EP0065996A1 - Ceramic lining for metal moulds and method of making the same - Google Patents

Ceramic lining for metal moulds and method of making the same Download PDF

Info

Publication number
EP0065996A1
EP0065996A1 EP81104107A EP81104107A EP0065996A1 EP 0065996 A1 EP0065996 A1 EP 0065996A1 EP 81104107 A EP81104107 A EP 81104107A EP 81104107 A EP81104107 A EP 81104107A EP 0065996 A1 EP0065996 A1 EP 0065996A1
Authority
EP
European Patent Office
Prior art keywords
ceramic
metal
linings
casting molds
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81104107A
Other languages
German (de)
French (fr)
Other versions
EP0065996B1 (en
Inventor
Stefan Dr. Rer. Nat. Dipl.-Chem. Schindler
Reinhard Keramik-Ing. Grad. Wedemeyer
Heinrich Keramik-Ing. Grad. Schelter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ceramtec GmbH
Original Assignee
Ceramtec GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ceramtec GmbH filed Critical Ceramtec GmbH
Priority to EP81104107A priority Critical patent/EP0065996B1/en
Priority to AT81104107T priority patent/ATE9069T1/en
Priority to DE8181104107T priority patent/DE3165664D1/en
Publication of EP0065996A1 publication Critical patent/EP0065996A1/en
Application granted granted Critical
Publication of EP0065996B1 publication Critical patent/EP0065996B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings

Definitions

  • the invention relates to linings for metal casting molds for producing flat metal bodies, in particular for accumulators and methods for producing such linings.
  • the measures according to the invention are also intended to optimize the structures of such flat metal bodies, i. H. the parts should be made thinner and more uniform, since the production of batteries always takes place from the point of view of reducing costs and improving the power-to-weight ratio. This also applies in particular to the production of the usual grids for starter batteries.
  • the object of the invention is therefore to provide a lining for metal casting molds which can be replaced quickly and easily and can also be produced simply and inexpensively by a mass production process.
  • the ceramic lining of the casting mold is intended to improve the quality of the casting and make it more reproducible, to increase the casting capacity by eliminating the need for sizing / powdering and the associated time-consuming post-processing, and to improve the overall economy of metal body production.
  • Another object of the invention is to provide an expedient manufacturing method for linings of metal casting molds.
  • the divided negative mold consists of a fired ceramic, which are inserted into the respective parts of a metal mold.
  • the partial task aimed at creating a process is achieved by casting a ceramic foil, punching or cutting the foils to a raw size, embossing the foils in a die at 20 to 120 ° C. and a pressure of 5 to 100 bar, then the organic components such as binders, plasticizers and plasticizers in the film are burned out at 300 to 500 ° C and then the embossed films are sintered at 1300 ° C to 1500 ° C.
  • the ceramic negative mold preferably has projections which correspond to the later openings of the cast metal grid.
  • the particularly advantageous embodiment of the object according to the invention consists in that the rear walls of the divided ceramic negative mold have a rib-shaped structure. The ribbing of the back wall of the ceramic lining leads to an increase in surface area and thus to a good heat dissipation after the casting process; the design of the rear wall with channels, on the other hand, creates the possibility of direct cooling of the cast metal body by means of gas or liquid. In both cases, rapid solidification and thus removal of the casting from the casting mold is achieved.
  • the metal casting molds can be produced more cost-effectively, since the copy milling of the negative lattice structure or the post-processing of the metal casting mold is no longer necessary.
  • the ceramic linings themselves can be replaced easily and quickly, and the shape of the ceramic also increases the capacity of the casting system. This aspect is particularly important in view of the current efforts to optimize these lattice structures, ie to make them thinner and more uniform.
  • the ceramic lining is produced by known methods.
  • the ceramic foils are manufactured according to the doctor blade process, the foil thickness being between 0.4 and 1.2 mm.
  • Laminating is understood to mean the connection of individual foils under pressure and, if appropriate, temperature by means of a laminating agent which has essentially the same composition as the foil material itself.
  • the individual foils or foil packages are embossed using a heatable die with a pressure of 5 to 100 bar and temperatures of 20 to 120 ° C.
  • the organic components are then baked out at approx. 300 to 500 ° C.
  • the embossed laminate is pre-sintered at approx. 1000 to 1100 ° C.
  • a finishing or application of a thermal protective layer to the metal casting mold is no longer necessary, as in the prior art often led to errors in the production of metal grids.
  • cleaning is no longer necessary if the protective layer is damaged or has worn out over time.
  • the ceramic linings produced according to the invention also result in a reduction in rejects and thus a significant improvement in the economics of the process, since the ceramics used are not wetted by lead and its alloys, as well as other metals and alloys that are suitable for the production of lattices. Any lattice structure can also be produced in the simplest way by embossing.
  • the ceramic negative mold 1 shown in FIG. 1 is produced either by embossing a film or by dry pressing a ceramic granulate. For special applications, e.g. B. for the production of grids for batteries, it has a rectangular shape. The thickness of the ceramic. lining is over 0.5 mm. A change in the angled shape to either a circular or elliptical shape is easily possible by simply modifying the embossing device.
  • the negative mold 1 contains three edge sides 2 and an upper part 3 from which the pouring takes place here. On the later casting side there are numerous depressions 12 which later result in the lattice structure of the cast object 11 and projections 4 which result in the openings of the later lattice.
  • the projections 4 optionally have stomata 5 so that the air can escape during the casting process.
  • the depressions 12 have a semicircular or angular cross section, the depth of these depressions 12 being half the thickness of the lattice to be produced, e.g. B. 0.6 mm for the frame or 0.4 mm for the grid network.
  • FIG. 2 Two variations of the embodiment result from the section along the line A-B of FIG. 1.
  • FIG. 2 not only the depressions 12 and elevations 4 on the casting side can be seen, but also the rib-shaped structure 8 of the rear wall.
  • the rib-shaped structure with a width z. B. from 0.7 mm to 2 mm, a rib height z. B. up to 1.5 mm and a rib spacing of z. B. 1.5 to 5 mm serves to enlarge the surface and thus for better heat dissipation and also as a positioning aid when fitting the ceramic lining into the metal mold 6, 7th
  • the rear wall has cooling channels 9 for the immediate cooling of the cast metal body after casting.
  • the dimensions of the channels are z. B. 0.4 x 0.4 mm to 2 x 2 mm, the web width between the individual channels, for example. 0.4 to 1 mm.
  • the mold for the production of a metallic grid is shown in Fig. 4.
  • the casting mold consists of a divided metallic outer mold 6, 7, in which the divided ceramic negative molds 1 are inserted.
  • the liquid metal runs over the pouring funnel 10 into the optionally preheated, ceramic-lined negative mold 1.
  • the ceramic negative molded parts 1 can also have several pins,. Have holes or embossed depressions, so that an exact positioning of the ceramic lining in the mold is possible.
  • the metal mold is opened and the metal body is removed.
  • the ceramic lining according to the invention is produced by known processes. It includes the following process steps: mass preparation, film manufacture according to the doctor blade process, punching / cutting the films to the required dimensions, laminating the individual films together to the required thickness of the ceramic lining, stamping the film, heating the organic Ingredients and sintering. If further processing is required in addition to the embossing process, pre-sintering is carried out after baking, processed and only then sintered.
  • the solids content of the casting compound for the aluminum titanate film and also for the silicon nitride film is between 60 to 95% by weight, the proportion of organic components such as plasticizers, plasticizers and binders correspondingly 40 to 50% by weight.
  • solvent-based films or water films are produced.
  • solvent-containing films which are produced, for example, with trichlorethylene-ethanol as solvent and polyvinyl butyral as binder, it is necessary to protect the films before Emboss to soften with a solution of unsaturated carboxylic acids or with oily liquids.
  • the stamping itself is carried out with a die at temperatures between 20 and 120 C and pressures between 5 and 100 bar.
  • this process step takes place at 20 C and 30 bar.
  • the ratio of embossing depth to film thickness essentially depends on the composition of the film, but can be, for example, 3: 1.
  • the corresponding positioning aids are also generated during the embossing process.
  • the organic components are burned out at temperatures between 300 ° C. to 500 ° C., the temperature-time program to be selected being determined by the type and amount of the organic components used.
  • the sintering process takes place at temperatures between 1300 ° C. and 1500 ° C., for aluminum titanate for example between 1300 and 1400 ° C., for silicon nitride between 1300 ° C. and 1500 ° C.
  • This ceramic lining described essentially has a flat back. If the surface of the back is to be enlarged in order to improve the heat flow after the casting process, ribs can be created on the back while embossing the negative mold by replacing the smooth upper stamp of the die with a stamp with the corresponding rib structure.
  • the creation of channel-shaped structures on the back of the ceramic lining for indirect cooling of the cast metal body is carried out in an analogous manner, but here a second embossed film with a rib structure and a smooth back must be produced, which is then subsequently embossed with the negative form and the rib structure on the back, is laminated together. After this process, the organic components are then heated and the ceramic components are sintered as described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Insulating Bodies (AREA)
  • Ceramic Products (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Laminated Bodies (AREA)

