EP0068002B1 - Turbinenstufe - Google Patents

Turbinenstufe Download PDF

Info

Publication number
EP0068002B1
EP0068002B1 EP82900113A EP82900113A EP0068002B1 EP 0068002 B1 EP0068002 B1 EP 0068002B1 EP 82900113 A EP82900113 A EP 82900113A EP 82900113 A EP82900113 A EP 82900113A EP 0068002 B1 EP0068002 B1 EP 0068002B1
Authority
EP
European Patent Office
Prior art keywords
grid
stationary
ceiling plate
floor plate
stationary grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82900113A
Other languages
English (en)
French (fr)
Other versions
EP0068002A1 (de
Inventor
Raymond Bessay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom SA
Original Assignee
Alsthom Atlantique SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alsthom Atlantique SA filed Critical Alsthom Atlantique SA
Priority to AT82900113T priority Critical patent/ATE12291T1/de
Publication of EP0068002A1 publication Critical patent/EP0068002A1/de
Application granted granted Critical
Publication of EP0068002B1 publication Critical patent/EP0068002B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/145Means for influencing boundary layers or secondary circulations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/18Non-positive-displacement machines or engines, e.g. steam turbines without stationary working-fluid guiding means
    • F01D1/20Non-positive-displacement machines or engines, e.g. steam turbines without stationary working-fluid guiding means traversed by the working-fluid substantially axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/142Shape, i.e. outer, aerodynamic form of the blades of successive rotor or stator blade-rows
    • F01D5/143Contour of the outer or inner working fluid flow path wall, i.e. shroud or hub contour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2200/00Mathematical features
    • F05D2200/20Special functions
    • F05D2200/26Special functions trigonometric
    • F05D2200/261Sine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2200/00Mathematical features
    • F05D2200/20Special functions
    • F05D2200/26Special functions trigonometric
    • F05D2200/262Cosine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2200/00Mathematical features
    • F05D2200/20Special functions
    • F05D2200/26Special functions trigonometric
    • F05D2200/264Cotangent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • Y10S415/914Device to control boundary layer

