EP0031275B1 - Fenêtre hyperfréquence et guide d'onde comportant une telle fenêtre - Google Patents

Fenêtre hyperfréquence et guide d'onde comportant une telle fenêtre Download PDF

Info

Publication number
EP0031275B1
EP0031275B1 EP80401764A EP80401764A EP0031275B1 EP 0031275 B1 EP0031275 B1 EP 0031275B1 EP 80401764 A EP80401764 A EP 80401764A EP 80401764 A EP80401764 A EP 80401764A EP 0031275 B1 EP0031275 B1 EP 0031275B1
Authority
EP
European Patent Office
Prior art keywords
transformer
window
guide
wave
shutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80401764A
Other languages
German (de)
English (en)
Other versions
EP0031275A1 (fr
Inventor
Jacques Tikes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0031275A1 publication Critical patent/EP0031275A1/fr
Application granted granted Critical
Publication of EP0031275B1 publication Critical patent/EP0031275B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/08Dielectric windows

Definitions

  • the present invention relates to microwave windows. It also relates to waveguides comprising such windows.
  • a microwave window must therefore have a solidity sufficient to withstand a pressure of 1 kg / cm 2 , when associated with a microwave device operating at low pressure and to withstand a pressure of 3 kg / cm 2 , when it is associated to a device operating at high pressure.
  • a microwave window must be able to be used in a wide frequency band in which it does not have internal resonances generally designated by the English term of ghost modes, and in which its standing wave rate is low , and therefore the unimportant reflections.
  • the present invention relates more particularly to microwave windows used in waveguides of rectangular section, but the windows according to the invention can also be used in waveguides of any section, cylindrical or elliptical for example.
  • These windows can also be formed by a self-closing shutter and by a thin dielectric strip substantially equal to that of the shutter.
  • Windows according to the prior art which are used in waveguides of rectangular section, have the drawback of having a very narrow operating frequency band. This defect is essentially due to the presence of ghost modes, for the windows, which include a large volume of dielectric, and to a bad standing wave rate, for the windows comprising an inductive shutter and a dielectric strip because the adaptation does not can be performed only for a given frequency.
  • the bandwidth of use is generally of the order of 10 to 20% of the central frequency relative to the central frequency with a standing wave rate less than or equal to 1.15.
  • German patent application DE-A-1,765,640 seeks to attenuate the internal resonances in a transmission band while having a low reflection coefficient, by having one or more transformers in near a dielectric strip, on one side or both sides of this strip. Reference will be made in particular to FIG. 6 of this patent application.
  • the problem that the present invention aims to solve is to have a window, more efficient than windows according to the prior art, which does not have internal resonances and has a standing wave rate substantially equal to 1, in a frequency band F, F 2 of at least 35% F. around F o .
  • the present invention relates to a window for microwave waveguide comprising a half-wave impedance transformer, the wavelength considered corresponding to the center frequency for which the window was produced, characterized in that the half-wave transformer is surmounted in its middle by at least one inductive shutter, the rest of the window being constituted by at least one dielectric strip of thin thickness substantially equal to that of the shutter and in that the respective surfaces of the blades and shutters of the assembly above the transformer are chosen so that the reactance of the slat and shutter assembly is canceled for the central frequency and the height of the transformer is chosen so that in a frequency band centered around the central frequency, the reactance of the transformer which s cancels for the central frequency and the reactance of the blade assembly- shutter surmounting the transformer offset.
  • the transformer is surmounted in its middle by two inductive flaps, of equal or non-equal dimensions, which surround a dielectric strip.
  • the windows according to the invention have the advantage of not having internal resonances throughout the normal band of use of the guide, in the fundamental mode. This makes it possible to multiply by 2 or 3, compared to windows according to the prior art, the bandwidth of use with respect to the central frequency, this with a standing wave rate less than 1.10.
  • Figures 1 to 4 show perspective views of windows, according to the prior art, used in guides of rectangular section, and which has been discussed above.
  • a cutaway shows the position of window 2 in guide 1.
  • the window 2 is constituted by a dielectric plate, of thickness ⁇ o / 2, and of rectangular section which is arranged perpendicular to the sides of the guide and which is fixed to its sides, generally by brazing.
  • the window 2 consists of a dielectric plate 3 of thickness ⁇ o / 4 occupying the entire section of the guide which is extended in its middle by two lateral parts 4, also of electrical length ⁇ o / 4.
  • the lateral parts 4 occupy about a third of the total height of the guide.
  • the window 2 is constituted by a simple thin dielectric strip inserted in a section of circular guide 5, connected to the rectangular wave guide 1.
  • the window 2 consists of an inductive shutter 6 and a dielectric strip 7, of thin thickness substantially equal to that of the shutter.
  • the inductive flap we distinguished the inductive flap by hatching its surface.
  • an inductive flap consists of a thin metal plate placed in the section of the waveguide perpendicular to the short sides of the guide.
  • FIG. 5 represents a perspective view of an embodiment of a window according to the invention, used in a guide 1 of the rectangular section.
  • This window 2 is constituted by a half-wave impedance transformer, ⁇ o / 2, 8.
  • the AO wavelength corresponds to the center frequency F. for which the window was made.
  • the transformer 8 is produced by a metal plate covering approximately on a half-wavelength ⁇ 2 one of the long sides of the guide.
  • the window 2 thus consists of a thin dielectric strip 9 surrounded by two inductive shutters 10, of the same dimensions.
  • the blade and the flaps have substantially the same thickness and they are arranged on the transformer, in its middle, perpendicular to the surface of the transformer and to three sides of the guide.
  • the blade and the flaps have rectangular sections and the assembly formed by the transformer surmounted by the blade and the flaps hermetically closes the guide.
  • Figures 6 to 8 represent Smith charts illustrating the operation of a window such as that shown in Figure 5.
  • the impedance of this set is pure reactance. After having chosen the thickness of the blade and of the flaps required to obtain the desired rigidity, the respective surfaces of the blade and of the flaps are chosen so that this reactance, which progressively passes through positive, zero and negative values in the direction of increasing frequencies of F, towards F 2 , vanishes for F o .
  • the arrival at the plane ⁇ 2 means, whatever the frequency, a purely resistive impedance decrease and the impedance is represented by point B to the left of point A on the p axis of the resistances of the abacus of Smith.
  • the displacement of the plane ⁇ 2 to the plane ⁇ 4 over the length ⁇ o / 2 causes a rotation on a circle of radius AB centered at point A in the trigonometric direction.
  • the angle of rotation depends on the operating frequency: it is 2 ⁇ for F 0 , of for F ,, and from for F 2 .
  • the impedance is therefore represented by point C, located on the circle above point B, for F 1 .
  • the impedance is represented by point B for F 0 and by point E, located on the circle below point B, for F 2 .
  • the impedance on the plane ⁇ 5 is therefore represented at the frequencies F 1 , F 0 and F 2 by the points D, A and F which are substantially aligned. on the q axis. Points D and F are located on either side of A.
  • the impedant in the median plane ⁇ 3 distant from from ⁇ 5 is deduced from the impedance on the plane ⁇ 5 by a 180 ° rotation of the line segment DAF.
  • Figure 8 represents on the Smith chart the variations of the impedance in the plane ⁇ 3 .
  • the transformer impedance is therefore a reactance which successively takes negative, zero and positive values in the direction of increasing frequencies, from F 1 to F 2 , from D to F.
  • the window according to the invention comprises both a transformer and an assembly consisting of two shutters and a dielectric strip which surmounts the transformer in its middle.
  • the dimensions of the components of the window are determined so that the impedance of the transformer and that of the assembly formed by the window and the shutters compensate each other in a frequency band F, F 2 of at least 35 % of F 0 around F 0 .
  • F, F 2 of at least 35 % of F 0 around F 0 .
  • the standing wave rate is substantially equal to 1, in the band F 1 F 2 .
  • the thickness of the blade and of the flaps required is generally first chosen to obtain the desired rigidity.
  • the respective surfaces of the blade and of the flaps are then chosen so that the reactance of the blade and flaps assembly is canceled for F o .
  • the height h of the transformer is determined. This height conditions the radius AB of the circle centered in A on which the rotation of 2 ⁇ , 2 ⁇ F 1 / F 0 and 2 ⁇ F 2 / F 0 takes place, which makes it possible to obtain points C, B, E and then the points DAF.
  • the height h of the transformer is therefore chosen so that the segment DAF obtained in FIG. 8 is the symmetrical with respect to the center of the abacus of the segment represented in FIG. 6, the reactance of the transformer, which is canceled for the central frequency F o , and the reactance of the blade-shutter assembly overcoming the transformer thus compensating.
  • a window according to the invention has been tested on a waveguide of rectangular section of dimensions 72 ⁇ 34 mm.
  • the thickness of the dielectric strip was 2 mm and that of the flaps 3 mm. It was found that in the entire frequency band of use of the guide from 2.6 to 3.95 GHz, there were no internal resonances.
  • a standing wave rate less than or equal to 1.08 was obtained for a band of use F 1 F 2 of 35% of F 0 around F o .
  • the use band can exceed 40% of F 0 around F 0 with a standing wave rate of 1.5 and 50% of F 0 around F o with a standing wave rate of less than 2.
  • Figures 9 and 10 show two other embodiments, seen in perspective, of a window according to the invention used in a waveguide of rectangular section and the operation of which is identical to that of the window in FIG. 5.
  • the transformer consists of two metal plates, facing each other, which overlap on the half-wavelength about the two long sides of the guide.
  • These metal plates do not necessarily have the same thickness.
  • the half-wave transformer can also be produced by decreasing, symmetrically or not with respect to the longitudinal median plane of the guide ne (shown in FIG. 9), the height of the guide over the half-wavelength about.
  • the assembly which surmounts the transformer in its middle can be constituted as in FIG. 9 with a dielectric strip 9 and with a single inductive flap 10.
  • the window according to the invention can also comprise an assembly consisting of a dielectric strip surrounded by two inductive shutters of different surfaces.
  • the inductive shutters can be constituted by a metal plate or by a metallic deposit partially covering, one or both faces, of the dielectric strip constituting the window which then occupies the entire section of the guide above the transformer.
  • the transformer 8 is produced by an asymmetrical reduction in the height of the guide and has a discontinuity in its middle.
  • the assembly consisting of a dielectric strip 9 and two uneven inductive flaps 10 then rests directly on the walls of the guide. Better power handling is thus obtained.
  • a window according to the invention such as that shown in FIG. 5 is produced practically in several stages.
  • the assembly consisting of the dielectric strip 9 and the inductive shutters 10 is produced separately.
  • a thin copper strip (around 2 mm thick in the case of the window operating in S strip which was discussed above) is brazed around the periphery of the ceramic dielectric strip 9. of copper is simultaneously brazed on a molybdenum hoop, the shape of which is studied so that it constitutes the inductive flaps 10.
  • the blade-shutter assembly is then brazed at the junction of two half-guides at the same time as the half-guides are brazed to each other.

Landscapes

  • Waveguide Connection Structure (AREA)
  • Waveguides (AREA)

Description

  • La présente invention se rapporte aux fenêtres hyperfréquence. Elle concerne également les guides d'onde comportant de telles fenêtres.
  • Un dispositif hyperfréquence qui fonctionne à une pression différente de la pression atmosphérique nécessite généralement une fenêtre étanche destinée à la fois à l'isoler de la pression atmosphérique extérieure et à permettre la propagation des ondes hyperfréquences sans produire de réflexions ni de résonances internes. C'est la cas, par exemple, pour:
    • - les tubes hyperfréquences et les accélérateurs de particules qui fonctionnent à des pressions sensiblement nulles;
    • - les circulateurs, les isolateurs, les lignes coaxiales et les guides d'onde dans lesquels un gaz peut être emprisonné pour augmenter leur tenue en puissance. La pression de ce gaz peut atteindre 3 kg/cm2.
  • Une fenêtre hyperfréquence doit donc présenter une solidité suffisante pour supporter une pression de 1 kg/cm2, lorsqu'elle est associée à un dispositif hyperfréquence fonctionnant à faible pression et pour supporter une pression de 3 kg/cm2, lorsqu'elle est associée à un dispositif fonctionnant à pression élevée.
  • D'autre part, une fenêtre hyperfréquence doit pouvoir être utilisée dans une large bande de fréquence dans laquelle elle ne présente pas de résonances internes généralement désignées sous le vocable anglo-saxon de ghost modes, et dans laquelle son taux d'onde stationnaire est faible, et donc les réflexions peu importantes.
  • La présente invention concerne plus particulièrement des fenêtres hyperfréquences utilisées dans des guides d'onde de section rectangulaire, mais les fenêtres selon l'invention peuvent aussi être utilisées dans des guides d'onde de section quelconque, cylindrique ou elliptique par exemple.
  • On connaît, dans l'art antérieur, divers types de fenêtres utilisées dans des guides d'onde de section rectangulaire.
  • Ces fenêtres peuvent être uniquement constituées de matériau diélectrique. Dans ce cas, elles peuvent comporter:
    • - soit une plaque diélectrique d'épaisseur λo/2 occupant toute la section du guide, où Ào est la longueur d'onde correspondant à la fréquence centrale Fa pour laquelle la fenêtre a été réalisée;
    • - soit une plaque diélectrique d'épaisseur λo/4 occupant toute la section du guide et prolongée en son milieu par deux parties latérales de longueur électrique Àj4 qui occupent le tiers environ de la hauteur totale du guide;
    • - soit une simple lame diélectrique mince dans un tronçon de guide d'onde circulaire relié au guide d'onde rectangulaire.
  • Ces fenêtres peuvent aussi être constituées par un volet selfique et par une lame diélectrique de faible épaisseur sensiblement égale à celle du volet.
  • Les fenêtres selon l'art antérieur, qui sont utilisées dans des guides d'onde de section rectangulaire, présentent l'inconvénient d'avoir une bande de fréquence de fonctionnement très étroite. Ce défaut est essentiellement dû à la présence de ghost modes, pour les fenêtres, qui comportent un grand volume de diélectrique, et à un mauvais taux d'onde stationnaire, pour les fenêtres comportant un volet selfique et une lame diélectrique car l'adaptation ne peut être réalisée que pour une fréquence donnée.
  • Ainsi, pour les fenêtres selon l'art antérieur, la largeur de bande d'utilisation est généralement de l'ordre de 10 à 20% de la fréquence centrale par rapport à la fréquence centrale avec un taux d'onde stationnaire inférieur ou égal à 1,15.
  • Par la demande de brevet allemand DE-A-1.765.640 on cherche à atténuer les résonances internes dans une bande de transmission tout en ayant un faible coefficient de réflexion, en disposant un ou plusieurs transformateurs en
    Figure imgb0001
    à proximité d'une lame diélectrique, d'un côté ou des deux côtés de cette lame. On se réfèrerera notamment à la figure 6 de cette demande de brevet.
  • Le problème que la présente invention vise à résoudre est de disposer d'une fenêtre, plus performante que les fenêtres selon l'art antérieur, qui ne comporte pas de résonances internes et ait un taux d'onde stationnaire sensiblement égal à 1, dans une bande de fréquence F, F2 d'au moins 35% de F. autour de Fo.
  • La présente invention concerne une fenêtre pour guide d'onde hyperfréquence comportant un transformateur d'impédance demi-onde, la longueur d'onde considérée correspondant à la fréquence centrale pour laquelle la fenêtre a été réalisée, caractérisée en ce que le transformateur demi-onde est surmonté en son milieu par au moins un volet selfique, le reste de la fenêtre étant constitué par au moins une lame diélectrique de faible épaisseur sensiblement égale à celle du volet et en ce que les surfaces respectives des lames et des volets de l'ensemble surmontant le transformateur sont choisies pour que la réactance de l'ensemble lames et volets s'annule pour la fréquence centrale et la hauteur du transformateur est choisie pour que dans une bande de fréquence centrée autour de la fréquence centrale, la réactance du transformateur qui s'annule pour la fréquence centrale et la réactance de l'ensemble lame-volet surmontant le transformateur se compensent.
  • Selon un mode de réalisation préféré de l'invention, le transformateur est surmonté en son milieu par deux volets selfiques, de dimensions égales ou non, qui entourent une lame diélectrique.
  • Les fenêtre selon l'invention présentent l'avantage de ne pas comporter de résonances internes dans toute la bande normale d'utilisation du guide, au mode fondamental. Cela permet de multiplier par 2 ou 3, par rapport aux fenêtres selon l'art antérieur, la largeur de bande d'utilisation par rapport à la fréquence centrale ceci avec un taux d'onde stationnaire inférieur à 1, 10.
  • D'autres objets, caractéristiques et résultats de l'invention ressortiront de la description suivante, donnée à titre d'exemple non limitatif et illustrée par les figures annexées qui représentent:
    • - les figures 1 à 4, des vues en perspective de fenêtres, selon l'art antérieur, utilisées dans des guides de section rectangulaire;
    • - la figure 5, une vue en perspective d'un mode de réalisation d'une fenêtre selon l'invention, utilisée dans un guide de section rectangulaire;
    • - les figures 6 à 8, des abaques de Smith illustrant le fonctionnement d'une fenêtre selon l'invention;
    • - les figures 9 et 10, deux autres mode de réalisation, vus en perspective d'une fenêtre selon l'invention, utilisée dans un guide d'onde de section rectangulaire.
  • Sur les différentes figures, les mêmes repères désignent les mêmes éléments, mais pour des raisons de clarté, les cotes et proportions des divers éléments ne sont pas respectées, toutes les arêtes cachées ne sont pas représentées en trait discontinu et tous les plans coupés ne sont pas hachurés.
  • Les figures 1 à 4 représentent des vues en perspective de fenêtres, selon l'art antérieur, utilisées dans des guides de section rectangulaire, et dont il a été question précédemment. Sur ces figures, un arraché montre la position de la fenêtre 2 dans le guide 1.
  • Sur la figure 1, la fenêtre 2 est constituée par une plaque diélectrique, d'épaisseur λo/2, et de section rectangulaire qui est disposée perpendiculairement aux côtés du guide et qui est fixée à ses côtés, généralement par brasage.
  • Sur la figure 2, la fenêtre 2 est constituée d'une plaque diélectrique 3 d'épaisseur λo/4 occupant toute la section du guide qui est prolongée en son milieu par deux parties latérales 4, de longueur électrique λo/4 également. Les parties latérales 4 occupent environ le tiers de la hauteur totale du guide.
  • Sur la figure 3, le fenêtre 2 est constituée par une simple lame diélectrique mince insérée dans un tronçon de guide circulaire 5, relié au guide d'onde rectangulaire 1.
  • Enfin, sur la figure 4, la fenêtre 2 est constituée d'un volet selfique 6 et d'une lame diélectrique 7, de faible épaisseur sensiblement égale à celle du volet. Sur la figure 4, on a distingué le volet selfique en hachurant sa surface.
  • Il est connu qu'un volet selfique est constitué par une plaque métallique de faible épaisseur disposée dans la section du guide d'onde perpendiculairement aux petits côtés du guide.
  • La figure 5 représente une vue en perspective d'un mode de réalisation d'une fenêtre selon l'invention, utilisée dans un guide 1 de' section rectangulaire.
  • Cette fenêtre 2 est constituée d'un transformateur d'impédance demi-onde, λo/2, 8. La longueur d'onde Ào correspond à la fréquence centrale F. pour laquelle la fenêtre a été réalisée.
  • Sur la figure, le transformateur 8 est réalisé par une plaque métallique recouvrant environ sur une demi-longueur d'onde Àj2 l'un des grands côtés du guide.
  • La fenêtre 2 est ainsi constituée d'une lame diélectrique mince 9 entourée de deux volets selfiques 10, de mêmes dimensions.
  • La lame et les volets ont sensiblement la même épaisseur et ils sont disposés sur le transformateur, en son milieu, perpendiculairement à la surface du transformateur et à trois des côtés du guide.
  • La lame et les volets ont des sections rectangulaires et l'ensemble constitué par le transformateur surmonté par la lame et les volets ferme hermétiquement le guide.
  • Les figures 6 à 8 représentent des abaques de Smith illustrant le fonctionnement d'une fenêtre telle que celle représentée sur la figure 5.
  • Sur la figure 6, on a représenté sur l'abaque de Smith les variations dans la bande de fréquence F1 F2 centrée sur Fo de l'impédance présentée par l'ensemble constitué de la lame 9 et des deux volets 10.
  • L'impédance de cet ensemble est une réactance pure. Après avoir choisi l'épaisseur de la lame et des volets requise pour obtenir la rigidité souhaitée, les surfaces respectives de la lame et des volets sont choisies pour que cette réactance, qui passe progressivement par des valeurs positives, nulles et négatives dans le sens des fréquences croissantes de F, vers F2, s'annule pour Fo.
  • Les variations de l'impédance de l'ensemble constitué de la lame 9 et des deux volets 10 sont donc représentées sur l'abaque de Smith par un segment de droite, porté par l'axe des impédances q de l'abaque de Smith; ce segment de droite se trouve dans le demi-plan des impédances positives pour F,, il passe par le centre de l'abaque de Smith pour Fo, puis se trouve dans le demi-plan des impédances négatives pour F2.
  • Sur la figure 7, on a représenté sur l'abaque de Smith les variations de l'impédance présentée par le transformateur, seul, relié à une terminaison adaptée, en différents points du guide, pour les fréquences F1, F0 et F2.
  • On appelle:
    • - π1, un plan du guide situé du côté du générateur avant le transformateur;
    • - π2, le plan d'entrée du transformateur;
    • - π3, le plan médian du transformateur;
    • - π4, le plan de sortie de transformateur;
    • - et enfin π5, un plan du guide situé du côté de la terminaison adaptée contre le transformateur. Ces différents plans sont indiqués sur la figure 5.
  • Avant le transformateur, plan π1, il y a adaptation et quelle que soit la fréquence, l'impédance est représentée par le point A qui est le centre de l'abaque de Smith.
  • L'arrivée au plan π2 signifie, quelle que soit la fréquence, une diminution d'impédance purement résistive et l'impédance se trouve représentée par le point B à gauche du point A sur l'axe p des résistances de l'abaque de Smith.
  • Le déplacement du plan π2 au plan π4 sur la longueur λo/2 entraîne une rotation sur un cercle de rayon AB centré au point A dans le sens trigonométrique. L'angle de rotation dépend de la fréquence de fonctionnement: il est de 2π pour F0, de
    Figure imgb0002
    pour F,, et de
    Figure imgb0003
    pour F2.
  • Au plan π4, l'impédance est donc représentée par le point C, situé sur le cercle au-dessus du point B, pour F1. L'impédance est représentée par le point B pour F0 et par le point E, situé sur le cercle au-dessous du point B, pour F2.
  • Enfin au plan π5, le transformateur est franchi et il y a une augmentation d'impédance purement résistive qui compense la diminution qui s'était produite au plan π2.
  • L'impédance au plan π5 se trouve donc représentée aux fréquences F1, F0 et F2 par les points D, A et F qui sont sensiblement alignés. sur l'axe q. Les points D et F sont situés de part et d'autre de A.
  • L'impédante dans le plan médian π3 distant de
    Figure imgb0004
    de π5 se déduit de l'impédance au plan π5 par une rotation de 180° du segment de droite DAF.
  • La figure 8 représente sur l'abaque de Smith les variations de l'impédance dans le plan π3. Dans le plan π3, l'impédance du transformateur est donc une réactance qui prend successivement des valeurs négatives, nulles et positives dans le sens des fréquences croissantes, de F1 vers F2, de D vers F.
  • En comparant les figures 6 et 8, on constate que les variations dans la bande de fréquence F, F2 de l'impédance du transformateur et de l'ensemble constitué par la fenêtre et les volets sont purement réactives et se font en sens inverse en fonction de la fréquence.
  • La fenêtre selon l'invention comporte à la fois un transformateur et un ensemble constitué de deux volets et d'une lame diélectrique qui surmonte le transformateur en son milieu. Selon l'invention, les dimensions des constituants de la fenêtre sont déterminées pour que l'impédance du transformateur et celle de l'ensemble constitué par la fenêtre et les volets se compensent dans une bande de fréquence F, F2 d'au moins 35% de F0 autour de F0. Il y a donc adaptation et le taux d'onde stationnaire est sensiblement égal à 1, dans la bande F1 F2.
  • Comme cela a déjà été dit précédemment, on choisit généralement d'abord l'épaisseur de la lame et des volets requise pour obtenir la rigidité souhaitée. Les surfaces respectives de la lame et des volets sont ensuite choisies pour que la réactance de l'ensemble lame et volets s'annule pour Fo. Enfin, on détermine la hauteur h du transformateur. Cette hauteur conditionne le rayon AB du cercle centré en A sur lequel s'effectue la rotation de 2π, 2π F1/F0 et 2π F2/F0 qui permet d'obtenir les points C, B, E et ensuite les points DAF. La hauteur h du transformateur est donc choisie pour que le segment DAF obtenu sur la figure 8 soit le symétrique par rapport au centre de l'abaque du segment représenté sur la figure 6, la réactance du transformateur, qui s'annule pour la fréquence centrale Fo, et la réactance de l'ensemble lame-volet surmontant le transformateur ainsi se compensant.
  • Une fenêtre selon l'invention a été expérimentée sur un guide d'onde de section rectangulaire de dimensions 72x34 mm. L'épaisseur de la lame diélectrique était de 2 mm et celle des volets de 3 mm. On a constaté que dans toute la bande de fréquence d'utilisation du guide de 2,6 à 3,95 GHz, il n'y avait pas de résonances internes. On a obtenu un taux d'onde stationnaire inférieur ou égal à 1,08 pour une bande d'utilisation F1 F2 de 35% de F0 autour de Fo. La bande d'utilisation peut dépasser 40% de F0 autour de F0 avec un taux d'onde stationnaire de 1,5 et 50% de F0 autour de Fo avec un taux d'onde stationnaire inférieur à 2.
  • Les figures 9 et 10 représentent deux autres modes de réalisation, vus en perspective, d'une fenêtre selon l'invention utilisée dans un guide d'onde de section rectangulaire et dont le fonctionnement est identique à celui de la fenêtre de la figure 5.
  • Sur la figure 9, le transformateur est constitué par deux plaques métalliques, en vis-à- vis, qui recouvrent sur la demi-longueur d'onde
    Figure imgb0005
    environ les deux grands côtés du guide.
  • Ces plaques métalliques n'ont pas nécessairement la même épaisseur.
  • Le transformateur demi-onde peut aussi être réalisé en diminuant, symétriquement ou non par rapport au plan médian longitudinal du guide ne (représenté sur la figure 9), la hauteur du guide sur la demi-longueur d'onde
    Figure imgb0006
    environ.
  • De même l'ensemble qui surmonte le transformateur en son milieu, peut être constitué comme sur la figure 9 d'une lame diélectrique 9 et d'un seul volet selfique 10.
  • La fenêtre selon l'invention peut aussi comprendre un ensemble constitué d'une lame diélectrique entourée de deux volets selfiques de surfaces différentes.
  • Enfin, les volets selfiques peuvent être constitués par une plaque métallique ou par un dépôt métallique recouvrant en partie, l'une ou les deux faces, de la lame diélectrique constituant la fenêtre qui occupe alors toute la section du guide au-dessus du transformateur.
  • Sur la figure 10, le transformateur 8 est réalisé par une diminution dissymétrique de la hauteur du guide et présente une discontinuité en son milieu. L'ensemble constitué d'une lame diélectrique 9 et de deux volets selfiques inégaux 10 repose alors directement sur les parois du guide. Une meilleure tenue en puissance est ainsi obtenue.
  • Une fenêtre selon l'invention telle que celle représentée sur la figure 5 est réalisée pratiquement en plusieurs étapes.
  • On réalise d'abord séparément l'ensemble constitué par la lame diélectrique 9 et les volets selfiques 10.
  • Pour cela, on brase sur le pourtour de la lame diélectrique 9 en céramique une bande de cuivre de faible épaisseur (de 2 mm d'épaisseur environ dans le cas de la fenêtre fonctionnant en bande S dont il a été question précédemment), cette bande de cuivre est simultanément brasée sur une frette en molybdène dont la forme est étudiée pour qu'elle constitue les volets selfiques 10.
  • L'ensemble lame-volets est ensuite brasé à la jonction de deux demi-guides en même temps que les demi-guides sont brasés l'un à l'autre.
  • Sur chacun de ces demi-guides, un demi- transformateur 8 a préalablement été brasé.
  • Ce qui vient d'être décrit ne constitue bien sûr qu'un exemple de réalisation d'une fenêtre selon l'invention.

Claims (9)

1. Fenêtre pour guide d'onde hyperfréquence, comportant un transformateur d'impédance demi-onde (8), la longueur d'onde considérée (Ào) correspondant à la fréquence centrale (Fo) pour laquelle la fenêtre a été réalisée, caractérisée en ce que le transformateur demi-onde est surmonté en son milieu, par au moins un volet selfique (10), le reste de la fenêtre étant constitué par au moins une lame diélectrique (9) de faible épaisseur sensiblement égale à celle du volet, et en ce que les surfaces respectives des lames et des volets de l'ensemble surmontant le transformateur sont choisies pour que la réactance de l'ensemble lames et volets s'annule pour la fréquence centrale (Fo) et la hauteur (h) du transformateur est choisie pour que, dans une bande de fréquence (F, F2) centrée autour de la fréquence centrale (Fo), la réactance du transformateur qui s'annule pour la fréquence centrale (Fo) et la réactance de l'ensemble lame-volet surmontant le transformateur se compensent.
2. Fenêtre selon la revendication 1, caractérisée en ce qu'elle est constituée par deux volets selfiques (10), de dimensions égales ou non, entourant une lame diélectrique (9).
3. Fenêtre selon l'une des revendications 1 ou 2, caractérisée en ce qu'elle est réalisée par brasage d'une bande de cuivre de faible épaisseur à la fois sur la lame diélectrique (9) en céramique et sur une frette en molybdène qui constitue le ou les volets selfiques (10).
4. Fenêtre selon l'une des revendications 1 ou 2, caractérisée en ce que le ou les volets selfiques (10) sont constitués par un dépôt métallique, recouvrant en partie, une ou les deux faces, de la lame diélectrique (9) constituant la fenêtre.
5. Fenêtre selon l'une des revendications 1 à 4, caractérisée en ce que le transformateur demi-onde (8) présente une discontinuité en son milieu et en ce que le ou les volets selfiques et le ou les lames diélectriques reposent directement sur les parois du guide d'onde hyperfréquence.
6. Utilisation d'une fenêtre hyperfréquence selon l'une des revendications 1 à 5 dans un guide d'onde de section rectangulaire, circulaire ou elliptique.
7. Utilisation d'une fenêtre selon l'une des revendications 1 à 5 dans un guide d'onde de section rectangulaire, caractérisée en ce que le transformateur demi-onde (8) est réalisé par diminution, symétriquement ou non par rapport au plan médian longitudinal (π6) du guide d'onde, de la hauteur du guide sur une demi-longueur d'onde (λo/2) environ.
8. Utilisation d'une fenêtre selon l'une des revendications 1 à 5 dans un guide d'onde de section rectangulaire, caractérisée en ce que le transformateur demi-onde (8) est réalisé par une plaque métallique recouvrant sur une demi-longueur d'onde (λo/2) environ, au moins l'un des grands côtés du guide.
9. Utilisation d'une fenêtre selon l'une des revendication 1 à 5 dans un guide d'onde de section rectangulaire, circulaire ou elliptique, caractérisée en ce que la fenêtre est brasée à la jonction de deux demi-guides en même temps que les demi-guides sont brasés l'un à l'autre, chaque demi-guide comportant déjà un demi- transformateur (8).
EP80401764A 1979-12-18 1980-12-09 Fenêtre hyperfréquence et guide d'onde comportant une telle fenêtre Expired EP0031275B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7930937A FR2472279A1 (fr) 1979-12-18 1979-12-18 Fenetre hyperfrequence et guide d'onde comportant une telle fenetre
FR7930937 1979-12-18

Publications (2)

Publication Number Publication Date
EP0031275A1 EP0031275A1 (fr) 1981-07-01
EP0031275B1 true EP0031275B1 (fr) 1984-08-08

Family

ID=9232873

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80401764A Expired EP0031275B1 (fr) 1979-12-18 1980-12-09 Fenêtre hyperfréquence et guide d'onde comportant une telle fenêtre

Country Status (4)

Country Link
US (1) US4358744A (fr)
EP (1) EP0031275B1 (fr)
DE (1) DE3068914D1 (fr)
FR (1) FR2472279A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2558306B1 (fr) * 1984-01-17 1988-01-22 Thomson Csf Fenetre circulaire pour guide d'onde hyperfrequence
FR2575604B1 (fr) * 1984-12-28 1987-01-30 Thomson Csf Guide d'ondes rectangulaire a moulures, muni d'une fenetre etanche
FR2653272A1 (fr) * 1989-10-17 1991-04-19 Thomson Tubes Electroniques Fenetre hyperfrequence de puissance a large bande, a tenues mecanique et electrique ameliorees.
WO1997004495A1 (fr) * 1995-07-18 1997-02-06 General Atomics Fenetre a vide hyperfrequence fonctionnant avec une largeur de bande importante
KR100293034B1 (ko) * 1996-03-28 2001-06-15 고지마 마타오 플라즈마 처리장치 및 플라즈마 처리방법
US6834546B2 (en) * 2003-03-04 2004-12-28 Saab Rosemount Tank Radar Ab Device and method in a level gauging system
US8912944B2 (en) * 2011-03-11 2014-12-16 Thomas W. Gow Human presence detector suitable for concealment and using a shaped microwave beam
EP4335253A1 (fr) * 2021-05-05 2024-03-13 Organic Fuel Technology A/S Ensemble fenêtre à micro-ondes à large bande

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR962086A (fr) * 1944-01-22 1950-05-31
FR1435031A (fr) * 1964-02-21 1966-04-15 Varian Associates Coupleur perfectionné pour appareils à décharge électronique à hyperfréquence
FR1559489A (fr) * 1967-04-20 1969-03-07
US3492605A (en) * 1964-10-14 1970-01-27 Amp Inc High frequency transmission devices and methods of compensation
DE1765640A1 (de) * 1968-06-22 1971-08-26 Philips Patentverwaltung Wellenleiteranordnung mit einem dielektrischen Fenster

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1210710A (fr) * 1958-06-04 1960-03-10 Thomson Houston Comp Francaise Nouvelle fenêtre étanche pour guides d'ondes
US3593224A (en) * 1969-02-04 1971-07-13 Teledyne Inc Microwave tube transformer-window assembly having a window thickness equivalent to one-quarter wavelength and metallic step members to transform impedance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR962086A (fr) * 1944-01-22 1950-05-31
FR1435031A (fr) * 1964-02-21 1966-04-15 Varian Associates Coupleur perfectionné pour appareils à décharge électronique à hyperfréquence
US3492605A (en) * 1964-10-14 1970-01-27 Amp Inc High frequency transmission devices and methods of compensation
FR1559489A (fr) * 1967-04-20 1969-03-07
DE1765640A1 (de) * 1968-06-22 1971-08-26 Philips Patentverwaltung Wellenleiteranordnung mit einem dielektrischen Fenster

Also Published As

Publication number Publication date
FR2472279A1 (fr) 1981-06-26
EP0031275A1 (fr) 1981-07-01
DE3068914D1 (en) 1984-09-13
FR2472279B1 (fr) 1983-10-28
US4358744A (en) 1982-11-09

Similar Documents

Publication Publication Date Title
EP2264832B1 (fr) Réflecteur secondaire pour une antenne à double réflecteur
EP0320404A1 (fr) Antenne de type hélice et son procédé de réalisation
EP0145597A2 (fr) Antenne périodique plane
EP0031275B1 (fr) Fenêtre hyperfréquence et guide d'onde comportant une telle fenêtre
CA2310125C (fr) Antenne
EP0113273A1 (fr) Boîtier d'encapsulation pour semiconducteur de puissance, à isolement entrée-sortie amélioré
EP0089083B1 (fr) Additionneur-diviseur de puissance à large bande pour circuit hyperfréquence et transformateur d'impédance réalisé à partir de cet additionneur-diviseur
EP0153541B1 (fr) Fenêtre circulaire pour guide d'onde hyperfréquence
EP0189712B1 (fr) Guide d'ondes rectangulaire à moulures, muni d'une fenêtre étanche
FR2490408A1 (fr) Coupleurs directifs en hyperfrequence entre guide d'onde rectangulaire et ligne triplaque
EP3136499A1 (fr) Système diviseur/combineur pour onde hyperféquence
FR2977381A1 (fr) Dephaseur et repartiteur de puissance
EP0015610B1 (fr) Filtre de réflexion de fréquence image en hyperfréquence et récepteur hyperfréquence comprenant un tel filtre
EP0023873B1 (fr) Limiteur passif de puissance à semi-conducteurs réalisé sur des lignes à structure plane, et circuit hyperfréquence utilisant un tel limiteur
EP2658032A1 (fr) Cornet d'antenne à grille corruguée
EP0046098A1 (fr) Résonateur accordable et circuit hyperfréquence comportant au moins un tel résonateur
EP0424221B1 (fr) Fenêtre hyperfréquence de puissance à large bande, à tenues mécanique et électrique améliorées
EP0044758A1 (fr) Dispositif de terminaison d'une ligne de transmission, en hyperfréquence, à taux d'ondes stationnaires minimal
EP0274950B1 (fr) Dispositif de couplage à large bande entre la ligne à retard d'un tube à onde progressive et le circuit externe de transmission de l'énergie du tube, et tube à onde progressive comportant un tel dispositif
EP1460710B1 (fr) Dispositif hyperfréquence destiné à la dissipation ou à l'atténuation de puissance
EP0296929B1 (fr) Ligne de transmission hyperfréquence de type symétrique et à deux conducteurs coplanaires
FR2461369A1 (fr) Element coaxial pour hyperfrequences, son procede de realisation, et composant hyperfrequence comprenant un tel element
FR2497597A1 (fr) Cable coaxial avec filtre a bande passant a basse frequence
EP0430136A1 (fr) Filtre éliminateur de bande pour guide d'ondes hyperfréquences
EP1067617B1 (fr) Filtre passe-bande

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19810803

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE GB IT

REF Corresponds to:

Ref document number: 3068914

Country of ref document: DE

Date of ref document: 19840913

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951120

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19951121

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961209

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970902