Abstract

1. Linings (1) for metal casting moulds (6, 7) of ceramic material for the production of flat metal bodies, which are set as negative shapes in the respective parts of a metal casting mould (6, 7), characterised in that the negative shape of the lining (1) has a rib-like structure (8) on the rear wall and has cooling channels (9).

Description

Die Erfindung bezieht sich auf Auskleidungen für Metall-Gießformen zur Erzeugung von flachen Metallkörpern, insbesondere für Akkumulatoren und Verfahren zur Herstellung solcher Auskleidungen. Mit den erfindungsgemäßen Maßnahmen sollen ferner die Strukturen solcher flachen Metallkörper optimiert werden, d. h. die Teile sollen dünner und gleichmäßiger hergestellt werden, da die Fertigung von Akkumulatoren stets unter dem Gesichtspunkt der Kostensenkung und der Verbesserung des Leistungsgewichts erfolgt. Dies gilt auch insbesondere zur Herstellung der üblichen Gitter für Starter-Batterien.The invention relates to linings for metal casting molds for producing flat metal bodies, in particular for accumulators and methods for producing such linings. The measures according to the invention are also intended to optimize the structures of such flat metal bodies, i. H. the parts should be made thinner and more uniform, since the production of batteries always takes place from the point of view of reducing costs and improving the power-to-weight ratio. This also applies in particular to the production of the usual grids for starter batteries.

Gießvorrichtungen zur Herstellung von Akkumulatorengittern sind aus der DE-GM 78 25 546 bekannt. Ferner geht aus der Literaturstelle "Ullmanns Encyklopädie der technischen Chemie" 7. Bd., 3. Auflage, Verlag Urban - Schwarzenburg/München/Berlin - 1956, auf Seite 778 hervor, daß man insbesondere die Bleigitter in heizbaren, aufklappbaren Gießformen herstellt. Um die Gießtemperatur zwischen 150 bis 250 °C möglichst gleichmäßig zu halten, kann auch noch eine Wasserkühlung der Gießform vorgesehen werden, wie aus der DE-AS 22 60 355 hervorgeht.Casting devices for the production of battery grids are known from DE-GM 78 25 546. Furthermore, from the literature reference "Ullmann's Encyclopedia of Technical Chemistry", 7th volume, 3rd edition, publisher Urban - Schwarzenburg / Munich / Berlin - 1956, on page 778, it can be seen that lead grids in particular are produced in heatable, hinged molds. In order to keep the casting temperature between 150 to 250 ° C. as uniform as possible, water cooling of the casting mold can also be provided, as is apparent from DE-AS 22 60 355.