Definitions

  • the present invention relates to a turbine stage comprising a circular fixed grid followed by a circular mobile grid, each grid comprising vanes mounted between a floor and a ceiling.
  • This series of blades thus defines a series of channels traversed by a fluid, each channel being limited by two consecutive blades and by the floor and the ceiling.
  • This slippage generates a whirlwind of trigonometric direction at the ceiling of the channel and of opposite direction on the floor for an observer placed downstream of the grid of blades of figure 1.
  • the invention relates to a turbine stage comprising a circular fixed grid followed by a circular mobile grid, each grid comprising vanes mounted between a floor and a ceiling of revolution around the axis of the turbine, the pitch of the blades of the fixed grid being L s at the ceiling and L B at the floor and the outlet angle of the jet of fluid from the fixed grid with the plane of this grid being ⁇ 1S in line with the ceiling and ⁇ 1B in line with the floor, in which the distance to the axis of the ceiling decreases from the entry of the fixed grid towards the exit of the fixed grid where it has the value r s , then goes increasing from the entry of the movable grid where it has the value r s until the mobile gate exits.
  • Such a turbine stage is known from British Patent No. 596,784.
  • the curvature of the floor and the ceiling is calculated so that the pressure is constant in the intergrid space (at the outlet of the fixed grid) from bottom to top of this space, it that is, the radial static pressure gradient is zero.
  • the meridian curvature of the ceiling in line with the intergrid plane is substantially equal to
  • the invention also relates to a turbine stage comprising a circular fixed grid followed by a circular mobile grid comprising blades mounted between a floor and a ceiling of revolution around the axis of the turbine, the pitch of the blades of the fixed grid being L s at the ceiling and L B at the floor and the exit angle of the jet of fluid from the fixed grid with the plane of this grid being a 1S at the level of the ceiling and ⁇ 1B at the level of the floor in which the distance to l the floor axis varies continuously from the entry of the fixed grid towards the exit of said fixed grid where it reaches an extremum r B , then varies in the opposite direction in a continuous manner from the entry of the grid mobile where it has the value r B until the mobile grid exits.
  • This turbine stage is also known from British Patent No. 596,784.
  • the meridian curvature of the floor of the fixed grid in line with the intergrid plane is substantially equal to the difference the extremum r e being a minimum when the difference is negative and a maximum when the difference is positive.
  • the radial gradient of intergrid static pressure is not zero, as in the British patent, but is equal to the tangential gradient of static intergrid pressure, which has the effect of confining the disturbed zone to the floor in a relatively small flow passage section.
  • the two measurements can be combined on the ceiling and on the floor so as to confine the disturbed area on the ceiling and that on the floor in a relatively small flow passage section.
  • the meridian curvature of the ceiling of the fixed grid to the right of the intergrid plane is substantially equal to thus the equality between the radial and tangential static pressure gradients at the outlet of the fixed grid in the vicinity of the ceiling is maintained.
  • the meridian curvature of the fixed grid floor in front of the intergrid plane is substantially equal to the absolute value of the difference the extremum r e then being a minimum when the difference is negative and a maximum when the difference is positive, thus the equality between the gradients of radial and tangential static pressure in the vicinity of the floor at the outlet of the fixed grid is maintained.
  • the turbine stage comprises the 2 combined variants, which makes it possible, on the one hand, to reduce the intensity of the vortices on the ceiling and on the floor and, on the other hand, to confine in a narrow area.
  • the distance to the axis of the ceiling varies according to a curve having a maximum at the entry of the fixed grid and at the exit of the movable grid and a minimum in the intergrid plane.
  • FIG. 1 there are shown two blades A and B which are part of a fixed grid and whose foot is fixed on a floor 1 and the head on a ceiling 2.
  • the floor and the ceiling are usually cylindrical or frustoconical surfaces .
  • the lower surface of dawn B, the upper surface of dawn A, floor 1 and ceiling 2 define a channel 3.
  • FIG. 2 it is indicated at the outlet of a fixed grid in the vicinity of the upper surface of the dawn A the static pressure p s in the vicinity of the ceiling and the static pressure p B in the vicinity of the floor of the grid fixed blades.
  • the pressure p s is greater than the pressure p B so that in the vicinity of the ceiling, the secondary vortex is amplified while it is damped in the vicinity of the floor.
  • Static pressure constantly decreases from ceiling to floor.
  • the evolution of the static radial pressure intergrille in a conventional turbine is represented in FIG. 3 by the curve in solid diagrammed line which starts from r B radius of the floor in the plane intergrille up to r s radius of the ceiling in the same plane and the dotted curve shows schematically the desired evolution.
