-Wärmetauscher 8 kann umsomehr Wärme von den Anlagekomponenten 2, 3 übertragen werden, je kälter das Hauptkondensat ist. So können beispielsweise bei einer 220 MW-Anlage unter Vollast und einer Kondensator-Kühlmitteltemperatur von 8 °C etwa 40 % der vom Zwischenkühlmittel aufgenommenen Wärme an das Hauptkondensat abgegeben werden. Bei entsprechender Auslegung der beiden Apparate beaufschlagen hierbei etwa 85 % des Zwischenkühlmittels den Regenerativ-Wärmetauscher 8, während der Rest den Zwischenkühler 7 durchströmt. Durch diese Massnahme ist eine Erhöhung der Generatorleistung um ca. 250 KW möglich.The arrangement according to the invention will be used particularly advantageously where relatively cold coolant 17 is available for the turbine condenser 13. Through the regenerative heat exchanger 8, the more heat can be transferred from the system components 2, 3, the colder the main condensate. For example, in a 220 MW system under full load and a condenser coolant temperature of 8 ° C, around 40% of the heat absorbed by the intermediate coolant can be released to the main condensate. With an appropriate design of the two apparatuses, approximately 85% of the intermediate coolant act on the regenerative heat exchanger 8, while the rest flows through the intermediate cooler 7. This measure increases the generator output by approx. 250 KW.

Claims (1)

  1. Steam power plant comprising an intermediatecooling circuit (1) which operates independently of the working medium and of the condenser coolant (17) of the main circuit (12) and in which an intermediate coolant flows in a closed circuit through the plant components (2, 3) to be cooled and an intercooler (7) charged with a secondary coolant (19) and an additional regenerative neat exchanger (8) is connected into the intermediate cooling circuit (1), in which heat exchanger the intermediate coolant transfers its heat to the working medium of the main circuit (12), characterized in that the regenerative heat exchanger (8) is connected in parallel with the intercooler (7), a controllable three-way mixing valve (5) being provided for the quantitative distribution of the intermediate coolant heated in the plant components (2, 3) to intercooler (7) and regenerative heat exchanger (8), and, in addition, the temperature (11) of the intermediate coolant being used as control parameter after completed heat transfer, recombination and mixing of the two part flows upstream of the components (2, 3) to be cooled.
EP82201400A 1981-11-16 1982-11-08 Steam power plant Expired EP0079648B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82201400T ATE22153T1 (en) 1981-11-16 1982-11-08 STEAM POWER PLANT.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH7343/81 1981-11-16
CH734381 1981-11-16

Publications (2)

Publication Number Publication Date
EP0079648A1 EP0079648A1 (en) 1983-05-25
EP0079648B1 true EP0079648B1 (en) 1986-09-10

Family

ID=4323635

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82201400A Expired EP0079648B1 (en) 1981-11-16 1982-11-08 Steam power plant

Country Status (4)

Country Link
EP (1) EP0079648B1 (en)
AT (1) ATE22153T1 (en)
DE (1) DE3273229D1 (en)
DK (1) DK481182A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110195619A (en) * 2019-05-30 2019-09-03 中国水利水电科学研究院 Fired power generating unit regulating system, method and device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4237665A1 (en) * 1992-11-07 1994-05-11 Asea Brown Boveri Method for operating a combination system
US5469705A (en) * 1994-08-22 1995-11-28 The Nash Engineering Company Heat recovery in a liquid ring pump seal liquid chiller system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1938077A (en) * 1929-05-03 1933-12-05 Ljungstroms Angturbin Ab Cooling device for closed electrical motors, generators, or the like machines

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE523899C (en) * 1924-04-24 1931-04-29 Otto Happel Device for the recovery of lost heat in electrical machines, in particular with steam turbine drive
US1741605A (en) * 1925-05-04 1929-12-31 Bbc Brown Boveri & Cie Power-plant installation
US2491314A (en) * 1946-10-14 1949-12-13 Gen Electric Turbogenerator cooling system
DE1053527B (en) * 1957-01-18 1959-03-26 Siemens Ag Steam power plant with recovery of lost heat from the turbo set

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1938077A (en) * 1929-05-03 1933-12-05 Ljungstroms Angturbin Ab Cooling device for closed electrical motors, generators, or the like machines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Brown Boveri Mitteilungen", Band 66, Juni 1979 Baden (CH) S. 533 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110195619A (en) * 2019-05-30 2019-09-03 中国水利水电科学研究院 Fired power generating unit regulating system, method and device

Also Published As

Publication number Publication date
DK481182A (en) 1983-05-17
ATE22153T1 (en) 1986-09-15
DE3273229D1 (en) 1986-10-16
EP0079648A1 (en) 1983-05-25

Similar Documents

Publication Publication Date Title
EP0526816B1 (en) Power plant with gas and steam turbines with solar steam generator
DE60315823T2 (en) METHOD AND DEVICE FOR GENERATING ELECTRICITY FROM THE HEAT AT THE CORE OF AT LEAST ONE HIGH-TEMPERATURE CORE REACTOR
CH627524A5 (en) METHOD AND SYSTEM FOR THE USE OF HEAT THROUGH THE EXTRACTION OF HEAT FROM AT LEAST ONE FLOWING HEAT CARRIER.
DE2945404C2 (en) Process for operating a combined gas-steam turbine system and gas-steam turbine system for carrying out this process
AT508086B1 (en) DEVICE FOR ENERGY CONVERSION ACCORDING TO THE ORC PRINCIPLE, ORC PLANT WITH SUCH A DEVICE AND METHOD FOR STARTING AND / OR OPERATING SUCH A DEVICE
DE19513285A1 (en) Turbine drive for boiler feed pump / feed water pipe system
DE2311066A1 (en) STEAM GENERATOR FOR UNFIRED POWER PLANT
DE102010060064A1 (en) Method for increasing the power output of a gas and steam combined cycle power plant during selected operating periods
EP1390606B1 (en) Device for cooling coolant in a gas turbine and gas and steam turbine with said device
DE3002615A1 (en) Combined gas and steam turbine power plant - uses gas turbine waste heat to generate steam, preheats air-to-gas turbine compressor
WO2000011325A1 (en) Gas and steam turbine unit
DE1301654B (en) Power plant with a gas turbine system and a steam turbine system
DE4126036A1 (en) Gas and steam turbine plant with solar heated system generator - with generator connected to heat exchanger in h.p. steam line from waste heat steam generator
EP0079648B1 (en) Steam power plant
EP0410111B1 (en) Heat recovery boiler for a gas and steam turbine plant
DE2614956C2 (en) Two-stroke piston internal combustion engine
CH626426A5 (en) Internal combustion engine system with a pressure-charged, water-cooled engine
DE2506333C2 (en) Plant for the evaporation and heating of liquid natural gas
EP2868874A1 (en) Steam power plant with a liquid cooled generator
EP0180093B1 (en) Thermal power plant
DE4441324C1 (en) Heat utilisation system in coal=fired steam generator flue
EP2312130A1 (en) Adjustment of the preheat end temperature of a power plant secondary circuit with selective activation of different bleed connections of a steam turbine
DE2518161C2 (en) Thermal power station with district heating system
DE2953840A1 (en) Steam-and-gas turbine plant
CH526717A (en) Combined gas / steam power plant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE LI NL SE

17P Request for examination filed

Effective date: 19831014

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19860909

Year of fee payment: 5

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19860910

REF Corresponds to:

Ref document number: 22153

Country of ref document: AT

Date of ref document: 19860915

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19860930

REF Corresponds to:

Ref document number: 3273229

Country of ref document: DE

Date of ref document: 19861016

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890221

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19891108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19891130

Ref country code: CH

Effective date: 19891130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930118

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940802