Die üblichen Gießformen zur Herstellung der Akkumulatorengitter bedürfen einer Vorbehandlung, wie in der Literaturstelle C. Drotschmann "Blei-Akkumulatoren", Verlag Chemie GmbH Weinheim/ Bergstraße, 1951, Seite 113 ff beschrieben wird. Das Beschichten der sorgfältig gereinigten Gießform mit einer Schlichte z. B. einer Korkmehl-Wasserglas-Aufschlämmung oder handelsüblichen Zirkonschlichten, erfolgt mittels Spritzpistole. Wichtig für die Haltbarkeit des Überzuges wie auch die Herstellung von Gittern mit gleichbleibender Qualität ist eine gleichmäßig dünne Auflage. Zeigen die Abgüsse an der gleichen Stelle Fehler, so kann der Überzug mittels eines keilförmigen Holzstäbchens an den entsprechenden Stellen geglättet werden. Weist das gegossene Gitter aber unsaubere Oberflächen auf, muß der gesamte Überzug mechanisch und/oder chemisch entfernt werden. Die gereinigten Formen müssen dann sorgfältig mit Wasser ausgekocht und nachgespült werden. Das Berühren der gesäuberten Form mit den Fingern muß unbedingt vermieden werden, da geringste Spuren von Fett das Haftungsvermögen des Überzuges beeinträchtigen. Dieses Verfahren ist insgesamt sehr zeitaufwendig und kapazitätsmindernd. Eine weitere Möglichkeit zum Auftragen einer thermischen Schutzschicht ergibt sich auch darin, indem man die Gießform mit einer Mischung aus Talkum und Formpuder gemäß Seite 118 der genannten Literaturstelle "Blei-Akkumulatoren" einpudert. Bei gepuderten Gießformen muß vor jeder Schicht die Form vom verbranntem Talkum/Formpuder-Gemisch gesäubert werden. Die Reinigung der gepuderten wie auch der geschlichteten Gießform bedingt einen Verschleiß, der früher oder später eine aufwendige Nachbearbeitung erforderlich macht. Außerdem erfolgt das Schlichten bzw. Einpudern der Form wie auch das Glätten der thermischen Schutzschicht per Hand, so daß die Qualität des Überzuges und damit auch des metallischen Abgusses stark von der Person abhängt, die diese Arbeiten ausführt. Das Aufbringen eines Überzugs bzw. einer Schlichte geht auch aus der DE-AS 22 60 335, Absatz 3, Zeile 5 - 13 hervor.The usual casting molds for producing the battery grids require pretreatment, as is described in the literature reference C. Drotschmann "lead batteries", Verlag Chemie GmbH Weinheim / Bergstrasse, 1951, page 113 ff. Coating the carefully cleaned mold with a size such. B. a cork flour-water glass slurry or commercially available zircon coatings, is carried out using a spray gun. A uniformly thin layer is important for the durability of the coating and the production of grids with constant quality. If the castings show defects at the same point, the coating can be smoothed at the corresponding points using a wedge-shaped wooden stick. However, if the cast grid has unclean surfaces, the entire coating must be removed mechanically and / or chemically. The cleaned molds must then be carefully boiled out with water and rinsed. It is essential to avoid touching the cleaned form with your fingers, since the slightest trace of grease will impair the adhesion of the coating. Overall, this process is very time-consuming and reduces capacity. Another possibility for applying a thermal protective layer also results from powdering the casting mold with a mixture of talc and molding powder according to page 118 of the mentioned reference "lead accumulators". In the case of powdered casting molds, the mold must be cleaned of the burnt talc / molding powder mixture before each layer. The cleaning of the powdered as well as the smoothed casting mold requires wear, which sooner or later necessitates extensive post-processing. In addition, the finishing or powdering of the shape and the smoothing of the thermal protective layer are carried out by hand, so that the quality of the coating and thus also of the metallic cast strongly depends on the person who carries out this work. The application of a coating or a size is also apparent from DE-AS 22 60 335, paragraph 3, lines 5-13.

Auch läßt sich beim Gießen solcher Metallgitter feststellen, daß die geschmolzene Bleilegierung nicht immer jeden Teil der Gießform erreicht, selbst wenn die Temperatur der Gießform relativ hoch ist. Dies führt zu vermehrtem Ausschuß beim Gießvorgang. Ein weiterer Nachteil des bekannten Gießverfahrens mit geschlichteten oder gepuderten Gießformen ist darin zu sehen, daß die Maßgenauigkeit der gegossenen Gitterplatten unzureichend ist, was zu Schwierigkeiten bei der automatisierten Herstellung von Bleiakkumulatoren führt. Außerdem beinhaltet die Herstellung der derzeit verwendeten Gießformen bzw. deren Nachbearbeitung ein arbeitsintensives und aufwendiges Kopierfräsen der metallischen Gießformen.It can also be found when casting such metal grids that the molten lead alloy does not always reach every part of the mold, even if the temperature of the mold is relatively high. This leads to increased rejects in the casting process. Another disadvantage of the known casting method with sized or powdered casting molds is the fact that the dimensional accuracy of the cast grid plates is insufficient, which leads to difficulties in the automated production of lead accumulators. In addition, the manufacture of the casting molds currently used and / or their post-processing involves labor-intensive and expensive copy milling of the metallic casting molds.

Aufgabe der Erfindung ist damit die Schaffung einer Auskleidung für Metallgießformen, die leicht und schnell auswechselbar ist wie auch einfach und kostengünstig nach einem Massenfertigungsverfahren herstellbar ist. Insbesondere soll durch die keramische Auskleidung der Gießform die Qualität des Abgusses verbessert und besser reproduzierbar gemacht werden, die Gießkapazität durch Wegfallen des Schlichtens/Einpuderns und der damit verbundenen aufwendigen Nachbearbeitung erhöht werden, und insgesamt die Wirtschaftlichkeit der Metallkörper-Herstellung verbessert werden. Eine weitere Aufgabe der Erfindung ist die Angabe eines zweckmäßigen Herstellungsverfahrens für Auskleidungen von MetallGießformen.The object of the invention is therefore to provide a lining for metal casting molds which can be replaced quickly and easily and can also be produced simply and inexpensively by a mass production process. In particular, the ceramic lining of the casting mold is intended to improve the quality of the casting and make it more reproducible, to increase the casting capacity by eliminating the need for sizing / powdering and the associated time-consuming post-processing, and to improve the overall economy of metal body production. Another object of the invention is to provide an expedient manufacturing method for linings of metal casting molds.

Diese Aufgabe, insbesondere zum Gießen von einstückigen flachen Metallkörpern, wird dadurch gelöst, daß die geteilte Negativform aus einer gebrannten Keramik besteht, die in die jeweiligen Teile einer Metallgießform eingesetzt sind.This object, in particular for casting one-piece flat metal bodies, is achieved in that the divided negative mold consists of a fired ceramic, which are inserted into the respective parts of a metal mold.

Die auf die Schaffung eines Verfahrens gerichtete Teilaufgabe wird dadurch gelöst, daß eine keramische Folie gegossen wird, die Folien auf Rohmaß gestanzt oder geschnitten werden, die Folien in einer Matrize bei 20 bis 120 °C und einem Druck von 5 bis 100 bar geprägt werden, danach die organischen Bestandteile wie Binder, Plastifizierungsmittel und Weichmacher in der Folie bei 300 bis 500 °C ausgebrannt werden und anschließend die geprägten Folien bei 1300 °C bis 1500 C gesintert werden.The partial task aimed at creating a process is achieved by casting a ceramic foil, punching or cutting the foils to a raw size, embossing the foils in a die at 20 to 120 ° C. and a pressure of 5 to 100 bar, then the organic components such as binders, plasticizers and plasticizers in the film are burned out at 300 to 500 ° C and then the embossed films are sintered at 1300 ° C to 1500 ° C.

Eine andere Möglichkeit zur Herstellung solcher keramischen Auskleidungen, die insbesondere dickwandig sein sollen, besteht darin, daß das Prägen der Negativform durch Trockenpressen unter Verwendung eines Granulats erfolgt.Another possibility for producing such ceramic linings, which should in particular be thick-walled, is that the negative shape is embossed by dry pressing using a granulate.