  • the meridian of the ceiling and / or vein floor of the fixed grid must have a curved shape.
  • FIG. 5 there is shown a cylindrical section of the top of the blades A and B of a fixed grid.
  • the angle ⁇ 1S designates the injection angle of the jet (in the following mobile grid) with the grid front in line with the ceiling, V 1 the absolute speed intergrids, V u the tangential component of the absolute speed intergrids and V m the projection of the absolute speed intergrille in the meridian plane.
  • L s represents the pitch of the blades on the ceiling
  • the angle ⁇ 1S is very easily calculated from the relation on sin ( ⁇ S being the width of the neck between the blades A and B in the vicinity of the ceiling).
  • FIG. 6 there is shown a cylindrical section of the foot of the blades A and B of a fixed grid.
  • the angle ⁇ 1B designates the injection angle of the jet (in the following movable grid) with the grid front.
  • the pitch of vanes A and B on the floor is L B
  • the width of the neck is ⁇ B
  • the angle ⁇ 1B is very easily calculated from the relation
  • the radial gradient of intergrid static pressure is determined by the following formula: with V m absolute speed intergrille in the meridian plane, p the meridian curvature of the fluid threads. p, r, p, Vu have the same meaning as in equation (1).
  • R is negative in equation (2) when the meridian approaches the axis and R is positive when the meridian moves away from the axis.
  • a 1 being the angle of injection of the jet with this grid front at level r and L is the spacing between 2 consecutive blades at the same level.
  • AP is the pressure drop in the fixed grid. But according to Bernouilli's law By matching the values of and we find with the sign (+) for the floor and the sign (-) for the ceiling. Given that and
  • FIG. 7 is shown in section a turbine stage according to the invention in which the effect of the secondary losses in the vicinity of the ceiling has been minimized.
  • the fluid steam for example, goes along the arrow from right to left.
  • the stage comprises a fixed grid 4 followed by a mobile grid 5.
  • the fixed grid comprises vanes 6 mounted between a floor 1 and a ceiling 2.
  • the movable grid 5 comprises vanes 7 mounted between a floor 11 and a ceiling 12.
  • the ceiling 2 of the grid 4 is a surface of revolution around the axis of the turbine, the meridian of which is a half-arc of a sinusoid which approaches the axis, from the inlet to the outlet.
  • the ceiling 12 of the grid 5 is substantially symmetrical with the ceiling 2 with respect to the intergrid plane which is perpendicular to the axis of the turbine.
  • the floor is that of a conventional turbine.
  • Figures 8 and 9 is shown in section a turbine stage according to the invention in which the effect of secondary losses in the vicinity of the floor has been minimized.
  • the reference numbers are those of the references of FIG. 7 in which 100 has been added.
  • the floor 101 of the fixed grid 104 is a surface of revolution around the axis of the turbine including the meridian is a half-arc of a sinusoid which approaches the axis, from the entry to the exit.
  • the floor 111 of the movable grid 105 is substantially symmetrical with the floor 101 with respect to the intergrid plane.
  • the curvature of the floor in the intergrid plane is In figure 9 the difference between is positive so that the meridian of the floor 101 'is for the fixed grid 104 a half-arc of sinusoid which moves away from the axis, from the entry towards the exit of the grid.
  • the meridian of the floor 111 'of the movable grid 105 is the symmetrical of the meridian of the floor 101' with respect to the intergrid plane.
  • FIG. 10 shows a turbine stage according to the invention with a ceiling similar to that of the stage in FIG. 7 and a floor similar to that in FIG. 8.
  • the reference numbers have been increased by 200 by compared to those in figure 7.
  • FIG. 11 a turbine stage according to the invention is shown with a ceiling like that of the turbine stage of FIG. 7 and a floor like that of FIG. 9.
  • the numbers of references have been increased by 100 compared to those in Figure 9.
  • Figures 12 and 13 are variants of Figures 10 and 11 in which the meridians of the floor 311 respectively 311 'and the ceiling 312 of the movable grid 305 are straight lines.
  • FIG. 14 shows a section of a fixed grid with a surface of revolution about the axis comprising means for reducing the secondary losses in each channel limited by the upper surface 401 of a blade A and the lower surface 402 of a dawn B. These means are described for example in Belgian patent n ° 677 969.
  • the floor and / or the ceiling were dug in the vicinity of the upper surface of dawn A, which causes a local decrease in the depression in line with the floor and / or ceiling.
  • material 404 was brought to the floor and / or the ceiling in the vicinity of the lower surface of the vane B, which causes a local reduction in the overpressure in line with the floor and / or the ceiling.
  • the internal shape of the fixed grid also has a periodicity radians, N D being the number of vanes of the directrix.
  • N D being the number of vanes of the directrix.
  • the tangential static pressure gradient in the vicinity of the ceiling is reduced by a factor X and / or the tangential static pressure gradient in the vicinity of the floor at the outlet of the fixed grid by a factor of X '.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Claims (10)

