EP0032355A1 - Fibre reinforced composite material and process for its production - Google Patents

Fibre reinforced composite material and process for its production Download PDF

Info

Publication number
EP0032355A1
EP0032355A1 EP80710024A EP80710024A EP0032355A1 EP 0032355 A1 EP0032355 A1 EP 0032355A1 EP 80710024 A EP80710024 A EP 80710024A EP 80710024 A EP80710024 A EP 80710024A EP 0032355 A1 EP0032355 A1 EP 0032355A1
Authority
EP
European Patent Office
Prior art keywords
aluminum
composite material
fibers
metal layers
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80710024A
Other languages
German (de)
French (fr)
Other versions
EP0032355B1 (en
Inventor
Gerhard Dr. Ibe
Wolfgang Prof. Dr. Gruhl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vereinigte Aluminium Werke AG
Original Assignee
Vereinigte Aluminium Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE3000171A external-priority patent/DE3000171C2/en
Priority claimed from DE3033725A external-priority patent/DE3033725C2/en
Application filed by Vereinigte Aluminium Werke AG filed Critical Vereinigte Aluminium Werke AG
Priority to AT80710024T priority Critical patent/ATE7405T1/en
Publication of EP0032355A1 publication Critical patent/EP0032355A1/en
Application granted granted Critical
Publication of EP0032355B1 publication Critical patent/EP0032355B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/20Making alloys containing metallic or non-metallic fibres or filaments by subjecting to pressure and heat an assembly comprising at least one metal layer or sheet and one layer of fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/04Light metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to a fiber-reinforced composite material consisting of at least two metal layers made of aluminum or an aluminum alloy and fibers in between, and a method for producing this composite material.
  • Fiber-reinforced thin strips or sheets made of aluminum alloys with up to 50 vol% boron fibers, some of which are coated with SiC, are already produced using the plasma spraying method.
  • the fiber layer wound on a drum is fixed by an aluminum layer applied by means of plasma spraying on the aluminum foil lying under the fibers.
  • These spray layers are very porous and must therefore, for. B. by hot rolling or hot pressing.
  • the fibers are subjected to very high thermal and mechanical stresses due to the aluminum droplets in the plasma jet, which are hot up to 2000 ° C. This can damage the fibers and the composite as early as the manufacturing stage.
  • the tapes produced also have a limited finite length, which is determined by the drum circumference. In addition, this method works discontinuously and requires high investment costs.
  • the present invention was therefore based on the object of developing a fiber-reinforced composite material and a method for its production which does not have the disadvantages mentioned.
  • the process to be developed should not cause any thermal or mechanical damage to the fibers, should basically be integrated into the work process of a semi-finished tool and be expanded into a continuous process.
  • the layering of metal layers and intermediate fibers additionally has an aluminum solder.
  • the aluminum solder is preferably plated on one or both sides of the metal layers. It usually consists of an aluminum-silicon alloy with 5 to 12% silicon, whereby surface-active metals can be contained as wetting-promoting additives.
  • the cladding layer thickness is between 3 and 10% of the metal layer.
  • the metal layer can consist of the standardized material AlMn 1, the thickness of each metal layer being 1 to 2 mm, which is plated with 10% aluminum silicon solder.
  • the metal layers can contain iron and / or nickel up to 3% and chromium, titanium, zirconium, cobalt, vanadium, molybdenum each individually up to 1% or in a mixture.
  • a silicon carbon fiber is preferably used as the fibrous material.
  • boron fibers with or without silicon carbon coating can also be used.
  • the fibers are preferably used in the form of fiber fabric or as a fiber mat, which are arranged essentially parallel to one another.
  • the composite material according to the invention is produced under slight pressure and at a temperature which is above the melting temperature of the solder and below the softening temperature of the metal layers. These process conditions can be maintained by hot pressing or hot rolling the pre-coated composite material, wherein the temperature range should be 450 to 650 0 C.
  • the layering of the composite is at the correct temperature before entering the nip.
  • the primary material to produce the pre-layered composite by bringing the metal layers of the aluminum solder alloy and the fiber fabric together using rollers and to preheat the primary material separately first. Immediately before the rolling, it must then preferably be brought into contact in a continuous furnace and heated to the required final temperature.
  • the composite material can be post-compacted at temperatures below the solder melting point by re-rolling. This densification leads to particularly firm and dense end products.
  • the composite material is also advantageous to subject the composite material to an annealing treatment prior to a heat treatment above the solder melting point. It has been found that the annealing treatment at temperatures of 10 to 50 ° C. below the solder melting point is particularly favorable with an annealing time of 2 to 12 hours.
  • the pre-layered composite can be produced by combining the metal layers, the aluminum solder alloy and the fiber fabric by means of rollers and reels. It is also possible to preheat the primary material separately and to heat it to the final temperature above the solder melting temperature immediately before rolling on the pre-layered composite.
  • the task of the aluminum solder alloy can be to serve as protection against oxidation and as an adhesion promoter in the production of the composite material. It is possible that the composite material is produced without noticeable deformation of the core sheets and the bond between metal layers and fibers by a fiber mat impregnated with the solder layer is formed. In this production, a rolling degree between 0.5 and 1.5% is used.
  • the plating layer thickness is preferably 3 to 10% of the metal layer.
  • the liquid solder envelops the fibers during hot pressing and thus prevents further air entry and thus again the oxidation of the metal surfaces.
  • the fiber layers or fiber fabric or fiber mats can consist of long or short fibers and can be arranged with a parallel fiber arrangement or at other angles.
  • the parallel arrangement has advantages in terms of strength and bending stress.
  • the composite material consisting of several layers in the middle consists of an unreinforced core made of aluminum or an aluminum alloy.
  • the unreinforced core preferably has a thickness of approximately 30% of the total thickness of the composite material.
  • the composite material according to the invention it proves to be particularly advantageous to carry out the hot pressing of parallel fiber layers, fiber fabrics or fiber mats between the metal layers at temperatures of a maximum of 650 ° C. Temperatures beyond this entail the risk of the metal layers melting.
  • the minimum temperature has been found to be a processing temperature of 450 ° C in numerous investigations. Below this temperature, the plasticity of the material is too low to achieve sufficient adhesion and forming of the individual layers with one another.
  • the hot pressing is preferably carried out at pressures below 50 bar. In numerous tests it has been found that with large-area parts, better adhesion is achieved by working with these relatively low pressing pressures of less than 50 bar and then performing subsequent compaction by hot or cold rolling.
  • the composite material is subjected to an annealing treatment before the heat treatment above the solder melting point.
  • the main additional alloy element of the solder for example silicon, should be better distributed by diffusion, so that a homogeneous composite material with better processing properties is produced.
  • the annealing temperatures are preferably 10 to 50 ° below the solder melting point, so that there is sufficient security against inadvertent melting of the solder.
  • the hot pressing can be carried out in a vacuum, under protective gas or in air.
  • the sheets When hot pressing in air, the sheets must first be removed from the oxide cover by chemical stripping. Due to the plastic deformation when aluminum is pressed in between the fibers, there is an approximately 50% increase in the metal surface, so that the new oxide-free surface areas weld together and adhere firmly to the fibers. The effect of the solder plating layer occurs for the remaining 50% of the surface of the aluminum sheets, so that there is a total of 100% adhesion between the sheets and the embedded fibers.
  • An improvement in the hot workability of the composite material produced according to the invention can be achieved by an annealing treatment.
  • the remainder of the solder coating that has not been pressed out after hot pressing is eliminated by diffusion.
  • the homogenization should be carried out below the solder melting point until the excess alloy components of the solder layer have migrated into the metal layers. In the case of an AlSi solder, this would mean that excess silicon components diffuse away, so that an excessive melting point lowering of the aluminum by the silicon cannot be determined at any point in the composite.
  • a composite material treated in this way can be heat-treated again in its later application, for example in the case of hot working, brazing or welding, without a molten phase occurring in the fiber-reinforced composite material itself.
  • FIG. 1 A three-layer fiber-reinforced composite material is shown in FIG. It consists of base plate 1 and cover plate 2, each 0.3 mm thick and made of the material AlMnl. Both sheets are clad on one side with approx. 10% of an AlSil2 solder. Two intermediate plates 3, 4 also consist of AlMn1 and are clad on both sides with an AlSil2 solder. The thicknesses of the solder 5, 6, 7, 8, 9, 10 plated are the same and amount to approximately 10% of the sheet thickness.
  • the composite sheet as in Fig. 1 was layered and inserted into the already preheated to 600 0 C die.
  • the mold was closed on the sample with a pressure of approx. 28 N / mm 2 . After about 15 seconds, the heating was switched off and, after the temperature had dropped to about 500 ° C., the pressure was switched off.
  • FIG. 2 shows the structure of this sample in a metallographic cross section.
  • These remnants of eutectic can be e.g. Eliminate by diffusion annealing the sample at 500 ° C and an annealing time of 4 h, since the excess Si diffuses out of the solder residues into the surrounding metal sheet.
  • Fig. 3 shows the cross section after annealing. The areas of the residual eutectic between the fibers 16 have disappeared. Instead, a zone of homogeneous structure 15 has formed, which contains only weak accumulations of the remaining silicon.
  • Curve 19 shows a composite material after the diffusion annealing at 4 h and 500 ° C. (cf. FIG. 3). She does not have the scale at 573 0 C more, ie occur after this heat treatment no early partial melting prior to the melting of the sheets more. After such annealing, the material can be brazed again or otherwise heat-treated.
  • the metal layers are each provided with a solder plating.
  • Two freshly pickled AIMnl sheets with a thickness of 1 mm are solder-plated on one side with 10% AlSi 10.
  • the dimensions of the sheets are 70 x 190 mm 2 .
  • An equally large piece of fiber fabric made of SiC fibers with a thickness of 140 ⁇ m is placed between these sheets.
  • the SiC fibers are held together by aluminum warp threads measuring 50 x 400 ⁇ m 2 at a distance of approximately 2.8 mm.
  • solder-clad sheets are each directed towards the fiber fabric with the solder layer.
  • the end faces of the samples are welded together and the weld seam is slightly tipped to allow the sample to easily run into the roll gap.
  • the other end of the samples was held together by a thin aluminum wire.
  • soldering temperature With certain aluminum alloys, it is difficult to set the appropriate soldering temperature because the melting temperatures of the soldering material and the base material are close together. In these cases, the raw material should be fed separately, whereby the unplated metal sheets are not heated as high as the aluminum solder alloy. The soldering temperature is only reached shortly before or during rolling. The procedure is similar if only one of the metal layers is solder-plated.
  • the sample When using solder-plated sheets made of AlMn1, the sample is heated to 630 0 c in an electrically preheated air circulation oven, removed from the oven and immediately inserted into the roller that is already running. During the rolling process, the fiber mat is soaked with solder and the excess solder is pressed out of the sample. In this case, the rolling pressure is set so that there is no noticeable decrease or extension of the core sheets.
  • the core sheets When the degree of rolling is increased, the core sheets are deformed and extended over the entire cross section.
  • the material moves under sharper deformation compared to the practically non-deformable rigid high-strength SiC fibers.
  • This shear Deformation is desirable in order to bond fibers and sheet metal material more closely and thus improve adhesion. If the shear deformation is too great, ie the degree of rolling is too high, great shear stresses occur, so that the fibers can tear.
  • the cheapest degree of rolling must therefore be between 1, 5 and 10%.
  • the preferred method produces 15.6% to 17.8% elongation samples. They showed periodically broken fibers at x-ray radiographs at intervals of 3 mm. In contrast, samples with 0.9 or 3.2% elongation showed very good adhesion and no tears in the fibers.
  • the alloy of the metal layers iron and / or nickel can contain up to 3% and in each case up to 1% chromium, titanium, zirconium, cobalt, Vanadium or molybdenum can also be added in combination with other elements that increase the heat resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