Vorzugsweise weist die keramische Negativform Vorsprünge auf, die den späteren Öffnungen des gegossenen Metallgitters entsprechen. Die insbesondere vorteilhafte Ausgestaltung des erfindungsgemäßen Gegenstandes besteht darin, daß die Rückwände der geteilten keramischen Negativform eine rippenförmige Struktur besitzen. Die Berippung der Rückwand der keramischen Auskleidung führt zu einer Oberflächenvergrößerung und damit zu einem guten Wärmeabfluß nach dem Gießvorgang; die Ausgestaltung der Rückwand mit Kanälen schafft dagegen die Möglichkeit einer unmittelbaren Kühlung des gegossenen Metallkörpers mittels Gas oder Flüssigkeit. In beiden Fällen wird ein schnelles Erstarren und damit Entfernen des Gießlings aus der Gießform erreicht.The ceramic negative mold preferably has projections which correspond to the later openings of the cast metal grid. The particularly advantageous embodiment of the object according to the invention consists in that the rear walls of the divided ceramic negative mold have a rib-shaped structure. The ribbing of the back wall of the ceramic lining leads to an increase in surface area and thus to a good heat dissipation after the casting process; the design of the rear wall with channels, on the other hand, creates the possibility of direct cooling of the cast metal body by means of gas or liquid. In both cases, rapid solidification and thus removal of the casting from the casting mold is achieved.

Ferner sei in diesem Zusammenhang bemerkt, daß neben der guten Temperaturwechselbeständigkeit der hier ausgewählten keramischen Werkstoffe wie Aluminiumtitanat und Siliziumnitrid durch die Nichtbenetzbarkeit dieser Werkstoffe durch Blei, Bleilegierungen und andere für die Metallkörperherstellung in Betracht kommende Metalle und Metallegierungen ein Ankleben der gegossenen Metallkörper an der Gießform vermieden wird. Insgesamt ist festzustellen, daß bei Verwendung von keramischen Auskleidungen die Metallgießformen kostengünstiger herstellbar sind, da das Kopierfräsen der negativen Gitterstruktur bzw. die Nachbearbeitung der Metall-Gießform nicht mehr notwendig ist. Die Keramikauskleidungen selbst lassen sich leicht und schnell auswechseln als auch die Formtreue der Keramik bringt eine Kapazitätserhöhung der Gießanlage mit sich. Dieser Aspekt ist besonders wichtig im Hinblick auf die derzeitigen Bemühungen, diese Gitterstrukturen zu optimieren, d. h. sie dünner und gleichmäßiger herzustellen.It should also be noted in this connection that in addition to the good thermal shock resistance of the ceramic selected here Materials such as aluminum titanate and silicon nitride due to the non-wettability of these materials by lead, lead alloys and other metals and metal alloys that are suitable for the production of metal bodies prevent the cast metal bodies from sticking to the casting mold. Overall, it should be noted that when using ceramic linings, the metal casting molds can be produced more cost-effectively, since the copy milling of the negative lattice structure or the post-processing of the metal casting mold is no longer necessary. The ceramic linings themselves can be replaced easily and quickly, and the shape of the ceramic also increases the capacity of the casting system. This aspect is particularly important in view of the current efforts to optimize these lattice structures, ie to make them thinner and more uniform.

Die Herstellung der Keramikauskleidung erfolgt nach bekannten Verfahren. Die Keramikfolien werden nach dem Doctor-Blade-Verfahren hergestellt, wobei die Folienstärke zwischen 0,4 bis 1,2 mm beträgt. Je nach den Erfordernissen - Stärke und Struktur der Keramikauskleidung - können einzelne Folienlagen vor oder nach dem Prägen zusammenlaminiert werden. Unter Laminieren wird das Verbinden einzelner Folien unter Druck und gegebenfalls Temperatur mittels eines Laminiermittels verstanden, das im wesentlichen die gleiche Zusammensetzung wie das Folienmaterial selbst hat. Das Prägen der Einzelfolien oder Folienpakete erfolgt mittels einer heizbaren Matrize mit einem Druck von 5 bis 100 bar und Temperaturen von 20 bis 120 °C. Das Ausheizen der organischen Bestandteile erfolgt anschließend bei ca. 300 bis 500 °C. Bei Keramikauskleidungen, die einer Nachbearbeitung bedürfen, erfolgt ein Vorsintern des geprägten Laminats bei ca. 1000 bis 1100 °C. Mit diesem Verfahren wird in höchst vorteilhafter Weise erreicht, daß ein Schlichten bzw. Auftragen einer thermischen Schutzschicht auf die Metallgießform nicht mehr notwendig ist, die beim Stand der Technik häufig zu Fehlern bei der Produktion von Metallgittern führte. Außerdem fällt das Säubern weg, wenn die Schutzschicht beschädigt ist oder sich im Laufe der Zeit verschlissen hat. Durch die erfindungsgemäß hergestellten Keramikauskleidungen ergibt sich auch eine Verringerung des Ausschusses und damit wesentliche Verbesserung der Wirtschaftlichkeit des Verfahrens, indem die verwendeten Keramiken von Blei und dessen Legierungen wie auch anderen für die Gitterherstellung in Frage kommenden Metallen und -legierungen nicht benetzt werden. Auch jede beliebige Gitterstruktur ist auf einfachste Weise durch Prägen herstellbar.The ceramic lining is produced by known methods. The ceramic foils are manufactured according to the doctor blade process, the foil thickness being between 0.4 and 1.2 mm. Depending on the requirements - thickness and structure of the ceramic lining - individual layers of film can be laminated together before or after embossing. Laminating is understood to mean the connection of individual foils under pressure and, if appropriate, temperature by means of a laminating agent which has essentially the same composition as the foil material itself. The individual foils or foil packages are embossed using a heatable die with a pressure of 5 to 100 bar and temperatures of 20 to 120 ° C. The organic components are then baked out at approx. 300 to 500 ° C. For ceramic linings that require reworking, the embossed laminate is pre-sintered at approx. 1000 to 1100 ° C. With this method it is achieved in a highly advantageous manner that a finishing or application of a thermal protective layer to the metal casting mold is no longer necessary, as in the prior art often led to errors in the production of metal grids. In addition, cleaning is no longer necessary if the protective layer is damaged or has worn out over time. The ceramic linings produced according to the invention also result in a reduction in rejects and thus a significant improvement in the economics of the process, since the ceramics used are not wetted by lead and its alloys, as well as other metals and alloys that are suitable for the production of lattices. Any lattice structure can also be produced in the simplest way by embossing.

Ein Ausführungsbeispiel der Erfindung wird anhand der Zeichnungen dargestellt und im folgenden näher beschrieben. Es zeigen:

  • Fig. 1: Keramikauskleidung für die Gießform in Draufsicht.
  • Fig. 2: Schnitt gemäß der Linie A-B gemäß der Ausführungsformen mit gerippter Rückwand.
  • Fig. 3: Schnitt gemäß der Linie A-B, wobei die Rückwand Kühlkanäle aufweist.
  • Fig. 4: Gesamtansicht der Gießform mit eingelegten Keramikauskleidungen.
An embodiment of the invention is illustrated by the drawings and described in more detail below. Show it:
  • Fig. 1: Ceramic lining for the mold in top view.
  • Fig. 2: Section along the line AB according to the embodiments with a ribbed rear wall.
  • Fig. 3: Section along the line AB, the rear wall having cooling channels.
  • Fig. 4: General view of the mold with inserted ceramic linings.

Die in Fig. 1 dargestellte keramische Negativform 1 wird entweder durch Prägen einer Folie oder durch Trockenpressen eines keramischen Granulats hergestellt. Für besondere Anwendungsfälle, z. B. für die Herstellung von Gittern für Akkumulatoren weist sie eine rechtwinkelige Form auf. Die Dicke der Keramik-. auskleidung liegt über 0,5 mm. Eine Änderung der gewinkelten Form entweder in eine Kreis- oder Ellipsen-Form ist ohne weiteres möglich, indem lediglich die Prägevorrichtung modifiziert wird. Die Negativform 1 beinhaltet dabei drei Randseiten 2 sowie ein Oberteil 3 von dem hier der Einguß erfolgt. Auf der späteren Gießseite befinden sich zahlreiche Vertiefungen 12, die später die Gitterstruktur des gegossenen Gegenstandes 11 ergeben sowie Vorsprünge 4, die die Öffnungen des späteren Gitters ergeben. Die Vorsprünge 4 weisen gegebenfalls Spaltöffnungen 5 auf, damit während des Gießvorganges die Luft entweichen kann. Die Vertiefungen 12 haben je nach Struktur des herzustellenden Gitters einen halbrunden oder eckigen Querschnitt, wobei die Tiefe dieser Vertiefungen 12 die Hälfte der Stärke des herzustellenden Gitters beträgt, z. B. 0,6 mm beim Rahmen bzw. 0,4 mm beim Gitternetzwerk.The ceramic negative mold 1 shown in FIG. 1 is produced either by embossing a film or by dry pressing a ceramic granulate. For special applications, e.g. B. for the production of grids for batteries, it has a rectangular shape. The thickness of the ceramic. lining is over 0.5 mm. A change in the angled shape to either a circular or elliptical shape is easily possible by simply modifying the embossing device. The negative mold 1 contains three edge sides 2 and an upper part 3 from which the pouring takes place here. On the later casting side there are numerous depressions 12 which later result in the lattice structure of the cast object 11 and projections 4 which result in the openings of the later lattice. The projections 4 optionally have stomata 5 so that the air can escape during the casting process. Depending on the structure of the lattice to be produced, the depressions 12 have a semicircular or angular cross section, the depth of these depressions 12 being half the thickness of the lattice to be produced, e.g. B. 0.6 mm for the frame or 0.4 mm for the grid network.

Zwei Variationen der Ausführungsform ergeben sich aus dem Schnitt längs der Linie A-B der Fig. 1. In Fig. 2 sind nicht nur die Vertiefungen 12 und Erhöhungen 4 auf der Gießseite zu sehen, sondern auch die rippenförmige Struktur 8 der Rückwand. Die rippenförmige Struktur mit einer Breite z. B. vom 0,7 mm bis 2 mm, einer Rippenhöhe z. B. bis 1,5 mm und einem Rippenabstand von z. B. 1,5 bis 5 mm dient zur Oberflächenvergrößerung und damit zur besseren Wärmeableitung wie auch zusätzlich als Positionierungshilfe beim Einpassen der Keramikauskleidung in die Metallgießform 6, 7.Two variations of the embodiment result from the section along the line A-B of FIG. 1. In FIG. 2, not only the depressions 12 and elevations 4 on the casting side can be seen, but also the rib-shaped structure 8 of the rear wall. The rib-shaped structure with a width z. B. from 0.7 mm to 2 mm, a rib height z. B. up to 1.5 mm and a rib spacing of z. B. 1.5 to 5 mm serves to enlarge the surface and thus for better heat dissipation and also as a positioning aid when fitting the ceramic lining into the metal mold 6, 7th

In Fig. 3 dagegen weist die Rückwand Kühlkanäle 9 zur unmittelbaren Kühlung des gegossenen Metallkörpers nach dem Gießen auf. Die Abmessungen der Kanäle betragen z. B. 0,4 x 0,4 mm bis 2 x 2 mm, die Stegbreite zwischen den einzelnen Kanälen z..B. 0,4 bis 1 mm.3, on the other hand, the rear wall has cooling channels 9 for the immediate cooling of the cast metal body after casting. The dimensions of the channels are z. B. 0.4 x 0.4 mm to 2 x 2 mm, the web width between the individual channels, for example. 0.4 to 1 mm.

Die Gießform für die Herstellung eines metallischen Gitters ist in Fig. 4 dargestellt. Die Gießform besteht aus einer geteilten metallischen äußeren Form 6, 7, in der die geteilten keramischen Negativformen 1 eingesetzt sind. Das flüssige Metall läuft über den Eingußtrichter 10 in die gegebenfalls vorgewärmte, mit Keramik ausgekleidete Negativform 1. Die keramischen Negativformteile 1 können auch mehrere Stifte, . Löcher oder eingeprägte Vertiefungen aufweisen, so daß eine genaue Positionierung der Keramikauskleidung in der Gießform möglich ist. Nach den Erstarren wird die Metall- gießform geöffnet und der Metallkörper entnommen.The mold for the production of a metallic grid is shown in Fig. 4. The casting mold consists of a divided metallic outer mold 6, 7, in which the divided ceramic negative molds 1 are inserted. The liquid metal runs over the pouring funnel 10 into the optionally preheated, ceramic-lined negative mold 1. The ceramic negative molded parts 1 can also have several pins,. Have holes or embossed depressions, so that an exact positioning of the ceramic lining in the mold is possible. After solidification, the metal mold is opened and the metal body is removed.

Die Herstellung der erfindungsgemäßen Keramikauskleidung erfolgt im Prinzip nach bekannten Verfahren. Sie umfaßt folgende Verfahrensschritte: die Masseaufbereitung, die Folienherstellung nach dem Doctor-Blade-Verfahren, das Stanzen/Schneiden der Folien auf die erforderlichen Abmessungen, das Zusammenlaminieren der einzelnen Folien bis zur erforderlichen Stärke der Keramikauskleidung, das Prägen der Folie, das Ausheizen der organischen Bestandteile und das Sintern. Ist außer dem Prägevorgang noch eine weitere Bearbeitung erforderlich, wird nach dem Ausheizen vorgesintert, bearbeitet und dann erst gesintert.In principle, the ceramic lining according to the invention is produced by known processes. It includes the following process steps: mass preparation, film manufacture according to the doctor blade process, punching / cutting the films to the required dimensions, laminating the individual films together to the required thickness of the ceramic lining, stamping the film, heating the organic Ingredients and sintering. If further processing is required in addition to the embossing process, pre-sintering is carried out after baking, processed and only then sintered.