1. Turbinenstufe mit einem kreisförmigen festen Gitter (4), auf das ein kreisförmiges bewegliches Gitter (5) folgt, die beide (4, 5) zwischen einem zur Turbinenachse drehsymmetrischen Boden (1, 11) und einer ebenfalls zur Turbinenachse drehsymmetrischen Decke (2, 12) montierte Schaufeln (6, 7) aufweisen, wobei der Schaufelabstand des festen Gitters (4) an der Decke (2) Ls ist und am Boden (1) Lε, während der Austrittswinkel des Fluidstroms aus dem festen Gitter (4) bezüglich der Ebene dieses Gitters α1S an der Decke (2) und α1B am Boden (1) ist, und wobei der Achsabstand der Decke (2) vom Eingang des festen Gitters (4) zu dessen Ausgang bis auf einen Wert rs abnimmt und dann vom Eingang des beweglichen Gitters (5), wo der Wert rs vorliegt, bis zum Ausgang des Gitters (5) zunimmt, dadurch gekennzeichnet, dass die Meridiankrümmung der Decke (2) des festen Gitters (4) in der Zwischengitterebene im wesentlichen gleich ist
Figure imgb0044
2. Turbinenstufe mit einem kreisförmigen festen Gitter (104), auf das ein kreisförmiges bewegliches Gitter (105) folgt, die zwischen einem zur Turbinenachse drehsymmetrischen Boden und einer ebenfalls zur Turbinenachse drehsymmetrischen Decke montierte Schaufeln (106, 107) aufweisen, wobei der Schaufelabstand des festen Gitters (104) an der Decke (102) LS ist und am Boden (101,101') LB, während der Austrittswinkel des Fluidstroms aus dem festen Gitter (104) bezüglich der Ebene dieses Gitters (104) α1S an der Decke (102) und α1B am Boden (101, 101') ist, und wobei der Achsabstand des Bodens (101, 101') kontinuierlich vom Eingang des festen Gitters (104) zum Ausgang dieses Gitters (104), wo er einen Extremwert rε annimmt, und dann in umgekehrter Richtung kontinuierlich vom Eingang des beweglichen Gitters (105), wo der Wert rε vorliegt, bis zum Ausgang des beweglichen Gitters (105) variiert, dadurch gekennzeichnet, dass die Meridiankrümmung des Bodens (101, 101') des festen Gitters (101) in der Zwischengitterebene im wesentlichen gleich der folgenden Differenz ist
Figure imgb0045
wobei der Extremwert rB ein Minimum ist, wenn die Differenz negativ ist, und ein Maximum, wenn die Differenz positiv ist.
3. Turbinenstufe mit einem kreisförmigen festen Gitter (204), auf das ein kreisförmiges bewegliches Gitter (205) folgt, die beide (204, 205) zwischen einem zurTurbinenachse drehsymmetrischen Boden und einer ebenfalls zur Turbinenachse drehsymmetrischen Decke montierte Schaufeln (206, 207) aufweisen, wobei der Schaufelabstand eines betrachteten festen Gitters an der Decke (202) Ls und am Boden (201, 201') LB ist, während der Austrittswinkel des Fluidstroms aus dem festen Gitter (204) bezüglich der Ebene dieses Gitters (204) den Wert als an der Decke (202) und α1B am Boden (201, 201') annimmt, und wobei einerseits der Achsabstand der Decke (202, 212) vom Eingang des festen Gitters (204) zum Ausgang dieses festen Gitters (204) bis auf einen Wert rs abnimmt und dann vom Eingang des beweglichen Gitters (208), wo der Wert rs vorliegt, bis zum Ausgang des beweglichen Gitters (205) zunimmt, und andererseits der Achsabstand des Bodens (201, 211, 201', 211') kontinuierlich vom Eingang des festen Gitters (204) zum Ausgang dieses festen Gitters (204), wo er einen Extremwert rB annimmt, und dann in umgekehrter Richtung kontinuierlich vom Eingang des beweglichen Gitters (205), wo der Wert rε vorliegt, bis zum Ausgang des beweglichen Gitters (205) variiert, dadurch gekennzeichnet, dass die Meridiankrümmung der Decke (202) des festen Gitters (204) in der Zwischengitterebene im wesentlichen gleich ist
Figure imgb0046
und dass die Meridiankrümmung des Bodens (201, 201') des festen Gitters (204) in der Zwischengitterebene im wesentlichen der folgenden Differenz entspricht
Figure imgb0047
wobei der Extremwert rB ein Minimum ist, wenn die Differenz negativ ist, und ein Maximum, wenn die Differenz positiv ist.
4. Turbinenstufe mit einem kreisförmigen festen Gitter, auf das ein kreisförmiges bewegliches Gitter (5) folgt, die beide (4, 5) zwischen einem zur Turbinenachse drehsymmetrischen Boden (1, 11) und einer ebenfalls zur Turbinenachse drehsymmetri- schen Decke (2, 12) montierte Schaufeln (6, 7) aufweisen, wobei der Schaufelabstand des festen Gitters (4) an der Decke (2) Ls und am Boden (1) LB ist, während der Austrittswinkel des Fluidstroms aus dem festen Gitter (4) bezüglich der Ebene dieses Gitters α1S an der Decke und α1B am Boden (1) ist, und wobei der Achsabstand des Bodens vom Eingang des festen Gitters (4) zum Ausgang dieses festen Gitters (4) bis auf einen Wert rs abnimmt und dann vom Eingang des beweglichen Gitters (5), wo der Wert rs vorliegt, bis zum Ausgang des beweglichen Gitters (5) zunimmt, dadurch gekennzeichnet, dass Mittel (403, 404) vorgesehen sind, um den statischen tangentialen Druckgradienten in der Nähe der Decke am Ausgang des festen Gitters (204), der durch die Formel
Figure imgb0048
definiert ist, um einen Faktor λ (∞ > λ > 1) zu verkleinern, und dass die Meridiankrümmung der Decke (2) des festen Gitters (4) in der Zwischengitterebene im wesentlichen gleich ist
Figure imgb0049
5. Turbinenstufe mit einem kreisförmigen festen Gitter (104), auf das ein kreisförmiges bewegliches Gitter (105) folgt, die beide zwischen einem zur Turbinenachse drehsymmetrischen Boden und einer ebenfalls zur Turbinenachse drehsymmetrischen Decke montierte Schaufeln (106, 107) aufweisen, wobei der Schaufelabstand des festen Gitters (104) an der Decke (102) Ls und am Boden (101, 101') LB ist, während der Austrittswinkel des Fluidstroms aus dem festen Gitter (104) bezüglich der Ebene dieses Gitters (104) an der Decke (102) den Wert α1S und am Boden (101, 101') den Wert α1B hat, und wobei der Achsabstand des Bodens (101, 101') kontinuierlich vom Eingang des festen Gitters (104) bis zum Ausgang dieses festen Gitters (104), wo er einen Extremwert rε annimmt, und dann in umgekehrter Richtung kontinuierlich vom Eingang des beweglichen Gitters (105), wo der Wert rB vorliegt, bis zum Ausgang des beweglichen Gitters (105) variiert, dadurch gekennzeichnet, dass Mittel (403,404) vorgesehen sind, um den statischen tangentialen Druckgradienten in der Nähe des Bodens am Ausgang des festen Gitters (204), der durch die Formel
Figure imgb0050
definiert ist, um einen Faktor λ' (∞ > λ' > 1 ) zu verringern, und dass die Meridiankrümmung des Bodens (101, 101') des festen Gitters (104) in der Zwischengitterebene im wesentlichen gleich der folgenden Differenz ist
Figure imgb0051
wobei der Extremwert rB ein Minimum ist, wenn die Differenz negativ ist, und ein Maximum, wenn die Differenz positiv ist.