1. A laminate for the fabrication of a fiber-reinforced composite, consisting of at least two metal layers of aluminum or aluminum alloys, of at least one coupling layer, and a plurality of interposed fibers, wherein the metal layers are plated with an aluminum solder on the side or sides facing the fibers.

Description

Die Erfindung betrifft einen faserverstärkten Verbundwerkstoff, bestehend aus mindestens zwei Metallagen aus Aluminium oder einer Aluminiumlegierung und zwischengelagerten Fasern, sowie ein Verfahren zur Herstellung dieses Verbundwerkstoffes.The invention relates to a fiber-reinforced composite material consisting of at least two metal layers made of aluminum or an aluminum alloy and fibers in between, and a method for producing this composite material.

Faserverstärkte dünne Bänder bzw. Bleche aus Aluminiumlegierungen mit bis zu 50 Vol-% Borfasern, die teils mit SiC beschichtet sind, werden bereits nach der Methode des Plasmaspritzens hergestellt. Hierbei wird die auf eine Trommel gewickelte Faserlage durch eine mittels Plasmaspritzen aufgetragene Aluminiumschicht auf der unter den Fasern liegenden Aluminiumfolie fixiert. Diese Spritzschichten sind sehr porös und müssen daher z. B. durch Warmwalzen oder Heißpressen nachverdichtet werden. Außerdem werden die Fasern durch die bis 2000°C heißen Aluminiumtröpfchen im Plasmastrahl thermisch und mechanisch sehr stark beansprucht. Dies kann zur Schädigung der Fasern und des Verbundes bereits im Herstellungsstadium führen. Die hergestellten Bänder haben zudem eine begrenzte endliche Länge, die durch den Trommelumfang vorgegeben ist. Außerdem arbeitet diese Methode diskontinuierlich und erfordert hohe Investitionskosten.Fiber-reinforced thin strips or sheets made of aluminum alloys with up to 50 vol% boron fibers, some of which are coated with SiC, are already produced using the plasma spraying method. Here, the fiber layer wound on a drum is fixed by an aluminum layer applied by means of plasma spraying on the aluminum foil lying under the fibers. These spray layers are very porous and must therefore, for. B. by hot rolling or hot pressing. In addition, the fibers are subjected to very high thermal and mechanical stresses due to the aluminum droplets in the plasma jet, which are hot up to 2000 ° C. This can damage the fibers and the composite as early as the manufacturing stage. The tapes produced also have a limited finite length, which is determined by the drum circumference. In addition, this method works discontinuously and requires high investment costs.

Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, einen faserverstärkten Verbundwerkstoff und ein Verfahren zu seiner Herstellung zu entwickeln, das die erwähnten Nachteile nicht aufweist. Das zu entwickelnde Verfahren soll keine thermische und mechanische Schädigung der Fasern verursachen, sich grundsätzlich in den Arbeitsablauf eines Halbwerkzeuges einfügen und zu einem kontinuierlichen Verfahren ausbauen lassen.The present invention was therefore based on the object of developing a fiber-reinforced composite material and a method for its production which does not have the disadvantages mentioned. The process to be developed should not cause any thermal or mechanical damage to the fibers, should basically be integrated into the work process of a semi-finished tool and be expanded into a continuous process.

Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß die Schichtung aus Metallagen und zwischengelagerten Fasern zusätzlich ein Aluminiumlot aufweist. Vorzugsweise ist das Aluminiumlot ein- oder beidseitig auf den Metallagen aufplattiert. Es besteht üblicherweise aus einer Aluminiumsiliziumlegierung mit 5 bis 12% Silizium, wobei grenzflächenaktive Metalle als benetzungsfördernde Zusätze enthalten sein können.According to the invention, this object is achieved in that the layering of metal layers and intermediate fibers additionally has an aluminum solder. The aluminum solder is preferably plated on one or both sides of the metal layers. It usually consists of an aluminum-silicon alloy with 5 to 12% silicon, whereby surface-active metals can be contained as wetting-promoting additives.

Nach einem besonderen Ausführungsbeispiel der Erfindung liegt die Plattierschichtdicke zwischen 3 und 10% der Metallage. Die Metallage kann aus dem genormten Werkstoff AlMn 1 bestehen, wobei die Dicke jeder Metallage 1 bis 2 mm beträgt, die mit 10% Aluminiumsiliziumlot plattiert ist. Die Metallagen können Eisen und/oder Nickel bis zu 3% und Chrom, Titan, Zirkon, Kobalt, Vanadin, Molybdän jeweils einzeln bis zu 1% oder in Zusammenmischung enthalten.According to a special embodiment of the invention, the cladding layer thickness is between 3 and 10% of the metal layer. The metal layer can consist of the standardized material AlMn 1, the thickness of each metal layer being 1 to 2 mm, which is plated with 10% aluminum silicon solder. The metal layers can contain iron and / or nickel up to 3% and chromium, titanium, zirconium, cobalt, vanadium, molybdenum each individually up to 1% or in a mixture.

Als Faserstoff wird bevorzugt eine Siliziumkohlenstoffaser verwendet. Es können aber auch Borfasern mit oder ohne Siliziumkohlenstoffbeschichtung Verwendung finden. Die Fasern werden vorzugsweise in Form von Fasergewebe oder als Fasermatte eingesetzt, die im wesentlichen parallel zueinander angeordnet sind. Aus mehreren Versuchen hat sich ergeben, daß die Festigkeitswerte eines Schichtwerkstoffes besonders günstig sind, wenn in der Mitte ein unverstärkter Kern aus Aluminium oder einer Aluminiumlegierung vorhanden ist.A silicon carbon fiber is preferably used as the fibrous material. However, boron fibers with or without silicon carbon coating can also be used. The fibers are preferably used in the form of fiber fabric or as a fiber mat, which are arranged essentially parallel to one another. Out Several tests have shown that the strength values of a layer material are particularly favorable if an unreinforced core made of aluminum or an aluminum alloy is present in the middle.

Die Herstellung des erfindungsgemäßen Verbundwerkstoffes erfolgt unter leichtem Druck und einer Temperatur, die oberhalb der Schmelztemperatur des Lotes und unterhalb der Erweichungstemperatur der Metallagen liegt. Diese Verfahrensbedingungen können durch Heißpressen oder Heißwalzen des vorgeschichteten Verbundwerkstoffes eingehalten werden, wobei der Temperaturbereich zwischen 450 und 6500C liegen sollte.The composite material according to the invention is produced under slight pressure and at a temperature which is above the melting temperature of the solder and below the softening temperature of the metal layers. These process conditions can be maintained by hot pressing or hot rolling the pre-coated composite material, wherein the temperature range should be 450 to 650 0 C.

Es ist aber auch möglich, die Schichtung aus Metallagen, zwischengelagerten Fasern und Aluminiumlot vor dem Walzen auf Temperaturen oberhalb des Lotschmelzpunktes zu bringen und anschließend kalt zu walzen. Durch zahlreiche Versuche hat man festgestellt, daß es vorteilhaft ist, die Walzung, d.h. den eigentlichen Verbindungsvorgang mit kalten Walzen vorzunehmen. Bei dieser Verfahrensweise wird während der Herstellung des Verbundwerkstoffes bereits eine Abkühlung mit einer hohen Abkühlungsrate ermöglicht. Das vorgeheizte Ausgangsmaterial wird im ersten Teil des Walzvorganges gegeneinander gepreßt und verbunden, während gleichzeitig von den kalten Walzen aus eine Abkühlung über die Metallagen in die Verbindungszone erfolgt. Dieses bewirkt, daß das Fertigprodukt als Verbundwerkstoff unmittelbar nach dem Austritt aus dem Walzspalt weiter verarbeitet werden kann.However, it is also possible to bring the layering of metal layers, intermediate fibers and aluminum solder to temperatures above the solder melting point before rolling and then roll it cold. Through numerous attempts it has been found that it is advantageous to roll, i.e. perform the actual connection process with cold rollers. With this procedure, cooling with a high cooling rate is already made possible during the production of the composite material. The preheated starting material is pressed against one another in the first part of the rolling process and connected, while at the same time cooling takes place from the cold rolls via the metal layers into the connecting zone. This means that the finished product can be processed as a composite material immediately after it leaves the roll gap.

Es ist wichtig, daß die Schichtung des Verbundwerkstoffes vor dem Eintritt in den Walzspalt die vorschriftsmäßige Temperatur besitzt. Hierbei hat es sich als vorteilhaft erwiesen, das Vormaterial zur Herstellung des vorgeschichteten Verbundes durch Zusammenführung der Metallagen der Aluminiumlotlegierung und des Fasergewebes mittels Rollen vorzunehmen und das Vormaterial zunächst separat vorzuheizen. Unmittelbar vor der Walzung muß es dann vorzugsweise in einem Durchlaufofen in Kontakt gebracht werden und auf die erforderliche Endtemperatur erhitzt werden.It is important that the layering of the composite is at the correct temperature before entering the nip. Here it has proven to be advantageous to use the primary material to produce the pre-layered composite by bringing the metal layers of the aluminum solder alloy and the fiber fabric together using rollers and to preheat the primary material separately first. Immediately before the rolling, it must then preferably be brought into contact in a continuous furnace and heated to the required final temperature.

Nach dem eigentlichen Verbindungsprozeß kann der Verbundwerkstoff bei Temperaturen unterhalb des Lotschmelzpunktes durch Nachwalzen nachverdichtet werden. Diese Nachverdichtung führt zu besonders festen und dichten Endprodukten.After the actual joining process, the composite material can be post-compacted at temperatures below the solder melting point by re-rolling. This densification leads to particularly firm and dense end products.

Ferner ist es vorteilhaft, den Verbundwerkstoff vor einer Warmbehandlung oberhalb des Lotschmelzpunktes einer Glühbehandlung zu unterziehen. Es hat sich herausgestellt, daß die Glühbehandlung bei Temperaturen von 10 bis 50 C unterhalb des Lotschmelzpunktes bei einer Glühzeit von 2 bis 12 Stunden besonders günstig ist.It is also advantageous to subject the composite material to an annealing treatment prior to a heat treatment above the solder melting point. It has been found that the annealing treatment at temperatures of 10 to 50 ° C. below the solder melting point is particularly favorable with an annealing time of 2 to 12 hours.

Die Herstellung des vorgeschichteten Verbundes kann durch Zusammenführung der Metallagen, der Aluminiumlotlegierung und des Fasergewebes mittels Rollen und Haspeln erfolgen. Es ist auch möglich, das Vormaterial separat vorzuheizen und die Aufheizung auf Endtemperatur oberhalb der Lotschmelztemperatur unmittelbar vor dem Walzen am vorgeschichteten Verbund vorzunehmen.The pre-layered composite can be produced by combining the metal layers, the aluminum solder alloy and the fiber fabric by means of rollers and reels. It is also possible to preheat the primary material separately and to heat it to the final temperature above the solder melting temperature immediately before rolling on the pre-layered composite.

Die Aufgabe der Aluminiumlotlegierung kann darin bestehen, als Oxidationsschutz und als Haftvermittler bei der Herstellung des Verbundwerkstoffes zu dienen. Es ist möglich, daß der Verbundwerkstoff ohne merkliche Verformung der Kernbleche hergestellt wird und der Verbund zwischen Metallagen und Fasern durch eine mit der Lotschicht getränkte Fasermatte gebildet wird. Bei dieser Herstellung wird mit einem Abwalzgrad zwischen 0, 5 und 1, 5% gearbeitet.The task of the aluminum solder alloy can be to serve as protection against oxidation and as an adhesion promoter in the production of the composite material. It is possible that the composite material is produced without noticeable deformation of the core sheets and the bond between metal layers and fibers by a fiber mat impregnated with the solder layer is formed. In this production, a rolling degree between 0.5 and 1.5% is used.

Zur Erzielung eines hochtemperaturbeständigen Verbundwerkstoffes aus Aluminium ist es jedoch vorteilhaft, den Faserwerkstoff durch plastische Verformung der Metallagen in diese einzubetten. Dabei muß ein Abwalzgrad zwischen 1, 5 und 10% angewendet werden.However, in order to achieve a high-temperature-resistant composite material made of aluminum, it is advantageous to embed the fiber material into the metal layers by plastic deformation thereof. A rolling ratio between 1, 5 and 10% must be used.

Es ist besonders vorteilhaft, als Plattierschicht eine AlSi-Legierung mit 5 bis 12% Silizium zu verwenden. Dabei gelingt eine nahezu vollständige Verschweißung der Metallagen, wobei besonders die nahe-eutektischen AlSi-Legierungen mit 10-12% Si von Vorteil sind. Die Grenzschicht zwischen der Metallage und der Lotplattierung ist praktisch oxidfrei.It is particularly advantageous to use an AlSi alloy with 5 to 12% silicon as the plating layer. Almost complete welding of the metal layers is achieved, the near-eutectic AlSi alloys with 10-12% Si being particularly advantageous. The boundary layer between the metal layer and the solder plating is practically oxide-free.

Die Plattierschichtdicke beträgt vorzugsweise 3 bis 10% der Metallage. Dabei umhüllt das flüssige Lot beim Heißpressen die Fasern und verhindert so einen weiteren Luftzutritt und damit erneut die Oxidation der Metalloberflächen.The plating layer thickness is preferably 3 to 10% of the metal layer. The liquid solder envelops the fibers during hot pressing and thus prevents further air entry and thus again the oxidation of the metal surfaces.

Grundsätzlich können alle keramischen, anorganischgloder metallischenFasern oder Kohlefasern mit deutlicher Verstärkungswirkung und hinreichender thermischer und chemischer Beständigkeit für den erfindungsgemäßen faserverstärkten Verbundwerkstoff eingesetzt werden. Es ist jedoch besonders vorteilhaft, als Fasern SiC-Fasern, Bor-Fasern mit oder ohne SiC-Beschichtung zu verwenden. Bei Verwendung dieser Fasern liegt nach der Abkühlung eine vollständige metallurgische Verbindung der Metallagen und eine vollständige Einbettung und Haftung der Fasern innerhalb des Verbundwerkstoffes vor. In den Randzonen zwischen Metallage und Fasern läßt sich auch nach dem Einschmelzen am Schliffbild oder durch analytische Untersuchung das ursprüngliche Vorhandensein einer Plattierschicht durch unterschiedliche Konzentrationsverteilung feststellen.Basically all ceramic, inorganic g loder metallic fibers or carbon fibers can be used for the inventive fiber-reinforced composite material with significant reinforcing effect and sufficient thermal and chemical resistance. However, it is particularly advantageous to use SiC fibers, boron fibers with or without SiC coating as fibers. When these fibers are used, there is a complete metallurgical bond between the metal layers and a complete embedding and adhesion of the fibers within the composite material after cooling. In the marginal zones between the metal layer and fibers the original presence of a plating layer can also be determined by different concentration distribution after melting on the micrograph or by analytical examination.

Es ist besonders vorteilhaft, den Verbundwerkstoff mit mehreren Faserlagen zu verstärken, die abwechselnd mit ein- oder beidseitig lotplattierten Metallagen aus Aluminium oder Aluminiumlegierungen bedeckt sind. Die Faserlagen bzw. Fasergewebe oder Fasermatten können aus Lang- oder Kurzfasern bestehen und mit paralleler Faseranordnung oder unter anderen Winkeln angeordnet sein. Die parallele Anordnung hat aber hinsichtlich der Festigkeit und Biegebeanspruchung Vorteile.It is particularly advantageous to reinforce the composite material with several fiber layers, which are alternately covered with metal layers made of aluminum or aluminum alloys that are solder-plated on one or both sides. The fiber layers or fiber fabric or fiber mats can consist of long or short fibers and can be arranged with a parallel fiber arrangement or at other angles. The parallel arrangement has advantages in terms of strength and bending stress.

Zur Erhöhung der Biegesteifigkeit ist es vorteilhaft, daß der aus mehreren Schichten bestehende Verbundwerkstoff in der Mitte aus einem unverstärkten Kern aus Aluminium oder einer Aluminiumlegierung besteht. Der unverstärkte Kern besitzt bevorzugt eine Dicke von etwa 30% der Gesamtdicke des Verbundwerkstoffes.To increase the bending stiffness, it is advantageous that the composite material consisting of several layers in the middle consists of an unreinforced core made of aluminum or an aluminum alloy. The unreinforced core preferably has a thickness of approximately 30% of the total thickness of the composite material.

Bei der Herstellung des erfindungsgemäßen Verbundwerkstoffes erweist es sich als besonders vorteilhaft, das Heißpressen paralleler Faserlagen, Fasergewebe oder Fasermatten zwischen den Metallagen bei Temperaturen von maximal 650°C durchzuführen. Darüber hinausgehende Temperaturen bringen die Gefahr des Anschmelzens der Metalllagen mit sich. Als Mindesttemperatur hat sich bei zahlreichen Untersuchungen eine Verarbeitungstemperatur von 450°C ergeben. Unterhalb dieser Temperatur ist die Plastizität des Werkstoffes zu gering, um eine ausreichende Haftung und Umformung der einzelnen Lagen miteinander zu erreichen. Bei den bevorzugt zum Einsatz gelangenden AlSi-Loten ist es besonders vorteilhaft, einen Temperaturbereich von 590 bis 6200C anzuwenden, da hier die Bleche einerseits ausreichend plastisch, andererseits die thermische und mechanische Beanspruchung der Fasern während der Verarbeitung begrenzt sind.In the production of the composite material according to the invention, it proves to be particularly advantageous to carry out the hot pressing of parallel fiber layers, fiber fabrics or fiber mats between the metal layers at temperatures of a maximum of 650 ° C. Temperatures beyond this entail the risk of the metal layers melting. The minimum temperature has been found to be a processing temperature of 450 ° C in numerous investigations. Below this temperature, the plasticity of the material is too low to achieve sufficient adhesion and forming of the individual layers with one another. In the case of the AlSi solders used with preference, it is particularly advantageous to use a temperature range from 590 to 6200C, since here the sheets are sufficiently plastic on the one hand, and the thermal and mechanical on the other Strain on the fibers during processing is limited.

Das Heißpressen geschieht bevorzugterweise bei Preßdrucken unter 50 bar. In zahlreichen Versuchen hat sich herausgestellt, daß bei großflächigen Teilen eine bessere Haftung dadurch erzielt wird, daß mit diesen relativ geringen Preßdrucken von unter 50 bar gearbeitet wird und anschließend eine Nachverdichtung durch Warm- oder Kaltwalzen erfolgt.The hot pressing is preferably carried out at pressures below 50 bar. In numerous tests it has been found that with large-area parts, better adhesion is achieved by working with these relatively low pressing pressures of less than 50 bar and then performing subsequent compaction by hot or cold rolling.

Gemäß einem bevorzugten Anwendungsfall der Erfindurg wird der Verbundwerkstoff vor der Warmbehandlung oberhalb des Lotschmelzpunktes einer Glühbehandlung unterzogen. Dabei soll das Hauptzusatzlegierungselement des Lotes, beispielsweise Silizium, durch Diffusion besser verteilt werden, so daß ein homogener Verbundwerkstoff mit besseren Verarbeitungseigenschaften entsteht. Die Glühtemperaturen liegen vorzugsweise 10 bis 50° unterhalb des Lotschmelzpunktes, damit eine ausreichende Sicherheit gegen das unbeabsichtigte Aufschmelzen des Lotes gegeben ist.According to a preferred application of the invention, the composite material is subjected to an annealing treatment before the heat treatment above the solder melting point. The main additional alloy element of the solder, for example silicon, should be better distributed by diffusion, so that a homogeneous composite material with better processing properties is produced. The annealing temperatures are preferably 10 to 50 ° below the solder melting point, so that there is sufficient security against inadvertent melting of the solder.

Das Heißpressen kann im Vakuum, unter Schutzgas oder auch an Luft erfolgen. Beim Heißpressen unter Luft müssen die Bleche vorher durch chemisches Abbeizen von zu starker Oxidbedeckung befreit werden. Durch die plastische Verformung beim Einpressen des Aluminiums zwischen die Fasern findet eine etwa 50 %ige Vergrößerung der Metalloberfläche statt, so daß die neuen oxidfreien Oberflächenbereiche miteinander verschweißen und fest an den Fasern haften. Für die restlichen 50 % der Oberfläche der Aluminiumbleche tritt die Wirkung der Lotplattierschicht ein, so daß sich insgesamt eine 100 %ige Haftung zwischen den Blechen und den eingelagerten Fasern ergibt.The hot pressing can be carried out in a vacuum, under protective gas or in air. When hot pressing in air, the sheets must first be removed from the oxide cover by chemical stripping. Due to the plastic deformation when aluminum is pressed in between the fibers, there is an approximately 50% increase in the metal surface, so that the new oxide-free surface areas weld together and adhere firmly to the fibers. The effect of the solder plating layer occurs for the remaining 50% of the surface of the aluminum sheets, so that there is a total of 100% adhesion between the sheets and the embedded fibers.

Eine Verbesserung der Warmverarbeitbarkeit des erfindungsgemäß hergestellten Verbundwerkstoffes läßt sich durch eine Glühbehandlung erreichen. Dabei wird der nach dem Heißpressen nicht ausgepreßte Rest der Lotbeschichtung durch Diffusion eliminiert. Die Homogenisierung soll unterhalb des Lotschmelzpunktes so lange durchgeführt werden, bis die überschüssigen Legierungsbestandteile der Lotschicht in die Metallagen abgewandert sind. Bei einem AlSi-Lot würde dies bedeuten, daß überschüssige Siliziumbestandteile wegdiffundieren, so daß an keiner Stelle des Verbundes eine zu starke Schmelzpunkterniedrigung des Aluminiums durch das Silizium feststellbar ist.An improvement in the hot workability of the composite material produced according to the invention can be achieved by an annealing treatment. The remainder of the solder coating that has not been pressed out after hot pressing is eliminated by diffusion. The homogenization should be carried out below the solder melting point until the excess alloy components of the solder layer have migrated into the metal layers. In the case of an AlSi solder, this would mean that excess silicon components diffuse away, so that an excessive melting point lowering of the aluminum by the silicon cannot be determined at any point in the composite.

Ein so behandelter Verbundwerkstoff kann bei seiner späteren Anwendung erneut wärmebehandelt werden, zum Beispiel bei Warmverformung, beim Hartlöten oder Schweißen, ohne daß in dem faserverstärkten Verbundwerkstoff selbst eine schmelzflüssige Phase auftritt.A composite material treated in this way can be heat-treated again in its later application, for example in the case of hot working, brazing or welding, without a molten phase occurring in the fiber-reinforced composite material itself.

Im folgenden wird die Erfindung anhand eines Ausführungsbeispiels näher erläutert. Es zeigen

  • Figur 1 einen erfindungsgemäß zusammengesetzten Werkstoff vor der Verbindung durch Heißpressen oder Heißwalzen
  • Figur 2 einen erfindungsgemäßen Verbundwerkstoff nach dem Heißpressen oder Heißwalzen
  • Figur 3 einen erfindungsgemäßen Verbundwerkstoff nach einer anschließenden Glühung
  • Figur 4 ein Diagramm über zwei Tempera.turdifferenzmessungen.
The invention is explained in more detail below using an exemplary embodiment. Show it
  • Figure 1 shows a composite material according to the invention before connection by hot pressing or hot rolling
  • Figure 2 shows a composite material according to the invention after hot pressing or hot rolling
  • Figure 3 shows a composite material according to the invention after a subsequent annealing
  • FIG. 4 shows a diagram over two temperature difference measurements.

In Fig. 1 ist ein dreilagig faserverstärkter Verbundwerkstoff dargestellt. Er besteht aus Bodenblech 1 und Deckblech 2, die jeweils 0, 3 mm dick sind und aus dem Werkstoff AlMnl bestehen. Beide Bleche sind einseitig plattiert mit ca. 10 % eines AlSil2-Lotes. Zwei Zwischenbleche 3, 4 bestehen ebenfalls aus AlMn1 und sind beidseitig mit einem AlSil2-Lot plattiert. Die Dicken der aufplattierten Lote 5, 6, 7, 8, 9, 10 sind gleich und betragen etwa 10 % der Blechdicke.A three-layer fiber-reinforced composite material is shown in FIG. It consists of base plate 1 and cover plate 2, each 0.3 mm thick and made of the material AlMnl. Both sheets are clad on one side with approx. 10% of an AlSil2 solder. Two intermediate plates 3, 4 also consist of AlMn1 and are clad on both sides with an AlSil2 solder. The thicknesses of the solder 5, 6, 7, 8, 9, 10 plated are the same and amount to approximately 10% of the sheet thickness.

Zwischen den Plattierschichten 5, 6, 7, 8, 9, 10 befinden sich drei Gewebeschichten aus SiC-Fasern 11 mit jeweils 100 µm Dicke.Between the plating layers 5, 6, 7, 8, 9, 10 there are three fabric layers made of SiC fibers 11, each 100 µm thick.

Aus den entfetteten und blankgebeizten Blechen und den entfetteten Fasergewebelagen wurde das Verbundblech wie in Fig. 1 geschichtet und in die bereits auf 6000C vorgeheizte Preßform eingelegt. Die Form wurde mit einem Preßdruck von ca. 28 N/mm2 auf die Probe geschlossen. Nach etwa 15 sec. wurde die Heizung und nach Absinken der Temperatur auf etwa 500°C auch der Druck abgeschaltet.From the defatted and blankgebeizten sheets and the defatted fiber fabric plies, the composite sheet as in Fig. 1 was layered and inserted into the already preheated to 600 0 C die. The mold was closed on the sample with a pressure of approx. 28 N / mm 2 . After about 15 seconds, the heating was switched off and, after the temperature had dropped to about 500 ° C., the pressure was switched off.

Das Gefüge dieser Probe zeigt Fig. 2 in einem metallographischen Querschliff. Man erkennt die gute Verschweißung der Bleche 12 und die vollständige Umhüllung der Fasern 13. Zwischen den Fasern befinden sich noch kleine Bereiche erstarrten Al-Si-Eutektikums aus Resten der Lotschicht 14. Diese Reste von Eutektikum lassen sich z.B. durch eine Diffusionsglühung der Probe bei 500°C und einer Glühzeit von 4 h eliminieren, da hierbei das überschüssige Si aus den Lotresten in das umgebende Blech hineindiffundiert. Fig. 3 zeigt den Querschliff nach der Glühung. Die Bereiche des Resteutektikums zwischen den Fasern 16 sind verschwunden. Stattdessen hat sich eine Zone homogenen Gefüges 15 gebildet, die nur noch schwache Anreicherungen restlichen Siliziums enthält.2 shows the structure of this sample in a metallographic cross section. One can see the good welding of the sheets 12 and the complete coating of the fibers 13. Between the fibers there are still small areas of solidified Al-Si eutectic from remnants of the solder layer 14. These remnants of eutectic can be e.g. Eliminate by diffusion annealing the sample at 500 ° C and an annealing time of 4 h, since the excess Si diffuses out of the solder residues into the surrounding metal sheet. Fig. 3 shows the cross section after annealing. The areas of the residual eutectic between the fibers 16 have disappeared. Instead, a zone of homogeneous structure 15 has formed, which contains only weak accumulations of the remaining silicon.

Dieser Vorgang läßt sich mit Hilfe der Differential-Thermo-Analyse (DTA) auch quantitativ nachweisen. Bei linearem Aufheizen eines Verbundwerkstoffes, hergestellt wie bei Fig. 2 erläutert, zeigt sich in dem Temperaturdifferenz-Verlauf 18 gegen eine mitaufgeheizte Vergleichsprobe aus Reinaluminium ein kleiner Ausschlag bei etwa 573°C, der dem Aufschmelzen der Reste der eutektischen Al-Si-Lotlegierung entspricht. Dieses ist in Fig. 4 dargestellt, wobei der Temperaturverlauf über die Aufheizzeit als gepunktete Linie 17 angegeben ist. Bei etwa 642°C beginnt das Aufschmelzen der AlMn-Legierung der Bleche mit großem Ausschlag in der Δ T-Kurve.This process can also be demonstrated quantitatively with the help of differential thermal analysis (DTA). In the case of linear heating of a composite material, produced as explained in FIG. 2, the temperature difference curve 18 shows a small deflection at approximately 573 ° C. against a comparison sample made of pure aluminum, which corresponds to the melting of the remnants of the eutectic Al-Si solder alloy . This is shown in FIG. 4, the temperature profile over the heating-up time being indicated as dotted line 17. At around 642 ° C, the AlMn alloy of the sheets begins to melt with a large deflection in the Δ T curve.

Die Kurve 19 zeigt einen Verbundwerkstoff nach der Diffusionsglühung bei 4 h und 500°C (vgl. Fig. 3). Sie weist den Ausschlag bei 5730C nicht mehr auf, d.h. es treten nach dieser Wärmebehandlung keine frühen Anschmelzungen vor dem Aufschmelzen der Bleche mehr auf. Das Material kann nach einer solchen Glühung wieder hartgelötet oder anderweitig warmbearbeitet werden.Curve 19 shows a composite material after the diffusion annealing at 4 h and 500 ° C. (cf. FIG. 3). She does not have the scale at 573 0 C more, ie occur after this heat treatment no early partial melting prior to the melting of the sheets more. After such annealing, the material can be brazed again or otherwise heat-treated.

Im folgenden soll ein Beispiel für das erfindungsgemäße Kaltwalzen des faserverstärkten Verbundwerkstoffs gegeben werden. Dabei werden die Metallagen mit jeweils einer Lotplattierung versehen.An example of the cold rolling of the fiber-reinforced composite material according to the invention will be given below. The metal layers are each provided with a solder plating.

Zwei frisch gebeizte Bleche aus AIMnl mit einer Dicke von 1 mm werden einseitig lotplattiert mit 10 % AlSi 10. Die Abmessung der Bleche beträgt 70 x 190 mm2. Zwischen diese Bleche wird ein gleichgroßes Stück Fasergewebe aus SiC-Fasern mit 140 µm Dicke gelegt. Die SiC-Fasern werden durch Aluminiumkettfäden der Abmessung 50 x 400 µm2 in etwa 2,8 mm Abstand zusammengehalten.Two freshly pickled AIMnl sheets with a thickness of 1 mm are solder-plated on one side with 10% AlSi 10. The dimensions of the sheets are 70 x 190 mm 2 . An equally large piece of fiber fabric made of SiC fibers with a thickness of 140 μm is placed between these sheets. The SiC fibers are held together by aluminum warp threads measuring 50 x 400 µm 2 at a distance of approximately 2.8 mm.

Die lotplattierten Bleche sind jeweils mit der Lotschicht zum Fasergewebe gerichtet. Vor dem Walzen werden die Stirnseiten der Proben miteinander verschweißt und die Schweißnaht leicht angespitzt, um ein leichtes Einlaufen der Probe in den Walzspalt zu ermöglichen. Das andere Ende der Proben wurde durch einen dünnen Aluminiumdraht zusammengehalten.The solder-clad sheets are each directed towards the fiber fabric with the solder layer. Before rolling, the end faces of the samples are welded together and the weld seam is slightly tipped to allow the sample to easily run into the roll gap. The other end of the samples was held together by a thin aluminum wire.

Bei bestimmten Aluminiumlegierungen ist es schwierig, die geeignete Löttemperatur einzustellen, da die Schmelztemperaturen von Lötmaterial und Grundwerkstoff dicht beieinander liegen. In diesen Fällen soll das Vormaterial getrennt zugeführt werden, wobei die unplattierten Bleche nicht so hoch erhitzt werden wie die Aluminiumlotlegierung. Die Löttemperatur wird erst kurz vor oder beim Walzen erreicht. In ähnlicher Weise ist zu verfahren, wenn nur eine der Metallagen lotplattiert ist.With certain aluminum alloys, it is difficult to set the appropriate soldering temperature because the melting temperatures of the soldering material and the base material are close together. In these cases, the raw material should be fed separately, whereby the unplated metal sheets are not heated as high as the aluminum solder alloy. The soldering temperature is only reached shortly before or during rolling. The procedure is similar if only one of the metal layers is solder-plated.

Bei der Verwendung lotplattierter Bleche aus AlMn1 wird die Probe in einem elektrisch vorgeheizten Luftumwälzofen auf 6300c aufgeheizt, dem Ofen entnommen und sofort in die bereits laufende Walze eingeführt. Beim Walzdurchgang wird die Fasermatte mit Lot getränkt und das überflüssige Lot aus der Probe herausgedrückt. In diesem Fall ist der Walzdruck so eingestellt, daß keine merkliche Abnahme bzw. Verlängerung der Kernbleche stattfindet.When using solder-plated sheets made of AlMn1, the sample is heated to 630 0 c in an electrically preheated air circulation oven, removed from the oven and immediately inserted into the roller that is already running. During the rolling process, the fiber mat is soaked with solder and the excess solder is pressed out of the sample. In this case, the rolling pressure is set so that there is no noticeable decrease or extension of the core sheets.

Zur Konstanthaltung einer gleichmäßigen Walzentemperatur müssen diese gekühlt werden. Aufgrund der tiefen Walztemperatur ist das restliche Lot des Verbundwerkstoffes nach dem Verlassen der Walzen bereits wieder erstarrt.To keep a constant roller temperature constant, they have to be cooled. Due to the low rolling temperature, the remaining solder of the composite material has solidified again after leaving the rolls.

Bei Erhöhung des Walzgrades werden die Kernbleche im ganzen Querschnitt verformt und verlängert. Das Material verschiebt sich dabei unter schärferer Verformung gegenüber den praktisch nicht verformbaren steifen hochfesten SiC-Fasern. Diese Scherverformung ist erwünscht, um Fasern und Blechwerkstoff inniger zu verbinden und damit die Haftung zu verbessern. Bei zu großer Scherverformung, d.h. zu hohem Walzgrad, treten große Schubspannungen auf, so daß die Fasern reißen können. Der günstigste Walzgrad muß also zwischen 1, 5 und 10 % liegen.When the degree of rolling is increased, the core sheets are deformed and extended over the entire cross section. The material moves under sharper deformation compared to the practically non-deformable rigid high-strength SiC fibers. This shear Deformation is desirable in order to bond fibers and sheet metal material more closely and thus improve adhesion. If the shear deformation is too great, ie the degree of rolling is too high, great shear stresses occur, so that the fibers can tear. The cheapest degree of rolling must therefore be between 1, 5 and 10%.

Nach dem bevorzugten Verfahren werden Proben mit 15, 6 bis 17,8% Verlängerung hergestellt. Sie zeigten bei Röntgendurchstrahlungen in Abständen von 3mm periodisch gerissene Fasern. Proben mit 0,9 bzw. 3, 2 % Verlängerung zeigten dagegen eine sehr gute Haftung und keine Risse der Fasern.The preferred method produces 15.6% to 17.8% elongation samples. They showed periodically broken fibers at x-ray radiographs at intervals of 3 mm. In contrast, samples with 0.9 or 3.2% elongation showed very good adhesion and no tears in the fibers.

Zur Verbesserung der mechanischen Eigenschaften des Kernwerkstoffes, insbesondere zur Verbesserung der Warmfestigkeit bzw. des mechanischen Verhaltens in der Wärme, kann der Legierung der Metallagen Eisen und/oder Nickel bis zu 3 % und jeweils bis zu 1 % Chrom, Titan, Zirkon, Kobalt, Vanadin oder Molybdän auch in Kombination mit anderen die Warmfestigkeit steigernden Elementen zugemischt werden.To improve the mechanical properties of the core material, in particular to improve the heat resistance or the mechanical behavior in heat, the alloy of the metal layers iron and / or nickel can contain up to 3% and in each case up to 1% chromium, titanium, zirconium, cobalt, Vanadium or molybdenum can also be added in combination with other elements that increase the heat resistance.

Claims (10)

1. Faserverstärkter Verbundwerkstoff, bestehend aus einer Schichtung von wenigstens zwei Metallagen und zwischengelagerten Fasern, dadurch gekennzeichnet, daß die Metalllagen aus Aluminium oder Aluminiumlegierungen ein- oder beidseitig mit einem Aluminiumlot plattiert sind.1. Fiber-reinforced composite material, consisting of a layering of at least two metal layers and intermediate fibers, characterized in that the metal layers of aluminum or aluminum alloys are plated on one or both sides with an aluminum solder. 2. Verbundwerkstoff nach Anspruch 1, dadurch gekennzeichnet, daß das Aluminiumlot aus einer Aluminiumsiliziumlegierung mit 5 bis 12% Si besteht und bis zu 10% benetzungsfördernde Zusätze grenzflächenaktiver Metalle.2. Composite material according to claim 1, characterized in that the aluminum solder consists of an aluminum-silicon alloy with 5 to 12% Si and up to 10% wetting-promoting additives of surface-active metals. 3. Verbundwerkstoff nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Metallagen aus einer Aluminiumlegierung mit bis zu 0, 5% Silizium und mit a) 1, 0 bis 1,5% Magnesium oder Mangan oder b) mit 1,0 bis 2, 5% Magnesium und Mangan bestehen, wobei die Metallagen Eisen und/oder Nickel bis zu 3%, Chrom, Titan, Zirkon, Kobalt, Vanadin, Molybdän jeweils einzeln bis zu 1 % oder in Zusammenmischung enthalten.3. Composite material according to one of the preceding claims, characterized in that the metal layers made of an aluminum alloy with up to 0.5% silicon and with a) 1.0 to 1.5% magnesium or manganese or b) with 1.0 to 2 , 5% magnesium and manganese, the metal layers containing iron and / or nickel up to 3%, chromium, titanium, zirconium, cobalt, vanadium, molybdenum each individually up to 1% or in a mixture. 4. Verbundwerkstoff nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als Fasern Siliziumkohlenstofffasern, Borfasern, mit oder ohne Siliziumkohlenstoffbeschichtung verwendet werden, wobei diese als Fasergewebe oder als Fasermatte im wesentlichen parallel zueinander angeordnet sind.4. Composite material according to one of the preceding claims, characterized in that silicon carbon fibers, boron fibers, with or without silicon carbon coating are used as fibers, these being arranged as a fiber fabric or as a fiber mat substantially parallel to one another. 5. Verbundwerkstoff nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der aus mehreren Schichten bestehende Verbundwerkstoff in der Mitte aus einem unverstärkten Kern aus Aluminium oder einer Aluminiumlegierung besteht.5. Composite material according to one of the preceding claims, characterized in that the composite material consisting of several layers in the middle consists of an unreinforced core made of aluminum or an aluminum alloy. 6. Verfahren zur Herstellung eines faserverstärkten Verbundwerkstoffes nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Schichtung aus Metallagen, Aluminiumlot und zwischengelagerten Fasern bei einer Temperatur, die oberhalb der Schmelztemperatur des Lotes und unterhalb der Erweichungstemperatur der Metallagen liegt, unter Druck gebracht wird und anschließend abgekühlt wird.6. A method for producing a fiber-reinforced composite material according to any one of the preceding claims, characterized in that the layering of metal layers, aluminum solder and intermediate fibers is brought under pressure at a temperature which is above the melting temperature of the solder and below the softening temperature of the metal layers and is then cooled. 7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Schichtung durch Heißpressen oder Heißwalzen bei Temperaturen zwischen 450 und 650°C mit einander verbunden wird.7. The method according to any one of the preceding claims, characterized in that the layering is connected to one another by hot pressing or hot rolling at temperatures between 450 and 650 ° C. 8. Verfahren nach den Ansprüchen 1-6, dadurch gekennzeichnet, daß die Schichtung vor dem Walzen auf Temperaturen von 590 bis 6200C gebracht wird und anschließend kaltgewalzt wird.8. The method according to claims 1-6, characterized in that the layering is brought to temperatures of 590 to 620 0 C before rolling and is then cold rolled. 9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß beim Walzen nur die flüssige Lotschicht zwischen die Fasern gedrückt wird und keine merkliche Verformung der Metallagen erfolgt.9. The method according to any one of the preceding claims, characterized in that only the liquid solder layer is pressed between the fibers during rolling and there is no noticeable deformation of the metal layers. 10. Verfahren nach einem der Ansprüche 1-8, dadurch gekennzeichnet, daß die Metallagen während der Walzung plastisch verformt werden und die Fasern durch den Walzdruck in die Metalllagen eingebettet werden.10. The method according to any one of claims 1-8, characterized in that the metal layers are plastically deformed during the rolling and the fibers are embedded in the metal layers by the rolling pressure.
EP80710024A 1980-01-04 1980-10-10 Fibre reinforced composite material and process for its production Expired EP0032355B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80710024T ATE7405T1 (en) 1980-01-04 1980-10-10 FIBER REINFORCED COMPOSITE AND PROCESS FOR ITS MANUFACTURE.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3000171A DE3000171C2 (en) 1980-01-04 1980-01-04 Fiber-reinforced composite material and process for its manufacture
DE3000171 1980-01-04
DE3033725 1980-09-08
DE3033725A DE3033725C2 (en) 1980-09-08 1980-09-08 Process for the production of a fiber-reinforced composite material

Publications (2)

Publication Number Publication Date
EP0032355A1 true EP0032355A1 (en) 1981-07-22
EP0032355B1 EP0032355B1 (en) 1984-05-09

Family

ID=25783032

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80710024A Expired EP0032355B1 (en) 1980-01-04 1980-10-10 Fibre reinforced composite material and process for its production

Country Status (1)

Country Link
EP (1) EP0032355B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0338783A2 (en) * 1988-04-19 1989-10-25 Ube Industries, Ltd. Fiber-reinforced metal composite
US4980242A (en) * 1988-04-01 1990-12-25 Ube Industries, Ltd. Fiber-reinforced metal composite
EP0588545A1 (en) * 1992-09-14 1994-03-23 Showa Aluminum Corporation Method of hot brazing aluminum articles
US6861156B2 (en) 2001-11-16 2005-03-01 Eads Deutschland Gmbh Metal fiber-reinforced composite material as well as a method for its production
US10457019B2 (en) 2010-02-15 2019-10-29 Productive Research Llc Light weight composite material systems, polymeric materials, and methods
CN116141774A (en) * 2023-02-16 2023-05-23 江苏礼德铝业有限公司 Aluminum plate with ceramic fibers and manufacturing method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102186666B (en) 2008-08-18 2015-06-24 多产研究有限责任公司 Formable light weight composites
EP2519376B1 (en) 2009-12-28 2020-11-25 Productive Research LLC. Process for welding composite materials and articles therefrom
KR20140047033A (en) 2011-02-21 2014-04-21 프로덕티브 리서치 엘엘씨 Composite materials including regions differing in properties and methods
US9233526B2 (en) 2012-08-03 2016-01-12 Productive Research Llc Composites having improved interlayer adhesion and methods thereof
US11338552B2 (en) 2019-02-15 2022-05-24 Productive Research Llc Composite materials, vehicle applications and methods thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2330336A1 (en) * 1972-07-10 1975-01-30 United Aircraft Corp METHOD OF MANUFACTURING LAMINATES

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936277A (en) * 1970-04-09 1976-02-03 Mcdonnell Douglas Corporation Aluminum alloy-boron fiber composite
FR2133317A5 (en) * 1971-04-16 1972-11-24 Thomson Csf Composite strip - of aluminium/alloy matrix with eg silicon carbide fibre reinforcement prodn
US3795042A (en) * 1972-08-22 1974-03-05 United Aircraft Corp Method for producing composite materials
JPS6041136B2 (en) * 1976-09-01 1985-09-14 財団法人特殊無機材料研究所 Method for manufacturing silicon carbide fiber reinforced light metal composite material
US4110505A (en) * 1976-12-17 1978-08-29 United Technologies Corp. Quick bond composite and process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2330336A1 (en) * 1972-07-10 1975-01-30 United Aircraft Corp METHOD OF MANUFACTURING LAMINATES

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF METALS, Band 27, Heft 5, Mai 1975 W.C. HARRIGAN et al.: "Aluminium graphite composites; Effects of processing on mechanical properties", Seiten 20 und 21 * Seite 20, linke Spalte, Absatz 2 * *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980242A (en) * 1988-04-01 1990-12-25 Ube Industries, Ltd. Fiber-reinforced metal composite
EP0338783A2 (en) * 1988-04-19 1989-10-25 Ube Industries, Ltd. Fiber-reinforced metal composite
EP0338783A3 (en) * 1988-04-19 1990-01-10 Ube Industries, Ltd. Fiber-reinforced metal composite
EP0588545A1 (en) * 1992-09-14 1994-03-23 Showa Aluminum Corporation Method of hot brazing aluminum articles
US5504296A (en) * 1992-09-14 1996-04-02 Showa Aluminum Corporation Method of hot brazing aluminum articles
US6861156B2 (en) 2001-11-16 2005-03-01 Eads Deutschland Gmbh Metal fiber-reinforced composite material as well as a method for its production
US10457019B2 (en) 2010-02-15 2019-10-29 Productive Research Llc Light weight composite material systems, polymeric materials, and methods
CN116141774A (en) * 2023-02-16 2023-05-23 江苏礼德铝业有限公司 Aluminum plate with ceramic fibers and manufacturing method thereof

Also Published As

Publication number Publication date
EP0032355B1 (en) 1984-05-09

Similar Documents

Publication Publication Date Title
DE3000171A1 (en) FIBER REINFORCED COMPOSITE AND METHOD FOR THE PRODUCTION THEREOF
DE69725170T2 (en) MULTI-LAYERED METAL COMPOSITES PRODUCED BY CONTINUOUSLY casting METAL COMPOSITE STRINGS
DE2432929C3 (en) Method of bending a sandwich panel
DE10156125A1 (en) Metal fiber reinforced composite material and method for producing the same
EP3642371B1 (en) Method for producing a steel component provided with a metallic coating protecting against corrosion
EP0032355B1 (en) Fibre reinforced composite material and process for its production
EP3429792A1 (en) Method for producing a hot-rolled plated composite material, flat product stack, hot-rolled plated composite material and use thereof
EP3356564A1 (en) Manufacture of semi-finished products and structural components with locally different material thicknesses
DE10011758C2 (en) Process for the production of thin-walled components made of steel and components produced thereafter
EP0004063B1 (en) Process for producing clad plate
DE2303991C2 (en) Use of a nickel-chromium-iron alloy
DE3212181A1 (en) Steel support for a lithographic printing plate, and method of producing it
DE3626470A1 (en) METHOD FOR PRODUCING A TITANIUM-PLATED STEEL PLATE BY HOT ROLLERS
DE69834298T2 (en) COMPOSITE MATERIAL OF BERYLLIUM, COPPER ALLOY AND STAINLESS STEEL AND METHOD OF CONNECTING
WO2020109018A1 (en) Method for producing a material composite, material composite and use thereof
DE3100501C2 (en) Process for the production of composite sheets
EP0735148B1 (en) Process for making a structural component with brazed foils of ODS sintered iron alloys and component made by this process
DE10202212A1 (en) Production of strip or sheet made from a metallic composite material comprises forming hollow body made from first material, filling the inner chamber of the hollow body with second metallic material, heating and hot rolling the filled body
DE2009699C3 (en) Composite metal material and process for its manufacture
DE3033725C2 (en) Process for the production of a fiber-reinforced composite material
DE2923532B1 (en) Use of a ferritic stainless steel for objects resistant in the welded state without post-treatment against intergranular corrosion
WO2020193531A1 (en) Method for producing a hot-rolled steel material composite with various properties
DE1954641A1 (en) Process for making a metallic laminate
DE3327657A1 (en) METHOD FOR PRODUCING ALUMINUM COMPOSITES
DD299524A5 (en) METHOD AND DEVICE FOR PRODUCING A COMPOSITE MATERIAL

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19810831

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 7405

Country of ref document: AT

Date of ref document: 19840515

Kind code of ref document: T

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910923

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19911002

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19911008

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19911010

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19911011

Year of fee payment: 12

Ref country code: LU

Payment date: 19911011

Year of fee payment: 12

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19911031

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19911106

Year of fee payment: 12

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19921010

Ref country code: GB

Effective date: 19921010

Ref country code: AT

Effective date: 19921010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19921011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19921031

Ref country code: CH

Effective date: 19921031

Ref country code: BE

Effective date: 19921031

BERE Be: lapsed

Owner name: VEREINIGTE ALUMINIUM-WERKE A.G.

Effective date: 19921031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921010

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 80710024.3

Effective date: 19930510