EP0044351B1 - Hard alloy consisting of one or several hard substances and a binding metal alloy, and process for producing this alloy - Google Patents

Hard alloy consisting of one or several hard substances and a binding metal alloy, and process for producing this alloy Download PDF

Info

Publication number
EP0044351B1
EP0044351B1 EP80104274A EP80104274A EP0044351B1 EP 0044351 B1 EP0044351 B1 EP 0044351B1 EP 80104274 A EP80104274 A EP 80104274A EP 80104274 A EP80104274 A EP 80104274A EP 0044351 B1 EP0044351 B1 EP 0044351B1
Authority
EP
European Patent Office
Prior art keywords
powder
hard
alloy
metal
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80104274A
Other languages
German (de)
French (fr)
Other versions
EP0044351A1 (en
Inventor
Helmut Dr. Holleck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Kernforschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kernforschungszentrum Karlsruhe GmbH filed Critical Kernforschungszentrum Karlsruhe GmbH
Priority to AT80104274T priority Critical patent/ATE11574T1/en
Priority to DE8080104274T priority patent/DE3070055D1/en
Priority to EP80104274A priority patent/EP0044351B1/en
Priority to US06/286,376 priority patent/US4432794A/en
Priority to JP56112046A priority patent/JPS5751239A/en
Publication of EP0044351A1 publication Critical patent/EP0044351A1/en
Application granted granted Critical
Publication of EP0044351B1 publication Critical patent/EP0044351B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder

Definitions

  • the invention relates to a hard alloy consisting of one or more hard materials and a binary or multinary binder metal alloy which contains at least one metal from group 8 of the periodic table of the elements and / or rhenium.
  • Hard metals or hard alloys have already been described in R. Kieffer, F. Benesovsky “Hartmetalle” (1965), pages 216 to 223.
  • Hard metals with a base carbide made of chromium carbide (Cr 3C2) with 12% or 15% nickel binder have good wear resistance and high corrosion resistance.
  • Such chrome carbide hard metals are relatively brittle, which has to be taken into account in the case of impact loads.
  • With increasing nickel content the corrosion resistance of Cr 3 C 2 hard metals also decreases.
  • the low toughness and poor resistance to temperature changes preclude the use of Cr3C2 hard metals as high-temperature materials.
  • the invention is therefore based on the object of providing a material with high strength, high hardness and high wear resistance, which is largely resistant to corrosive (sometimes also oxidizing) media.
  • the process of its manufacture should be simple.
  • Advantageous configurations of the hard alloy are characterized by hard material-to-binder metal alloy ratios in the range between 90 vol.% Hard material / 10 vol.% Binder metal alloy and 5 vol.% Hard material / 95 vol.% Binder metal alloy.
  • the carbide in the hard alloy has a composition which corresponds to a transition metal to carbon ratio (atomic ratio) in the range from 1: 1 to 2: 1.
  • the proportion of platinum metal in the binder metal alloy is replaced by up to 90 atomic% by iron, cobalt or nickel.
  • Hard alloys consisting of one or more carbides of the transition metals titanium, zirconium, hafnium (group 4A of the Periodic Table of the Elements), vanadium, niobium, tantalum (group 5A) and tungsten (in group 6A) and a metallic binder made of at least one metal , which is selected from a group comprising platinum, palladium, rhodium and ruthenium, are known from DE-A-2011082.
  • the metallic binder can contain an additional metal or additional metals from the group consisting of iridium, osmium, nickel, cobalt and iron. At least the metals ruthenium and palladium in the binder are said to have the effect of completely suppressing the growth of the granules and in some cases actively reducing the grain size of the metal carbides during sintering.
  • Hard alloys such as the hard alloys according to the invention, which all contain binary or multinary binder metal alloys which have both one or more metals from group 8 of the Periodic Table of the Elements or rhenium and one or more transition metals from groups 4A, 5A and 6A, are shown in DE-A-2011082 not addressed.
  • chrome powder is mixed with a powder of one or more of the metals from the group Ru, Rh, Ir and Pt and with carbon powder in a ratio that corresponds to the formulas or complies with this resultant mixed formulas, mixed and melted the mixture after pressing to form an intermediate range Henden carbide or at temperatures above the decomposition temperatures of the respective Petrokomponen strength Carbide t sintered.
  • molybdenum powder is mixed with a powder or. several metals from the group Re, Ru, Rh, Os, lr, Pt and with carbon powder in a ratio that matches the formulas or from these resulting mixing formulas, mixed and the mixture after pressing to form an intermediate carbide melted or sintered at temperatures above the decomposition temperatures of the respective multicomponent carbides.
  • tungsten powder is mixed with a powder of one or more of the metals from the group Ru, Rh, Os and Pt and with carbon powder in a ratio that corresponds to the formulas or from these resulting mixing formulas, mixed and the mixture after pressing to form an intermediate carbide melted or sintered at temperatures above the decomposition temperatures of the respective multicomponent carbides.
  • Chromium, molybdenum and tungsten carbides are particularly suitable as carbides; as metal phase alloys based on (Pt-Cr), (Pt-Mo), (Pt-W), (Pd-Cr), (Pd-Mo), (Pd-W), (Ru-Cr), ( Ru-Mo), (Ru-W) or other platinum metals with Cr, Mo and W.
  • the invention is characterized in that ternary high-temperature carbides are obtained which decompose into a carbide phase and a solid platinum metal alloy when cooled or during heat treatment at medium temperatures (approx. 1273 K to 1575 K).
  • the heat treatment can be controlled in such a way that extremely fine-grained microstructures with uniform carbide distribution are created. This brings with it a high level of hardness and strength and is the basis for favorable wear behavior.
  • a hard alloy with 63 vol .-% metal phase and 37 vol .-% carbide (Mo 2 C) still has a hardness of 1060 HV and, according to the crack length method, a very high toughness.
  • the hard alloys according to the invention are fine-grained composite materials with a total composition of the square a-b-c-d in FIG. 1 consisting of a carbide phase and metal alloys with the components shown in FIG. 1.
  • the production method is also an essential component of the invention: a high-temperature sintering or melting process produces a ternary carbide, which is decomposed into a binary carbide phase and a binary metal phase at lower temperatures.
  • hard alloys according to the invention can also be produced in the region designated in FIG. 1 with other transition metals from groups 4A, 5A and 6A and the platinum metals mentioned.
  • a material based on molybdenum carbide (Mo, Pt) alloy was obtained by melting or sintering above 1575 K of a mixture of Mo / Pt / C 50/35/15 at.%. Such a sample is located at the end of the ternary carbide (Mo, Pt) G ⁇ 0.1 in the isothermal diagram of the Mo-Pt-C system at 1773 K. Subsequent annealing at 1373 K led to decay according to the phase relationships in the diagram at 1373 K in Mo 2 C and ⁇ - (Mo, Pt). The contents of the metallic or carbide phase can be varied as required. WC- (W, Ir) or WC (W, Pt) alloys with very high metal contents have also been produced.
  • a W / Pt / C alloy with 50 at.% W, 40 at.% Pt and 10 at.% C is melted or sintered at 2273 K, cooled rapidly and then homogenized at temperatures around 1373 K. The finest WC and W 2 C particles are then dissolved in a (W, Pt) matrix.
  • a W / Rh / C alloy with 40 at.% W, 40 at.% Rh and 20 at.% C is melted or sintered at 2273 K, rapidly cooled and then homogenized at 1773 K.
  • the microstructure shows WC and W2C particles of about 1 to 2 pm, homogeneously distributed in a (W, Rh) alloy.
  • Wear and corrosion-resistant hard metals of the specified type can be used in tools and wear parts in a particularly corrosive (and sometimes oxidation-prone) environment.

Abstract

A hard alloy including at least one hard phase and a binary or multicomponent binder metal alloy, in which the hard substance comprises a finely dispersed, homogeneous distribution in the binder metal. The hard phase comprises a carbide of a Group IVb, Vb or VIb transition metal, and the binder metal alloy comprises a solid alloy of a Group IVb, Vb or VIb transition metal, with Re, Ru, Rh, Pd, Os, Ir, or Pt.

Description

Die Erfindung betrifft eine Hartlegierung, bestehend aus einem oder mehreren Hartstoffen und einer binären oder multinären Bindemetall-Legierung, die mindestens ein Metall aus der Gruppe 8 des Periodensystems der Elemente und/oder Rhenium enthält.The invention relates to a hard alloy consisting of one or more hard materials and a binary or multinary binder metal alloy which contains at least one metal from group 8 of the periodic table of the elements and / or rhenium.

Hartmetalle bzw. Hartlegierungen sind bereits in R. Kieffer, F. Benesovsky "Hartmetalle" (1965), Seiten 216 bis 223, beschrieben worden. Gute Verschleißfestigkeit und hohe Korrosionsbeständigkeit weisen Hartmetalle mit einem Basiscarbid aus Chromcarbid (Cr 3C2) mit 12% oder 15% Nickel-Binder auf. Solche Chromcarbid-Hartmetalle sind aber verhältnismäßig spröde, was bei Schlagbeanspruchungen zu berücksichtigen ist. Mit steigendem Nickel-Gehalt nimmt auch die Korrosionsbeständigkeit von Cr3C2-Hartmetallen ab. Die geringe Zähigkeit und schlechte Temperaturwechselbeständigkeit schließt die Verwendung von Cr3C2 Hartmetallsn als Hochtemperaturwerkstoffe aus. Versuche, Cr3C2 teilweise durch Mo2C, WC, TiC und TaC sowie Nickel durch Kobalt, Kupfer, Eisen oder Molybdän zu ersetzen, haben keine wesentlichen Eigenschaftsverbesserungen gebracht. Eine andere Möglichkeit zu korrosionsfesten Hartmetallen zu gelangen, besteht darin, in WC-Co- oder WC-TiC-Co-Legierungen das Kobalt durch korrosionsbeständige Binder-Legierungen zu ersetzen. Hierzu wurden Nickel-Chrom-Legierungen im Verhältnis 80:20 oder 70:30 verwendet. In der Praxis kommen 6 bis 20%, vorzugsweise 8 bis 10% Binder-Legierung in Frage. Platin gebundenes WC-Hartmetall wurde ebenfalls hergestellt. Dieses wird im Reaktorbau, wo starke Neutronenstrahlung auftritt empfohlen [Kieffer, Benesovsky 1965].Hard metals or hard alloys have already been described in R. Kieffer, F. Benesovsky "Hartmetalle" (1965), pages 216 to 223. Hard metals with a base carbide made of chromium carbide (Cr 3C2) with 12% or 15% nickel binder have good wear resistance and high corrosion resistance. Such chrome carbide hard metals are relatively brittle, which has to be taken into account in the case of impact loads. With increasing nickel content, the corrosion resistance of Cr 3 C 2 hard metals also decreases. The low toughness and poor resistance to temperature changes preclude the use of Cr3C2 hard metals as high-temperature materials. Attempts to partially replace Cr 3 C 2 with Mo 2 C, WC, TiC and TaC and nickel with cobalt, copper, iron or molybdenum have not brought about any significant improvements in properties. Another way to obtain corrosion-resistant hard metals is to replace the cobalt in WC-Co or WC-TiC-Co alloys with corrosion-resistant binder alloys. Nickel-chromium alloys in a ratio of 80:20 or 70:30 were used for this. In practice, 6 to 20%, preferably 8 to 10%, binder alloy can be used. Platinum-bonded toilet carbide was also made. This is recommended in reactor construction where strong neutron radiation occurs [Kieffer, Benesovsky 1965].

Die Nachteile der bekannten Harlegierungen sind in ihrer verhältnismäßig geringen Festigkeit und/oder in ihrem hohen spezifischen Gewicht zu sehen.The disadvantages of the known har alloys can be seen in their relatively low strength and / or in their high specific weight.

Der Erfindung liegt daher die Aufgabe zugrunde, einen Werkstoff mit hoher Festigkeit, hoher Härte und hoher Verschleißfestigkeit, der gegen korrodierende (teilweise auch oxidierende) Medien weitgehend resistent ist, bereitzustellen. Das Verfahren seiner Herstellung soll einfach sein.The invention is therefore based on the object of providing a material with high strength, high hardness and high wear resistance, which is largely resistant to corrosive (sometimes also oxidizing) media. The process of its manufacture should be simple.

Die Aufgabe wird erfindungsgemäß gelöst durch eine Hartlegierung, bestehend aus einem oder mehreren Hartstoffen und einer binären oder multinären Bindemetall-Legierung, die mindestens ein Metall aus der Gruppe 8 des Periodensystems der Elemente und/oder Rhenium enthält und die dadurch gekennzeichnet ist, daß

  • a) eine feindisperse homogene Verteilung des Hartstoffes in der Bindemetall-Legierung vorliegt,
  • b) die Hartstoffe aus Carbiden der Übergangsmetalle der Gruppen 4A, 5A und 6A des Periodensystems der Elemente bestehen,
  • c) die Bindemetall-Legierung aus mindestens einem der Übergangsmetalle der Gruppen 4A, 5A und 6A des Periodensystems der Elemente mit Rhenium oder mindestens einem der Platinmetalle Ru, Rh, Pd, Os, lr, Pt, worin der Anteil des Platinmetalls bis zu 90 Atom-% durch Eisen, Kobalt oder Nickel ersetzt werden kann, besteht und
  • d) die Übergangsmetalle, die Bestandteile der Hartstoffe sind, die gleichen sind wie die Übergangsmetalle in der Bindemetall-Legierung.
The object is achieved by a hard alloy consisting of one or more hard materials and a binary or multinary binder metal alloy which contains at least one metal from group 8 of the periodic table of the elements and / or rhenium and which is characterized in that
  • a) there is a finely dispersed, homogeneous distribution of the hard material in the binder metal alloy,
  • b) the hard materials consist of carbides of the transition metals of groups 4A, 5A and 6A of the periodic table of the elements,
  • c) the binder metal alloy of at least one of the transition metals of groups 4A, 5A and 6A of the periodic table of the elements with rhenium or at least one of the platinum metals Ru, Rh, Pd, Os, lr, Pt, in which the proportion of the platinum metal up to 90 atoms -% can be replaced by iron, cobalt or nickel, and
  • d) the transition metals, which are components of the hard materials, are the same as the transition metals in the binder metal alloy.

Vorteilhafte Ausbildungen der Hartlegierung sind gekennzeichnet durch Hartstoff-zu-Bindemetall-Legierungsverhältnisse im Bereich zwischen 90 Vol.-% Hartstoff/10 Vol.-% Bindemetall-Legierung und 5 Vol.-% Hartsoff/95 Vol.-% Bindemetall-Legierung. Das Carbid in der Hartlegierung weist eine Zusammensetzung auf, die einem Obergangsmetall-zu-Kohlenstoff-Verhältnis (Atomverhältnis) im Bereich von 1:1 bis 2:1 entspricht. In einer vorteilhaften Weiterbildung der Hartlegierung ist der Anteil des Platinmetalls in der Bindemetall-Legierung bis zu 90 Atom-% durch Eisen, Kobalt oder Nickel ersetzt.Advantageous configurations of the hard alloy are characterized by hard material-to-binder metal alloy ratios in the range between 90 vol.% Hard material / 10 vol.% Binder metal alloy and 5 vol.% Hard material / 95 vol.% Binder metal alloy. The carbide in the hard alloy has a composition which corresponds to a transition metal to carbon ratio (atomic ratio) in the range from 1: 1 to 2: 1. In an advantageous further development of the hard alloy, the proportion of platinum metal in the binder metal alloy is replaced by up to 90 atomic% by iron, cobalt or nickel.

Hartlegierungen, die aus einem oder mehreren Carbiden der Übergangsmetalle Titan, Zirkonium, Hafnium (Gruppe 4A des Periodensystems der Elemente), Vanadium, Niob, Tantal (Gruppe 5A) und Wolfram (in der Gruppe 6A) und aus einem metallischen Binder aus wenigstens einem Metall, das aus einer Gruppe ausgewählt ist, die Platin, Palladium, Rhodium und Ruthenium umnfaßt, bestehen, sind aus der DE-A-2011082 bekannt. Aus dieser Druckschrift geht auch hervor, daß das metallische Bindemittel ein zusätzliches Metall oder zusätzliche Metalle aus der Gruppe Iridium, Osmium, Nickel, Kobalt und Eisen enthalten kann. Zumindest die Metalle Ruthenium und Palladium sollen im Bindemittel die Wirkung haben, das Wachsen der Kömchen vollständig zu unterdrücken und in einigen Fällen die Korngröße der Metallcarbide während des Sinterns aktiv zu reduzieren.Hard alloys consisting of one or more carbides of the transition metals titanium, zirconium, hafnium (group 4A of the Periodic Table of the Elements), vanadium, niobium, tantalum (group 5A) and tungsten (in group 6A) and a metallic binder made of at least one metal , which is selected from a group comprising platinum, palladium, rhodium and ruthenium, are known from DE-A-2011082. This publication also shows that the metallic binder can contain an additional metal or additional metals from the group consisting of iridium, osmium, nickel, cobalt and iron. At least the metals ruthenium and palladium in the binder are said to have the effect of completely suppressing the growth of the granules and in some cases actively reducing the grain size of the metal carbides during sintering.

Hartlegierungen wie die erfindungsgemäßen Hartlegierungen, welche alle binäre oder multinäre Bindemetall-Legierungen enthalten, die sowohl ein Metall oder mehrere Metalle aus der Gruppe 8 des Periodensystems der Elemente oder Rhenium als auch ein oder mehrere Übergangsmetalle der Gruppen 4A, 5A und 6A aufweisen, werden in der DE-A-2011082 nicht angesprochen.Hard alloys such as the hard alloys according to the invention, which all contain binary or multinary binder metal alloys which have both one or more metals from group 8 of the Periodic Table of the Elements or rhenium and one or more transition metals from groups 4A, 5A and 6A, are shown in DE-A-2011082 not addressed.

Das Verfahren zur Herstellung der erfindungsgemäßen Hartlegierungen ist dadurch gekennzeichnet, daß

  • a) ein Pulver eines Übergangsmetalls aus einer der Gruppen 4A, 5A oder 6A mit einem Pulver des Metalls Rhenium oder eines Platinmetalls und mit Kohlenstoffpulver in stöchiometrischem Verhältnis, das Carbiden mit 2 oder mehr Metallkomponenten entspricht, gemischt werden,
  • b) daß Pulvergemisch aus a) zu Preßlingen gepreßt wird,
  • c) die Preßlinge bei Temperaturen von 1575 K oder darüber, jedoch in jedem Einzelfall bei Temperaturen oberhalb der Zerfallstemperatur des jeweiligen mehrkomponentigen Carbids geschmolzen oder gesintert und
  • d) danach einer Ausscheidungs- oder Homogenisierungs-Glühung unterzogen und abgekühlt werden.
The process for producing the hard alloys according to the invention is characterized in that
  • a) a powder of a transition metal from one of groups 4A, 5A or 6A is mixed with a powder of the metal rhenium or a platinum metal and with carbon powder in a stoichiometric ratio which corresponds to carbides with 2 or more metal components,
  • b) that powder mixture from a) is pressed into compacts,
  • c) the compacts at temperatures of 1575 K or above, but in each individual case at Tem temperatures melted or sintered above the decomposition temperature of the respective multicomponent carbide and
  • d) then subjected to a precipitation or homogenization annealing and cooled.

In einer Ausbildung des erfindungsgemäßen Verfahrens wird Ch.rompulver mit einem Pulver eines oder mehrerer der Metalle aus der Gruppe Ru, Rh, Ir und Pt und mit Kohlenstoffpulver in einem Verhältnis das den Formeln

Figure imgb0001
Figure imgb0002
Figure imgb0003
Figure imgb0004
oder aus diesen sich ergebenden Mischformeln entspricht, gemischt und das Gemisch nach dem Pressen zur Bildung eines intermediär enstehenden Carbids geschmolzen oder bei Temperaturen über den Zerfallstemperaturen der jeweiligen mehrkomponentigen Carbide gesintert.In one embodiment of the process according to the invention, chrome powder is mixed with a powder of one or more of the metals from the group Ru, Rh, Ir and Pt and with carbon powder in a ratio that corresponds to the formulas
Figure imgb0001
Figure imgb0002
Figure imgb0003
Figure imgb0004
or complies with this resultant mixed formulas, mixed and melted the mixture after pressing to form an intermediate range Henden carbide or at temperatures above the decomposition temperatures of the respective mehrkomponen strength Carbide t sintered.

In einer anderen Ausbildung des erfindungsgemäßen Verfahrens wird Molybdänpulver mit einem Pulver eines oder. mehrerer Metalle aus der Gruppe Re, Ru, Rh, Os, lr, Pt und mit Kohlenstoffpulver in einem Verhältnis, das den Formeln

Figure imgb0005
Figure imgb0006
Figure imgb0007
Figure imgb0008
Figure imgb0009
Figure imgb0010
oder aus diesen sich ergebenden Mischformeln entspricht, gemischt und das Gemisch nach dem Pressen zur Bildung eines intermediär entstehenden Carbids geschmolzen oder bei Temperaturen über den Zerfallstemperaturen der jeweiligen mehrkomponentigen Carbide gesintert.In another embodiment of the method according to the invention, molybdenum powder is mixed with a powder or. several metals from the group Re, Ru, Rh, Os, lr, Pt and with carbon powder in a ratio that matches the formulas
Figure imgb0005
Figure imgb0006
Figure imgb0007
Figure imgb0008
Figure imgb0009
Figure imgb0010
or from these resulting mixing formulas, mixed and the mixture after pressing to form an intermediate carbide melted or sintered at temperatures above the decomposition temperatures of the respective multicomponent carbides.

In einer weiteren Ausbildung des erfindungsgemäßen Verfahrens wird Wolframpulver mit einem Pulver eines oder mehrerer der Metalle aus der Gruppe Ru, Rh, Os und Pt und mit Kohlenstoffpulver in einem Verhältnis, das den Formeln

Figure imgb0011
Figure imgb0012
Figure imgb0013
Figure imgb0014
oder aus diesen sich ergebenden Mischformeln entspricht, gemischt und das Gemisch nach dem Pressen zur Bildung eines intermediär entstehenden Carbids geschmolzen oder bei Temperaturen über den Zerfallstemperaturen der jeweiligen mehrkomponentigen Carbide gesintert.In a further embodiment of the method according to the invention, tungsten powder is mixed with a powder of one or more of the metals from the group Ru, Rh, Os and Pt and with carbon powder in a ratio that corresponds to the formulas
Figure imgb0011
Figure imgb0012
Figure imgb0013
Figure imgb0014
or from these resulting mixing formulas, mixed and the mixture after pressing to form an intermediate carbide melted or sintered at temperatures above the decomposition temperatures of the respective multicomponent carbides.

Eine andere erfindungsgemäße Verfahrensweise zur Herstellung einer Hartlegierung gemäß der Erfindung ist dadurch gekennzeichnet, daß

  • a) ein Pulver eines vorgefertigten Carbids eines Übergangsmetalles aus einer der Gruppen 4A, 5A oder 6A mit einem Pulver eines Ubergangsmetalles aus einer der Gruppen 4A, 5A oder 6A und mit einem Pulver des Metalles Re oder eines der Platinmetalle in stöchiometrischem Verhältnis, das Carbiden mit 2 oder mehr Metallkomponenten entspricht, gemischt wird,
  • b) das Pulvergemisch aus a) zu Preßlingen gepreßt wird,
  • c) die Preßlinge bei Temperaturen von 1575 K oder darüber, jedoch in jedem Einzelfall bei Temperaturen oberhalb der Zerfallstemperatur des jeweiligen mehrkomponentigen Carbids geschmolzen oder gesintert und
  • d) danach einer Ausscheidungs- oder Homogenisierungs-Glühung unterzogen und abgekühlt werden.
Another procedure according to the invention for producing a hard alloy according to the invention is characterized in that
  • a) a powder of a prefabricated carbide of a transition metal from one of the groups 4A, 5A or 6A with a powder of a transition metal from one of the groups 4A, 5A or 6A and with a powder of the metal Re or one of the platinum metals in a stoichiometric ratio, the carbides with Corresponds to 2 or more metal components, is mixed,
  • b) the powder mixture from a) is pressed into compacts,
  • c) the compacts are melted or sintered at temperatures of 1575 K or above, but in each individual case at temperatures above the decomposition temperature of the respective multicomponent carbide and
  • d) then subjected to a precipitation or homogenization annealing and cooled.

In allen Fällen wurde nach dem Schmelz- oder Sintervorgang eine Ausscheidungsglühung durchgeführt. Auf diese Weise konnten Legierungen hergestellt werden, die sich durch feinstverteilte Carbide in einer festen, zähen und korrosionsbeständigen Metallmatrix auszeichnen. Als Carbide kommen insbesondere Chrom-, Molybdän- und Wolframcarbide in Frage; als Metallphase Legierungen auf der Basis von (Pt-Cr), (Pt-Mo), (Pt-W), (Pd-Cr), (Pd-Mo), (Pd-W), (Ru-Cr), (Ru-Mo), (Ru-W) bzw. anderer Platinmetalle mit Cr, Mo und W.In all cases, precipitation annealing was carried out after the melting or sintering process. In this way, alloys could be produced which are characterized by very finely divided carbides in a solid, tough and corrosion-resistant metal matrix. Chromium, molybdenum and tungsten carbides are particularly suitable as carbides; as metal phase alloys based on (Pt-Cr), (Pt-Mo), (Pt-W), (Pd-Cr), (Pd-Mo), (Pd-W), (Ru-Cr), ( Ru-Mo), (Ru-W) or other platinum metals with Cr, Mo and W.

Die Erfindung zeichnet sich dadurch aus, daß ternäre Hochtemperaturcarbide erhalten werden, die beim Abkühlen oder bei Wärmebehandlung bei mittleren Temperaturen (ca. 1273 K bis 1575 K) in eine Carbidphase und eine feste Platinmetall-Legierung zerfallen. Die Wärmebehandlung läßt sich so steuern, daß äußerst feinkörnige Gefügestrukturen mit gleichmäßiger Carbidverteilung entstehen. Dies bringt eine hohe Härte und Festigkeit mit sich und ist die Grundlage für günstiges Verschleißverhalten. Beispielsweise weist eine Hartlegierung mit 63 Vol.-% Metallphase und 37 Vol.-% Carbid (Mo2C) so noch eine Härte von 1060 HV auf und, nach dem Rißlängen-Verfahren zu schließen, eine sehr hohe Zähigkeit.The invention is characterized in that ternary high-temperature carbides are obtained which decompose into a carbide phase and a solid platinum metal alloy when cooled or during heat treatment at medium temperatures (approx. 1273 K to 1575 K). The heat treatment can be controlled in such a way that extremely fine-grained microstructures with uniform carbide distribution are created. This brings with it a high level of hardness and strength and is the basis for favorable wear behavior. For example, a hard alloy with 63 vol .-% metal phase and 37 vol .-% carbide (Mo 2 C) still has a hardness of 1060 HV and, according to the crack length method, a very high toughness.

Die erfindungsgemäßen Hartlegierungen stellen feinkörnige Verbundwerkstoffe dar mit einer Gesamtzusammensetzung aus dem Viereck a-b-c-d in Fig. 1 bestehend aus einer Carbidphase und Metallegierungen mit den in Fig. 1 angegebenen Komponenten. Wesentlicher Bestandteil der Erfindung ist ferner die Herstellungsmethode: Durch Hochtemperatursinterung oder Erschmelzung wird ein ternäres Carbid hergestellt, welches bei tieferen Temperaturen zum Zerfall in eine binäre Carbidphase und eine binäre Metallphase gebracht wird.The hard alloys according to the invention are fine-grained composite materials with a total composition of the square a-b-c-d in FIG. 1 consisting of a carbide phase and metal alloys with the components shown in FIG. 1. The production method is also an essential component of the invention: a high-temperature sintering or melting process produces a ternary carbide, which is decomposed into a binary carbide phase and a binary metal phase at lower temperatures.

Folgende Tabelle zeigt Zusammensetzungen solcher ternärer Carbidphasen mit Übergangsmetallen der 6. Gruppe, deren Zerfall erfindungsgemäß genutzt wird.The following table shows compositions of such ternary carbide phases with transition metals of the 6th group, the decay of which is used according to the invention.

Ternäre kubisch flächenzentrierte Carbide der Übergangsmetalle Cr, Mo und W mit Rhenium und Platinmetallen

Figure imgb0015
Ternary face-centered cubic carbides of the transition metals Cr, Mo and W with rhenium and platinum metals
Figure imgb0015

Jedoch können auch erfindungs gemäße Hartlegierungen in dem in Fig. 1 bezeichneten Bereich mit anderen Übergangsmetallen der Gruppen 4A, 5A und 6A und den genannten Platinmetallen hergestellt werden.However, hard alloys according to the invention can also be produced in the region designated in FIG. 1 with other transition metals from groups 4A, 5A and 6A and the platinum metals mentioned.

Die Erfindung wird im folgenden anhand einiger Ausführungsbeispiele, die die Erfindung jedoch nicht einschränken sollen, näher erläutert.The invention is explained in more detail below with the aid of a few exemplary embodiments, which, however, are not intended to restrict the invention.

Beispiel 1:Example 1:

Ein Werkstoff auf der Basis Molybdäncarbid-(Mo, Pt)Legierung wurde erhalten durch Erschmelzen oder Sinterung oberhalb 1575 K einer Mischung von Mo/Pt/C 50/35/15 At.%. Eine solche Probe liegt am Ende des ternären Carbids (Mo, Pt)G~0.1 im Isothermen-Schaubild des Systems Mo-Pt-C bei 1773 K. Eine nachfolgende Glühung bei 1373 K führte zum Zerfall gemäß den Phasenbeziehungen im Schaubild bei 1373 K in Mo2C und η-(Mo, Pt). Die Gehalte der metallischen bzw. der Carbidphase können nach Bedarf variiert werden. WC-(W, Ir)-bzw. WC-(W, Pt)-Legierungen mit sehr hohen Metallgehalten sind ebenfalls hergestellt worden.A material based on molybdenum carbide (Mo, Pt) alloy was obtained by melting or sintering above 1575 K of a mixture of Mo / Pt / C 50/35/15 at.%. Such a sample is located at the end of the ternary carbide (Mo, Pt) G ~ 0.1 in the isothermal diagram of the Mo-Pt-C system at 1773 K. Subsequent annealing at 1373 K led to decay according to the phase relationships in the diagram at 1373 K in Mo 2 C and η- (Mo, Pt). The contents of the metallic or carbide phase can be varied as required. WC- (W, Ir) or WC (W, Pt) alloys with very high metal contents have also been produced.

Beispiel 2:Example 2:

Eine W/Pt/C-Legierung mit 50 At.% W, 40 At.% Pt und 10 At.% C wird erschmolzen oder bei 2273 K gesintert, schnell abgekühlt und anschließend bei Temperaturen um 1373 K homogenisiert. Feinste WC- und W2C-Teilchen sind sodann in einer (W, Pt)-Matrix gelöst.A W / Pt / C alloy with 50 at.% W, 40 at.% Pt and 10 at.% C is melted or sintered at 2273 K, cooled rapidly and then homogenized at temperatures around 1373 K. The finest WC and W 2 C particles are then dissolved in a (W, Pt) matrix.

Beispiel 3Example 3

Eine W/Rh/C-Legierung mit 40 At.% W, 40 At.% Rh und 20 At.% C wird erschmolzen oder bei 2273 K gesintert, schnell abgekühlt und anschließend bei 1773 K homogenisiert. Das Mikrogefüge zeigt WC- und W2C-Partikel von etwa 1 bis 2 pm, homogen in einer (W, Rh)-Legierung verteilt.A W / Rh / C alloy with 40 at.% W, 40 at.% Rh and 20 at.% C is melted or sintered at 2273 K, rapidly cooled and then homogenized at 1773 K. The microstructure shows WC and W2C particles of about 1 to 2 pm, homogeneously distributed in a (W, Rh) alloy.

Verschleiß- und korrosionsbeständige Hartmetalle der angegebenen Art können in Werkzeugen und Verschleißteilen unter besonders korrosiver (und teilweise oxidationsanfälliger) Umgebung eingesetzt werden. Auch in der Kerntechnik ergeben sich günstige Anwendungsmöglichkeiten infolge der Kurzlebigkeit der bei Neutronenstrahlung auftretenden Isotopen von manchen Platinmetallen, z.B. Pt, im Gegensatz zu dem konventionellen Bindemetall Co.Wear and corrosion-resistant hard metals of the specified type can be used in tools and wear parts in a particularly corrosive (and sometimes oxidation-prone) environment. In nuclear technology, too, there are favorable application possibilities due to the short life of the isotopes of some platinum metals, e.g. Pt, in contrast to the conventional binder metal Co.

Claims (9)

1. Hard alloy comprising one or several hard phases and a binary or multi-component binder metal alloy, said hard alloy comprising at least one metal of Group 8 of the Periodic Table of Elements and/or rhenium, with
a) a finely dispersed homogeneous distribution of the hard phase present in said binder metal alloy;
b) the hard phases comprising carbides of the transition metals of Groups 4A, 5A and 6A of the Periodic Table of Elements;
c) the binder metal alloy comprising at least one of the transition metals of Groups 4A, 5A and 6A of the Periodic Table of Elements with rhenium or at least one of the platinum metals Ru, Rh, Pd, Os, lr, Pt, the proportion of platinum metal being replaceable up to 90 atom percent by iron, cobalt or nickel; and
d) the transition metals which are constituents of the hard phases, being the same as the transition metals in the binder metal alloy.
2. Hard alloy according to Claim 1 wherein the ratio of hard phase to binder metal alloy is in a range from 90 vol.% hard phase to 10 vol.% binder metal alloy to 5 vol.% hard phase to 95 vol.% binder metal alloy.
3. Hard alloy according to Claim 1 or 2, wherein said carbide has a composition which corresponds to a transition metal to carbon ratio (atomic ratio) in a range from 1:1 to 2:1.
4. Hard alloy according to one of the foregoing claims, wherein the proportion of platinum metal in the binder metal alloy is replaced up to 90 at.% by iron, cobalt or nickel.
5. Method for producing a hard alloy according to Claim 1, comprising
a) forming a powder mixture of a transition metal of one of Groups 4A, 5A or 6A and a powder of the rhenium metal or a platinum metal and a carbon powder in stoichiometric proportions which corresponds to carbides comprising two or more metal components;
b) pressing the powder mixture from a) to form pressed bodies;
c) melting or sintering the pressed bodies at a temperature of 1575 K or above, but in each individual case at temperatures above the decomposition temperature of said multi-component carbide; and
d) subsequent subjecting to precipitation or homogenization annealing followed by cooling.
6. Method according to Claim 6, wherein said powder mixture is formed from chromium powder, a powder of one or several of the metals of the Group Ru, Rh, Ir and Pt, and carbon powder in a ratio which corresponds to the formulas
Figure imgb0043
Figure imgb0044
Figure imgb0045
and
Figure imgb0046
or resulting from these mixing formulas, and the mixture, after pressing to form an intermediate carbide, is molten or sintered at temperatures above the decomposition temperatures of the respective multi-component carbides.
7. Method according to Claim 6, wherein said powder mixture is formed from molybdenum powder, a powder of one or several metals of the Group Re, Ru, Rh, Os, Ir, Pt, and carbon powder in a ratio corresponding to the formulas
Figure imgb0047
Figure imgb0048
Figure imgb0049
Figure imgb0050
Figure imgb0051
and
Figure imgb0052
or resulting from these mixing formulas, and the mixture, after pressing to. form an intermediate carbide, is molten or sintered at temperatures above the decomposition temperatures of the respective multi-component carbides.
8. Method according to Claim 6, wherein said powder mixture is formed from tungsten powder, a powder of one or several of the metals of the Group Ru, Rh, Os and Pt, and carbon powder in a ratio which corresponds to the formulas
Figure imgb0053
Figure imgb0054
Figure imgb0055
and
Figure imgb0056
or resulting from these mixing formulas, and the mixture after pressing to form an intermediate carbide, is molten or sintered at temperatures above the decomposition temperatures of the respective multi-component carbides.
9. Method for producing a hard alloy according to Claim 1, comprising
a) forming a powder mixture of a prefabricated carbide of a transition metal of one of the Groups 4A, 5A or 6A and a powder of a transition metal of one of the Groups 4A, 5A or 6A and a powder of the Re-metal or one of the platinum metals in stoichiometric proportions which correspond to carbides having two or more metal components;
b) pressing the powder mixture from a) to form pressed bodies;
c) melting or sintering the pressed bodies at a temperature of 1575 K or above, but in each individual case at temperatures above the decomposition temperature of the respective multi-component carbide; and
d) subsequently subjecting them to precipitation or homogenization annealing followed by cooling.
EP80104274A 1980-07-19 1980-07-19 Hard alloy consisting of one or several hard substances and a binding metal alloy, and process for producing this alloy Expired EP0044351B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT80104274T ATE11574T1 (en) 1980-07-19 1980-07-19 HARD ALLOY CONSISTING OF ONE OR MORE HARD MATERIALS AND A BINDER METAL ALLOY, AND PROCESS FOR MAKING SUCH ALLOY.
DE8080104274T DE3070055D1 (en) 1980-07-19 1980-07-19 Hard alloy consisting of one or several hard substances and a binding metal alloy, and process for producing this alloy
EP80104274A EP0044351B1 (en) 1980-07-19 1980-07-19 Hard alloy consisting of one or several hard substances and a binding metal alloy, and process for producing this alloy
US06/286,376 US4432794A (en) 1980-07-19 1981-07-17 Hard alloy comprising one or more hard phases and a binary or multicomponent binder metal alloy
JP56112046A JPS5751239A (en) 1980-07-19 1981-07-17 Hard alloy and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP80104274A EP0044351B1 (en) 1980-07-19 1980-07-19 Hard alloy consisting of one or several hard substances and a binding metal alloy, and process for producing this alloy

Publications (2)

Publication Number Publication Date
EP0044351A1 EP0044351A1 (en) 1982-01-27
EP0044351B1 true EP0044351B1 (en) 1985-01-30

Family

ID=8186725

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80104274A Expired EP0044351B1 (en) 1980-07-19 1980-07-19 Hard alloy consisting of one or several hard substances and a binding metal alloy, and process for producing this alloy

Country Status (5)

Country Link
US (1) US4432794A (en)
EP (1) EP0044351B1 (en)
JP (1) JPS5751239A (en)
AT (1) ATE11574T1 (en)
DE (1) DE3070055D1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4746363A (en) * 1982-12-30 1988-05-24 Corning Glass Works Reaction sintered cermet
CH653204GA3 (en) * 1983-03-15 1985-12-31
DE3584475D1 (en) * 1984-05-18 1991-11-28 Sumitomo Electric Industries METHOD FOR SINTERING CERAMIC BODIES AND CERAMIC BODIES PRODUCED BY SAME WITH A DISTRIBUTED METAL REINFORCEMENT.
US4731115A (en) * 1985-02-22 1988-03-15 Dynamet Technology Inc. Titanium carbide/titanium alloy composite and process for powder metal cladding
SE456428B (en) * 1986-05-12 1988-10-03 Santrade Ltd HARD METAL BODY FOR MOUNTAIN DRILLING WITH BINDING PHASE GRADIENT AND WANTED TO MAKE IT SAME
US4810314A (en) * 1987-12-28 1989-03-07 The Standard Oil Company Enhanced corrosion resistant amorphous metal alloy coatings
US5134039A (en) * 1988-04-11 1992-07-28 Leach & Garner Company Metal articles having a plurality of ultrafine particles dispersed therein
US4950328A (en) * 1988-07-12 1990-08-21 Mitsubishi Metal Corporation End mill formed of tungsten carbide-base sintered hard alloy
US5139891A (en) * 1991-07-01 1992-08-18 Olin Corporation Palladium alloys having utility in electrical applications
US5236789A (en) * 1991-07-01 1993-08-17 Olin Corporation Palladium alloys having utility in electrical applications
US5476531A (en) * 1992-02-20 1995-12-19 The Dow Chemical Company Rhenium-bound tungsten carbide composites
JPH07268709A (en) * 1994-03-23 1995-10-17 Kinzoku Kogyo Kenkyu Hatten Chushin Cloth gripper
US6197253B1 (en) 1998-12-21 2001-03-06 Allen Broomfield Lead-free and cadmium-free white metal casting alloy
US6821313B2 (en) * 2002-05-31 2004-11-23 Honeywell International, Inc. Reduced temperature and pressure powder metallurgy process for consolidating rhenium alloys
US6987339B2 (en) * 2002-05-03 2006-01-17 Honeywell International, Inc. Flywheel secondary bearing with rhenium or rhenium alloy coating
US6773663B2 (en) 2002-05-03 2004-08-10 Honeywell International, Inc. Oxidation and wear resistant rhenium metal matrix composites
US6946096B2 (en) 2002-05-03 2005-09-20 Honeywell International, Inc. Use of powder metal sintering/diffusion bonding to enable applying silicon carbide or rhenium alloys to face seal rotors
US7645315B2 (en) * 2003-01-13 2010-01-12 Worldwide Strategy Holdings Limited High-performance hardmetal materials
US20070034048A1 (en) * 2003-01-13 2007-02-15 Liu Shaiw-Rong S Hardmetal materials for high-temperature applications
US6911063B2 (en) * 2003-01-13 2005-06-28 Genius Metal, Inc. Compositions and fabrication methods for hardmetals
US7857188B2 (en) * 2005-03-15 2010-12-28 Worldwide Strategy Holding Limited High-performance friction stir welding tools
JP2009504926A (en) * 2005-08-19 2009-02-05 ジーニアス メタル インコーポレーテッド Cemented carbide materials for high temperature applications
US8512882B2 (en) * 2007-02-19 2013-08-20 TDY Industries, LLC Carbide cutting insert
US8440314B2 (en) * 2009-08-25 2013-05-14 TDY Industries, LLC Coated cutting tools having a platinum group metal concentration gradient and related processes
US9340852B2 (en) * 2011-09-26 2016-05-17 National Tsing Hua University Elevated refractory alloy with ambient-temperature and low-temperature ductility and method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB828877A (en) * 1957-10-04 1960-02-24 Engelhard Ind Inc Improvements in or relating to spinerettes
DE2011082A1 (en) * 1969-03-10 1970-09-24 Production Tool Alloy Co. Ltd., Sharpenhoe Bedford (Großbritannien) Cutting tool
DE2225896A1 (en) * 1971-05-28 1972-12-14 Int Nickel Ltd Cemented carbide
US4097275A (en) * 1973-07-05 1978-06-27 Erich Horvath Cemented carbide metal alloy containing auxiliary metal, and process for its manufacture

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3395013A (en) * 1965-03-29 1968-07-30 Gen Telepohone And Electronics High-temperature ductile alloys
US3379520A (en) * 1967-03-23 1968-04-23 Gen Electric Tantalum-base alloys
US3554737A (en) * 1968-05-21 1971-01-12 Battelle Development Corp Cast refractory alloy
US3690962A (en) * 1969-02-26 1972-09-12 Aerojet General Co Carbide alloys suitable for cutting tools and wear parts
US3628921A (en) * 1969-08-18 1971-12-21 Parker Pen Co Corrosion resistant binder for tungsten carbide materials and titanium carbide materials
US4067742A (en) * 1976-04-01 1978-01-10 Nasa Thermal shock and erosion resistant tantalum carbide ceramic material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB828877A (en) * 1957-10-04 1960-02-24 Engelhard Ind Inc Improvements in or relating to spinerettes
DE2011082A1 (en) * 1969-03-10 1970-09-24 Production Tool Alloy Co. Ltd., Sharpenhoe Bedford (Großbritannien) Cutting tool
DE2225896A1 (en) * 1971-05-28 1972-12-14 Int Nickel Ltd Cemented carbide
US4097275A (en) * 1973-07-05 1978-06-27 Erich Horvath Cemented carbide metal alloy containing auxiliary metal, and process for its manufacture

Also Published As

Publication number Publication date
EP0044351A1 (en) 1982-01-27
ATE11574T1 (en) 1985-02-15
JPS5751239A (en) 1982-03-26
DE3070055D1 (en) 1985-03-14
US4432794A (en) 1984-02-21

Similar Documents

Publication Publication Date Title
EP0044351B1 (en) Hard alloy consisting of one or several hard substances and a binding metal alloy, and process for producing this alloy
DE69333657T2 (en) Alloy with high corrosion resistance and high wear resistance, process for producing these products and starting material for this production process
DE2407410B2 (en) Carbide hard metal with precipitation hardenable metallic matrix
DE2445462B2 (en) Use of a nickel alloy
AT391435B (en) METHOD FOR PRODUCING AN ODSS ALLOY
EP3247813B1 (en) Hard metal-cermet composite material and method for the production thereof
EP2185738B1 (en) Production of alloys based on titanium aluminides
DE2018032C3 (en) Process for the production of carbide hard metal based on WC, TiC and / or TaC
DE2407411B2 (en) Heat-resistant and wear-resistant nickel-based alloy
DE19640788C1 (en) Coating powder used e.g. in thermal spraying
DE3744550A1 (en) FE-BASED SINTER ALLOY FOR INTERNAL COMBUSTION ENGINES AND METHOD FOR THE PRODUCTION THEREOF
EP0214679B2 (en) Oxidation-resistant hard metal alloy
DE2248130C2 (en) Powdered welding filler material based on nickel and the welded workpiece obtained with it
DE3100926C2 (en)
DE2546623C2 (en)
DE2350694C3 (en) Process for coating a workpiece made of a superalloy to protect against corrosion and reaction mixture
DE10117657B4 (en) Complex boride cermet body and use of this body
EP0760869A1 (en) Nickel-aluminium intermetallic basis alloy
DE1295855B (en) High temperature resistant materials and molded parts in dispersion form
DE2110520A1 (en) Method of making coated cemented carbide articles
DE2353971A1 (en) DURABLE DISPERSION REINFORCED NICKEL-CHROME ALLOY
DE2115999B2 (en) USE OF TUNGSTEN POWDER FOR SINTER HARD METAL HIGH BENDING STRENGTH AND HARDNESS
DE1925742C (en) Process for the production of metals and metal alloys with embedded oxide particles
AT138248B (en) Hard alloy and process for its manufacture.
WO2021099029A1 (en) Tungsten-carbide-based hard metal material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR GB SE

17P Request for examination filed

Effective date: 19811209

ITF It: translation for a ep patent filed

Owner name: NON E' STATA DESIGNATA L'ITALIA;BARZANO' E ZANARDO

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH DE FR GB LI SE

REF Corresponds to:

Ref document number: 11574

Country of ref document: AT

Date of ref document: 19850215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3070055

Country of ref document: DE

Date of ref document: 19850314

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19860723

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19870719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19870720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19870731

Ref country code: CH

Effective date: 19870731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19880401

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881118

EUG Se: european patent has lapsed

Ref document number: 80104274.8

Effective date: 19880831