6. Turbinenstufe mit einem kreisförmigen festen Gitter (204), auf das ein kreisförmiges bewegliches Gitter (205) folgt, die beide (204, 205) zwischen einem zur Turbinenachse drehsymmetrischen Boden und einer ebenfalls zur Turbinenachse drehsymmetrischen Decke montierte Schaufeln (206, 207) aufweisen, wobei der Schaufelabstand des festen Gitters an der Decke (202) den Wert Ls und am Boden (201, 201') den Wert LB hat, während der Austrittswinkel des Fluidstroms aus dem festen Gitter (204) bezüglich der Ebene dieses Gitters (204) an der Decke (202) den Wert als und am Boden (201, 201') den Wert a1B hat, und wobei einerseits der Achsabstand der Decke (202, 212) vom Eingang des festen Gitters (204) zum Ausgang dieses festen Gitters (204) abnimmt, wo der Wert rs vorliegt, und dann vom Eingang des beweglichen Gitters (205), wo der Wert rs vorliegt, bis zum Ausgang des beweglichen Gitters (205) zunimmt, und andererseits der Achsabstand des Bodens (201, 211, 201', 211') kontinuierlich vom Eingang des festen Gitters (204) zum Ausgang dieses festen Gitters (204), wo ein Extremwert rB vorliegt, und dann in entgegengesetzter Richtung kontinuierlich vom Eingang des beweglichen Gitters (205), wo der Wert rB vorliegt, bis zum Ausgang des beweglichen Gitters (205) variiert, dadurch gekennzeichnet, dass Mittel (403,404) vorgesehen sind, um den tangentialen statischen Druckgradienten am Ausgang des festen Gitters (204), der durch die folgende Formel definiert ist
Figure imgb0052
um einen Faktor (∞ > λ > 1) in der Nähe der Decke und um einen Faktor X' (∞ > X' > 1) in der Nähe des Bodens zu verringern, dass die Meridiankrümmung der Decke des festen Gitters in der Zwischengitterebene im wesentlichen folgenden Wert annimmt
Figure imgb0053
und dass die Meridiankrümmung des Bodens des festen Gitters in der Zwischengitterebene im wesentlichen gleich der folgenden Differenz ist
Figure imgb0054
wobei der Extremwert rB ein Minimum, wenn die Differenz negativ ist, und ein Maximum ist, wenn die Differenz positiv ist.
7. Turbinenstufe nach einem der Ansprüche 1,3, 4, 6, dadurch gekennzeichnet, dass der Achsabstand der Decke (2, 12) gemäss einer Kurve variiert, die ein Maximum am Eingang des festen Gitters (4) und am Ausgang des beweglichen Gitters (5) sowie ein Minimum in der Zwischengitterebene aufweist.
8. Turbinenstufe nach einem der Ansprüche 2, 3, 5 und 6, dadurch gekennzeichnet, dass der Achsabstand des Bodens (1, 11) gemäss einer Kurve variiert, die ein Maximum bzw. ein Minimum am Eingang des festen Gitters (4) und am Ausgang des beweglichen Gitters (5) sowie ein Minimum bzw. Maximum in der Zwischengitterebene aufweist.
9. Turbinenstufe nach einem der Ansprüche 1,3, 4, 6, dadurch gekennzeichnet, dass der Achsabstand der Decke (302) für das feste Gitter (304) gemäss einer Kurve variiert, die ein Maximum am Eingang des festen Gitters (304) und ein Minimum in der Zwischengitterebene aufweist, während der Achsabstand der Decke (312) für das bewegliche Gitter (305) linear von dem Minimum in der Zwischengitterebene aus zunimmt.
10. Turbine hohen Wirkungsgrads gemäss einem der Ansprüche 2, 3, 5 und 6, dadurch gekennzeichnet, dass der Achsabstand des Bodens (301, 301') für das feste Gitter (304) gemäss einer Kurve variiert, die ein Maximum bzw. ein Minimum am Eingang des festen Gitters (304) der Turbinenstufe aufweist.
EP82900113A 1981-01-05 1981-12-30 Turbinenstufe Expired EP0068002B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82900113T ATE12291T1 (de) 1981-01-05 1981-12-30 Turbinenstufe.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8100039 1981-01-05
FR8100039 1981-01-05

Publications (2)

Publication Number Publication Date
EP0068002A1 EP0068002A1 (de) 1983-01-05
EP0068002B1 true EP0068002B1 (de) 1985-03-20

Family

ID=9253860

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82900113A Expired EP0068002B1 (de) 1981-01-05 1981-12-30 Turbinenstufe

Country Status (8)

Country Link
US (2) US4778338A (de)
EP (1) EP0068002B1 (de)
JP (1) JPH023003B2 (de)
AT (1) ATE12291T1 (de)
DE (1) DE3169495D1 (de)
IT (1) IT1154402B (de)
WO (1) WO1982002418A1 (de)
ZA (1) ZA8234B (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA8234B (en) * 1981-01-05 1982-11-24 Alsthom Atlantique A turbine stage
US5447413A (en) * 1992-03-31 1995-09-05 Dresser-Rand Company Stator endwall for an elastic-fluid turbine
DE59704501D1 (de) * 1996-03-28 2001-10-11 Mtu Aero Engines Gmbh Schaufelblatt für Strömungsmaschinen
JPH10184304A (ja) * 1996-12-27 1998-07-14 Toshiba Corp 軸流タービンのタービンノズルおよびタービン動翼
EP0943784A1 (de) * 1998-03-19 1999-09-22 Asea Brown Boveri AG Konturierter Kanal einer axialen Strömungsmaschine
DE10233033A1 (de) * 2002-07-20 2004-01-29 Rolls-Royce Deutschland Ltd & Co Kg Strömungs-Arbeits-Maschine mit überhöhtem Rotor-Stator-Kontraktionsverhältnis
ITTO20030894A1 (it) * 2003-11-11 2005-05-12 Ansaldo Energia Spa Perfezionamenti in statori di turbine assiali.
US7217096B2 (en) * 2004-12-13 2007-05-15 General Electric Company Fillet energized turbine stage
US7134842B2 (en) * 2004-12-24 2006-11-14 General Electric Company Scalloped surface turbine stage
US7249933B2 (en) * 2005-01-10 2007-07-31 General Electric Company Funnel fillet turbine stage
US7220100B2 (en) * 2005-04-14 2007-05-22 General Electric Company Crescentic ramp turbine stage
US7465155B2 (en) * 2006-02-27 2008-12-16 Honeywell International Inc. Non-axisymmetric end wall contouring for a turbomachine blade row
CN101460706B (zh) * 2006-03-31 2012-02-08 阿尔斯通技术有限公司 用于流体机械、尤其是用于蒸汽涡轮机的导向叶片
GB0704426D0 (en) * 2007-03-08 2007-04-18 Rolls Royce Plc Aerofoil members for a turbomachine
DE102007020025A1 (de) * 2007-04-27 2008-10-30 Honda Motor Co., Ltd. Form eines Gaskanals in einer Axialströmungs-Gasturbinenmaschine
US8647067B2 (en) * 2008-12-09 2014-02-11 General Electric Company Banked platform turbine blade
US20100303604A1 (en) * 2009-05-27 2010-12-02 Dresser-Rand Company System and method to reduce acoustic signature using profiled stage design
US8312729B2 (en) * 2009-09-21 2012-11-20 Honeywell International Inc. Flow discouraging systems and gas turbine engines
CN102235241A (zh) * 2011-06-28 2011-11-09 北京动力机械研究所 入口带大扩张通道的低压涡轮结构
US8864452B2 (en) * 2011-07-12 2014-10-21 Siemens Energy, Inc. Flow directing member for gas turbine engine
US9267386B2 (en) 2012-06-29 2016-02-23 United Technologies Corporation Fairing assembly
SG11201407843UA (en) 2012-08-17 2015-03-30 United Technologies Corp Contoured flowpath surface
DE102014225689A1 (de) 2014-12-12 2016-07-14 MTU Aero Engines AG Strömungsmaschine mit Ringraumerweiterung und Schaufel
JP6684593B2 (ja) * 2016-01-07 2020-04-22 三菱重工業株式会社 軸流タービン

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR398600A (fr) * 1909-01-18 1909-06-08 Arnold Kienast Perfectionnements aux turbines

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE579989C (de) * 1933-07-04 Karl Roeder Dr Ing Kopfringlose Beschaufelung fuer axialbeaufschlagte Dampf- oder Gasturbinen
CA613424A (en) * 1961-01-31 H. Pavlecka Vladimir Method and apparatus of compressing fluid
US2735612A (en) * 1956-02-21 hausmann
US1632907A (en) * 1924-03-03 1927-06-21 Losel Franz High-pressure steam turbine and method of utilizing high-pressure steam therein
FR677969A (fr) * 1929-07-06 1930-03-17 Monture de sac
DE560687C (de) * 1930-08-28 1932-10-06 Escher Wyss Maschf Ag Schaufelung fuer Dampf- und Gasturbinen
GB564336A (en) * 1942-06-29 1944-09-22 Escher Wyss Maschf Ag Multistage axial flow compressor
US2392673A (en) * 1943-08-27 1946-01-08 Gen Electric Elastic fluid turbine
FR996967A (fr) * 1949-09-06 1951-12-31 Rateau Soc Perfectionnement aux aubages de turbomachines
US2859910A (en) * 1954-03-29 1958-11-11 Edward A Stalker Stators for axial flow compressors
US2991929A (en) * 1955-05-12 1961-07-11 Stalker Corp Supersonic compressors
US2846137A (en) * 1955-06-03 1958-08-05 Gen Electric Construction for axial-flow turbomachinery
US2981066A (en) * 1956-04-12 1961-04-25 Elmer G Johnson Turbo machine
FR1442526A (fr) * 1965-05-07 1966-06-17 Rateau Soc Perfectionnements aux canaux courbes parcourus par un gaz ou une vapeur
US3804335A (en) * 1973-05-21 1974-04-16 J Sohre Vaneless supersonic nozzle
FR2438157A1 (fr) * 1978-10-05 1980-04-30 Alsthom Atlantique Grille d'aubes pour turbine ou compresseur
FR2471501A1 (fr) * 1979-12-17 1981-06-19 Inst Francais Du Petrole Dispositif de pompage de fluides diphasiques
US4371311A (en) * 1980-04-28 1983-02-01 United Technologies Corporation Compression section for an axial flow rotary machine
US4460309A (en) * 1980-04-28 1984-07-17 United Technologies Corporation Compression section for an axial flow rotary machine
ZA8234B (en) * 1981-01-05 1982-11-24 Alsthom Atlantique A turbine stage

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR398600A (fr) * 1909-01-18 1909-06-08 Arnold Kienast Perfectionnements aux turbines

Also Published As

Publication number Publication date
EP0068002A1 (de) 1983-01-05
JPH023003B2 (de) 1990-01-22
ZA8234B (en) 1982-11-24
DE3169495D1 (en) 1985-04-25
US4778338A (en) 1988-10-18
WO1982002418A1 (en) 1982-07-22
JPS57502074A (de) 1982-11-18
IT1154402B (it) 1987-01-21
US4832567A (en) 1989-05-23
ATE12291T1 (de) 1985-04-15
IT8267002A0 (it) 1982-01-04

Similar Documents

Publication Publication Date Title
EP0068002B1 (de) Turbinenstufe
EP2764212B1 (de) Einteilige blisk mit schaufeln mit geeignetem fussprofil
CA2975570C (fr) Ensemble de redressement a performances aerodynamiques optimisees
EP3084134B1 (de) Strömungsmaschinenbauteil oder -bauteilgruppe und zugehörige strömungsmaschine
EP0048649B1 (de) Rotorblattprofil für Hubschrauber
CA2798680C (fr) Generateurs de tourbillons en amont d'une grille d'aubes de compresseur
EP2855847B1 (de) Lüfterschaufel für ein strahltriebwerk eines flugzeugs mit gewölbtem profil in den fussabschnitten
EP0064679B1 (de) Leitschaufeln für divergente Kanäle in Dampfturbinen
EP3477057B1 (de) Modulation der sägezähne am ende einer laufradschaufel
WO2019043330A1 (fr) Aube de redresseur de soufflante de turbomachine, ensemble de turbomachine comprenant une telle aube et turbomachine equipee de ladite aube ou dudit ensemble
EP0475329A2 (de) Schaufelgitter für Turbomaschinen mit Saugschlitzen
EP3617527A1 (de) Leitschaufel mit vorsprung für kompressor eines turbotriebwerks
FR2619352A1 (fr) Chapeau de moyeu d'helice propulsive avec ailettes
JPS5944482B2 (ja) 軸流タ−ビン
SU779591A1 (ru) Рабочее колесо турбомашины
JPS5614802A (en) Profile of accelerating blade
FR3065497B1 (fr) Canal d'ejection d'air vers le sommet et vers l'aval d'une pale d'aube de turbomachine
EP0089600B2 (de) Leitschaufelanordnung für Dampfturbinen mit divergierenden Kanal
JPH10131707A (ja) 軸流型タービン翼群
FR2550585A1 (fr) Moyens d'uniformiser la vitesse d'un fluide a la sortie d'un rouet centrifuge
EP1537330A1 (de) Francis-rad und solch ein rad umfassende hydraulische maschine
RU2006663C1 (ru) Ветродвигатель
BE1027709B1 (fr) Etage de compresseur de turbomachine
US1929099A (en) Hydraulic turbine
US1929098A (en) Hydraulic turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB LI LU NL SE

17P Request for examination filed

Effective date: 19821228

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB LI LU NL SE

REF Corresponds to:

Ref document number: 12291

Country of ref document: AT

Date of ref document: 19850415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3169495

Country of ref document: DE

Date of ref document: 19850425

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19921030

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19921231

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930922

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19931015

Year of fee payment: 13

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19931230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19941230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941231

EAL Se: european patent in force in sweden

Ref document number: 82900113.0

EUG Se: european patent has lapsed

Ref document number: 82900113.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960814

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960903

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960912

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19961011

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19961029

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

BERE Be: lapsed

Owner name: ALSTHOM-ATLANTIQUE

Effective date: 19971231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19971230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST