EP0035064A2 - Disturbance protected storage of radioactive self-heating materials - Google Patents

Disturbance protected storage of radioactive self-heating materials Download PDF

Info

Publication number
EP0035064A2
EP0035064A2 EP80107972A EP80107972A EP0035064A2 EP 0035064 A2 EP0035064 A2 EP 0035064A2 EP 80107972 A EP80107972 A EP 80107972A EP 80107972 A EP80107972 A EP 80107972A EP 0035064 A2 EP0035064 A2 EP 0035064A2
Authority
EP
European Patent Office
Prior art keywords
storage
self
packaging
heating
protection according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP80107972A
Other languages
German (de)
French (fr)
Other versions
EP0035064A3 (en
Inventor
Stefan Ing. Grad. Ahner
Ernst Dr. Warnecke
Konrad Dr. Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nukem GmbH
Original Assignee
Nukem GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nukem GmbH filed Critical Nukem GmbH
Publication of EP0035064A2 publication Critical patent/EP0035064A2/en
Publication of EP0035064A3 publication Critical patent/EP0035064A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/06Details of, or accessories to, the containers
    • G21F5/10Heat-removal systems, e.g. using circulating fluid or cooling fins
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/005Containers for solid radioactive wastes, e.g. for ultimate disposal

Definitions

  • the invention relates to accident prevention for the storage of self-heating radioactive materials, in particular in air-cooled stores, the radioactive materials being enclosed in suitable packaging or leach-resistant particles which are placed in storage containers which can also be used as transport containers, and the space between the packaging or the particles and the storage container is filled with a solid material.
  • Self-heating radioactive materials must be stored temporarily until they are reprocessed or until they are finally disposed of.
  • This intermediate storage takes place mainly in water storage pools, in which the water takes over the cooling and the shielding function.
  • Storage in air-cooled stores has also been proposed, since this type of storage has advantages over storage in water storage tanks, especially when using inherently safe natural draft cooling.
  • cooling means that the shielding function must be ensured by safe barriers that surround the radioactive substances.
  • Such barriers mostly double containers, however prevent direct cooling of the stored goods by the cooling air.
  • the heat dissipation compared to self-heating radioactive material that is in single containers is significantly impaired. It is particularly disadvantageous that the supply of cooling air in the event of a malfunction must practically not be interrupted, since only a very limited “cooling reserve” is available and the stored goods would heat up to an unacceptably high level.
  • This accident protection should be able to cool the self-heating stored goods even if the external cooling fails until intervention measures can be taken without burdening the stored goods packaging with a melt when filling the gap.
  • the object was achieved in that the solid material is used in the form of bulk material, the melting point of which is below the permissible maximum temperature of the self-heating radioactive substance.
  • the storage goods packaging (1) for example compressed gas bottles, with the self-heating storage goods (2), for example Krypton-85, is placed, for example, five times stacked in a storage sleeve (3).
  • the gap between the packaged goods (2) and the bearing bush (3) is filled according to the invention with a loose bed (4).
  • a soft solder granulate is used as a loose bed (4), Grain size approx. 1 mm, melting point 190 o C, composition 40% Pb, 60% Sn.
  • the additional bottle temperature in this example is 200 ° C.
  • the bearing bush (3) is closed with a tightly closing, remote-controlled cover (5) with hold-down device (11).
  • the bearing bush (3) has test connections (6) and is located in a storage shaft (8) with spacer plates (10) of the storage rack (9).
  • the cooling air (7) flows naturally through the annular gap between the storage shaft (8) and the bearing bush (3).
  • the decay heat is transported from the inner storage goods packaging (1) by heat conduction via the solder granulate (4) to the bearing bush (3) and from there to the cooling air (7) flowing past.
  • the maximum bottle temperature is reduced by approximately 50 ° C. compared to storage with a gap that has not been filled.
  • the permissible interruption of cooling air (malfunction) until the solder reaches the melting temperature is extended by approx. 2 hours. It takes another 4 hours until all of the solder granules have melted, so that the duration of the cooling air interruption, which is permitted until the compressed gas cylinders reach their design pressure, is increased by about 6 hours to about four times as long as storage with an unfilled gap becomes.
  • This time saving is sufficient to include and complete intervention measures to eliminate the cooling accident. Compared to filling the gap with a salt or metal melt, this time saving is not prolonged, but there is no burden on the storage goods packaging when pouring out.
  • the accident protection according to the invention can also be applied to other self-heating stored goods, in particular also to glazed, highly radioactive waste and to spent fuel from nuclear reactors.
  • Glazed, highly radioactive waste is usually filled into stainless steel molds.
  • the packaging is then the mold and the glass block.
  • a particularly advantageous application of the accident protection according to the invention results, however, if e.g. the glass product in the form of balls, rods or the like is filled into a mold or can together with a granulate or powder according to the invention.
  • Such a bearing bush (14) with a tightly closing cover (15) is shown in an exemplary embodiment in longitudinal section in FIG. II.
  • the gradient between the maximum central temperature and the marginal temperature which is steep in the case of glazed highly radioactive waste, is additionally reduced, so that the liner temperature rises and thus a greater temperature difference is available for heat dissipation to the cooling air.
  • spent nuclear fuel elements in which the actual fuel is to be regarded as stored goods and the fuel casing (e.g. cladding tubes for light water reactor fuel elements, graphite matrix for high-temperature reactor elements) is to be regarded as packaging for the stored goods.
  • the fuel casing e.g. cladding tubes for light water reactor fuel elements, graphite matrix for high-temperature reactor elements
  • the accident protection according to the invention also has significant advantages over metal and salt melts. In most cases, without a malfunction caused by cooling interruption, storage goods packaging and bulk material, no connection. After storage, any material that is still loosely attached to the storage goods packaging can be easily and completely removed using simple mechanical cleaning processes.
  • its melting temperature can advantageously be chosen as high as it is for the stored goods in the event of an accident is still allowed. This makes the cases in which a meltdown can actually be expected in the event of a malfunction much less likely.
  • compaction e.g. by applying a vibrator, particularly advantageous.
  • salts or salt mixtures aluminum powder, granules or powder from lead, tin and zinc or their alloys, and possibly also Al-Ni, are furthermore suitable as materials for the bulk material.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Packages (AREA)
  • Processing Of Solid Wastes (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)

Abstract

The storage of self-heating radioactive materials requires a disturbance protection which prevents the temperature of the storage material from rising sharply in a short time in the event of cooling failure. It is known to fill the packed storage material into a storage tank and fix it with a fused salt or fused metal. Good disturbance protection is obtained by inserting between the storage material and storage tank a solid material in the form of bulk material whose melting point is below the permissible maximum temperature of the self-heating radioactive material.

Description

Gegenstand der Erfindung ist ein Störfallschutz für die Lagerung selbsterhitzender radioaktiver Stoffe, insbesondere in luftgekühlten Lagern, wobei die radioaktiven Stoffe in geeigneten Verpackungen oder auslaugbeständigen Teilchen eingeschlossen werden, die in auch als Transportbehälter verwendbaren Lagerbhältern eingebracht sind, und der Zwischenraum zwischen den Verpackungen, bzw. den Teilchen und dem Lagerbehälter mit einem'festen Material ausgefüllt ist.The invention relates to accident prevention for the storage of self-heating radioactive materials, in particular in air-cooled stores, the radioactive materials being enclosed in suitable packaging or leach-resistant particles which are placed in storage containers which can also be used as transport containers, and the space between the packaging or the particles and the storage container is filled with a solid material.

Selbsterhitzende radioaktive Stoffe müssen bis zu ihrer Wiederaufarbeitung bzw. bis zu ihrer Endlagerung zwischengelagert werden. Diese Zwischenlagerung erfolgt überwiegend in Wasserlagerbecken, in denen das Wasser die Kühlung sowie die Abschirmfunktion übernimmt. Es wurde auch die Lagerung in luftgekühlten Lagern vorgeschlagen, da diese Art der Lagerung gegenüber der Lagerung in Wasserlagerbecken Vorzüge aufweist, insbesondere bei Anwendung der inhärent sicheren Naturzugkühlung. Allerdings bedingt eine derartige Kühlung, daß die Abschirmfunktion durch sichere Barrieren, die die radioaktiven Stoffe umgeben, gewährleistet werden muß. Solche Barrieren, meist Doppelcontainments, verhindern jedoch die direkte Kühlung des Lagergutes durch die Kühlluft. Dadurch wird die Wärmeabfuhr gegenüber selbsterhitzendem radioaktivem Material, das sich in Einfachcontainments befindet, deutlich beeinträchtigt. Nachteilig ist dabei besonders, daß die Kühlluftzufuhr im Störfall praktisch nicht unterbrochen werden darf, da nur eine sehr begrenzte "Kühlungsreserve" zur Verfügung steht und sich das Lagergut unzulässig hoch erhitzen würde.Self-heating radioactive materials must be stored temporarily until they are reprocessed or until they are finally disposed of. This intermediate storage takes place mainly in water storage pools, in which the water takes over the cooling and the shielding function. Storage in air-cooled stores has also been proposed, since this type of storage has advantages over storage in water storage tanks, especially when using inherently safe natural draft cooling. However, such cooling means that the shielding function must be ensured by safe barriers that surround the radioactive substances. Such barriers, mostly double containers, however prevent direct cooling of the stored goods by the cooling air. As a result, the heat dissipation compared to self-heating radioactive material that is in single containers is significantly impaired. It is particularly disadvantageous that the supply of cooling air in the event of a malfunction must practically not be interrupted, since only a very limited “cooling reserve” is available and the stored goods would heat up to an unacceptably high level.

Es ist bekannt, den Zwischenraum zwischen den Barrieren bzw. zwischen der Verpackung des eingeschlossenen Gutes und dem Containment oder auch zwischen dem Lagergut und der Verpackung mit einer Salzschmelze oder einem niedrig schmelzenden Metall auszugießen (DE-OS 2824240). Mit diesem Verfahren wird beabsichtigt, eine weitere Abschirmbarriere zu schaffen, die das Lagergut auch zusätzlich fixiert. Ein Kühlungsstörfall wird nicht diskutiert, jedoch stände bei einem solchen Ereignis die zum Wiederaufschmelzen erforderliche Schmelzwärme als gewisse "Kühlungsreserve" zur Verfügung. Dieses bekannte Verfahren hat jedoch entscheidende Nachteile:

  • 1. Die Lagergutverpackung ist beim Einbringen des Salzes bzw. Metalles in jedem Fall der flüssigen Schmelze und damit der Gefahr der Legierungsbildung und Korrosion ausgesetzt.
  • 2. Das Lagergut und seine Verpackung werden beim Ausgießen mit flüssigen Schmelzen mindestens auf die Schmelztemperatur erwärmt, die jedoch bei ungestörtem, d. h. normalem Lagerbetrieb nie erreicht wird. Damit werden Lagergut und Verpackung schon vor der eigentlichen Lagerung zusätzlich belastet. Die Schmelztemperatur muß daher so niedrig liegen, daß mit Sicherheit eine Belastung bzw. Beschädigung des Lagergutes und der Verpackung auszuschließen ist. Das bedingt jedoch, daß die "Kühlungsreserve" sehr begrenzt ist und im Störfall nicht ausreicht, rechtzeitig Interventionsmaßnahmen erfolgreich abzuschließen.
  • 3. Das schmelzflüssige Ausgießen stellt eine wesentliche Erschwerung des Einlagerungs- und Auslagerungsprozesses dar. Es müssen Vorrichtungen zum Flüssigausgießen bei der Einlagerung und zum Aufschmelzen bei der Auslagerung vorgesehen werden, welche im allgemeinen nicht am endgültigen Lagerstandort installiert werden können.
  • 4. Schließlich läßt sich beim schmelzflüssigen Ausgießen des Spaltes nach dem Aufschmelzen bei der späteren Auslagerung eine nachteilige, bleibende Verunreinigung der Lagergutverpackung nicht vermeiden. Wird als selbsterhitzendes Lagergut jedoch abgebrannter Brennstoff gelagert, wobei als Lagergutverpackung die Brennelementhüllrohre anzusehen sind, so stellt diese Verunreinigung der Hüllrohre eine wesentliche Erschwerung der Wiederaufarbeitung, insbesondere beim Extraktionsprozess, dar. Außerdem entstehen große Mengen von unerwünschtem Sekundärabfall.
It is known to pour the gap between the barriers or between the packaging of the enclosed goods and the containment or also between the stored goods and the packaging with a molten salt or a low-melting metal (DE-OS 2824240). The aim of this procedure is to create a further shielding barrier that also fixes the stored goods. A cooling accident is not discussed, however, the melting heat required for re-melting would be available as a certain "cooling reserve" in the event of such an event. However, this known method has decisive disadvantages:
  • 1. When the salt or metal is brought in, the storage goods packaging is always exposed to the liquid melt and thus to the risk of alloy formation and corrosion.
  • 2. The stored goods and their packaging are at least heated to the melting temperature when pouring out with liquid melts, which, however, is never achieved with undisturbed, ie normal, warehouse operation. This means that the stored goods and packaging are additionally burdened before the actual storage. The melting temperature must therefore be so low that a load or damage to the stored goods and the packaging can be excluded with certainty. However, this means that the "cooling reserve" is very limited and is not sufficient in the event of a malfunction to successfully complete intervention measures in good time.
  • 3. The molten pouring is a major complication of the storage and retrieval process. Devices for liquid pouring during storage and for melting during retrieval must be provided, which can generally not be installed at the final storage location.
  • 4. Finally, when the gap is poured out in a molten state after melting, during later removal, disadvantageous, permanent contamination of the stored goods can be achieved do not avoid packaging. However, if spent fuel is stored as self-heating storage goods, the fuel element cladding tubes being considered as the packaging for the storage goods, this contamination of the cladding tubes constitutes a major complication of the reprocessing, in particular in the extraction process. In addition, large amounts of undesirable secondary waste arise.

Es war daher Aufgabe der vorliegenden Erfindung, einen Ströfallschutz für die Lagerung selbsterhitzender radioaktiver Stoffe, insbesondere in luftgekühlten Lagern, zu finden, wobei die radioaktiven Stoffe in geeigneten oder auslaugbestätigen Teilchen eingeschlossen werden, die in auch als Transportbehälter verwendbaren Lagerbehältern eingebracht sind, und der Zwischenraum zwischen den Verpackungen bzw. den Teilchen und dem Lagerbehälter mit einem festen Material ausgefüllt ist. Dieser Störfallschutz sollte in der Lage sein, das sich selbsterhitzende Lagergut auch bei Ausfall der äußeren Kühlung solange zu kühlen, bis Interventionsmaßnahmen getroffen werden können, ohne die Lagergutverpackung beim Ausfüllen des Spaltes mit einer Schmelze zu belasten.It was therefore an object of the present invention to find a flow protection device for the storage of self-heating radioactive substances, in particular in air-cooled stores, the radioactive substances being enclosed in suitable or leach-resistant particles which are introduced into storage containers which can also be used as transport containers, and the intermediate space between the packaging or the particles and the storage container is filled with a solid material. This accident protection should be able to cool the self-heating stored goods even if the external cooling fails until intervention measures can be taken without burdening the stored goods packaging with a melt when filling the gap.

Die Aufgabe wurde erfindungsgemäß dadurch gelöst, daß das feste Material in Form von Schüttgut eingesetzt wird, dessen Schmelzpunkt unter der zulässigen Höchsttemperatur des selbsterhitzenden radioaktiven Stoffes liegt.The object was achieved in that the solid material is used in the form of bulk material, the melting point of which is below the permissible maximum temperature of the self-heating radioactive substance.

Der erfindungsgemäße Störfallschutz ist in den Abbildungen I und II schematisch in beispielhaften Ausführungsformen näher erläutert.The accident protection according to the invention is schematically explained in more detail in exemplary embodiments in FIGS.

Die Lagergutverpackung (1), z.B. Druckgasflaschen, mit dem selbsterhitzenden Lagergut (2), z.B. Krypton-85, wird beispielsweise fünf-fach gestapelt in eine Lagerbüchse (3) eingestellt. Der Spalt zwischen der Lagergutverpackung (2) und der Lagerbüchse (3) wird erfindungsgemäß mit einer losen Schüttung (4) ausgefüllt. Als lose Schüttung (4) wird bei dieser beispielhaften Ausführung ein Weichlotgranulat, Korngröße ca. 1 mm, Schmelzpunkt 190 oC, Zusammensetzung 40% Pb, 60% Sn, gewählt. Die zusätzliche Flaschentemperatur ist in diesem Beispiel 200 °C.The storage goods packaging (1), for example compressed gas bottles, with the self-heating storage goods (2), for example Krypton-85, is placed, for example, five times stacked in a storage sleeve (3). The gap between the packaged goods (2) and the bearing bush (3) is filled according to the invention with a loose bed (4). In this exemplary embodiment, a soft solder granulate is used as a loose bed (4), Grain size approx. 1 mm, melting point 190 o C, composition 40% Pb, 60% Sn. The additional bottle temperature in this example is 200 ° C.

Die Lagerbüchse (3) wird mit einem dichtschließenden fernbedienbaren Deckel (5) mit Niederhalter (11) verschlossen.The bearing bush (3) is closed with a tightly closing, remote-controlled cover (5) with hold-down device (11).

Die Lagerbüchse (3) hat Prüfanschlüsse (6) und steht in einem Lagerschacht (8) mit Distanzblechen (10) des Lagergestells (9). Die Kühlluft (7) strömt im Naturzug durch den Ringspalt zwischen Lagerschacht (8) und Lagerbüchse (3).The bearing bush (3) has test connections (6) and is located in a storage shaft (8) with spacer plates (10) of the storage rack (9). The cooling air (7) flows naturally through the annular gap between the storage shaft (8) and the bearing bush (3).

Die Zerfallswärme wird von der inneren Lagergutverpackung (1) durch Wärmeleitung über das Lotgranulat (4) an die Lagerbüchse (3) transportiert und von dort an die vorbeiströmende Kühlluft (7) übertragen.The decay heat is transported from the inner storage goods packaging (1) by heat conduction via the solder granulate (4) to the bearing bush (3) and from there to the cooling air (7) flowing past.

Durch die erfindungsgemäße Füllung des Spaltes mit Lotgranulat wird die maximale Flaschentemperatur um ca. 50 °C gegenüber einer Lagerung mit nicht ausgefülltem Spalt reduziert. Die zulässige Kühlluftunterbrechung (Störfall) bis zum Erreichen der Schmelztemperatur des Lotes wird um ca. 2 Stunden verlängert. Bis alles Lotgranulat aufgeschmolzen ist, vergehen noch einmal ca. 4 Stunden, so daß die Dauer der Kühlluftunterbrechung, die zulässig ist, bis die Druckgasflaschen ihren Auslegungsdruck erreichen, um ca. 6 Stunden auf etwa die vierfache Zeit gegenüber einer Lagerung mit nicht ausgefülltem Spalt verlängert wird. Dieser Zeitgewinn reicht aus, InterventionsmaBnahmen zur Beseitigung des Kühlungsstörfalles aufzunehmen und abzuschließen. Gegenüber der Ausfüllung des Spaltes mit einer Salz- oder Metallschmelze wird dieser Zeitgewinn zwar nicht verlängert, es entfällt jedoch die Belastung der Lagergutverpackung beim Ausgießen.By filling the gap with solder granulate according to the invention, the maximum bottle temperature is reduced by approximately 50 ° C. compared to storage with a gap that has not been filled. The permissible interruption of cooling air (malfunction) until the solder reaches the melting temperature is extended by approx. 2 hours. It takes another 4 hours until all of the solder granules have melted, so that the duration of the cooling air interruption, which is permitted until the compressed gas cylinders reach their design pressure, is increased by about 6 hours to about four times as long as storage with an unfilled gap becomes. This time saving is sufficient to include and complete intervention measures to eliminate the cooling accident. Compared to filling the gap with a salt or metal melt, this time saving is not prolonged, but there is no burden on the storage goods packaging when pouring out.

Der erfindungsgemäße Störfallschutz ist auch auf andere selbsterhitzende Lagergüter anwendbar, insbesondere auch auf verglasten, hochradioaktiven Abfall und auf abgebrannten Brennstoff aus Kernreaktoren.The accident protection according to the invention can also be applied to other self-heating stored goods, in particular also to glazed, highly radioactive waste and to spent fuel from nuclear reactors.

Verglaster, hochradioaktiver Abfall wird üblicherweise in Kokillen aus Edelstahl abgefüllt. Lagergutverpackung ist dann die Kokille und Lagergut der Glasblock. Eine besonders vorteilhafte Anwendung des erfindungsgemäßen Störfallschutzes ergibt sich jedoch, wenn z.B. das Glasprodukt in Form von Kugeln, Stangen oder dergleichen zusammen mit einem erfindungsgemäßen Granulat oder Pulver in eine Kokille oder Büchse abgefüllt wird. In Abb. II ist in beispielhafter Ausführung im Längsschnitt eine solche Lagerbüchse (14) mit dichtschließendem Deckel (15) gezeigt. In dieser Kokille befinden sich Kügelchen (12) aus verglastem hochradioaktivem Abfall und metallischen Lotgranulat oder Pulver (13). Bei diesem Anweadungsfall wird zusätzlich der bei verglastem hochradioaktiven Abfall steile Gradient zwischen maximaler Zentraltemperatur und Randtemperatur reduziert, so daß die Büchsentemperatur steigt und damit eine größere Temperaturdifferenz zur Wärmeabfuhr an die Kühlluft zur Verfügung steht.Glazed, highly radioactive waste is usually filled into stainless steel molds. The packaging is then the mold and the glass block. A particularly advantageous application of the accident protection according to the invention results, however, if e.g. the glass product in the form of balls, rods or the like is filled into a mold or can together with a granulate or powder according to the invention. Such a bearing bush (14) with a tightly closing cover (15) is shown in an exemplary embodiment in longitudinal section in FIG. II. In this mold there are balls (12) made of glazed highly radioactive waste and metallic solder granules or powder (13). In this application case, the gradient between the maximum central temperature and the marginal temperature, which is steep in the case of glazed highly radioactive waste, is additionally reduced, so that the liner temperature rises and thus a greater temperature difference is available for heat dissipation to the cooling air.

Dasselbe gilt für abgebrannte Kernbrennelemente, bei denen der eigentliche Brennstoff als Lagergut und die Brennstoffhülle (z.B. Hüllrohre bei Leichtwasserreaktor-Brennelementen, Graphitmatrix bei Hochtemperaturreaktor-Elementen) als Lagergutverpackung anzusehen ist.The same applies to spent nuclear fuel elements in which the actual fuel is to be regarded as stored goods and the fuel casing (e.g. cladding tubes for light water reactor fuel elements, graphite matrix for high-temperature reactor elements) is to be regarded as packaging for the stored goods.

Der erfindungsgemäße Störfallschutz hat auch gegenüber Metall-und Salzschmelzen bedeutende Vorteile. So gehen im überwiegenden Normalfall d.h. ohne durch Kühlungsunterbrechung verursachter Störfall, Lagergutverpackung und Schüttmaterial keine Verbindung ein. Nach der Auslagerung kann eventuell noch lose an der Lagergutverpackung haftendes Material durch einfache mechanische Reinigungsverfahren leicht und vollständig entfernt werden.The accident protection according to the invention also has significant advantages over metal and salt melts. In most cases, without a malfunction caused by cooling interruption, storage goods packaging and bulk material, no connection. After storage, any material that is still loosely attached to the storage goods packaging can be easily and completely removed using simple mechanical cleaning processes.

Beim Füllen mit der erfindungsgemäßen losen Schüttung kann deren Schmelztemperatur vorteilhafterweise so hoch gewählt werden, wie es für das Lagergut bei einem Störfall gerade noch zulässig ist. Damit werden die Fälle, in denen bei einem Störfall tatsächlich mit einem Aufschmelzen zu rechnen ist, wesentlich unwahrscheinlicher.When filling with the loose fill according to the invention, its melting temperature can advantageously be chosen as high as it is for the stored goods in the event of an accident is still allowed. This makes the cases in which a meltdown can actually be expected in the event of a malfunction much less likely.

Es ist ferner bequem möglich, den mit der erfindungsgemäßen Schüttung ausgefüllten Zwischenraum mit Meßgeräten zu überwachen und gegebenenfalls freigesetzte gasgebundene Radioaktivität abzusaugen.It is also conveniently possible to monitor the space filled with the bed according to the invention with measuring devices and, if necessary, to suction off any gas-bound radioactivity released.

Zur Verbesserung der Wärmeabtfuhr und zur Unterbringung einer möglichst großen Menge Schüttgut ist eine Verdichtung, z.B. durch Ansetzen eines Rüttlers, besonders vorteilhaft.In order to improve heat dissipation and to accommodate the largest possible amount of bulk material, compaction, e.g. by applying a vibrator, particularly advantageous.

Je nach der zulässigen Höchsttemperatur des selbsterhitzenden radioaktiven Lagergutes sind als Materialien für das Schüttgut weiterhin auch Salze bzw. Salzgemische, Aluminiumpulver, Granulate bzw. Pulver aus Blei, Zinn und Zink bzw. deren Legierungen, gegebenenfalls auch Al-Ni gut geeignet.Depending on the permissible maximum temperature of the self-heating radioactive storage material, salts or salt mixtures, aluminum powder, granules or powder from lead, tin and zinc or their alloys, and possibly also Al-Ni, are furthermore suitable as materials for the bulk material.

Claims (5)

1. Störfallschutz für die Lagerung selbsterhitzender radioaktiver Stoffe, insbesondere in luftgekühlten Lagern, wobei die radioaktiven Stoffe in geeigneten Verpackungen oder auslaugbeständigen Teilchen eingeschlossen werden, die in auch als Transport behälter verwendbaren Lagerbehältern eingebracht sind, und der Zwischenraum zwischen den Verpackungen bzw. den Teilchen und dem Lagerbehälter mit einem festen Material ausgefüllt ist, dadurch gekennzeichnet, daß das feste Material in Form von Schüttgut (4, 13) eingesetzt wird, dessen Schmelzpunkt unter der zulässigen Höchsttemperatur des selbsterhitzenden radioaktiven Stoffes liegt.1.Accident prevention for the storage of self-heating radioactive materials, especially in air-cooled stores, the radioactive materials being enclosed in suitable packaging or leach-resistant particles that are placed in storage containers that can also be used as transport containers, and the space between the packaging or the particles and the storage container is filled with a solid material, characterized in that the solid material is used in the form of bulk material (4, 13), the melting point of which is below the permissible maximum temperature of the self-heating radioactive substance. 2. Störfallschutz nach Anspruch 1, dadurch gekennzeichnet, daß das Schüttgut (4, 13) aus Metallpulver bzw. Metallgranulat besteht.2. Accident protection according to claim 1, characterized in that the bulk material (4, 13) consists of metal powder or metal granules. 3. Störfallschutz nach Anspruch 1 und 2, dadurch zekennzeichnet, daß Metallpulver bzw. Metallgranulat aus einer Zinn-Blei-Legierung besteht.3. accident protection according to claim 1 and 2, characterized in that metal powder or metal granules consists of a tin-lead alloy. 4. Störfallschutz nach Ansprüchen 1 bis 3, dadurch eekennzeichnet, daß die Zusammensetzung der Zinn-Blei-Legierung so gewählt ist, daß der Schmelzpunkt nur geringfügig unterhalb der zulässigen Höchsttemperatur des Lagergutes liegt.4. Accident protection according to claims 1 to 3, characterized in that the composition of the tin-lead alloy is selected so that the melting point is only slightly below the maximum permissible temperature of the stored goods. 5. Störfallschutz nach Ansprüchen 1 bis 4, dadurch zekennzeichnet, daß das Schüttgut (4, 13) mechanisch verdichtet ist.5. Accident protection according to claims 1 to 4, characterized in that the bulk material (4, 13) is mechanically compressed.
EP80107972A 1980-02-21 1980-12-17 Disturbance protected storage of radioactive self-heating materials Withdrawn EP0035064A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3006507 1980-02-21
DE19803006507 DE3006507A1 (en) 1980-02-21 1980-02-21 ACCIDENT PROTECTION FOR THE STORAGE OF SELF-HEATING RADIOACTIVE SUBSTANCES

Publications (2)

Publication Number Publication Date
EP0035064A2 true EP0035064A2 (en) 1981-09-09
EP0035064A3 EP0035064A3 (en) 1981-12-16

Family

ID=6095204

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80107972A Withdrawn EP0035064A3 (en) 1980-02-21 1980-12-17 Disturbance protected storage of radioactive self-heating materials

Country Status (3)

Country Link
EP (1) EP0035064A3 (en)
DE (1) DE3006507A1 (en)
FI (1) FI803939L (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2786309A1 (en) * 1998-11-23 2000-05-26 Transnucleaire SHOCK ABSORBER DEVICE FOR CONTAINERS OF RADIOACTIVE MATERIAL
EP2866231A1 (en) * 2013-10-25 2015-04-29 GNS Gesellschaft für Nuklear-Service mbH Transport and/or storage container
RU187096U1 (en) * 2018-09-25 2019-02-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Петрозаводский государственный университет" CONTAINER FOR TRANSPORTATION AND STORAGE OF WASTE NUCLEAR FUEL

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032695A (en) * 1989-05-31 1991-01-09 Nisshin Steel Co Ltd Radiation shielding material with high heat removal efficiency

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1376964A (en) * 1963-11-27 1964-10-31 Lemer & Cie New application of certain alloys and compounds of lead, with a high melting point, to ensure the biological protection of containers containing radioactive products
FR1411473A (en) * 1964-10-09 1965-09-17 Lemer & Cie Shock and fire resistant transport container for radioactive products
DE2313786A1 (en) * 1973-03-20 1974-09-26 Transnuklear Gmbh Transporting radioactively contaminated ion-exchange resins - using container with reserve capacity complying with road transport safety standards
FR2334177A1 (en) * 1975-12-01 1977-07-01 Atomic Energy Authority Uk RADIOACTIVE MATERIAL TRANSPORT CONTAINER
DE2824240A1 (en) * 1978-06-02 1979-12-06 Amtrust Ag Irradiated fuel elements handled from storage pool to reprocessing - in transportation container with solidified salt bed surrounding elements

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1376964A (en) * 1963-11-27 1964-10-31 Lemer & Cie New application of certain alloys and compounds of lead, with a high melting point, to ensure the biological protection of containers containing radioactive products
FR1411473A (en) * 1964-10-09 1965-09-17 Lemer & Cie Shock and fire resistant transport container for radioactive products
DE2313786A1 (en) * 1973-03-20 1974-09-26 Transnuklear Gmbh Transporting radioactively contaminated ion-exchange resins - using container with reserve capacity complying with road transport safety standards
FR2334177A1 (en) * 1975-12-01 1977-07-01 Atomic Energy Authority Uk RADIOACTIVE MATERIAL TRANSPORT CONTAINER
DE2824240A1 (en) * 1978-06-02 1979-12-06 Amtrust Ag Irradiated fuel elements handled from storage pool to reprocessing - in transportation container with solidified salt bed surrounding elements

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2786309A1 (en) * 1998-11-23 2000-05-26 Transnucleaire SHOCK ABSORBER DEVICE FOR CONTAINERS OF RADIOACTIVE MATERIAL
EP1005049A1 (en) * 1998-11-23 2000-05-31 Transnucléaire Shock absorbing device for a cask for the containment of radioactive material
US6234311B1 (en) 1998-11-23 2001-05-22 Transnucleaire Sa Shock-absorbing system for containers of radioactive material
EP2866231A1 (en) * 2013-10-25 2015-04-29 GNS Gesellschaft für Nuklear-Service mbH Transport and/or storage container
RU187096U1 (en) * 2018-09-25 2019-02-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Петрозаводский государственный университет" CONTAINER FOR TRANSPORTATION AND STORAGE OF WASTE NUCLEAR FUEL

Also Published As

Publication number Publication date
EP0035064A3 (en) 1981-12-16
DE3006507A1 (en) 1981-08-27
FI803939L (en) 1981-08-22

Similar Documents

Publication Publication Date Title
DE2915376C2 (en) Container combination for the transport and storage of spent fuel elements from nuclear reactors
DE1514957C3 (en) Arrangement for the transport of a radioactive and / or fissile material
EP0036954B1 (en) Container for transportation and storage of radioactive substances
DE2821780A1 (en) Transport coffin for radioactive cpd., esp. irradiated fuel elements - has ventilation openings at opposite ends and internal sealed capsules
DE2363845C2 (en) Device to reduce the dangers that can arise as a result of a nuclear reactor core melting down
EP0036982B1 (en) Housing for radioactive materials in transport and/or storage containers
DE2459339C3 (en) Cooling and collecting device for the melting or molten core of an atomic nuclear reactor
EP0146778B1 (en) Container for final radioactive waste disposal
DE2722472A1 (en) PROCEDURE FOR THE DISPOSAL OF NUCLEAR WASTE THAT ACCUMULATES AS SOLIDS
EP0035064A2 (en) Disturbance protected storage of radioactive self-heating materials
DE1089488B (en) Nuclear reactor with deployable safety device
DE2363844C2 (en) Device to reduce the dangers that can arise as a result of a nuclear reactor core melting down
DE2524169A1 (en) High activity radioactive waste stabilised as solid - of active glass granulate embedded in metallic matrix
DE3842380A1 (en) Cylindrical container made of steel for the intermediate and final storage of dangerous materials
DE2931729C2 (en) Device for receiving the molten core of a liquid-cooled nuclear reactor after an accident and using the device
DE2734810C2 (en) Safety device for the safety envelope of a pressurized water reactor
DE2731548A1 (en) Radioactive waste solidified and embedded in metal matrix - solidification carried out in hot cell but embedding in disposal coffin
DE3046082C2 (en) Storage and transport container arrangement for one or more moulds filled with radioactive waste encased in glass
DE3046083A1 (en) Container assembly for storing hot radioactive wastes - comprises several containers inside each other of cast concrete with ventilation apertures
DE3938111A1 (en) Safeguard arrangement for reactor core melt down emergency - having absorber tubes, absorber material containers and spacing bolts in reactor vessel bottom
DE2911185A1 (en) Spent nuclear fuel element storage basin - with stainless steel granules filling voids between fuel rods
RU2022378C1 (en) Method of inclusion of solid highly active wastes in metal matrix
DE8032545U1 (en) STORAGE AND TRANSPORT CONTAINERS FOR AT LEAST ONE CHOCOLATE FILLED WITH RADIOACTIVE MOLDS MELTED IN GLASS
DE2806353A1 (en) Storage and transport container for radioactive articles - has solidified embedding substance surrounding articles and removed later by melting
DE3106418A1 (en) Method and arrangement for storing spent fuel elements

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19801217

AK Designated contracting states

Designated state(s): BE CH IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE CH IT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19830208

RIN1 Information on inventor provided before grant (corrected)

Inventor name: AHNER, STEFAN, ING. GRAD.

Inventor name: SCHMIDT, KONRAD, DR.

Inventor name: WARNECKE, ERNST, DR.