Der Feststoffgehalt der Gießmasse für die Aluminiumtitanat- wie auch bei der Siliciumnitrid-Folie beträgt zwischen 60 bis 95 Gew.-%, der Anteil der organischen Bestandteile wie Weichmacher, Plastifizierungs- und Bindemittel entsprechend 40 bis 50 Gew.-%. Bei der Auswahl der Ausgangsrohstoffe ist darauf zu achten, ob lösungsmittelhaltige Folien oder Wasserfolien hergestellt werden. Bei lösungsmittelhaltigen Folien, die zum Beispiel mit Trichloräthylen-Äthanol als Lösungsmittel und Polyvinylbutyral als Bindemittel hergestellt sind, ist es notwendig, die Folien vor dem Prägen mit einer Lösung ungesättigter Carbonsäuren oder mit ölhaltigen Flüssigkeiten zu weichen. Das Prägen selbst erfolgt mit einer Matrize bei Temperaturen zwischen 20 und 120 C und Drücken zwischen 5 und 100 bar. Beim oben erwähnten Beispiel erfolgt dieser Verfahrensschritt bei 20 C und 30 bar. Das Verhältnis von Prägetiefe zu Folienstärke hängt im wesentlichen von der Zusammensetzung der Folie ab, kann aber beispielsweise 3 : 1 betragen. Beim Prägevorgang werden auch die entsprechenden Positionierungshilfen mit erzeugt.The solids content of the casting compound for the aluminum titanate film and also for the silicon nitride film is between 60 to 95% by weight, the proportion of organic components such as plasticizers, plasticizers and binders correspondingly 40 to 50% by weight. When selecting the raw materials, it is important to note whether solvent-based films or water films are produced. In the case of solvent-containing films, which are produced, for example, with trichlorethylene-ethanol as solvent and polyvinyl butyral as binder, it is necessary to protect the films before Emboss to soften with a solution of unsaturated carboxylic acids or with oily liquids. The stamping itself is carried out with a die at temperatures between 20 and 120 C and pressures between 5 and 100 bar. In the example mentioned above, this process step takes place at 20 C and 30 bar. The ratio of embossing depth to film thickness essentially depends on the composition of the film, but can be, for example, 3: 1. The corresponding positioning aids are also generated during the embossing process.

Das Ausbrennen der organischen Bestandteile erfolgt bei Temperaturen zwischen 300 °C bis 500 °C, wobei das zu wählende Temperatur-Zeit-Programm von der Art und Menge der verwendeten organischen Bestandteile bestimmt wird. Der Sinterprozeß erfolgt bei Temperaturen zwischen 1300 °C und 1500 C, bei Aluminiumtitanat beispielsweise zwischen 1300 und 1400 °C, bei Siliciumnitrid zwischen 1300 °C und 1500 °C.The organic components are burned out at temperatures between 300 ° C. to 500 ° C., the temperature-time program to be selected being determined by the type and amount of the organic components used. The sintering process takes place at temperatures between 1300 ° C. and 1500 ° C., for aluminum titanate for example between 1300 and 1400 ° C., for silicon nitride between 1300 ° C. and 1500 ° C.

Diese beschriebene Keramikauskleidung weist im wesentlichen eine flache Rückseite auf. Soll die Oberfläche der Rückseite vergrößert werden, um den Wärmeabfluß nach dem Gießvorgang zu verbessern, können beim Prägen der Negativform gleichzeitig Rippen auf der Rückseite erzeugt werden, indem der glatte Oberstempel der Matrize durch einen Stempel mit der entsprechenden Rippenstruktur ersetzt wird. Die Erzeugung von kanalförmigen Strukturen auf der Rückseite der Keramikauskleidung zur indirekten Kühlung des gegossenen Metallkörpers erfolgt in analoger Weise, jedoch muß hier eine zweite geprägte Folie mit Rippenstruktur und glatter Rückseite hergestellt werden, die dann anschließend mit der geprägten Folie, die die Negativform und die Rippenstruktur auf der Rückseite aufweist, zusammenlaminiert wird. Nach diesem Vorgang werden dann die organischen Bestandteile ausgeheizt und die Keramikkomponenten wie beschrieben gesintert.This ceramic lining described essentially has a flat back. If the surface of the back is to be enlarged in order to improve the heat flow after the casting process, ribs can be created on the back while embossing the negative mold by replacing the smooth upper stamp of the die with a stamp with the corresponding rib structure. The creation of channel-shaped structures on the back of the ceramic lining for indirect cooling of the cast metal body is carried out in an analogous manner, but here a second embossed film with a rib structure and a smooth back must be produced, which is then subsequently embossed with the negative form and the rib structure on the back, is laminated together. After this process, the organic components are then heated and the ceramic components are sintered as described.

Claims (10)

1. Auskleidungen für Metallgießformen, insbesondere zum Gießen von einstückigen flachen Metallkörpern, dadurch gekennzeichnet, daß die geteilte Negativform (1) aus einer gebrannten Keramik besteht, die in die jeweiligen Teile (6, 7) einer Metallgießform eingesetzt sind.1. Linings for metal molds, in particular for casting one-piece flat metal bodies, characterized in that the divided negative mold (1) consists of a fired ceramic, which are inserted into the respective parts (6, 7) of a metal mold. 2. Keramische Auskleidungen für Metallgießformen nach Anspruch 1, dadurch gekennzeichnet, daß die Negativform (1) Vorsprünge (4) aufweist, die den späteren Öffnungen des gegossenen Metallgitters entsprechen.2. Ceramic linings for metal casting molds according to claim 1, characterized in that the negative mold (1) has projections (4) which correspond to the later openings of the cast metal grid. 3. Keramische Auskleidungen für Metallgießformen, dadurch gekennzeichnet, daß die Rückwände der geteilten Negativform (1) eine rippenförmige Struktur (8) besitzen.3. Ceramic linings for metal casting molds, characterized in that the rear walls of the divided negative mold (1) have a rib-shaped structure (8). 4. Keramische Auskleidungen für Metallgießformen, dadurch gekennzeichnet, daß die Rückwand der Negativform (1) Kühl- kanäle (9) aufweist.4. Ceramic linings for metal casting molds, characterized in that the rear wall of the negative mold (1) has cooling channels (9). 5. Keramische Auskleidungen für Metallgießformen nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß als keramischer Werkstoff Aluminiumtitanat verwendet ist.5. Ceramic linings for metal casting molds according to claims 1 to 4, characterized in that aluminum titanate is used as the ceramic material. 6. Keramische Auskleidungen für Metallgießformen nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß als keramischer Werkstoff Siliziumnitrid verwendet ist.6. Ceramic linings for metal casting molds according to claims 1 to 4, characterized in that silicon nitride is used as the ceramic material. 7. Verfahren zur Herstellung von keramischen Auskleidungen für Metallgießformen, dadurch gekennzeichnet, daß a) eine keramische Folie gegossen wird, b) die Folien auf Rohmaß gestanzt oder geschnitten werden, c) die Folien in einer Matrize bei 20 bis 120 C und einem Druck von 5 bis 100 bar geprägt werden, d) danach die organischen Bestandteile wie Binder, Plastifizierungsmittel und Weichmacher der Folie bei 300 bis 500 °C ausgebrannt werden, e) und anschließend die geprägten Folien bei 1300 bis 1500 C gesintert werden. 7. A process for the production of ceramic linings for metal molds, characterized in that a) a ceramic film is cast, b) the foils are punched to size or cut, c) the foils are embossed in a die at 20 to 120 C and a pressure of 5 to 100 bar, d) then the organic constituents such as binder, plasticizer and plasticizer of the film are burned out at 300 to 500 ° C, e) and then the embossed foils are sintered at 1300 to 1500 C. 8. Verfahren zur Herstellung von keramischen Auskleidungen für Metallgießformen nach Anspruch 7, dadurch gekennzeichnet, daß die auf Lösungsmittelbasis hergestellte keramische Folie vor dem Prägen in einer öl- oder einer ungesättigte Carbonsäuren enthaltenden Lösung geweicht wird.8. A method for producing ceramic linings for metal casting molds according to claim 7, characterized in that the solvent-based ceramic film is soaked before embossing in a solution containing oil or an unsaturated carboxylic acid. 9. Verfahren zur Herstellung von dickwandigen keramischen Auskleidungen für Metallgießformen, dadurch gekennzeichnet, daß das Prägen der Negativform durch Trockenpressen unter Verwendung eines Granulats erfolgt.9. A process for the production of thick-walled ceramic linings for metal casting molds, characterized in that the embossing of the negative mold is carried out by dry pressing using a granulate. 10. Verwendung von gesinterten Keramikauskleidungen nach den Ansprüchen 1 bis 6, insbesondere hergestellt nach dem Anspruch 7, zum Gießen von Metallgittern aus Blei bzw. Bleilegierungen oder anderen Metallverbindungen für Akkumulatoren.10. Use of sintered ceramic linings according to claims 1 to 6, in particular produced according to claim 7, for casting metal grids from lead or lead alloys or other metal compounds for accumulators.
EP81104107A 1981-05-29 1981-05-29 Ceramic lining for metal moulds and method of making the same Expired EP0065996B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP81104107A EP0065996B1 (en) 1981-05-29 1981-05-29 Ceramic lining for metal moulds and method of making the same
AT81104107T ATE9069T1 (en) 1981-05-29 1981-05-29 CERAMIC LINING FOR METAL MOLDS AND A PROCESS FOR THEIR MANUFACTURE.
DE8181104107T DE3165664D1 (en) 1981-05-29 1981-05-29 Ceramic lining for metal moulds and method of making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP81104107A EP0065996B1 (en) 1981-05-29 1981-05-29 Ceramic lining for metal moulds and method of making the same

Publications (2)

Publication Number Publication Date
EP0065996A1 true EP0065996A1 (en) 1982-12-08
EP0065996B1 EP0065996B1 (en) 1984-08-22

Family

ID=8187744

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81104107A Expired EP0065996B1 (en) 1981-05-29 1981-05-29 Ceramic lining for metal moulds and method of making the same

Country Status (3)

Country Link
EP (1) EP0065996B1 (en)
AT (1) ATE9069T1 (en)
DE (1) DE3165664D1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0212157A2 (en) * 1985-08-20 1987-03-04 VARTA Batterie Aktiengesellschaft Device for casting lead grids for electric storage plates and method for producing the same
EP0219610A2 (en) * 1985-09-20 1987-04-29 VARTA Batterie Aktiengesellschaft Mould for producing grid plates for lead accumulators
EP0581170A1 (en) * 1992-07-21 1994-02-02 Hagen Batterie Ag Gridmould to cast accumulator lead grids and method
US9748578B2 (en) 2010-04-14 2017-08-29 Johnson Controls Technology Company Battery and battery plate assembly
US10170768B2 (en) 2013-10-08 2019-01-01 Johnson Controls Autobatterie Gmbh & Co. Kgaa Grid assembly for a plate-shaped battery electrode of an electrochemical accumulator battery
US10418637B2 (en) 2013-10-23 2019-09-17 Johnson Controls Autobatterie Gmbh & Co. Kgaa Grid arrangement for plate-shaped battery electrode and accumulator
US10892491B2 (en) 2011-11-03 2021-01-12 CPS Technology Holdings LLP Battery grid with varied corrosion resistance
DE102017201121B4 (en) 2017-01-24 2024-03-28 Volkswagen Aktiengesellschaft Method and injection molding device for producing a plastic component

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274274B1 (en) 1999-07-09 2001-08-14 Johnson Controls Technology Company Modification of the shape/surface finish of battery grid wires to improve paste adhesion
DE10207989B4 (en) * 2002-02-25 2004-02-19 Daimlerchrysler Ag Continuous casting mold with ceramic lining
EP2287948B1 (en) 2005-05-23 2016-01-06 Johnson Controls Techonology Company Battery grid
DE102006051814B9 (en) * 2006-11-03 2008-12-11 Fachhochschule Koblenz Body for conducting molten metal and a method for producing such a body
MX2009009385A (en) 2007-03-02 2009-10-12 Johnson Controls Tech Co Negative grid for battery.
BR112012022067B1 (en) 2010-03-03 2022-01-04 Cps Technology Holdings Llc GRID FOR A BATTERY AND METHODS FOR MANUFACTURING IT

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE825454C (en) * 1948-11-30 1951-12-20 Noleiko Norddeutsche Leichtmet Permanent mold for metal casting
DE860242C (en) * 1943-10-20 1952-12-18 Philips Nv Process for the production of castings
DE2108626A1 (en) * 1971-02-24 1972-08-31 Vereinigte Aluminium-Werke Ag, 5300 Bonn Re-usable ingot mould - consists of fired coke-binder mix
DE8029724U1 (en) * 1980-11-07 1981-02-26 Lahnwerk Huppert Gmbh & Co Kg, 3560 Biedenkopf MULTI-PIECE PERMANENT MOLD (CHOCOLATE)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1286330A (en) * 1969-11-21 1972-08-23 Electric Power Storage Ltd Casting electric battery electrode grids

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE860242C (en) * 1943-10-20 1952-12-18 Philips Nv Process for the production of castings
DE825454C (en) * 1948-11-30 1951-12-20 Noleiko Norddeutsche Leichtmet Permanent mold for metal casting
DE2108626A1 (en) * 1971-02-24 1972-08-31 Vereinigte Aluminium-Werke Ag, 5300 Bonn Re-usable ingot mould - consists of fired coke-binder mix
DE8029724U1 (en) * 1980-11-07 1981-02-26 Lahnwerk Huppert Gmbh & Co Kg, 3560 Biedenkopf MULTI-PIECE PERMANENT MOLD (CHOCOLATE)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0212157A2 (en) * 1985-08-20 1987-03-04 VARTA Batterie Aktiengesellschaft Device for casting lead grids for electric storage plates and method for producing the same
EP0212157A3 (en) * 1985-08-20 1987-08-26 Varta Batterie Aktiengesellschaft Device for casting lead grids for electric storage plates and method for producing the same
US5108668A (en) * 1985-08-20 1992-04-28 Varta Batterie Aktiengesellschaft Process for manufacturing device for casting lead grids for electric battery plates
EP0219610A2 (en) * 1985-09-20 1987-04-29 VARTA Batterie Aktiengesellschaft Mould for producing grid plates for lead accumulators
EP0219610A3 (en) * 1985-09-20 1987-09-02 Varta Batterie Aktiengesellschaft Mould for producing grid plates for lead accumulators
US4744540A (en) * 1985-09-20 1988-05-17 Varta Batterie Aktiengesellschaft Casting mold for manufacturing grid plates for lead batteries
EP0581170A1 (en) * 1992-07-21 1994-02-02 Hagen Batterie Ag Gridmould to cast accumulator lead grids and method
US5415219A (en) * 1992-07-21 1995-05-16 Hagen Batterie Ag Grid casting mold for the casting of lead grids for accumulators and methods for its manufacture
US9748578B2 (en) 2010-04-14 2017-08-29 Johnson Controls Technology Company Battery and battery plate assembly
US10985380B2 (en) 2010-04-14 2021-04-20 Cps Technology Holdings Llc Battery and battery plate assembly with highly absorbent separator
US11824204B2 (en) 2010-04-14 2023-11-21 Cps Technology Holdings Llc Battery and battery plate assembly with absorbent separator
US10892491B2 (en) 2011-11-03 2021-01-12 CPS Technology Holdings LLP Battery grid with varied corrosion resistance
US11539051B2 (en) 2011-11-03 2022-12-27 Cps Technology Holdings Llc Battery grid with varied corrosion resistance
US10170768B2 (en) 2013-10-08 2019-01-01 Johnson Controls Autobatterie Gmbh & Co. Kgaa Grid assembly for a plate-shaped battery electrode of an electrochemical accumulator battery
US10840515B2 (en) 2013-10-08 2020-11-17 Clarios Germany Gmbh & Co. Kgaa Grid assembly for a plate-shaped battery electrode of an electrochemical accumulator battery
US11611082B2 (en) 2013-10-08 2023-03-21 Clarios Germany Gmbh & Co. Kg Grid assembly for a plate-shaped battery electrode of an electrochemical accumulator battery
US10418637B2 (en) 2013-10-23 2019-09-17 Johnson Controls Autobatterie Gmbh & Co. Kgaa Grid arrangement for plate-shaped battery electrode and accumulator
DE102017201121B4 (en) 2017-01-24 2024-03-28 Volkswagen Aktiengesellschaft Method and injection molding device for producing a plastic component

Also Published As

Publication number Publication date
DE3165664D1 (en) 1984-09-27
ATE9069T1 (en) 1984-09-15
EP0065996B1 (en) 1984-08-22

Similar Documents

Publication Publication Date Title
EP0065996A1 (en) Ceramic lining for metal moulds and method of making the same
DE3537483C1 (en) Process for producing a large number of plate-shaped microstructure bodies made of metal
EP0646188B1 (en) Process and tool for producing a microstructured plastic layer
EP0117985B1 (en) Method of producing moulds for injection moulding, particularly tools for the injection moulding of plastic materials
DE102009048706A1 (en) Method and device for producing a molded part by means of generative application
DE102014225674A1 (en) Method for manufacturing a compressor impeller
EP0212157A2 (en) Device for casting lead grids for electric storage plates and method for producing the same
DE60105180T2 (en) FORM AND FORM APPLICATION FOR SUPERPLASTIC FORMING
DE2715563C2 (en) Process for the manufacture of parts from particulate material
DE2258485A1 (en) METHOD AND DEVICE FOR MANUFACTURING CASTING AND PRESSING FORMS
DE2333136A1 (en) METHOD AND DEVICE FOR MANUFACTURING A SINTER METAL PRODUCT
DE2352492A1 (en) METHOD OF MANUFACTURING VACUUM STABILIZED CASTING MOLDS
DE2046721B2 (en) PROCESS FOR POWDER METALLURGICAL PRODUCTION OF A MULTI-PART MOLD
EP1172453A2 (en) Method for making a near final shaping tool and shaping tool produced according to said method
EP1854568B1 (en) Method for casting 3-D freely formable shapes with microstructured surfaces
DE2313167A1 (en) Moulded spark erosion machining electrode - made of conductive particles and bonding medium which can be graphitised, coked or cracked
EP3222374A1 (en) Construction platform system and method for additive manufacturing of one moulded body
DE102017206932A1 (en) Lotformteil for producing a Diffusionslötverbindung and method for producing a Lotformteils
DE888602C (en) Process for the production of permanent forms or model facilities
DE886562C (en) Method and device for drying and hardening of molded fibrous bodies
DE102005037456B4 (en) Process for producing a multilayer ceramic composite
DE3603657A1 (en) Method for the production of a casting mould for battery grids
WO2018210499A1 (en) Adjustment of the surface roughness of a surface during the pressing of a green body
DE2524806A1 (en) Press, extrusion and moulding tools for small quantities - using hot sprayed, wear resistant material on plastic base
DE4321977C1 (en) Mfg deep drawing or press tools for sheet material parts - by casting offset mask of low alloy or plastic material from punch or die

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19820505

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL SE

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 9069

Country of ref document: AT

Date of ref document: 19840915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3165664

Country of ref document: DE

Date of ref document: 19840927

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: HOECHST CERAMTEC AG TE SELB, BONDSREPUBLIEK DUITSL

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19860424

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870531

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19890529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19890530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19890531

Ref country code: CH

Effective date: 19890531

Ref country code: BE

Effective date: 19890531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19891201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ITTA It: last paid annual fee
EUG Se: european patent has lapsed

Ref document number: 81104107.8

Effective date: 19900412

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950420

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950425

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950720

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960529

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST