EP0045254B1 - Source rayonnante bi-bande compacte fonctionnant dans le domaine des hyperfréquences - Google Patents

Source rayonnante bi-bande compacte fonctionnant dans le domaine des hyperfréquences Download PDF

Info

Publication number
EP0045254B1
EP0045254B1 EP81401185A EP81401185A EP0045254B1 EP 0045254 B1 EP0045254 B1 EP 0045254B1 EP 81401185 A EP81401185 A EP 81401185A EP 81401185 A EP81401185 A EP 81401185A EP 0045254 B1 EP0045254 B1 EP 0045254B1
Authority
EP
European Patent Office
Prior art keywords
source
radiating
reflector
double band
reflecting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81401185A
Other languages
German (de)
English (en)
Other versions
EP0045254A1 (fr
Inventor
Albert Dupressoir
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0045254A1 publication Critical patent/EP0045254A1/fr
Application granted granted Critical
Publication of EP0045254B1 publication Critical patent/EP0045254B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/001Crossed polarisation dual antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/45Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more feeds in association with a common reflecting, diffracting or refracting device

Definitions

  • the present invention relates to a compact dual-band radiating source operating in the microwave domain. It can be used as a primary source illuminating a focusing optical system or as a radiating element directly, alone or as part of an array antenna with electronic scanning.
  • a radiating source operating in two distinct frequency bands was constituted for example by two distinct elementary sources each operating in a band but both associated with the same reflector produced in the form of a dihedral, as shown in FIG. 1. in fact there is a dipole 1 whose direction of the strands is parallel to the edge 2 of the common dihedral reflector 3, and two other dipoles 4 and 5, located on either side of the dipole 1 for reasons of symmetry and whose the direction of the strands is perpendicular to that of the strands of the dipole 1.
  • the dipole 1 on the one hand and the two dipoles 4 and 5 on the other hand have crossed polarizations with respect to each other and it is conceivable easily that when such a dual-band radiating source must illuminate a focusing optical system, a parabolic reflector for example, the phase centers of the two sets, one constituted by the dipole 1 and the reflector 3 and the other by the dipoles 4 and 5 and the reflector 3 cannot both be confused with the focal point of this optical system. In this case, the aberration phenomena do not make it possible to obtain the best possible radiation from such a dual-band source.
  • such a source may include two wave radiators, placed side by side, emitting and / or receiving waves at different wavelengths, in two orthogonal polarization directions, and two reflectors placed one behind the other.
  • One of these two reflectors is constituted by a semi-transparent grid while the other reflector is completely reflective and constituted by a metallic foil for example.
  • the two wave radiators which are, for example, waveguides, do not have their phase centers combined, which leads to degradations in the radiation of the dual-band source.
  • the object of the invention is to remedy such drawbacks and to produce a compact radiating source, operating in two distinct frequency bands.
  • this compact dual-band radiating source operating in the microwave domain comprises two radiating source-reflector assemblies, the first assembly being constituted by a system of dipoles tuned to the frequency band whose central frequency is the higher of the two and radiating a determined polarization wave, associated with a semi-transparent reflector device, the second set being constituted by a system of dipoles radiating a polarization wave crossed with respect to the previous associated with a fully reflective device , the relative position of these two sets with respect to each other being such that their phase centers are combined.
  • FIGS. 2, 3, 4 and 5 which, in addition to FIG. 1 already described, represent nonlimiting exemplary embodiments of a radiating source bi -strip according to the invention.
  • FIG. 2 represents a dual-band radiating source which comprises two distinct radiating assemblies; the first consists of a dipole 6, tuned to the band with the highest central frequency, associated with a semi-transparent reflecting device 7 and the second set consists of two dipoles 8 and 9 associated with a second reflecting device 10
  • the dipole 6 radiates a wave of determined polarization, for which the reflector device 7 is transparent but which is reflected by the reflector 10.
  • the dipoles 8 and 9 radiate a wave whose polarization is crossed with respect to the previous one, so that the reflector 7 reflects it completely.
  • the semi-transparent reflector 7 is constituted by a network of parallel metallic wires 11, the direction of which is perpendicular to that of the strands 12 of the dipole 6, therefore to the polarization of the wave which it transmits.
  • the reflector 10 is constituted by a network of parallel metallic wires 13 whose direction is parallel to that of the strands 12 of the dipole 6 in order to totally reflect the wave emitted by the latter.
  • this reflector 10 can also be produced by a network of crossed metal wires or by a surface with continuous metallization.
  • the reflector 10 is very structured and the network of wires 13 is produced on a wafer of dielectric material.
  • the latter carries metal inserts 14 used for fixing the source, serves as a plane for laying the dipoles and supports the power device integrated in its rear volume.
  • the semi-transparent reflector 7 lets pass the wave radiated by the dipole 6 with which it is associated; but in another exemplary embodiment, it will on the contrary be completely reflective for this wave and will let pass the wave emitted by the other dipoles and in which the polarization is crossed with respect to the first.
  • the semi-transparent reflector must be associated with the system of radiating dipoles tuned on the frequency band whose central frequency is the highest.
  • the semi-transparent reflector device is made in the form of a dihedral 15, constituted by two planes 16 and 17 having a common edge 18.
  • the dipole associated with this reflector in the form of a dihedral is such that the direction of its strands is parallel to the edge of the dihedral.
  • the wires 21 of the reflector 15 being orthogonal to the direction of the strands 20 of the dipole 19, the wave emitted by the latter passes through the dihedral without reflection, before being reflected on the reflector device 22, which is constituted by a network of parallel wires 23 of direction parallel to that of the strands 20.
  • the relative position of the two radiating source-reflector assemblies makes it possible to make their two phase centers coincide in order to obtain the best radiation conditions of the source.
  • the volume encompassing the two source-reflector assemblies that is to say comprised between the reflector 22, the plane passing through the outer edges 24 and 25 of the dihedral 15 and parallel to the plane 22 and the four planes perpendicular to each other and to plane 22 can be filled with low density polyurethane foam.
  • the network of parallel metallic wires 21, constituting the semi-transparent reflector 15 in the form of a dihedral, is obtained by the photoengraving process used in the technology for manufacturing printed circuits.
  • the distance between the edge 18 of the dihedral and the strands 20 of the dipole 19 is equal to 0.6 J, J being the wavelength at the central frequency 1250 MHz and the angle of the dihedral is 90 °.
  • the two other dipoles 30 and 31 are supplied in phase or in phase opposition via an energy distributor of the "hybrid ring 6 / ⁇ / 4" type.
  • the flat reflector 22 is constituted by a metallized dielectric plate and the distance which separates it from the strands of the dipoles 30 and 31 is equal to 0.25 J ′, /! being the wavelength at the central frequency 1000 MHz.
  • FIG. 4 is shown another exemplary embodiment of the invention, in which the two radiating dipole systems consist only of a single dipole 26 and 27 of each of the two polarizations. To respect the symmetry of the source, necessary to make the two phase centers coincide, these two dipoles must be centered. For this, they are mounted on a single foot 28 common to both but are supplied by two separate coaxial lines 37 and 38, each connected to one of the strands 39 and 40 of the two dipoles.
  • the shape of the reflectors is arbitrary, in other words the semi-transparent reflector 29 can be in the form of a dihedral or a plane just like the reflector 300, the remarks concerning their relative position being the same as above.
  • FIG. 6 represents another embodiment of the invention, in which the reflector 41 in the form of a dihedral is placed so that its edge 42 is situated behind the plane reflector 43.
  • a dipole 44 whose strands are parallel to the edge 42 and to the plane reflector 43 are associated two dipoles 45 and 46 of cross polarization with respect to that of the dipole 44.
  • the part of the plane reflector 43 located in front of the edge 42 must necessarily be semi-transparent to let pass the wave emitted by one of the two radiating dipole systems, that is to say by the dipole 44 in the precise case of this figure.
  • the other part of this reflector like the dihedral reflector 41 itself, can be constituted by solid metal plates or by polarizing networks depending on the desired objective.
  • the polarizing systems constituted by arrays of metal wires can be photo-etched on plates of dielectric material. These networks of wires can also be replaced by more rigid parallel metal blades.
  • the remarks concerning the relative position of the two radiant source-reflector assemblies, their practical realization and the addition of polyurethane foam like that of a radome are also valid in all these cases.
  • a compact dual-band radiating source has thus been described, which can be used as a radiating element directly alone or as part of an antenna with electronic scanning.
  • this source can also illuminate a focusing optical system, the position of which with respect to the two radiating source-reflector assemblies which constitute it is such that the focus of this optical system coincides with their two phase centers.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

  • La présente invention concerne une source rayonnante bi-bande compacte fonctionnant dans le domaine des hyperfréquences. Elle est utilisable comme source primaire éclairant un système optique focalisant ou comme élément rayonnant directement, seul ou en tant qu'élément d'une antenne réseau à balayage électronique.
  • Auparavant, une source rayonnante fonctionnant dans deux bandes de fréquences distinctes était constituée par exemple par deux sources élémentaires distinctes fonctionnant chacune dans une bande mais associées toutes les deux au même réflecteur réalisé en forme de dièdre, comme cela est représenté sur la figure 1. On y voit en effet un dipôle 1 dont la direction des brins est parallèle à l'arête 2 du réflecteur dièdre 3 commun, et deux autres dipôles 4 et 5, situés de part et d'autre du dipôle 1 pour des raisons de symétrie et dont la direction des brins est perpendiculaire à celle des brins du dipôle 1. Le dipôle 1 d'une part et les deux dipôles 4 et 5 d'autre part ont des polarisations croisées l'une par rapport à l'autre et l'on conçoit aisément que lorsqu'une telle source rayonnante bi-bande doit éclairer un système optique focalisant, un réflecteur parabolique par exemple, les centre de phase des deux ensembles, constitués l'un par le dipôle 1 et le réflexteur 3 et l'autre par les dipôles 4 et 5 et le réflecteur 3, ne peuvent être confondus tous les deux avec le foyer de ce système optique. Dans ce cas, les phénomènes d'aberration ne permettent pas d'obtenir, d'une telle source bi-bande, le meilleur rayonnement possible.
  • Selon un autre exemple de réalisation d'une source rayonnante bi-bande, décrite dans le brevet anglais N° 758 957, une telle source peut comporter deux radiateurs d'onde, placés côte à côte, émettant et/ou recevant des ondes à des longueurs d'ondes différentes, selon deux directions de polarisation orthogonales, et deux re- flecteurs placés l'un derrière l'autre. L'un de ces deux réflecteurs est constitué par une grille se- mi-transparente tandis que l'autre réflecteur est totalement réfléchissant et constitué par une feuille métallique par exemple. Mais dans cet exemple de réalisation, les deux radiateurs d'onde qui sont par exemple des guides d'ondes, n'ont pas leurs centres de phase confondus ce qui entraîne des dégrations dans le rayonnement de la source bi-bande.
  • Le but de l'invention est de remédier à de tels inconvénients et de réaliser une source rayonnante compacte, fonctionnant dans deux bandes de fréquences distinctes.
  • Selon une caractéristique de l'invention, cette source rayonnante bi-bande compacte fonctionnant dans le domaine des hyperfréquences, comporte deux ensembles rayonnants source-réflecteur, le premier ensemble étant constitué par un système de dipôles accordés sur la bande de fréquence dont la fréquence centrale est la plus élevée des deux et rayonnant une onde de polarisation déterminée, associé à un dispositif réflecteur semi-transparent, le second ensemble étant constitué par un système de dipôles rayonnant une onde de polarisation croisée par rapport à la précédente associé à un dispositif totalement réflecteur, la position relative de ces deux ensembles l'un par rapport à l'autre étant telle que leurs centres de phase sont confondus.
  • Le fait que les deux centres de phase des deux ensembles rayonnants source-réflecteur soient confondus apporte une meilleure focalisation de la source et par conséquent de meilleurs caractéristiques de rayonnement.
  • D'autres caractéristiques et avantages de l'invention apparaîtront dans la description qui suit, illustrée par les figures 2, 3, 4 et 5 qui, outre la figure 1 déjà décrite, représentent des exemples de réalisation non limitatifs d'une source rayonnante bi-bande selon l'invention.
  • La figure 2 représente une source rayonnante bi-bande qui comporte deux ensembles rayonnants distincts; le premier est constitué par un dipôle 6, accordé sur la bande dont la fréquence centrale est la plus élevée, associé à un dispositif réflecteur 7 semi-transparent et le second ensemble est constitué par deux dipôles 8 et 9 associés à un second dispositif réflecteur 10. Le dipôle 6 rayonne une onde de polarisation déterminée, pour laquelle le dispositif réflecteur 7 est transparent mais qui est réfléchie par le réflecteur 10. Par contre les dipôles 8 et 9 rayonnent une onde dont la polarisation est croisée par rapport à la précédente, de sorte que le réflecteur 7 la réfléchit totalement. En réglant la position relative de ces deux ensembles c'est-à-dire en réglant aussi bien la distance D entre les deux réflecteurs 7 et 10 que la distance d entre les brins des dipôles 6 d'une part et 8 et 9 d'autre part, on peut faire coïncider leurs centres de phase de façon à obtenir les caractéristiques de rayonnement optimales.
  • Comme le montre la figure 2, le réflecteur se- mi-transparent 7 est constitué par un réseau de fils métalliques parallèles 11, dont la direction est perpendiculaire à celle des brins 12 du dipôle 6 donc à la polarisation de l'onde qu'il émet. Le réflecteur 10 est constitué par un réseau de fils 13 métalliques parallèles dont la direction est parallèle à celle des brins 12 du dipôle 6 pour réfléchir totalement l'onde émise par ce dernier. Mais ce réflecteur 10 peut aussi être réalisé par un réseau de fils métalliques croisés ou par une surface à métallisation continue.
  • Pour fixer cette source bi-bande ainsi constituée, sur un support métallique par exemple dans le but de réaliser une antenne à balayage électronique, le réflecteur 10 est très structuré et le réseau de fils 13 est réalisé sur une plaquette de matériau diélectrique. Cette dernière porte des inserts 14 métalliques servant à la fixation de la source, sert de plan de pose aux dipôles et supporte le dispositif de puissance intégré dans son volume arrière.
  • Dans le cas de la figure 2, le réflecteur semi-transparent 7 laisse passer l'onde rayonnée par le dipôle 6 auquell il est associé; mais dans un autre exemple de réalisation, il sera au contraire totalement réflecteur pour cette onde et laissera passer l'onde émise par les autres dipôles et dant la polarisation est croisée par rapport à la première. Par contre, dans tous les cas, le réflecteur semi-transparent doit être associé au système de dipôles rayonnants accordés sur la bande de fréquences dont la fréquence centrale est la plus élévée.
  • Sur la figure 3, le dispositif réflecteur semi-transparent est réalisé en forme de dièdre 15, constitué par deux plans 16 et 17 possédant une arête commune 18. Pour des raisons de rayonnement optimal, le dipôle associé à ce réflecteur en forme de dièdre est tel que la direction de ses brins est parallèle à l'arête du dièdre. Ainsi, sur la figure 3, c'est le dipôle 19 qui est associé au réflecteur semi-transparent 15, ses brins 20 étant parallèles à l'arête 18 du dièdre 15. Les fils 21 du réflecteur 15 étant orthogonaux à la direction des brins 20 du dipôle 19, l'onde émise par celui-ci passe à travers le dièdre sans réflection, avant de se réfléchir sur le dispositif réflecteur 22, qui est constitué par un réseau de fils parallèles 23 de direction parallèle à celle des brins 20. Comme précédemment, la position relative des deux ensembles rayonnants source-réflecteur permet de faire coïncider leurs deux centre de phase pour obtenir les meilleures conditions de rayonnement de la source.
  • Pour des raisons de tenue mécanique le volume englobant les deux ensembles source-réflecteur c'est-à-dire compris entre le réflecteur 22, le plan passant par les arêtes extérieures 24 et 25 du dièdre 15 et parallèle au plan 22 et les quatre plans perpendiculaires entre eux et au plan 22 peut être rempli de mousse de polyuréthane à faible densité. On peu également ajouter un radome diélectrique autour de cette source pour en assurer en plus l'étanchéité.
  • Une application particulière du mode de réalisation décrit sur la figure 3 a été réalisée pour une source rayonnante devant fonctionner dans deux bandes de fréquences distinctes centrées sur 1000 MHz et 1250 MHz. Le réseau de fils métalliques parallèles 21, constituant le réflecteur semi-transparent 15 en forme de dièdre, est obtenu par le procédé de photogravure utilisé dans la technologie de fabrication des circuits imprimés. La distance entre l'arête 18 du dièdre et les brins 20 du dipôle 19 est égale à 0,6 J, J étant la longueur d'onde à la fréquence centrale 1250 MHz et l'angle du dièdre est égal à 90°. Les deux autres dipôles 30 et 31 sont alimentés en phase ou en opposition de phase par l'intermédiaire d'un répartiteur d'énergie du type »anneau hybride 6 /ï/4«. Le réflecteur plan 22 est constitué par une plaque de diélectrique métallisé et la distance qui le sépare des brins des dipôles 30 et 31 est égale à 0,25 J', /!' étant la longueur d'onde à la fréquence centrale 1000 MHz.
  • Sur la figure 4 est représenté un autre exemple de réalisation de l'invention, dans lequel les deux systèmes de dipôles rayonnants ne sont constitués que par un seul dipôle 26 et 27 de chacune des deux polarisations. Pour respecter la symétrie de la source, nécessaire pour faire coïncider les deux centres de phase, ces deux dipôles doivent être centrés. Pour cela, ils sont montés sur un seul pied 28 commun aux deux mais sont alimentés par deux lignes coaxiales 37 et 38 distinctes, reliées chacune à l'un des brins 39 et 40 des deux dipôles. Là encore, la forme des réflecteurs est quelconque, autrement dit le réflecteur semi-transparent 29 peut être en forme de dièdre ou plan tout comme le réflecteur 300, les remarques concernant leur position relative étant les mêmes que précédemment.
  • Sur la figure 5 est envisagé le cas où les deux dispositifs réflecteurs 290 et 301 sont réalisés en forme de dièdres. Comme cela a été expliqué auparavant, les deux systèmes de dipôles ayant leurs brins perpendiculaires les uns par rapport aux autres, les dièdres sont disposés de sorte que les arêtes 310 et 32 formées respectivement par l'intersection des plans (33 et 34) et (35 et 36), sont perpendiculaires.
  • Enfin la figur 6 représente un autre exemple de réalisation de l'invention, dans lequel le réflecteur41 en forme de dièdre est placé de sorte que son arête 42 est située derrière le réflecteur plan 43. Au réflecteur 41 est associé un dipôle 44 dont les brins sont parallèles à l'arête 42 et au réflecteur plan 43 sont associés deux dipôles 45 et 46 de polarisation croisée par rapport à celle du dipôle 44. La partie du réflecteur plan 43 située en avant de l'arête 42 doit obligatoirement être semi-transparente pour laisser passer l'onde émise par un des deux systèmes de dipôles rayonnants, c'est-à-dire par le dipôle 44 dans le cas précis de cette figure. L'autre partie de ce réflecteur, comme le réflecteur dièdre 41 lui- même peuvent être constitués par des plaques métalliques pleines ou par des réseaux polariseurs selon le but recherché.
  • Dans tous ces cas de réalisation décrits, les systèmes polariseurs constitués par des réseaux de fils métalliques peuvent être photogravés sur des plaquettes de matériau diélectrique. On peut également remplacer ces réseaux de fils par des lames métalliques parallèles plus rigides. Les remarques concernant la position relative des deux ensembles rayonnants source-réflecteur, leur réalisation pratique et l'ajout de mousse de polyuréthane comme celui d'un radome sont valables également par tous ces cas.
  • On a ainsi décrit une source rayonnante bi-bande compacte, qui peut être utilisée comme élément rayonnant directement seul ou bien en tant qu'élément d'une antenne à balayage électronique. Mais cette source peut aussi éclairer un système optique focalisant, dont la position par rapport aux deux ensembles rayonnants source-réflecteur qui la constituent est telle que le foyer de ce système optique est confondu avec leurs deux centres de phase.

Claims (9)

1. Source rayonnante bi-bande compacte fonctionnant dans le domaine des hyperfréquences, constituée par un premier ensemble comportant un réflecteur semi-transparent (290) et une source rayonnant selon une première direction de polarisation, ce premier ensemble fonctionnant dans la bande des fréquences les plus élevées, et un second ensemble comportant un dispositif totalement réflecteur (301) et une source rayonnant selon une polarisation de direction perpendiculaire à la direction de polarisation du premier ensemble, caractérisé en ce que les deux réflecteurs (290 et 301) sont en forme de dièdres, d'angle inférieur à 180°, leurs arêtes respectives (310 et 32) étant perpendiculaires, en ce que le dispositif réflecteur semi-transparent (290) laisse passer l'onde rayonnée par la source auquel il est associé et réfléchit totalement l'onde rayonnée par la source associée au dispositif totalement réflecteur (301) et en ce que les deux sources sont constituées par des dipôles dont la direction des brins est parallèle à l'arête du dièdre associé et dont leur nombre et leur position, les unes par rapport aux autres, sont déterminés de façon à ce que les centres de phase des deux sources soient confondus (figure 5).
2. Source rayonnante bi-bande selon la revendication 1, caractérisée en ce que la source associée au réflecteur semi-transparent (15) du premier ensemble rayonnant est constituée par un dipôle (19) et la source du second ensemble rayonnant est constituée par deux dipôles (30 et 31), placés de part et d'autre du dipôle (12) du premier ensemble rayonnant et dont la direction des brins est perpendiculaire à celle des brins de ce dernier dipôle (figure 3).
3. Source rayonnante bi-bande selon les revendications 1 ou 2 caractérisée en ce que le dispositif réflecteur semi-transparent (15) est constitué par un réseau de fils métalliques parallèles (21) dont la direction est perpendiculaire à celle de la polarisation de l'onde pour laquelle il est transparent (fig. 3).
4. Source rayonnante bi-bande selon l'une des revendications précédentes, caractérisée en ce que le dispositif totalement réflecteur est constitué par un réseau de fils métalliques parallèles (13) dont la direction est parallèle à la polarisation de l'onde qu'il réfléchit, ou par un réseau de fils métalliques croisés ou par une surface à métallisation continue.
5. Source rayonnante bi-bande selon l'une des revendications précédentes, caractérisée en ce que les sources associées aux deux réflecteurs sont constituées chacune par un seul dipôle (26 et 27) ces deux dipôles étant croisés et montés sur un seul et même pied (28) commun mais alimentés par deux lignes coaxiales (37 et 38) distinctes (figure 4).
6. Source rayonnante bi-bande selon l'une des revendications précédentes, caractérisée en ce que le volume englobant les deux ensembles rayonnants, compris entre le dispositif totalement réflecteur (22), le plan passant par les arêtes extérieures (24 et 25) du dispositif réflecteur semi-transparent (15) et parallèle au dispositif réflecteur (22) et les quatre plans perpendiculaires entre eux et au dispositif réflecteur (22), est rempli de mousse de polyuréthane à faible densité.
7. Source rayonnante bi-bande selon l'une des revendications précédentes, caractérisée en ce qu'un radôme diélectrique est placé autour de la source.
8. Utilisation d'une source rayonnante bi-bande selon l'une des revendications 1 à 9, comme élément rayonnant d'une antenne réseau à balayage électronique.
9. Utilisation d'une source rayonnante bi-bande selon l'une des revendications 1 à 9, dans un système optique focalisant, caractérisée en ce que la position de la source par rapport au système optique est telle que les deux centres de phase des deux ensembles rayonnants source-réflecteur qui la constituent sont confondus avec le foyer du système optique.
EP81401185A 1980-07-29 1981-07-24 Source rayonnante bi-bande compacte fonctionnant dans le domaine des hyperfréquences Expired EP0045254B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8016712 1980-07-29
FR8016712A FR2488058A1 (fr) 1980-07-29 1980-07-29 Source rayonnante bi-bande compacte fonctionnant dans le domaine des hyperfrequences

Publications (2)

Publication Number Publication Date
EP0045254A1 EP0045254A1 (fr) 1982-02-03
EP0045254B1 true EP0045254B1 (fr) 1985-10-02

Family

ID=9244663

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81401185A Expired EP0045254B1 (fr) 1980-07-29 1981-07-24 Source rayonnante bi-bande compacte fonctionnant dans le domaine des hyperfréquences

Country Status (3)

Country Link
EP (1) EP0045254B1 (fr)
DE (1) DE3172526D1 (fr)
FR (1) FR2488058A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3265509D1 (en) * 1981-04-29 1985-09-26 Hoffmann La Roche Process for the preparation of cholesterol derivatives, and intermediate derivatives therefor
US5485167A (en) * 1989-12-08 1996-01-16 Hughes Aircraft Company Multi-frequency band phased-array antenna using multiple layered dipole arrays
FR2664750B1 (fr) * 1990-07-11 1993-01-29 Aerospatiale Bireflecteur a grilles.
GB2264006B (en) * 1992-02-01 1995-09-27 British Aerospace Space And Co A reflector antenna assembly for dual linear polarisation
KR0185962B1 (ko) * 1995-03-03 1999-05-15 구관영 안테나 측면 복사에너지를 최소화한 안테나
FR2787928A1 (fr) * 1998-12-23 2000-06-30 Thomson Csf Antenne a reflecteur large bande
US6448937B1 (en) * 2000-04-25 2002-09-10 Lucent Technologies Inc. Phased array antenna with active parasitic elements
WO2002097923A1 (fr) * 2001-04-28 2002-12-05 Anyans Antenne en coin
US6795021B2 (en) 2002-03-01 2004-09-21 Massachusetts Institute Of Technology Tunable multi-band antenna array
US8345639B2 (en) * 2010-06-14 2013-01-01 Raytheon Company Broad propagation pattern antenna
FR3075390B1 (fr) * 2017-12-20 2020-09-18 Selerys Systeme de detection interferometrique de foudre

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2790169A (en) * 1949-04-18 1957-04-23 Itt Antenna
GB758957A (en) * 1954-03-23 1956-10-10 British Thomson Houston Co Ltd Improvements relating to ultra-high frequency aerials
US2982961A (en) * 1957-03-20 1961-05-02 Calvin C Jones Dual feed antenna
DE2454401A1 (de) * 1974-11-16 1976-05-20 Licentia Gmbh Breitbandantenne kleiner abmessungen

Also Published As

Publication number Publication date
FR2488058A1 (fr) 1982-02-05
EP0045254A1 (fr) 1982-02-03
DE3172526D1 (en) 1985-11-07
FR2488058B1 (fr) 1984-07-13

Similar Documents

Publication Publication Date Title
CA2862729C (fr) Formateur multi-faisceaux a deux dimensions, antenne comportant un tel formateur multi-faisceaux et systeme de telecommunication par satellite comportant une telle antenne
CA2243603C (fr) Structure rayonnante
EP1568104B1 (fr) Antenne multi-faisceaux a materiau bip
EP0045254B1 (fr) Source rayonnante bi-bande compacte fonctionnant dans le domaine des hyperfréquences
EP0237429A2 (fr) Réseau réflecteur à contrôle de phases, et antenne comportant un tel réseau
FR2647269A1 (fr) Systeme d'antenne a fentes
EP1387437A1 (fr) Antenne multisources notamment pour système à reflecteur
EP3011639B1 (fr) Source pour antenne parabolique
FR2930079A1 (fr) Capteur de rayonnement, notamment pour radar
EP0170154B1 (fr) Antenne bi-fréquence à même couverture de zone à polarisation croisée pour satellites de télécommunications
EP1554777B1 (fr) Antenne a materiau bip multi-faisceaux
FR2704359A1 (fr) Antenne plane.
EP0065467B1 (fr) Radiateur d'onde électromagnétique polarisée circulairement
EP0033676B1 (fr) Antenne commune pour radar primaire et radar secondaire
FR2854737A1 (fr) Antenne a materiau bip multi-faisceaux et/ou multi- frequences et systeme mettant en oeuvre ces antennes.
FR2518828A1 (fr) Filtre spatial de frequences et antenne comportant un tel filtre
FR2684809A1 (fr) Antenne passive multifaisceaux a reflecteur(s) conforme (s).
CA2327371C (fr) Source rayonnante pour antenne d'emission et de reception destinee a etre installee a bord d'un satellite
FR2490025A1 (fr) Antenne du type cornet monomode ou multimode comprenant au moins deux voies radar et fonctionnant dans le domaine des hyperfrequences
FR2835356A1 (fr) Antenne de reception pour couverture multifaisceaux
EP0088681B1 (fr) Antenne à double réflecteur à transformateur de polarisation incorporé
FR2705836A1 (fr) Antenne radioélectrique omnidirectionnelle et son application à un répondeur radar.
FR2474770A2 (fr) Antenne commune pour radar primaire et radar secondaire
FR2854734A1 (fr) Systeme d'emission et ou de reception d'ondes electromagnetiques equipe d'une antenne multi-faisceaux a materiau bip
FR2854735A1 (fr) Antenne a materiau bip multi-faisceaux

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB IT NL SE

17P Request for examination filed

Effective date: 19820619

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE GB IT NL SE

REF Corresponds to:

Ref document number: 3172526

Country of ref document: DE

Date of ref document: 19851107

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870731

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19890725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900201

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900403

EUG Se: european patent has lapsed

Ref document number: 81401185.4

Effective date: 19900418