EP0077851A2 - Gas cooling device for a coal gasification plant - Google Patents

Gas cooling device for a coal gasification plant Download PDF

Info

Publication number
EP0077851A2
EP0077851A2 EP81109673A EP81109673A EP0077851A2 EP 0077851 A2 EP0077851 A2 EP 0077851A2 EP 81109673 A EP81109673 A EP 81109673A EP 81109673 A EP81109673 A EP 81109673A EP 0077851 A2 EP0077851 A2 EP 0077851A2
Authority
EP
European Patent Office
Prior art keywords
gas cooler
gas
pressure vessel
arrangement according
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81109673A
Other languages
German (de)
French (fr)
Other versions
EP0077851A3 (en
EP0077851B1 (en
Inventor
Jaroslav Zabelka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Management AG
Original Assignee
Sulzer AG
Gebrueder Sulzer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer AG, Gebrueder Sulzer AG filed Critical Sulzer AG
Publication of EP0077851A2 publication Critical patent/EP0077851A2/en
Publication of EP0077851A3 publication Critical patent/EP0077851A3/en
Application granted granted Critical
Publication of EP0077851B1 publication Critical patent/EP0077851B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/86Other features combined with waste-heat boilers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/52Ash-removing devices
    • C10J3/526Ash-removing devices for entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/78High-pressure apparatus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1838Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines the hot gas being under a high pressure, e.g. in chemical installations
    • F22B1/1846Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines the hot gas being under a high pressure, e.g. in chemical installations the hot gas being loaded with particles, e.g. waste heat boilers after a coal gasification plant
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water

Definitions

  • the invention relates to a gas cooler arrangement for cooling the reaction products of a coal gasification reactor according to the preamble of claim 1.
  • a North voltage is known from DOS 29 33 716th
  • a convective gas cooler shown there is flowed through from top to bottom in one go.
  • the quality and particle size of the coal to be gasified only a more or less large part of the ash particles are separated and discharged from the pressure vessel of the first gas cooler, while the rest of the ash particles reach the convective gas cooler.
  • Some of these ash particles settle on the tubes of the tube bundle and for the most part they are discharged from the convective gas cooler with the gas stream.
  • a special separator is required, which causes an additional pressure drop on the gas side.
  • connection of the heat-dissipating tubes to vertical tube panels that is to say in the direction of flow, prevents the flow cross sections from becoming clogged with ash particles.
  • Claim 3 takes into account the fact that the risk of clogging the flow cross-section is higher in the downward draft than in the upward draft because the gas contains more ash particles in the downward draft than in the upward draft.
  • Claim 6 shows a solution by means of which thermal stresses at connection points of the riser walls on the fall train walls are excluded by avoiding such connection points.
  • the drop channel through which the cooled medium flows brings about an evening of the temperatures in the pressure vessel shell.
  • Claim 8 is a structurally and technically particularly simple solution.
  • Claim 11 shows a solution with a good thermodynamic effect and an easy to maintain arrangement.
  • Claim 12 specifies a particularly easy to operate system.
  • FIG. 1 shows a coal gasification reactor 1, to which a circular cylindrical pressure vessel 4 is connected via two nozzles 2, 3 and has an axial drop chamber 6 within a circular cylindrical radiation cooling wall 5.
  • a water bath 8 is provided, which can be washed off via a discharge element 9.
  • cooling wall openings 5 provided in a limited by the back of the radiant cooling wall 5 and a further cylindrical cooling surface 11 S hausenraum lead 10th Details of such a pressure vessel with an axial drop space and with a water bath are shown, for example, in CH patent applications 7051 / 80-2 and 7052 / 80-4, both filed on September 19, 1980.
  • a line 14 penetrating the wall of the pressure vessel 4 is connected, which leads via flanges 15 to a convective gas cooler 20.
  • This gas cooler consists of a pressure vessel 21 which encloses a drop train 23 and - as can be seen in FIG. 2 - two risers 24, 25 and an annular space 26. Fall train 23 and ascent trains 24, 25 are connected to one another at their lower end by a funnel-like deflection space 28. The lower end 30 of the deflection space 28 leads to a closing element, not shown.
  • the drop train 23 is limited in horizontal section by two long side walls 32, 33 and two short walls 34, 35, which walls are formed from vertical fin tubes which are welded gas-tight.
  • the fall train is divided into three equal-width chambers by two partition walls 37 and 38, which are also formed from welded fin tubes.
  • the intermediate walls 37 and 38 consist, for example, of fin tubes which are only welded in places and which can each be bent out and welded to the side walls 32 and 33 for lateral support 1 , which is not shown.
  • the tubes of the side walls 32, 33 and the walls 34, 35 are connected to a lower distributor 40 and an upper header 41, while the tubes of the intermediate walls 37 and 38 start from a distributor 44 and lead to a collector 45.
  • the collector 41 and the pipes that open into it are spanned in an upper region, in which the pipes are not connected to one another in a gas-tight manner, by a gas-tight hood 47, which is tightly connected all around to the walls 32 to 35 at the level of the collector 45.
  • the hood 47 is of lines 48 and 49 leading from the collectors 41 and 45 to a drum 50 of a steam generator, penetrated (F ig. 1).
  • U-shaped wall plates 55, or 56 are approximately gas (Fig.2), tightly connected (Fig.2), whereby the risers 24, 25 are formed.
  • Three tube sheets 58, 59 are suspended in each of these risers, each of which is formed by five meandering tubes that span the entire, larger horizontal extent of the risers.
  • the line 14 connecting the pressure vessel 4 to the pressure vessel 21 is connected to the drop train 23 through the short wall 34.
  • the walls of these trains have funnel-shaped sheet metal walls along a cross-shaped contour, which enclose the deflection space 28.
  • pipe sockets 70, 71 lead to internally insulated outlet sockets 72, 74 of the pressure vessel 21.
  • the upper ends of the pipes forming the tube sheets 58, 59 are connected to a collector 75 which is connected to an axial socket 76 which sits on the pressure vessel 21.
  • the gas After flowing through the fall train 23, the gas is deflected at a temperature of about 450 ° C. into the risers 24, 25, while the majority of the ash 28 and slag particles still present are thrown into the funnel of the deflection chamber g .
  • the gas is then cooled further in the risers 24, 25. It then emerges from the convective gas cooler 20 through the connecting pieces 73, 74, be it for direct use as fuel gas or process gas or into a further cooler which can be connected upstream of the drum 50 as an economizer of the steam generator.
  • the working medium of the steam generator passes from the drum 50 through the lines 52 and 53 into the distributors 40 and 44 and flows from there through the tube walls 32 to 35, at least partially evaporating, and then into the collectors 41, 45 and from there into the Drum 50 back, in which water and steam are separated.
  • the working fluid then flows via lines 62, 63 to distributors 60 and 61, and from there via the meandering pipes of pipe panels 58 and 59, in which it is overheated , to collector 75. From this collector it flows to a reheater or di right for use, be it as motive steam in a thermal power plant or as process steam in a chemical plant.
  • the invention is not limited to the exemplary embodiment shown in the drawing.
  • the number of tubes of the individual heating surfaces, the ratio of the tubes to the fall train 23 or the risers 24, 25, the number of tube boards 58, 59, the number of chambers, etc. can vary from the values shown. It may also be expedient to connect the sheet metal walls 55, 56 to the side walls 32, 33 via sliding seals, to install expansion folds on the sheet metal walls mentioned, to connect the sheet metal walls 55, 56 to each other around the drop cable 23, so that no connections to the Side walls 32, 33 become necessary.
  • the application of insulation to the sheet metal walls 55, 56 can also be expedient.
  • the number of ascents is also not limited, although it is advisable to choose a symmetrical arrangement.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Zum Abkühlen der Reaktionsprodukte eines Kohlevergasungsreaktors (1) ist einem ersten Gaskühler (4), in dem die Wärme durch Strahlung abgegeben wird, ein zweiter konvektiver Gaskühler (20) nachgeschaltet. Im Druckgefäss (21) des konvektiven Gaskühlers ist ausser einem Fallzug (23) mindestens ein Steigzug für das zu kühlende Gas untegerbracht. Die Züge enthalten warmeabführende Rohre, die Bestandteile eines Dampferzeugers sind. Am unteren Ende des Druckbehälters (21) ist ein an die Enden der beiden Züge angeschlossener Aschesammelraum (28) vorgesehen, der über ein Verschlussorgan entleert werden kann. Hierdurch ergibt sich im konvektiven Gaskühler eine bessere Raumausnützung im Vergleich zu einem Gaskühler, der nur einen Fallschacht aufweist. Ausserdem ist der gasseitige Druckabfall geringer, da dem neuen konvektiven Gaskühler kein besonderes Trennorgan am Gasaustritt nachgeschaltet werden muss.To cool the reaction products of a coal gasification reactor (1), a second convective gas cooler (20) is connected downstream of a first gas cooler (4) in which the heat is emitted by radiation. In the pressure vessel (21) of the convective gas cooler, in addition to a drop train (23), at least one ascent train for the gas to be cooled is accommodated. The trains contain heat-dissipating pipes that are part of a steam generator. At the lower end of the pressure vessel (21) there is an ash collecting space (28) connected to the ends of the two trains, which can be emptied via a closure member. This results in a better use of space in the convective gas cooler compared to a gas cooler that has only one chute. In addition, the gas-side pressure drop is lower, since the new convective gas cooler does not have to be followed by a special separator at the gas outlet.

Description

Die Erfindung betrifft eine Gaskühler-Anordnung zum Abkühlen der Reaktionsprodukte eines Kohlevergasungsreaktors nach dem Oberbegriff des Anspruchs 1. Eine solche Anord- nung ist aus der DOS 29 33 716 bekannt. Ein dort dargestellter, konvektiver Gaskühler wird in einem Zuge von oben nach unten durchströmt. Je nach der Qualität und der Teilchengrösse der zu vergasenden Kohle wird nur ein mehr oder weniger grosser Teil der Aschepartikel im Druckgefäss des ersten Gaskühlers abgeschieden und aus diesem ausgetragen, während der Rest der Ascheteilchen in den konvektiven Gaskühler gelangt. Diese Ascheteilchen setzen sich teils auf den Rohren der Rohrbündel ab und zum grösseren Teil werden sie mit dem Gasstrom wieder aus dem konvektiven Gaskühler ausgetragen. Zum Abscheiden dieser Teilchen wird somit ein besonderes Trennorgan benötigt, das gasseitig einen zusätzlichen Druckabfall bedingt.The invention relates to a gas cooler arrangement for cooling the reaction products of a coal gasification reactor according to the preamble of claim 1. Such A North voltage is known from DOS 29 33 716th A convective gas cooler shown there is flowed through from top to bottom in one go. Depending on the quality and particle size of the coal to be gasified, only a more or less large part of the ash particles are separated and discharged from the pressure vessel of the first gas cooler, while the rest of the ash particles reach the convective gas cooler. Some of these ash particles settle on the tubes of the tube bundle and for the most part they are discharged from the convective gas cooler with the gas stream. To separate these particles, a special separator is required, which causes an additional pressure drop on the gas side.

Es ist Aufgabe der Erfindung, eine Anordnung zu schaffen, bei welcher diese Nachteile vermieden werden. Diese Aufgabe wird entsprechend dem Kennzeichen des Anspruchs 1 gelöst. Weitere Vorteile der vorgeschlagenen Lösung ergeben sich aus der besseren Raumausnützung wie auch aus dem geringeren Druckabfall der Gase.It is an object of the invention to provide an arrangement in which these disadvantages are avoided. This object is achieved in accordance with the characterizing part of claim 1. Other advantages of the proposed solution result from the better use of space as well as from the lower pressure drop of the gases.

Durch die Verbindung der wärmeabführenden Rohre zu vertikalen, das heisst in Strömungsrichtung verlaufenden Rohrtafeln wird vermieden, dass sich die Strömungsquerschnitte mit Ascheteilchen zusetzen.The connection of the heat-dissipating tubes to vertical tube panels, that is to say in the direction of flow, prevents the flow cross sections from becoming clogged with ash particles.

Mit Anspruch 3 wird der Tatsache Rechnung getragen, dass die Gefahr des Zusetzens des Strömungsquerschnittes im Fallzug höher ist als im Steigzug, weil im Fallzug das Gas noch mehr Ascheteilchen enthält als im Steigzug.Claim 3 takes into account the fact that the risk of clogging the flow cross-section is higher in the downward draft than in the upward draft because the gas contains more ash particles in the downward draft than in the upward draft.

Durch die Ausbildung gasdichter Wände gemäss Anspruch 4 werden Bypasströmungen vermieden. Durch das Zusammenschweissen von wärmeabführenden Rohren zu Rohrwänden werden Strukturen geschaffen, die nur geringe Schwingungsneigung aufweisen.Bypas flows are avoided by the formation of gas-tight walls. The welding of heat-dissipating pipes to pipe walls creates structures that have only a low tendency to vibrate.

Durch die Schaltung der verschweisste Wände bildenden Rohre als Verdampferrohre nach Anspruch 5 werden stark unterschiedliche Temperaturen und damit verbundene hohe Wärmespannungen weitgehend vermieden.By switching the tubes forming welded walls as evaporator tubes according to claim 5, very different temperatures and the associated high thermal stresses are largely avoided.

Anspruch 6 zeigt eine Lösung, durch welche Wärmespannungen an Anschlusstellen der Steigzugwände an den Fallzugwänden durch Vermeidung solcher Anschlusstellen ausgeschlossen werden.Claim 6 shows a solution by means of which thermal stresses at connection points of the riser walls on the fall train walls are excluded by avoiding such connection points.

Der vom abgekühlten Medium durchströmte Fallkanal gemäss Anspruch 7 bringt in der Druckbehälterschale eine Vergleichmässigung der Temperaturen.The drop channel through which the cooled medium flows, according to claim 7, brings about an evening of the temperatures in the pressure vessel shell.

Anspruch 8 ist eine konstruktiv und fertigungstechnisch besonders einfache Lösung.Claim 8 is a structurally and technically particularly simple solution.

Durch die mäanderartige Anordnung der Rohre in den Steigzügen wird die Wärmeübergangszahl verbessert, ohne dass eine erhebliche Gefahr der Verschmutzung besteht.Due to the meandering arrangement of the pipes in the climb trains, the heat transfer coefficient is improved without there being a significant risk of pollution.

Sollte dennoch bei extremen Kohlequalitäten Verschmutzungen auftreten, so hilft die Anordnung von Rohrreinigungsmitteln gemäss Anspruch 10.However, if contamination occurs with extreme coal qualities, the arrangement of pipe cleaning agents according to claim 10 helps.

Anspruch 11 zeigt eine Lösung mit gutem thermodynamischem Effekt und einer leicht zu wartenden Anordnung.Claim 11 shows a solution with a good thermodynamic effect and an easy to maintain arrangement.

Anspruch 12 gibt eine besonders einfach zu betreibende Anlage an.Claim 12 specifies a particularly easy to operate system.

Die Erfindung wird nun an einem zeichnerisch dargestellten Ausführungsbeispiel näher erläutert. Es zeigen:

  • Figur 1: einen schematisierten Vertikalschnitt der erfindungsgemässen Gaskühler-Anordnung,
  • Figur 2: einen Querschnitt durch den konvektiven Gaskühler nach der Linie II - II in Figur 1,
  • Figur 3: einen Vertikalschnitt durch einen oberen und einen unteren Höhenbereich des konvektiven Gaskühlers entlang der in Figur 2 eingetragenen,gebrochenen Linie III - III.
The invention will now be explained in more detail using an illustrated embodiment. Show it:
  • FIG. 1: a schematic vertical section of the gas cooler arrangement according to the invention,
  • FIG. 2: a cross section through the convective gas cooler along the line II-II in FIG. 1,
  • Figure 3: a vertical section through an upper and a lower height range of the convective gas cooler along the broken line III - III entered in Figure 2.

Figur 1 zeigt einen Kohlevergasungsreaktor 1, an dem über zwei Stutzen 2, 3 ein kreiszylindrisches Druckgefäss 4 angeschlossen ist, das innerhalb einer kreiszylindrischen Strahlungskühlwand 5 einen axialen Fallraum 6 aufweist. Am unteren Ende des Fallraumes 6 ist ein Wasserbad 8 vorgesehen, das über ein Austragorgan 9 abgeschlämmt werden kann. Knapp oberhalb des Wasserbades 8 sind in der Strahlungs- . kühlwand 5 Oeffnungen vorgesehen, die in einen von der Rückseite der Strahlungskühlwand 5 und einer weiteren zylindrischen Kühlfläche 11 begrenzten Steigraum 10 führen. Details eines solchen Druckgefässes mit axialem Fallraum und mit Wasserbad sind beispielsweise in den CH Patentanmeldungen 7051/80-2 und 7052/80-4, beide am 19.9.80 eingereicht, dargestellt. An der Kühlfläche 11 ist oben eine die Wand des Druckgefässes 4 durchdringende Leitung 14 angeschlossen, die über Flansche 15 zu einem konvektiven Gaskühler 20 führt. Dieser Gaskühler besteht aus einem Druckbehälter 21, der einen Fallzug 23, und - wie aus Figur 2 ersichtlich - zwei Steigzüge 24, 25 sowie einen Ringraum 26 umschliesst. Fallzug 23 und Steigzüge 24, 25 sind an ihrem unteren Ende durch einen trichterartigen Umlenkraum 28 miteinander verbunden. Das untere Ende 30 des Umlenkraumes 28 führt zu einem nicht gezeichneten Abschlussorgan.FIG. 1 shows a coal gasification reactor 1, to which a circular cylindrical pressure vessel 4 is connected via two nozzles 2, 3 and has an axial drop chamber 6 within a circular cylindrical radiation cooling wall 5. At the lower end of the drop chamber 6, a water bath 8 is provided, which can be washed off via a discharge element 9. Just above the water bath 8 are in the radiation. cooling wall openings 5 provided in a limited by the back of the radiant cooling wall 5 and a further cylindrical cooling surface 11 S teigraum lead 10th Details of such a pressure vessel with an axial drop space and with a water bath are shown, for example, in CH patent applications 7051 / 80-2 and 7052 / 80-4, both filed on September 19, 1980. On the cooling surface 11, a line 14 penetrating the wall of the pressure vessel 4 is connected, which leads via flanges 15 to a convective gas cooler 20. This gas cooler consists of a pressure vessel 21 which encloses a drop train 23 and - as can be seen in FIG. 2 - two risers 24, 25 and an annular space 26. Fall train 23 and ascent trains 24, 25 are connected to one another at their lower end by a funnel-like deflection space 28. The lower end 30 of the deflection space 28 leads to a closing element, not shown.

Wie aus Figur 2 hervorgeht, ist der Fallzug 23 im Horizontalschnitt von zwei langen Seitenwänden 32, 33 und zwei kurzen Wänden 34, 35 begrenzt, welche Wände aus gasdicht verschweissten vertikalen Flossenrohren gebildet sind. Der Fallzug ist durch zwei Zwischenwände 37 und 38, die ebenfalls aus verschweissten Flossenrohren gebildet sind, in drei gleichbreite Kammern unterteilt. Die Zwischenwände 37 und 38 bestehen zum Beispiel aus nur strichweise verschweissten Flossenrohren, die jeweils, zur seitlichen Abstützungl bis an die Seitenwände 32 beziehungsweise 33 ausgebogen und an diesen angeschweisst sein können, was nicht gezeichnet ist.As can be seen from FIG. 2, the drop train 23 is limited in horizontal section by two long side walls 32, 33 and two short walls 34, 35, which walls are formed from vertical fin tubes which are welded gas-tight. The fall train is divided into three equal-width chambers by two partition walls 37 and 38, which are also formed from welded fin tubes. The intermediate walls 37 and 38 consist, for example, of fin tubes which are only welded in places and which can each be bent out and welded to the side walls 32 and 33 for lateral support 1 , which is not shown.

Wie aus den Figuren 1 und 3 zu erkennen ist, sind die Rohre der Seitenwände 32, 33 und der Wände 34, 35 an einem unteren Verteiler 40 und einem oberen Sammler 41 angeschlossen, während die Rohre der Zwischenwände 37 und 38 von einem Verteiler 44 ausgehen und zu einem Sammler 45 führen. Der Sammler 41 und die in ihn einmündenden Rohre sind in einem oberen Bereich, in welchem die Rohre nicht miteinander gasdicht verbunden sind, von einer gasdichten Haube 47 überspannt, die etwa auf Höhe des Sammlers 45 rundum an den Wänden 32 bis 35 dicht angeschlossen ist.As can be seen from FIGS. 1 and 3, the tubes of the side walls 32, 33 and the walls 34, 35 are connected to a lower distributor 40 and an upper header 41, while the tubes of the intermediate walls 37 and 38 start from a distributor 44 and lead to a collector 45. The collector 41 and the pipes that open into it are spanned in an upper region, in which the pipes are not connected to one another in a gas-tight manner, by a gas-tight hood 47, which is tightly connected all around to the walls 32 to 35 at the level of the collector 45.

Die Haube 47 wird von Leitungen 48 und 49, die von den Sammlern 41 und 45 zu einer Trommel 50 eines Dampferzeugers führen, durchdrungen (Fig. 1).The hood 47 is of lines 48 and 49 leading from the collectors 41 and 45 to a drum 50 of a steam generator, penetrated (F ig. 1).

Am Grunde der Trommel 50 sind zwei Leitungen 52, 53 angeschlossen, die durch den Ringraum 26 zu den Verteilern 40 beziehungsweise 44 führen.At the bottom of the drum 50, two lines 52, 53 are connected, which lead through the annular space 26 to the distributors 40 and 44, respectively.

An den Aussenseiten der Seitenwände 32, 33 sind U-förmig abgekantete Wandbleche 55, beziehungsweise 56 etwa gas-(Fig.2), dicht angeschlossen (Fig.2), wodurch die Steigzüge 24, 25 gebildet werden. In diesen Steigzügen sind je drei Rohrtafeln 58, 59 aufgehängt, die durch je fünf mäanderartig verlaufende Rohre, welche die ganze,grössere Horizontalausdehnung der Steigzüge überspannen, gebildet sind.On the outer sides of the side walls 32, 33, U-shaped wall plates 55, or 56 are approximately gas (Fig.2), tightly connected (Fig.2), whereby the risers 24, 25 are formed. Three tube sheets 58, 59 are suspended in each of these risers, each of which is formed by five meandering tubes that span the entire, larger horizontal extent of the risers.

Diese zweimal 3 mal 5 Rohre sind unten an zwei Sattdampfverteilern 60, 61 angeschlossen, die über je eine Sattdampfleitung 62 beziehungsweise 63 mit dem Dampfraum der Trommel 50 verbunden sind.These two 3 × 5 pipes are connected at the bottom to two saturated steam distributors 60, 61, each of which is connected to the steam chamber of the drum 50 via a saturated steam line 62 or 63.

Die das Druckgefäss 4 mit dem Druckbehälter 21 verbindende Leitung 14 ist durch die kurze Wand 34 hindurch am Fallzug 23 angeschlossen. Am unteren Ende des Fallzuges und der Steigzüge 24, 25 sind an den Wänden dieser Züge längs einer kreuzförmigen Kontur trichterförmig geneigte Blechwände angebracht, die den Umlenkraum 28 einschliessen.The line 14 connecting the pressure vessel 4 to the pressure vessel 21 is connected to the drop train 23 through the short wall 34. At the lower end of the fall train and the risers 24, 25, the walls of these trains have funnel-shaped sheet metal walls along a cross-shaped contour, which enclose the deflection space 28.

Von den Steigzügen 24, 25 führen Rohrstutzen 70, 71 zu innenseitig isolierten Austrittstutzen 72, 74 des Druckbehälters 21. Die oberen Enden der die Rohrtafeln 58, 59 bildenden Rohre sind an einem Sammler 75 angeschlossen, der mit einem axialen Stutzen 76 verbunden ist, der auf dem Druckbehälter 21 sitzt.From the risers 24, 25, pipe sockets 70, 71 lead to internally insulated outlet sockets 72, 74 of the pressure vessel 21. The upper ends of the pipes forming the tube sheets 58, 59 are connected to a collector 75 which is connected to an axial socket 76 which sits on the pressure vessel 21.

Die Anlage arbeitet wie folgt:

  • Das mit Asche- und Schlacketeilchen verunreinigte Gas des Kohlevergasungsreaktors 1 strömt durch den Fallraum 6 - von etwa 1450°C auf etwa 1000°C sich abkühlend - wobei die Teilchen erstarren und ihre Klebrigkeit verlieren. Die Verunreinigungen fallen darauf zum grossen Teil in das Wasserbad 8, wo sie abgeschreckt werden. Der Rest der Verunreinigungen strömt mit dem Gas durch-den Steigraum 10 und aus diesem, mit einer Temperatur von beispielsweise 650°C in den Fallzug 23 des konvektiven Gaskühlers 20.
The system works as follows:
  • The contaminated with ash and slag G as the coal gasification reactor 1 flows through the downcomer annulus 6 - of about 1450 ° C to about 1000 ° C, cooling - wherein the particles solidify and lose their stickiness. The impurities then largely fall into the water bath 8, where they are quenched. The rest of the impurities flow with the gas through the riser 10 and out of it, at a temperature of, for example, 650 ° C. into the downward draft 23 of the convective gas cooler 20.

Nach dem Durchströmen des Fallzuges 23 wird das Gas bei einer Temperatur von etwa 450°C in die Steigzüge 24, 25 umgelenkt, während der grösste Teil der noch vorhandenen Asche-28 und Schlacketeilchen in den Trichter des Umlenkraumesrge-schleudert wird.After flowing through the fall train 23, the gas is deflected at a temperature of about 450 ° C. into the risers 24, 25, while the majority of the ash 28 and slag particles still present are thrown into the funnel of the deflection chamber g .

In den Steigzügen 24, 25 wird darauf das Gas weiter abgekühlt. Es tritt sodann durch die Stutzen 73, 74 aus dem konvektiven Gaskühler 20 aus, sei es zur direkten Verwendung als Brenngas oder Prozessgas oder aber in einen weiteren Kühler, der als Economiser des Dampferzeugers der Trommel 50 vorgeschaltet sein kann.The gas is then cooled further in the risers 24, 25. It then emerges from the convective gas cooler 20 through the connecting pieces 73, 74, be it for direct use as fuel gas or process gas or into a further cooler which can be connected upstream of the drum 50 as an economizer of the steam generator.

Das Arbeitsmittel des Dampferzeugers gelangt aus der Trommel 50 durch die Leitungen 52 und 53 in die Verteiler 40 und 44 und strömt von dort durch die Rohrwände 32 bis 35, dabei mindestens teilweise verdampfend, und dann in die Sammler 41, 45 und von dort in die Trommel 50 zurück, in welcher Wasser und Dampf getrennt werden.Als Sattdampf strömt das Arbeitsmittel dann über die Leitungen 62, 63 zu den Verteilern 60 beziehungsweise 61, und aus diesen über die mäanderartig angeordneten Rohre der Rohrtafeln 58 und 59, in denen es überhitzt wird, zum Sammler 75. Aus diesem Sammler strömt es zu einem Nachüberhitzer oder direkt zur Verwendung, sei es als Treibdampf in eine Wärmekraftanlage oder als Prozessdampf in einen chemischen Betrieb.The working medium of the steam generator passes from the drum 50 through the lines 52 and 53 into the distributors 40 and 44 and flows from there through the tube walls 32 to 35, at least partially evaporating, and then into the collectors 41, 45 and from there into the Drum 50 back, in which water and steam are separated. As working steam, the working fluid then flows via lines 62, 63 to distributors 60 and 61, and from there via the meandering pipes of pipe panels 58 and 59, in which it is overheated , to collector 75. From this collector it flows to a reheater or di right for use, be it as motive steam in a thermal power plant or as process steam in a chemical plant.

Die Erfindung beschränkt sich nicht auf das in der Zeichnung gezeigte Ausführungsbeispiel. So können die Anzahl der Rohre der einzelnen Heizflächen, das Verhältnis der auf den Fallzug 23 beziehungsweise die Steigzüge 24, 25 entfallenden Rohre, die Anzahl der Rohrtafeln 58, 59,die Anzahl der Kammern etc. von den dargestellten Werten beliebig abweichen. Es kann auch zweckmässig sein, den Anschluss der Blechwände 55, 56 an den Seitenwänden 32, 33 über Schiebedichtungen zu vollziehen, an den genannten Blechwänden Dehnfalten anzubringen, die Blechwände 55, 56 um den Fallzug 23 herum miteinander zu verbinden, sodass keine Anschlüsse an die Seitenwände 32, 33 nötig werden. Auch das Anbringen von Isolationen an den Blechwänden 55, 56 kann zweckmässig sein. Auch die Anzahl der Steigzüge ist nicht limitierend genannt, obschon man zweckmässig eine symmetrische Anordnung wählen wird.The invention is not limited to the exemplary embodiment shown in the drawing. For example, the number of tubes of the individual heating surfaces, the ratio of the tubes to the fall train 23 or the risers 24, 25, the number of tube boards 58, 59, the number of chambers, etc. can vary from the values shown. It may also be expedient to connect the sheet metal walls 55, 56 to the side walls 32, 33 via sliding seals, to install expansion folds on the sheet metal walls mentioned, to connect the sheet metal walls 55, 56 to each other around the drop cable 23, so that no connections to the Side walls 32, 33 become necessary. The application of insulation to the sheet metal walls 55, 56 can also be expedient. The number of ascents is also not limited, although it is advisable to choose a symmetrical arrangement.

Während in den verhältnismässig weiten Kammern des Fallzuges 23 sich leicht Einrichtungen zum Entfernen von Ablagerungen, wie Russbläser, Kugelregeneinrichtungen und Klopfgeräte unterbringen lassen, ist es zweckmässig, in den Steigzügen 24 und 25 zwischen den Schenkeln der Mäander geeignete Räume für solche Vorrichtungen vorzusehen.While in the relatively wide chambers of the fall train 23, facilities for removing deposits such as sootblowers, ball rain devices and tapping devices can easily be accommodated, it is expedient to provide suitable spaces for such devices in the ascents 24 and 25 between the legs of the meander.

Claims (12)

1. Gaskühler-Anordnung zum Abkühlen der Reaktionsprodukte eines Kohlevergasungsreaktors, mit einem Druckgefäss, das einen axialen Fallraum mit einer zylindrischen, achsparallelen Strahlungskühlwand aufweist, welcher Fallraum von einem ringförmigen, ebenfalls von Kühlflächen begrenzten Steigraum umgeben ist, der oben mit mindestens einem in einem zylindrischen Druckbehälter mit vertikaler Achse untergebrachten, konvektiven Gaskühler verbunden ist, dadurch gekennzeichnet, dass der konvektive Gaskühler einen Fallzug und mindestens einen Steigzug für das zu kühlende Gas umfasst, dass die Züge wärmeabführende Rohre enthalten, die Bestandteile eines Dampferzeugers bilden, und dass am unteren Ende des Druckbehälters ein an die Enden beider Züge angeschlossener Aschesammelraum vorgesehen ist, der über ein Verschlussorgan entleert werden kann.1.Gas cooler arrangement for cooling the reaction products of a coal gasification reactor, with a pressure vessel which has an axial drop space with a cylindrical, axially parallel radiation cooling wall, which drop space is surrounded by an annular riser space, likewise delimited by cooling surfaces, which at the top has at least one in a cylindrical one Pressure vessel connected to the vertical axis, convective gas cooler, characterized in that the convective gas cooler comprises a drop train and at least one ascent train for the gas to be cooled, that the trains contain heat-dissipating pipes that form components of a steam generator, and that at the lower end of the An ash collection chamber connected to the ends of both trains is provided, which can be emptied via a closure member. 2. Gaskühler-Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass die wärmeabführenden Rohre des konvektiven Gaskühlers, mindestens im Fallzug, zu vertikalen Rohrtafeln verbunden sind.2. Gas cooler arrangement according to claim 1, characterized in that the heat-dissipating tubes of the convective gas cooler, at least in the draft, are connected to form vertical tube panels. 3. Gaskühler-Anordnung nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass die zwischen den Rohrtafeln oder zwischen einzelnen Rohren gebildeten Rohrgassen im Fallzug weiter sind als im Steigzug.3. Gas cooler arrangement according to one of claims 1 and 2, characterized in that the pipe passages formed between the tube sheets or between individual tubes are wider in the fall train than in the ascent train. 4. Gaskühler-Anordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Züge von gasdichten Wänden begrenzt sind und vorzugsweise rechteckigen Querschnitt aufweisen.4. Gas cooler arrangement according to one of claims 1 to 3, characterized in that the trains are limited by gas-tight walls and preferably have a rectangular cross-section. 5. Gaskühler-Anordnung nach Anspruch 4, dadurch gekenn-* zeichnet, dass die Wände des Fallzuges aus vertikal verlaufenden, direkt oder über Stege gasdicht miteinander verschweissten Verdampferrohren des Dampferzeugers besteht.5. Gas cooler arrangement according to claim 4, characterized marked * that the walls of the drop train from vertically running, directly or gas-tight with each other welded evaporator tubes of the steam generator. 6. Gaskühler-Anordnung nach einem der Ansprüche 4 und 5, dadurch gekennzeichnet, dass die gasdichten Wände des Steigzuges oder der Steigzüge jene des Fallzuges umschliessen.6. Gas cooler arrangement according to one of claims 4 and 5, characterized in that the gas-tight walls of the climb or of the climbs enclose those of the fall train. 7. Gaskühler-Anordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Wände mindestens des Steigzuges mit der Druckbehälterinnenwand zusammen einen Fallkanal bilden, durch welchen das in den beiden Zügen abgekühlte Medium, die Druckbehälterwand von zu hohen Temperaturen schützend, zu einem im unteren Bereich des Druckbehälters angeordneten Austrittstutzen strömt.7. Gas cooler arrangement according to one of claims 1 to 6, characterized in that the walls of at least the climb with the pressure vessel inner wall together form a fall channel through which the cooled in the two trains medium, protecting the pressure vessel wall from too high temperatures to one outlet port arranged in the lower region of the pressure vessel flows. 8. Gaskühler-Anordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Rohre mindestens in einem der Züge parallel zur Achse des Druckbehälters angeordnet sind.8. Gas cooler arrangement according to one of claims 1 to 7, characterized in that the tubes are arranged at least in one of the trains parallel to the axis of the pressure vessel. 9. Gaskühler-Anordnung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass Rohre mindestens der Steigzüge mäanderartig angeordnet sind.9. Gas cooler arrangement according to one of claims 1 to 8, characterized in that pipes are arranged at least of the risers meandering. 10. Gaskühler-Anordnung nach Anspruch 9, dadurch gekennzeichnet, dass zwischen den Mäandern oder Gruppen von Mäandern Zwischenräume zur Anordnung von Rohrreinigungsmitteln, vorzugsweise Russbläsern, vorgesehen sind.10. Gas cooler arrangement according to claim 9, characterized in that spaces are provided between the meanders or groups of meanders for the arrangement of pipe cleaning agents, preferably soot blowers. 11. Gaskühler-Anordnung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Kühlmittel in den Rohren im wesentlichen im Gegenstrom zum abzukühlenden Gas geführt ist, dass die Durchführungen zur Speisung der Rohre und zum Austritt aus den Rohren im Bereich des oberen Druckbehälterendes angeordnet sind und dass zur Aufnahme von Dehnungsunterschieden im Bereich des unteren Endes des Druckbehälters Rohrschlaufen oder -windungen vorgesehen sind.11. Gas cooler arrangement according to one of claims 1 to 10, characterized in that the coolant in the tubes is guided essentially in countercurrent to the gas to be cooled, that the bushings for feeding the tubes and for exiting the tubes in the area of Upper pressure vessel end are arranged and that pipe loops or windings are provided to accommodate differences in elongation in the region of the lower end of the pressure vessel. 12. Gaskühler-Anordnung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass Stutzen für den Gaseintritt und den Gasaustritt zu den beiden Zügen im oberen Bereich des Druckbehälters angeordnet sind und dass der Druckbehälter unterhalb dieser Stutzen mit Trennflanschen versehen ist, sodass der Oberteil des Druckbehälters mit den daran befestigten Rohrsystemen nach oben abgehoben werden kann.12. Gas cooler arrangement according to one of claims 1 to 11, characterized in that nozzles for the gas inlet and the gas outlet to the two trains are arranged in the upper region of the pressure vessel and that the pressure vessel is provided with separating flanges below these nozzles, so that the upper part of the pressure vessel with the pipe systems attached to it can be lifted upwards.
EP81109673A 1981-10-26 1981-11-13 Gas cooling device for a coal gasification plant Expired EP0077851B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH6812/81 1981-10-26
CH6812/81A CH656637A5 (en) 1981-10-26 1981-10-26 GAS COOLER ARRANGEMENT TO COAL GASIFICATION SYSTEM.

Publications (3)

Publication Number Publication Date
EP0077851A2 true EP0077851A2 (en) 1983-05-04
EP0077851A3 EP0077851A3 (en) 1984-02-01
EP0077851B1 EP0077851B1 (en) 1986-03-26

Family

ID=4315408

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81109673A Expired EP0077851B1 (en) 1981-10-26 1981-11-13 Gas cooling device for a coal gasification plant

Country Status (6)

Country Link
US (1) US4493291A (en)
EP (1) EP0077851B1 (en)
JP (1) JPS5880384A (en)
CH (1) CH656637A5 (en)
DE (1) DE3174207D1 (en)
ZA (1) ZA826078B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0085131A1 (en) * 1982-02-03 1983-08-10 GebràœDer Sulzer Aktiengesellschaft Heat-transfer apparatus for cooling gases contaminated with particles
EP0366606A1 (en) * 1988-10-26 1990-05-02 GebràœDer Sulzer Aktiengesellschaft Hot gas cooler for a coal gasification plant

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3346618A1 (en) * 1983-12-23 1985-07-11 Carl Still Gmbh & Co Kg, 4350 Recklinghausen METHOD FOR PRODUCING A OVERHEATED HIGH-PRESSURE VAPOR IN COOKING DRY COOLING AND SUITABLE DEVICES FOR THIS
US4563194A (en) * 1984-04-10 1986-01-07 Cool Water Coal Gasification Program Waterwall for a twin tower gasification system
US4569680A (en) * 1984-12-26 1986-02-11 Combustion Engineering Gasifier with economizer gas exit temperature control
DE3515174A1 (en) * 1985-04-26 1986-11-06 Kraftwerk Union AG, 4330 Mülheim HEAT STEAM GENERATOR
DE3734216C1 (en) * 1987-10-09 1988-12-08 Schmidt Sche Heissdampf Heat exchanger system
DK163896C (en) * 1990-01-05 1992-10-26 Burmeister & Wains Energi GAS COOLS FOR CONVECTION HEAT TRANSFER
DK164245C (en) * 1990-01-05 1992-10-26 Burmeister & Wains Energi GAS COOLERS FOR HEAT TRANSMISSION BY RADIATION
US5251575A (en) * 1991-06-12 1993-10-12 Sulzer Brothers Limited Installation for cooling hot, dust-charged gas in a steam generator, and a process for operating said installation
US5803937A (en) * 1993-01-14 1998-09-08 L. & C. Steinmuller Gmbh Method of cooling a dust-laden raw gas from the gasification of a solid carbon-containing fuel
ES2078078T3 (en) * 1993-03-16 1995-12-01 Krupp Koppers Gmbh PROCEDURE FOR GASIFICATION UNDER THE PRESSURE OF FINALLY DIVIDED FUELS.
JP3701202B2 (en) * 1998-09-22 2005-09-28 アクセーア・アクチェンゲゼルシャフト Steam generator with at least partially double-walled evaporation tank
JP4599291B2 (en) * 2005-01-07 2010-12-15 三菱重工業株式会社 Pressurized high temperature gas cooler
US7803216B2 (en) 2005-12-28 2010-09-28 Mitsubishi Heavy Industries, Ltd. Pressurized high-temperature gas cooler
JP2008056808A (en) * 2006-08-31 2008-03-13 Babcock & Wilcox Co:The Steam generator for containing and cooling synthesis gas
US8191617B2 (en) * 2007-08-07 2012-06-05 General Electric Company Syngas cooler and cooling tube for use in a syngas cooler
US8240366B2 (en) * 2007-08-07 2012-08-14 General Electric Company Radiant coolers and methods for assembling same
CN102518489B (en) * 2012-01-06 2016-08-03 新奥科技发展有限公司 Electricity-generating method, the device generated electricity for gasified production of energy products and heat
US9874346B2 (en) * 2013-10-03 2018-01-23 The Babcock & Wilcox Company Advanced ultra supercritical steam generator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2239895A (en) * 1938-12-15 1941-04-29 Riley Stoker Corp Waste heat boiler
FR1086774A (en) * 1952-05-10 1955-02-16 Koppers Gmbh Heinrich Plant for the gasification of finely divided solid fuels
DE1596323A1 (en) * 1967-06-06 1970-04-02 Walther & Cie Ag Synthesis gas generator with gas cooler, which are arranged in a pressure cylinder
DE2650512A1 (en) * 1976-11-04 1978-05-11 Siegener Ag Geisweid Slag removal from synthesis gas - by cooling tubes in intermediate container to solidify liquid slag droplets
EP0024281A1 (en) * 1979-08-21 1981-03-04 Deutsche Babcock Aktiengesellschaft Apparatus for the gasification of pulverized coal
GB2061758A (en) * 1979-10-04 1981-05-20 Ruhrchemie Ag Radiation boiler

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4090473A (en) * 1976-05-27 1978-05-23 Nikolai Vasilievich Golovanov Steam generator for steam power plant
US4377394A (en) * 1979-05-30 1983-03-22 Texaco Development Corporation Apparatus for the production of cleaned and cooled synthesis gas
US4377132A (en) * 1981-02-12 1983-03-22 Texaco Development Corp. Synthesis gas cooler and waste heat boiler

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2239895A (en) * 1938-12-15 1941-04-29 Riley Stoker Corp Waste heat boiler
FR1086774A (en) * 1952-05-10 1955-02-16 Koppers Gmbh Heinrich Plant for the gasification of finely divided solid fuels
DE1596323A1 (en) * 1967-06-06 1970-04-02 Walther & Cie Ag Synthesis gas generator with gas cooler, which are arranged in a pressure cylinder
DE2650512A1 (en) * 1976-11-04 1978-05-11 Siegener Ag Geisweid Slag removal from synthesis gas - by cooling tubes in intermediate container to solidify liquid slag droplets
EP0024281A1 (en) * 1979-08-21 1981-03-04 Deutsche Babcock Aktiengesellschaft Apparatus for the gasification of pulverized coal
GB2061758A (en) * 1979-10-04 1981-05-20 Ruhrchemie Ag Radiation boiler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0085131A1 (en) * 1982-02-03 1983-08-10 GebràœDer Sulzer Aktiengesellschaft Heat-transfer apparatus for cooling gases contaminated with particles
EP0366606A1 (en) * 1988-10-26 1990-05-02 GebràœDer Sulzer Aktiengesellschaft Hot gas cooler for a coal gasification plant
CH676603A5 (en) * 1988-10-26 1991-02-15 Sulzer Ag

Also Published As

Publication number Publication date
EP0077851A3 (en) 1984-02-01
CH656637A5 (en) 1986-07-15
JPS5880384A (en) 1983-05-14
DE3174207D1 (en) 1986-04-30
ZA826078B (en) 1983-06-29
EP0077851B1 (en) 1986-03-26
US4493291A (en) 1985-01-15

Similar Documents

Publication Publication Date Title
EP0077851B1 (en) Gas cooling device for a coal gasification plant
DE3323818A1 (en) VERTICAL RADIATION BOILER
CH653097A5 (en) COMBINED GAS TURBINE STEAM POWER PLANT.
DE2933514B1 (en) Device for treating synthesis gas generated by coal gasification
EP0314929B1 (en) Waste heat boiler for cooling partial oxidation gases
DE1927949A1 (en) Steam generation and overheating device, especially for with molten metal, molten metal salt or the like. nuclear reactors working as heat exchangers
DE3208421A1 (en) DEVICE FOR COOLING A GAS PRODUCED IN A CARBURETOR
DE4101918A1 (en) COMBUSTION PLANT
DE3308724C2 (en) Waste heat boiler
DE3152372C2 (en)
DE2841026C2 (en) Combustion device
EP0518813B1 (en) Apparatus for cooling dust-containing hot gases and process for use thereof
DE2844077C2 (en)
DE3121297C2 (en) Device for regulating the temperature of a corrosive gas, in particular synthesis gas
EP0203445B1 (en) Raw gas-clean gas heat exchanger
DE3544425A1 (en) METHOD FOR BURNING SOLID FUELS IN A CIRCULATING FLUID BED, AND DEVICE FOR CARRYING OUT THIS METHOD
DE2558127C2 (en) Steam generator with U-shaped bent heat exchanger tubes
DE612960C (en) Pipe steam generator
DE3511877A1 (en) CONTINUOUS STEAM GENERATOR
DE2924460A1 (en) DEVICE FOR CONCENTRATING AND / OR PURIFYING MINERAL ACIDS
DE3110205C2 (en) Chimney arrangement for firing systems
DE3535977A1 (en) COCK DRY COOLING DEVICE
EP0534061B1 (en) Heat exchanger
DE2914116C2 (en)
DE413194C (en) Steep tube boiler with curved water pipes, especially for high pressures

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19811113

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

RBV Designated contracting states (corrected)

Designated state(s): BE DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 3174207

Country of ref document: DE

Date of ref document: 19860430

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
ITPR It: changes in ownership of a european patent

Owner name: TRASFORMAZIONE SOCIETARIA;SULZER AKTIENGESELLSCHAF

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: SULZER AG TE WINTERTHUR, ZWITSERLAND.

NLS Nl: assignments of ep-patents

Owner name: ABB MANAGEMENT AG TE BADEN, ZWITSERLAND.

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

BECH Be: change of holder

Free format text: 940420 *ABB MANAEMENT LTD

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19961014

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19961015

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19961022

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19961024

Year of fee payment: 16

Ref country code: DE

Payment date: 19961024

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971130

BERE Be: lapsed

Owner name: ABB MANAEMENT LTD

Effective date: 19971130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19971113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST